Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, November 28

> You have 1h30. Personal lecture notes are authorized.
> Computers and phones are forbidden.
> The exercises are independent.
> You can answer either in French or in English.

Exercise 1. (1) Compute the weight distribution of the $[7,4,3]_{2}$ Hamming code. Explain in a few words how you computed it.

Answer : The code is the right kernel of the matrix :

$$
\mathbf{H}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

One first observes that the code contains the vector $\mathbf{1}=\left(\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$ since the rows of \mathbf{H} have all even weight. Therefore, the number of words of weight i equals that of words of weight $7-i$ du to the bijection $\mathbf{x} \mapsto \mathbf{x}+\mathbf{1}$.
Set $P_{C}(z):=\sum_{i=0}^{7} P_{i} z^{i}$. One knows that $P_{0}=P_{7}=1$ since the code contains the vector 0 and 1. Since the code has minimum distance 2 we deduce that $P_{1}=P_{2}=0$ and then, by symmetry : $P_{5}=P_{6}=0$.
Let us compute P_{3}. It corresponds to number the triples of distinct columns of \mathbf{H} that sum up to 0 . For any non ordered pair $\{\mathbf{u}, \mathbf{v}\}$ of distinct columns, we get the non ordered triple $\{\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}\}$. On the other hand any such triple can be obtained from 3 distinct pairs, namely $\{\mathbf{u}, \mathbf{v}\},\{\mathbf{u}, \mathbf{u}+\mathbf{v}\}$ and $\{\mathbf{v}, \mathbf{u}+\mathbf{v}\}$. This yields $\frac{1}{3}\binom{7}{2}=14$ such triples. In summary, we get

$$
P_{C}(z)=1+7 z^{3}+7 z^{4}+z^{7}
$$

(2) Deduce that of its dual.

Answer : Using McWilliams identity, or computing the weight if any codeword, we get :

$$
P_{C^{\perp}}(z)=1+7 z^{4}
$$

(3) More generally, considering a $\left[2^{\ell}-1,2^{\ell}-\ell, 3\right]$ Hamming code. How many codewords of weight 3 and 4 does it contain?

Answer : For the number of codewords of weight 3 one uses the same approach and get :

$$
P_{3}=\frac{1}{3}\binom{2^{\ell}-1}{2} .
$$

Then, to count 4-tuples of columns that sum up to 0 , we count any possible triple excluding the triples that sum up to 0 . This gives :

$$
P_{4}=\frac{1}{4}\left(\binom{2^{\ell}-1}{3}-P_{3}\right)
$$

Exercise 2. (1) List all the minimal cyclotomic classes for \mathbb{F}_{5}^{12}, i.e. the minimal subsets of $\mathbb{Z} / 12 \mathbb{Z}$ stable by multiplication by 5 .

Answer :

$$
\{0\},\{1,5\},\{2,10\},\{3\},\{4,8\},\{6\},\{7,11\},\{9\}
$$

(2) What is the number of cyclic codes of length 12 over \mathbb{F}_{5} ?

Answer : There are 8 minimal cyclotomic classes, thus $2^{8}=256$ manner to combine them. Hence 256 such codes.
(3) What is the number of cyclic codes of length 12 and dimension 9 over \mathbb{F}_{5} ?

Answer : We have to count the number of cyclotomic classes of cardinality 3. For this sake we need to combine a minimal class of cardinality 2 and one of cardinality 1 or combine three classes of cardinality 1 . This yields $4 \times 4+\binom{4}{3}=20$ possibilities.
(4) Prove the existence of a cyclic code of length 12 over \mathbb{F}_{5} of dimension 5 and minumum distance at least 6.

Answer : Apply the BCH bound to the code associated to the cyclotomic class of $\{1,2,3,4,5,8,10\}$ It contains the sequence $(1,2,3,4,5)$ and hence has minimum distance at least 6 .

