Mid-term exam, November 25, 2021

You have 1h30.

You can write your answers either in french or in english.

Exercise 1. Let $C \subseteq \mathbb{F}_2^n$ be the linear code with generator matrix :

$$G = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

- 1. Give the dimension of C. Deduce the number of codewords in C.
- 2. Prove that C has only codewords of even weight.
- 3. Prove that C^{\perp} has only codewords of even weight (*Hint*: do not try to compute C^{\perp}).
- 4. Let $P_C(x, y)$ be the weight enumerator of C, that is to say :

$$P_C(x,y) := \sum_{j=0}^6 A_j(C) x^j y^{6-j} \quad \text{where} \quad \forall j \in \{0,\dots,6\}, \ A_j(C) := |\{\mathbf{c} \in C \mid w_H(\mathbf{c}) = j\}|.$$

Prove that $P_C(x, y) = P_C(y, x)$ and $P_{C^{\perp}}(x, y) = P_{C^{\perp}}(y, x)$.

5. Prove that

$$P_C(x,y) = P_{C^{\perp}}(x,y) = y^6 + 3x^2y^4 + 3x^4y^2 + x^6.$$

6. Deduce that the polynomial $P(x, y) = y^6 + 3x^2y^4 + 3x^4y^2 + x^6$ satisfies

$$P(x,y) = P(y-x,y+x).$$

7. However, do we have $C = C^{\perp}$? Justify your answer.

Exercise 2.

1. Prove that the only linear binary cyclic codes of length 11 are the codes $\{0\}, \mathbb{F}_2^{11}$, the repetition code and the parity code.

Caution. In the sequel, we consider linear codes over \mathbb{F}_4 and no longer over \mathbb{F}_2 as in the previous question.

- 2. Compute the minimal nonempty cyclotomic classes for \mathbb{F}_4^{11} . That is to say the smallest nonempty parts of $\mathbb{Z}/11\mathbb{Z}$ stable by multiplication by 4.
- 3. Deduce the number of cyclic codes of length 11 over \mathbb{F}_4 (including the codes $\{0\}$ and \mathbb{F}_4^{11}).
- 4. Prove that there exist two cyclic codes in \mathbb{F}_4^{11} of dimension 6 and minimum distance ≥ 4 .

Turn the page please.

Exercise 3. In this exercise, any code is linear. In \mathbb{F}_2^n , the Hamming ball of centre **c** and radius ℓ , *i.e.* the set of words at distance less than or equal to ℓ from **c** is denoted $\mathbb{B}_H(\mathbf{c}, \ell)$. The number of words in such a ball is denoted by $V(n, \ell)$. We recall the existence of a function H_2 satisfying

$$\forall \rho \in [0, 1/2], \ \forall \mathbf{c} \in \mathbb{F}_2^n, \quad 2^{nH_2(\rho) - \circ(n)} \leqslant V(n, \rho n) \leqslant 2^{nH_2(\rho)}.$$

A code $C \subseteq \mathbb{F}_2^n$ is said to be (ρ, L) -list decodable if for any $\mathbf{y} \in \mathbb{F}_2^n$, we have

$$|\mathbb{B}_H(\mathbf{y},\rho n) \cap C| \leqslant L.$$

- 1. Explain the rationale behind the terminology "list decodable".
- 2. Let C be a code of dimension k and $0 < \rho < 1/2$. Let **y** be a uniformly random word of \mathbb{F}_2^n and consider the random variable $Z_{C,\rho} = |\mathbb{B}_H(\mathbf{y},\rho n) \cap C|$. Prove that its expectation (mean) satisfies

$$\mathbb{E}_{\mathbf{v}}(Z_{C,\rho}) = 2^{k-n} \cdot V(n,\rho n)$$

3. Let $\varepsilon > 0$. Prove that, for large enough n, any code $C \subseteq \mathbb{F}_2^n$ of dimension $n(1 - H_2(\rho) + \varepsilon)$ satisfies

$$\mathbb{E}_{\mathbf{y}}(Z_{C,\rho}) \ge 2^{\frac{\varepsilon n}{2}}$$

- 4. A code is said ρ -list decodable if it is (ρ, L) -list decodable where L is polynomial in n. Deduce from the previous results that, for large enough n, no code of dimension $n(1 H_2(\rho) + \varepsilon)$ is ρ -list decodable.
- 5. To which result in your course, the previous result can be compared? How do these results differ from each other?

Exercise 4. Any code in the exercise is linear. Recall that a code $C \subseteq \mathbb{F}_q^n$ is said to be MDS if C has parameters [n, k, n - k + 1]. For any $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_q^n$, we call support of \mathbf{y} the set

$$Supp(\mathbf{y}) := \{i \in \{1, \dots, n\} \mid y_i \neq 0\}.$$

1. Let $C \subseteq \mathbb{F}_q^n$, be an MDS code of dimension k. Prove that for any $J \subseteq \{1, \ldots, n\}$ such that |J| = n - k + 1, there exists $\mathbf{c}_J \subseteq C$ such that

$$\operatorname{Supp}(\mathbf{c}_J) = J.$$

- 2. Prove that \mathbf{c}_J is unique up to multiplication by a scalar.
- 3. Let $C' \subseteq \mathbb{F}_q^n$ be a code of dimension k and $\mathbf{c} \in C' \setminus \{0\}$ with weight $r \leq n k$. Let $J \supseteq \operatorname{Supp}(\mathbf{c})$ be such that |J| = n k. Prove that there **cannot exist** for all $i \in \{1, \ldots, n\} \setminus J$ a word $\mathbf{c}_{J \cup \{i\}} \in C'$ with support $J \cup \{i\}$.
- 4. Deduce that : A code $C \subseteq \mathbb{F}_q^n$ of dimension k is MDS if and only if, for all $J \subseteq \{1, \ldots, n\}$ such that |J| = n k + 1, there exists a codeword $\mathbf{c}_J \in C$ with support J.
- 5. Given two codes $C, D \subseteq \mathbb{F}_q^n$, denote

$$C * D := \operatorname{Span}_{\mathbb{F}_{q}} \left\{ (c_{1}d_{1}, \dots, c_{n}d_{n}) \mid (c_{1}, \dots, c_{n}) \in C, \ (d_{1}, \dots, d_{n}) \in D \right\}.$$

Prove that if C and D are MDS and $\dim C * D = \dim C + \dim D - 1$, then C * D is MDS.