
MPRI Year 2020–21
Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, November 26

You have 2h30 Including time for scanning/taking pictures.
You can answer either in French or in English.

Exercise 1. True or false. You should justify your answers.
1. A linear code has a unique generator matrix.

Answer : False, for instance

G1 =

(
1 1 0
0 1 1

)
and G2 =

(
1 1 0
1 0 1

)
generate the same code while being distinct.

2. A linear code has a unique parity–check matrix.

Answer : False, a parity–check matrix is a generator matrix of the dual code, so the answer
is the same as for the previous question.

3. Given a linear code with a generator matrix G, multiplying G on the right by a non-singular matrix does
not change the code.

Answer : False, Consider the binary code with generator matrix

G = (0 1)

and the nonsingular matrix S =

(
0 1
1 0

)
then the code with generator matrix GS = (1 0) is

not the same.

4. Given a linear code with a generator matrix G, multiplying G on the left by a non-singular matrix does
not change the code.

Answer : True, left multiplying by a non singular matrix replaces the set of rows by another
one which spans the very same space and hence the same code.

5. There is no linear code with parameters [n, k, n− k + 2].

Answer : True, this is due to Singleton bound.
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6. There is no linear code whose parameters exceed the Gilbert-Varshamov bound.

Answer : False, Gilbert Varshamov bound is a lower bound : i.e. there exist codes whose
parameters reach or possibly strictly exceed GV bound.

7. Asymptotic Plotkin bound is always sharper than asymptotic Singleton bound.

Answer : True, asymptotic Singleton bound asserts that R 6 1 − δ while Plotkin asserts
that R 6 min(1− δ( q−1q ), 0). The latter is sharper than the former.

8. The weight distribution of a linear code of length n and dimension n− 3 can be computed in polynomial
time in n.

Answer : True, the weight distribution of a linear code of dimension 3 can be computed
in polynomial time in n by enumerating all the codewords and computing their weight which
costs O(nq3) operations. Then, for a code of dimension n− 3, one can compute its dual using
Gaussian elimination. Then, the weight distribution of its dual can be computed in polynomial
time and one deduces the weight distribution of the original code by applying McWilliams
Theorem.

9. For any linear code, decoding up to half the minimum distance can be done in polynomial time.

Answer : False, for an arbitrary code, decoding is a difficult problem. Even the estimate of
the minimum distance is a difficult problem.

10. For any linear code of length n and dimension k, computing a codeword of weight 6 n − k + 1 can be
done in polynomial time.

Answer : True, by computing a row echelon form of a generator matrix, the last row has
weight at most n− k + 1 (this is a constructive proof of Singleton bound).

Exercise 2. A Boolean function in m variables is an m-variable polynomial which is a sum of monomials
Xi1

1 · · ·Xim
m where i1, . . . , im ∈ {0, 1}. The degree of a monomial Xi1

1 · · ·Xim
m is the sum i1 + · · · + im. The

degree of a Boolean function is the maximum degree of its monomials. For instance, the Boolean functions :

F (X1, X2, X3) = X1 +X1X2 +X2X3 and G(X1, X2, X3, X4) = X1X3X4 +X2X3 + 1

have respective degrees 2 and 3. By convention, the degree of the function 0 is set to −∞. The space of
Boolean functions of degree 6 r in m variables is denoted by Br(m) and the whole space of Boolean functions
in m variables is denoted by B(m).

Question 1. Give the full list of the elements of the sets B0(2) and B1(2).

Answer :

B0(2) = {0, 1},
B1(2) = {0, 1, X1, X2, X1 + 1, X2 + 1, X1 +X2, X1 +X2 + 1}.
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Question 2. Prove that
(a) for any 0 6 r < m, we have dimF2 Br(m) =

∑r
j=0

(
m
j

)
.

Answer : The space is spanned by monomials involving up to r distinct va-
riables. For any 0 6 j 6 r, the number of degree j monomials involving distinct
variables is

(
m
j

)
. Hence the result.

(b) dimF2
B(m) = 2m.

Answer : From Newton binomial formula,

m∑
j=0

(
m

j

)
=

m∑
j=0

(
m

j

)
1j · 1m−j = (1 + 1)m = 2m.

Fix integers m > 0 and r > 0, then the Reed–Muller code R(r,m) is defined as

R(r,m) :=
{

(P (x1, . . . , xm))(x1,...,xm)∈Fm
2
| P ∈ Br(m)

}
.

where the elements of Fm2 are sorted in the lexicographic order. For instance for m = 3, the elements of F3
2

are sorted as :
(000) ≺ (100) ≺ (010) ≺ (110) ≺ (001) ≺ (101) ≺ (011) ≺ (111).

Question 3. Prove that for any m > 0, the code R(0,m) is the repetition code of length 2m.

Answer : Note first that B0(m) is spanned by the constant boolean function 1. Then,
the code R(0,m) is spanned by the evaluation of this function which is nothing but
the all–one codeword. Hence this code is the repetition code of length 2m.

Question 4. Give a generator matrix of the code R(1, 3).

Answer : 
1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1



We focus on the encoding of the code R(1,m), which is given by the map

Encm :

{
B1(m) −→ F2m

2

F = a0 + a1X1 + · · ·+ amXm 7−→ (F (x1, . . . , xm))(x1,...,xm)∈Fm
2
.

Question 5. Prove that a naive encoding of the code R(1,m) has a complexity of O(n log n), where n = 2m

denotes the code length.

Answer : The Naive encoding consists in performing the multiplication of a row
vector of length m + 1 on the right by an (m + 1) × 2m binary matrix, which costs
O(m2m) = O(n log n) binary operations.