Exercise 3. Let p denote a prime number and n be a positive integer. The Hamming weight of a vector $\mathbf{y} \in \mathbb{F}_{p}^{n}$ is denoted as $w_{H}(\mathbf{y})$. The support of a vector $\mathbf{y} \in \mathbb{F}_{p}^{n}$ is the subset $\operatorname{Supp}(\mathbf{y}) \subset\{1, \ldots, n\}$ of the indexes of its nonzero entries.
(1) Let $\zeta=e^{\frac{2 i \pi}{p}} \in \mathbb{C}$ be a primitive p-th root of unity. Prove that for any integer ℓ prime to p we have

$$
\sum_{j \in \mathbb{F}_{p} \backslash\{0\}} \zeta^{\ell j}=-1
$$

Note. Since, for $t \in \mathbb{Z}$, the number ζ^{t} depends only on the class of t modulo p, the notation ζ^{a} for $a \in \mathbb{F}_{p}$ makes sense.

Answer :

$$
\begin{aligned}
\sum_{j=1}^{p-1} \zeta^{\ell j} & =-1+\sum_{i=0}^{p-1} \zeta^{\ell j} \\
& =-1+\frac{\left(\zeta^{\ell}\right)^{p}-1}{\zeta^{\ell}-1} \\
& =-1+0
\end{aligned}
$$

where the last equality comes from the fact that ζ is a p-th root of unity and hence so is ζ^{ℓ}.
(2) Let ℓ be a positive integer and $\mathbf{x}=\left(x_{1}, \ldots, x_{\ell}, 0, \ldots, 0\right) \in \mathbb{F}_{p}^{n}$ where x_{1}, \ldots, x_{ℓ} are all nonzero. Let $0 \leqslant j \leqslant \ell$ and $I \subseteq\{1, \ldots, n\}$ be a set such that $|I \cap\{1, \ldots, \ell\}|=j$ and $D_{I} \subseteq \mathbb{F}_{p}^{n}$ be the set of vectors whose support equals I. Prove that

$$
\sum_{\mathbf{y} \in D_{I}} \zeta^{\langle\mathbf{x}, \mathbf{y}\rangle}=(-1)^{j}(p-1)^{|I|-j}
$$

Answer : Set $t=|I|$. Denote by $I=\left\{i_{1}, \ldots, i_{j}, \ldots, i_{t}\right\}$. The set $\{1, \ldots, \ell\} \cap I$ equals $\left\{i_{1}, \ldots, i_{j}\right\}$.

$$
\begin{aligned}
\sum_{\mathbf{y} \in D_{I}} \zeta^{\langle\mathbf{x}, \mathbf{y}\rangle} & =\sum_{\mathbf{y} \in D_{I}} \zeta^{x_{i_{1}} y_{i_{1}}+\cdots+x_{i_{t}} y_{i_{t}}} \\
& =\prod_{s=1}^{t}\left(\sum_{y_{i_{s}} \in \mathbb{F}_{p} \backslash\{0\}} \zeta^{x_{i_{s}} y_{i_{s}}}\right) \\
& =\prod_{s=1}^{j}\left(\sum_{y_{i_{s}} \in \mathbb{F}_{p} \backslash\{0\}} \zeta^{x_{i_{s}} y_{i_{s}}}\right) \cdot \prod_{s=j+1}^{t}\left(\sum_{y_{i_{s}} \in \mathbb{F}_{p} \backslash\{0\}} 1\right)
\end{aligned}
$$

where the last equality comes from the fact that for $s>j$, we have $x_{s}=0$. Finally, using the previous question, we get the result.
(3) Let t be a positive integer, with $t \geqslant j$ and $\mathbb{S}(0, t) \subseteq \mathbb{F}_{p}^{n}$ be the set of vectors of weight t. Deduce from the previous result that

$$
\begin{equation*}
\sum_{\mathbf{y} \in \mathbb{S}(0, t)} \zeta^{\langle\mathbf{x}, \mathbf{y}\rangle}=\sum_{j=0}^{t}\binom{\ell}{j}\binom{n-\ell}{t-j}(-1)^{j}(p-1)^{t-j} \tag{1}
\end{equation*}
$$

Answer : It suffices to count the number of possible sets I of cardinality t that meet $\{1, \ldots, \ell\}$ at j elements, which is

$$
\binom{\ell}{j}\binom{n-\ell}{t-j}
$$

Then, it is a direct consequence of the previous question.
(4) The right hand side of (1) is a polynomial expression in ℓ that we denote by $K_{t}(\ell)$. Deduce from the previous questions that for any $\mathbf{x} \in \mathbb{F}_{p}^{n}$ of weight ℓ,

$$
\sum_{\mathbf{y} \in \mathbb{S}(0, t)} \zeta^{\langle\mathbf{x}, \mathbf{y}\rangle}=K_{t}(\ell)
$$

