Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, November 25, 2021

You have 1h30.
You can write your answers either in french or in english.

Exercise 1. Let $C \subseteq \mathbb{F}_{2}^{n}$ be the linear code with generator matrix :

$$
G=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

1. Give the dimension of C. Deduce the number of codewords in C.
2. Prove that C has only codewords of even weight.
3. Prove that C^{\perp} has only codewords of even weight (Hint : do not try to compute C^{\perp}).
4. Let $P_{C}(x, y)$ be the weight enumerator of C, that is to say :

$$
P_{C}(x, y):=\sum_{j=0}^{6} A_{j}(C) x^{j} y^{6-j} \quad \text { where } \quad \forall j \in\{0, \ldots, 6\}, A_{j}(C):=\left|\left\{\mathbf{c} \in C \mid w_{H}(\mathbf{c})=j\right\}\right|
$$

Prove that $P_{C}(x, y)=P_{C}(y, x)$ and $P_{C^{\perp}}(x, y)=P_{C^{\perp}}(y, x)$.
5. Prove that

$$
P_{C}(x, y)=P_{C^{\perp}}(x, y)=y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}+x^{6} .
$$

6. Deduce that the polynomial $P(x, y)=y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}+x^{6}$ satisfies

$$
P(x, y)=P(y-x, y+x)
$$

7. However, do we have $C=C^{\perp}$? Justify your answer.

Exercise 2.

1. Prove that the only linear binary cyclic codes of length 11 are the codes $\{0\}, \mathbb{F}_{2}^{11}$, the repetition code and the parity code.

Caution. In the sequel, we consider linear codes over \mathbb{F}_{4} and no longer over \mathbb{F}_{2} as in the previous question.
2. Compute the minimal nonempty cyclotomic classes for \mathbb{F}_{4}^{11}. That is to say the smallest nonempty parts of $\mathbb{Z} / 11 \mathbb{Z}$ stable by multiplication by 4 .
3. Deduce the number of cyclic codes of length 11 over \mathbb{F}_{4} (including the codes $\{0\}$ and \mathbb{F}_{4}^{11}).
4. Prove that there exist two cyclic codes in \mathbb{F}_{4}^{11} of dimension 6 and minimum distance $\geqslant 4$.

Turn the page please.

Exercise 3. In this exercise, any code is linear. In \mathbb{F}_{2}^{n}, the Hamming ball of centre \mathbf{c} and radius ℓ, i.e. the set of words at distance less than or equal to ℓ from \mathbf{c} is denoted $\mathbb{B}_{H}(\mathbf{c}, \ell)$. The number of words in such a ball is denoted by $V(n, \ell)$. We recall the existence of a function H_{2} satisfying

$$
\forall \rho \in[0,1 / 2], \forall \mathbf{c} \in \mathbb{F}_{2}^{n}, \quad 2^{n H_{2}(\rho)-\circ(n)} \leqslant V(n, \rho n) \leqslant 2^{n H_{2}(\rho)}
$$

A code $C \subseteq \mathbb{F}_{2}^{n}$ is said to be (ρ, L)-list decodable if for any $\mathbf{y} \in \mathbb{F}_{2}^{n}$, we have

$$
\left|\mathbb{B}_{H}(\mathbf{y}, \rho n) \cap C\right| \leqslant L
$$

1. Explain the rationale behind the terminology "list decodable".
2. Let C be a code of dimension k and $0<\rho<1 / 2$. Let \mathbf{y} be a uniformly random word of \mathbb{F}_{2}^{n} and consider the random variable $Z_{C, \rho}=\left|\mathbb{B}_{H}(\mathbf{y}, \rho n) \cap C\right|$. Prove that its expectation (mean) satisfies

$$
\mathbb{E}_{\mathbf{y}}\left(Z_{C, \rho}\right)=2^{k-n} \cdot V(n, \rho n)
$$

3. Let $\varepsilon>0$. Prove that, for large enough n, any code $C \subseteq \mathbb{F}_{2}^{n}$ of dimension $n\left(1-H_{2}(\rho)+\varepsilon\right)$ satisfies

$$
\mathbb{E}_{\mathbf{y}}\left(Z_{C, \rho}\right) \geqslant 2^{\frac{\varepsilon n}{2}}
$$

4. A code is said ρ-list decodable if it is (ρ, L)-list decodable where L is polynomial in n. Deduce from the previous results that, for large enough n, no code of dimension $n\left(1-H_{2}(\rho)+\varepsilon\right)$ is ρ-list decodable.
5. To which result in your course, the previous result can be compared? How do these results differ from each other?

Exercise 4. Any code in the exercise is linear. Recall that a code $C \subseteq \mathbb{F}_{q}^{n}$ is said to be MDS if C has parameters $[n, k, n-k+1]$. For any $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{q}^{n}$, we call support of \mathbf{y} the set

$$
\operatorname{Supp}(\mathbf{y}):=\left\{i \in\{1, \ldots, n\} \mid y_{i} \neq 0\right\}
$$

1. Let $C \subseteq \mathbb{F}_{q}^{n}$, be an MDS code of dimension k. Prove that for any $J \subseteq\{1, \ldots, n\}$ such that $|J|=n-k+1$, there exists $\mathbf{c}_{J} \subseteq C$ such that

$$
\operatorname{Supp}\left(\mathbf{c}_{J}\right)=J
$$

2. Prove that \mathbf{c}_{J} is unique up to multiplication by a scalar.
3. Let $C^{\prime} \subseteq \mathbb{F}_{q}^{n}$ be a code of dimension k and $\mathbf{c} \in C^{\prime} \backslash\{0\}$ with weight $r \leqslant n-k$. Let $J \supseteq \operatorname{Supp}(\mathbf{c})$ be such that $|J|=n-k$. Prove that there cannot exist for all $i \in\{1, \ldots, n\} \backslash J$ a word $\mathbf{c}_{J \cup\{i\}} \in C^{\prime}$ with support $J \cup\{i\}$.
4. Deduce that : A code $C \subseteq \mathbb{F}_{q}^{n}$ of dimension k is $M D S$ if and only if, for all $J \subseteq\{1, \ldots, n\}$ such that $|J|=n-k+1$, there exists a codeword $\mathbf{c}_{J} \in C$ with support J.
5. Given two codes $C, D \subseteq \mathbb{F}_{q}^{n}$, denote

$$
C * D:=\operatorname{Span}_{\mathbb{F}_{q}}\left\{\left(c_{1} d_{1}, \ldots, c_{n} d_{n}\right) \mid\left(c_{1}, \ldots, c_{n}\right) \in C,\left(d_{1}, \ldots, d_{n}\right) \in D\right\}
$$

Prove that if C and D are MDS and $\operatorname{dim} C * D=\operatorname{dim} C+\operatorname{dim} D-1$, then $C * D$ is MDS.