Question 6. This encoding may be improved using the following principle :
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(a) Prove that, given Fm−1 = a0 + a1X1 + · · ·+ am−1Xm−1 and F = Fm−1 + amXm, then

Encm(F ) = (Encm−1(Fm−1)︸ ︷︷ ︸
length 2m−1

| Encm−1(Fm−1)︸ ︷︷ ︸
length 2m−1

+ (am, . . . , am)︸ ︷︷ ︸
length 2m−1

), (1)

where the “|” stands for the concatenation of codewords.

Answer : Since the entries are indexed by vectors sorted in the lexicographic
order, the 2m−1 first ones correspond to elements of Fm2 whose last entry is 0 and
the 2m−1 last ones to elements whose last entry is 1. Moreover, If (vi)i∈{1...2m−1}
is the sequence of vectors of Fm−12 sorted in the lexicographic order, then the
concatenation of the sequences ((vi|0))i and ((vi|1))i yields the list of elements
of Fm2 sorted in the lexicographic order.
Consequently,

(i) for a Boolean function H ∈ Br(m− 1) such that Encm−1(H) = u,
the same function regarded as a function of Br(m) (but which does
not depend on Xm) yields the vector

Encm(H) = (u|u) ∈ R(r,m).

(ii) On the other hand, the evaluation vector of amXm is nothing but
(0 . . . 0 | am . . . am).

By linearity, we deduce the expected result from the two previous observations.

(b) Deduce from the previous question a faster encoding algorithm.

Answer : The previous result gives trivially a recursive algorithm for encoding.

(c) Prove that this faster encoding has complexity O(n), where n = 2m denotes the code
length.

Answer : The cost C(m) of the encoding of F equals :
— the cost C(m− 1) of the encoding of Fm−1 ;
— plus the cost of computing Encm−1(Fm−1) + (am · · · am) which is 2m−1

operations. This yields

∀m > 2, C(m) = 2m−1 + C(m− 1)

which entails :

C(m) =

m−1∑
j=1

2j

+O(1) = O(2m).

We now focus on the decoding of these codes. Indexing words of F2m

2 with elements of Fm2 sorted in the
lexicographic order, for any c ∈ F2m

2 , one defines

∆α(c) :=
(
c(x1+α1,...,xm+αm) + c(x1,...,xm)

)
(x1,...,xm)∈Fm

2

Question 8. Let c = (1 1 0 1 0 0 0 1) ∈ F8
2 and α = (1 0 1) ∈ F3

2. Compute ∆α(c).

Answer : ∆α(c) = (1 1 1 1 1 1 1 1).
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Question 9. If c ∈ F2m

2 has weight t,
(a) prove that for any α ∈ Fm2 the vector ∆α(c) has weight less than or equal to 2t ;

Answer : For any v ∈ Fm2 , denote by cv ∈ F2 the entry of c indexed by v. Let
v1, . . . , vt ∈ Fm2 be the indexes such that cvi = 1. Then the possible indexes at
which ∆α(c) might be nonzero are v1, . . . , vt, v1 + α, . . . , vt + α whose number is
at most 2t.

(b) Give an example where this 2t is reached (Hint. choose a small value of m to design your
example)

Answer : The example of Question 8.

Question 10. Let b1, . . . ,bm be the canonical basis of Fm2 . Let F = a0 + a1X1 + · · ·+ amXm ∈ B1(m) and
c = Encm(F ) ∈ R(1,m). Prove that for any i ∈ {1, . . . ,m}, we have

∆bi
(c) = (ai, . . . , ai).

Answer : Let F ∈ B1(m) such that c = Encm(F ). Let v ∈ Fm2 , then

(∆bi(c))v = F (v) + F (v + bi)

Moreover,

F (v) + F (v + bi) = a0 + a1v1 + · · ·+ aivi + · · ·+ amvm

a0 + a1v1 + · · ·+ ai(vi + 1) + · · ·+ amvm

= ai.

Hence the result.

Question 11. Suppose you received a corrupted codeword y = c + e with c = Encm(F ) ∈ R(1,m) and e
has Hamming weight wH(e) 6 2m−2 − 1.

(a) Explain how to recover a1, . . . , am using derivations and detail why the bound on the
weight of e asserts that these coefficients are uniquely recovered.

Answer : Compute the derivatives ∆bi(y). By linearity of the ∆bi operator,
we have ∆bi(y) = ∆bi(c) + ∆bi(e). Moreover, ∆bi(c) = (ai · · · ai) and, from
Question 9a the weight of ∆bi

(e) is at most 2m−1 − 2. Therefore, ai can be
deduced from ∆bi

(y) by majority voting.

(b) Once a1, . . . , am are known, explain how to find a0.

Answer : Compute the encoding c′ of the Boolean function F ′ = a1X1 + · · ·+
amXm. Then compute y − c′ = Encm(a0) + e. Here again, a majority voting
permits to recover a0.
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(c) Give the complexity of this decoding algorithm.

Answer :
— The computation of the ∆bi

(y) for i ∈ {1, . . . ,m} costs O(m2m) binary
operations and the m majority voting processes also cost O(m2m) ;

— The calculation of c′ is an encoding, which can be performed in O(2m)
operations according to Question 6c.

This gives an overall complexity of O(m2m) operations.

(d) Looking at Theorem 10.8 of these notes, what can you say about the decoding radius (i.e.
the amount of errors it corrects) of this algorithm?

Answer : The algorithm corrects up to half the minimum distance.
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