Answer : Up to a permutation of the entries, one can suppose that $\mathbf{x}=\left(x_{1}, \ldots, x_{\ell}, 0, \ldots, 0\right)$ where x_{1}, \ldots, x_{ℓ} are all nonzero. Then it is a direct consequence of the previous results.
(5) Let $\mathcal{C} \subseteq \mathbb{F}_{p}^{n}$ be a code and $P_{\mathcal{C}}=\sum_{\ell=0}^{n} A_{\ell} z^{\ell}$ its weight enumerator polynomial. Prove that for any $0 \leqslant t \leqslant n$,

$$
\sum_{\ell=0}^{n} A_{\ell} K_{t}(\ell) \geqslant 0
$$

Hint. One can use the following fact appearing in your lecture notes. For any $\mathbf{y} \in \mathbb{F}_{p}^{n}$,

$$
\sum_{\mathbf{c} \in \mathcal{C}} \zeta^{\langle\mathbf{c}, \mathbf{y}\rangle}=\left\{\begin{array}{ll}
|\mathcal{C}| & \text { if } \\
0 & \text { else }
\end{array} \quad \mathbf{y} \in \mathcal{C}^{\perp}\right.
$$

Answer :

$$
\begin{aligned}
\sum_{\ell=0}^{n} A_{\ell} K_{t}(\ell) & =\sum_{\ell=0}^{n} \sum_{\mathbf{c} \in \mathcal{C}} K_{t}(\ell) \\
& =\sum_{\ell=0}^{n} \sum_{\mathbf{c} \in \mathcal{C}} \sum_{\mathbf{y} \in \mathbb{S}(0, t)} \zeta^{\langle\mathbf{y}, \mathbf{c}\rangle} \\
& =\sum_{\ell=0}^{n} \sum_{\mathbf{y} \in \mathbb{S}(0, t) \cap \mathcal{C}^{\perp}}|\mathcal{C}| \\
& \geqslant 0
\end{aligned}
$$

(6) Deduce that the coefficients of weight enumerator $P_{\mathcal{C}}=\sum_{\ell=0}^{n} A_{\ell} z^{\ell}$ of a code $\mathcal{C} \subseteq \mathbb{F}_{p}^{n}$ of minimum distance d and dimension k should satisfy the following equations and inequations
(i) $A_{0}+\cdots+A_{n}=p^{k}$;
(ii) $A_{1}=\cdots=A_{d-1}=0$;
(iii) $\forall t \geqslant d, \sum_{\ell=0}^{n} A_{\ell} K_{t}(\ell) \geqslant 0$.

Answer : (6i) is due to the fact that $A_{0}+\cdots+A_{n}=|\mathcal{C}|$. (6ii) is due to the assumption that the minimum distance is d and hence there are no nonzero codewords of weight less than d. (6iii) is a direct consequence of the previous question.
(7) We wish to know the maximum dimension of a linear code over \mathbb{F}_{2} of length 9 and minimum distance $\geqslant 4$ having only even weight codewords. In this context the inequations of the previous question yield (you can admit that fact) $A_{4} \leqslant 18, A_{6} \leqslant \frac{24}{5}$ and $A_{8} \leqslant \frac{9}{5}$. What is the largest possible dimension of a such a code?

Answer : Clearly $A_{0}=1$ since the code is linear and hence contains the zero codeword. Then applying (6i), we get

$$
2^{k} \leqslant 1+18+\frac{24}{5}+\frac{9}{5}=128 / 5=25.6
$$

Therefore, the dimension is at most 4.
(8) Prove that the previous result is sharper than what one could prove using the Hamming bound.

Answer : Using the Hamming bound, we should find the largest possible k such that

$$
2^{k} \operatorname{Vol}_{2}(9,1) \leqslant 2^{9}
$$

That is

$$
2^{k} \leqslant \frac{2^{9}}{9} \leqslant \frac{2^{9}}{2^{4}}=2^{5}
$$

which yields $k \leqslant 5$. Hence the upper bound obtained in the previous question is sharper.

