Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, December 1st, 2022

You have 1h30. You can write your answers either in french or in English.
Note. In both exercises, any code is linear.
Exercise 1. Let $C \subseteq \mathbb{F}_{q}^{n}$ be a code of length n. The support of C is the subset

$$
\operatorname{Supp}(C) \stackrel{\text { def }}{=}\left\{i \in\{1, \ldots, n\} \mid \exists c \in C, c_{i} \neq 0\right\}
$$

1°) Prove that $j \notin \operatorname{Supp}(C)$ if and only if for any generator matrix G of C, the j-th column of G is zero.
2°) Prove that $\operatorname{Supp}(C)=\{1, \ldots, n\}$ if and only if the minimum distance C^{\perp} satisfies $d\left(C^{\perp}\right)>1$.

A code is said to be degenerated if there exist nonempty sets $I, J \subseteq\{1, \ldots, n\}$ such that $I \cap J=\emptyset$ and there exist two codes C_{I}, C_{J} of length n, with respective supports I and J such that

$$
\begin{equation*}
C=C_{I}+C_{J} . \tag{1}
\end{equation*}
$$

3°) Prove that the sum (1) is a direct sum.
4°) Prove that the minimum distance of a degenerated code C is the minimum of the minimum distances of the codes C_{I}, C_{J} in (1).
5°) If C is degenerated with $I=\{1, \ldots, s\}$ and $J=\{s+1, \ldots, n\}$, give the shape of any generator matrix of C.
6°) If C is degenerated, prove that there exists a diagonal matrix D whose diagonal entries are not all equal and such that

$$
\forall c \in C, c \cdot D \in C .
$$

7°) Suppose now that there exists a diagonal matrix D whose diagonal entries are not all equal and such that $c D \in C$ for any $c \in C$. We aim to prove that C is degenerated.
(a) Prove first that for any polynomial P and any $c \in C, c \cdot P(D) \in C$.
(b) Since the diagonal entries of D are not all equal, prove the existence of two polynomials P_{1}, P_{2} such that $P_{1}(D), P_{2}(D)$ are nonzero, have only 0 's and 1's on their diagonals and satisfying $P_{1}(D)+$ $P_{2}(D)=I_{n}$, where I_{n} denotes the $n \times n$ identity matrix.
(c) Use the previous result to prove that C is degenerated.
8°) Propose a polynomial time algorithm taking as input a code C (represented with a generator matrix G) and deciding whether a code is degenerated.

Exercise 2.

1°) Give the list of minimal binary cyclotomic classes of $\mathbb{Z} / 17 \mathbb{Z}$ (i.e. the subsets $A \subseteq \mathbb{Z} / 17 \mathbb{Z}$ such that $x \in A \Rightarrow 2 x \in A)$.
2°) Deduce the number of possible cyclic codes in \mathbb{F}_{2}^{17}.

In the sequel, we wish to study codes of length n over \mathbb{F}_{q} where n is an odd prime number such that $\operatorname{gcd}(n, q)=1$. We recall that $\mathbb{Z} / n \mathbb{Z}$ is a field and that its group of nonzero elements splits in two disjoint parts

$$
(\mathbb{Z} / n \mathbb{Z})^{\times}=S \cup \bar{S}
$$

where S is the set of (nonzero) squares and \bar{S} the set of non-squares. It is well-known (and admitted) that $|S|=|\bar{S}|=\frac{n-1}{2}$. We also suppose that 2 is a square in $\mathbb{Z} / n \mathbb{Z}$.
3°) Prove that both S and \bar{S} are cyclotomic classes.
4°) Deduce the sets S, \bar{S} for $n=17$ and $q=2$.
5°) Give the dimension of the cyclic code associated to the cyclotomic class S.
From now on, we suppose that $q=2$ and that -1 is not a square in $\mathbb{Z} / n \mathbb{Z}$. We still assume that 2 is a square in $\mathbb{Z} / n \mathbb{Z}$.
6°) (a) Prove that the $\operatorname{map}\left\{\begin{array}{clc}\mathbb{Z} / n \mathbb{Z} & \longrightarrow & \mathbb{Z} / n \mathbb{Z} \\ x & \longmapsto & -x\end{array}\right.$ sends S onto \bar{S} and conversely.
(b) Let α be a primitive n-th root of the unity in an algebraic closure $\overline{\mathbb{F}}_{2}$ of \mathbb{F}_{2}. Let

$$
g_{S}(X) \stackrel{\text { def }}{=} \prod_{i \in S}\left(X-\alpha^{i}\right) \quad \text { and } \quad g_{\bar{S}}(X) \stackrel{\text { def }}{=} \prod_{j \in \bar{S}}\left(X-\alpha^{j}\right)
$$

We admit that that $\sum_{j \in S} j=0$. Prove that

$$
g_{\bar{S}}(X)=X^{\frac{n-1}{2}} g_{S}(1 / X)
$$

The objective of the end of the exercise is to get a lower bound for the minimum distance of the code C associated to $g_{S}(X)$. Denote by d its minimum distance and we assume from now on that d is odd. Let $a(X)=\sum_{i=0}^{n-1} a_{i} X^{i} \in C$ (hence g_{S} divides a) with weight d.
$\left.7^{\circ}\right)$ Let $a^{\prime}(X) \stackrel{\text { def }}{=} X^{n-1} a(1 / X)=\sum_{j=0}^{n-1} a_{j} X^{n-1-j}$. Prove that the polynomial $a(X) a^{\prime}(X)$ when regarded as an element of $\mathbb{F}_{2}[X]\left(\right.$ not in $\left.\mathbb{F}_{2}[X] /\left(X^{n}-1\right)\right)$ has at most $d^{2}-d+1$ monomials.
Hint. Compute the number of pairs of a monomial of a and a monomial of a^{\prime} whose product is a monomial of degree $n-1$.
8°) Prove that $g_{S} g_{\bar{S}}$ divides $a a^{\prime}$.
9°) Prove that for any $P(X) \in \mathbb{F}_{2}[X]$,

$$
P(X) g_{S}(X) g_{\bar{S}}(X) \equiv P(1) g_{S}(X) g_{\bar{S}}(X) \quad \bmod X^{n}-1
$$

10°) Recall that d is assumed to be odd. Prove that $a(1)=a^{\prime}(1)=1$.
11°) Deduce that $a a^{\prime} \equiv g_{S} g_{\bar{S}} \bmod X^{n}-1$.
12°) What is the weight of $a a^{\prime} \in \mathbb{F}_{2}[X] /\left(X^{n}-1\right)$?
13°) Prove that $d^{2}-d+1 \geqslant n$.

