
MPRI Year 2022–23
Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, December 1st, 2022

You have 1h30. You can write your answers either in french or in English.

Note. In both exercises, any code is linear.

Exercise 1. Let C ⊆ Fn
q be a code of length n. The support of C is the subset

Supp(C)
def
= {i ∈ {1, . . . , n} | ∃c ∈ C, ci ̸= 0}.

1◦) Prove that j /∈ Supp(C) if and only if for any generator matrix G of C, the j-th column of G is zero.

Answer : Suppose that some generator matrix G of C has a nonzero j–th column, then, for
some row index i we have Gij ̸= 0. Then the i–th row of this generator matrix is a codeword
with a nonzero j–th entry. A contradiction.
The converse statement is straightforward.

2◦) Prove that Supp(C) = {1, . . . , n} if and only if the minimum distance C⊥ satisfies d(C⊥) > 1.

Answer : A generator matrix of C is a parity–check matrix of C⊥. Using the previous
question, a code has support {1, . . . , n} if and only if any generator matrix has a zero column,
which is equivalent to having weight 1 vectors in its kernel.

A code is said to be degenerated if there exist nonempty sets I, J ⊆ {1, . . . , n} such that I ∩ J = ∅ and
there exist two codes CI , CJ of length n, with respective supports I and J such that

C = CI + CJ . (1)

3◦) Prove that the sum (1) is a direct sum.

Answer : It suffices to prove that CI ∩ CJ = {0}. This is obvious since a vector in this
intersection has support contained in I ∩ J which is empty.

4◦) Prove that the minimum distance of a degenerated code C is the minimum of the minimum distances
of the codes CI , CJ in (1).

Answer : C contains CI and CJ and hence contains their minimum weight codewords. Thus
its minimum distance is at most the minimum of those of CI , CJ . Conversely, any c ∈ C has a
unique decomposition c = cI + cJ relative to the aforementioned direct sum and, for support
reasons, the weight of c is the sum of the weights of cI and cJ , thus, for a nonzero c, its weight
is larger than the minimum of the minimum distances of CI , CJ . This yields the result.
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5◦) If C is degenerated with I = {1, . . . , s} and J = {s+ 1, . . . , n}, give the shape of any generator matrix
of C.

Answer : The matrix is block–diagonal

G

(
GI (0)
(0) GJ

)
with a kI × s block GI on the top–left–hand corner and a kJ × (n− s) one GJ on the bottom–
right–hand corner.

6◦) If C is degenerated, prove that there exists a diagonal matrix D whose diagonal entries are not all equal
and such that

∀c ∈ C, c ·D ∈ C.

Answer : Since C is degenerated, then C = CI ⊕ CJ for some non trivial partition I, J of
{1, . . . , n}. Let D be the diagonal matrix with diagonal entries d1, . . . , dn such that di = 1 if
i ∈ I and 0 if i ∈ J . Then, the right multiplication by D sends a codeword c = cI + cJ onto
cI which is in C too.

7◦) Suppose now that there exists a diagonal matrix D whose diagonal entries are not all equal and such
that cD ∈ C for any c ∈ C. We aim to prove that C is degenerated.
(a) Prove first that for any polynomial P and any c ∈ C, c · P (D) ∈ C.

Answer : Let c ∈ C, clearly cD ∈ C and cDs ∈ C for any non-negative integer s. Since
C is linear, then any linear combination of the cDs for s ⩾ 0 is in C.

(b) Since the diagonal entries of D are not all equal, prove the existence of two polynomials P1, P2 such
that P1(D), P2(D) are nonzero, have only 0’s and 1’s on their diagonals and satisfying P1(D) +
P2(D) = In, where In denotes the n× n identity matrix.

Answer : Denote by d1, . . . , dn the diagonal entries of D. Denote by A ⊆ Fq the set
{d1, . . . , dn} (here we mean the set and not the list, i.e. we remove repeated entries). By
assumption A has cardinal at least 2 and hence one can split A in the disjoint union of
two nonempty sets A = U ∪ V .
Then, by Lagrange interpolation, there exist polynomials P1, P2 such that P1 sends U
onto 1 and V onto 0 and P2 sends U onto 0 and V onto 1. These polynomials satisfy the
requested properties.

(c) Use the previous result to prove that C is degenerated.

Answer : Let CI = CP1(D) and CJ = CP2(D). Since P1(D) + P2(D) = In, we deduce
that CI +CJ = C, moreover, the supports of the codes are disjoint and correspond to the
sets I, J on which the diagonal entries of P1(D) respectively equal 0 and 1.

8◦) Propose a polynomial time algorithm taking as input a code C (represented with a generator matrix G)
and deciding whether a code is degenerated.
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Answer : Compute the space of diagonal matrices D such that CD ⊆ C. This can be done
by solving the following linear system. Consider the formal matrix D whose diagonal entries
are variables x1, . . . , xn and denote by G,H a generator and a parity–check matrix of C. Then,
solve the system :

GDH⊤ = 0.

The space of solutions contains the space of scalar matrices λIn. This space has dimension 1.
If the code is degenerated then this space contains other matrices and hence has dimension
⩾ 2. This yields our algorithm :

— compute the space of solutions of GDH⊤ = 0 whose unknown is a diagonal matrix D.
— if the solution space has dimension 1 return “Non degenerated”, else return “degenera-

ted”.

Exercise 2.
1°) Give the list of minimal binary cyclotomic classes of Z/17Z (i.e. the subsets A ⊆ Z/17Z such that

x ∈ A ⇒ 2x ∈ A).

Answer : {0}, {1, 2, 4, 8, 16, 15, 13, 9}, {3, 6, 12, 7, 14, 11, 5, 10}.

2°) Deduce the number of possible cyclic codes in F17
2 .

Answer : 8.

In the sequel, we wish to study codes of length n over Fq where n is an odd prime number such that
gcd(n, q) = 1. We recall that Z/nZ is a field and that its group of nonzero elements splits in two disjoint
parts

(Z/nZ)× = S ∪ S,

where S is the set of (nonzero) squares and S the set of non-squares. It is well–known (and admitted) that
|S| = |S| = n−1

2 . We also suppose that 2 is a square in Z/nZ.

3°) Prove that both S and S are cyclotomic classes.

Answer : Since 2 is a square in Z/nZ, then both S and S are stable by multiplication by 2.

4°) Deduce the sets S, S for n = 17 and q = 2.

Answer : S = {1, 2, 4, 8, 16, 15, 13, 9}, S = {3, 6, 12, 7, 14, 11, 5, 10}.

5°) Give the dimension of the cyclic code associated to the cyclotomic class S.

Answer : 9.

From now on, we suppose that q = 2 and that −1 is not a square in Z/nZ. We still assume that 2 is a
square in Z/nZ.
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6°) (a) Prove that the map
{

Z/nZ −→ Z/nZ
x 7−→ −x

sends S onto S and conversely.

Answer : Since −1 is not a square, for any square a, the number −a is a non-square.
Since S, S form a partition of Z/nZ× and the map x 7→ −x is an involution of Z/nZ×

sending S onto S, it should send S onto S.

(b) Let α be a primitive n–th root of the unity in an algebraic closure F2 of F2. Let

gS(X)
def
=

∏
i∈S

(X − αi) and gS(X)
def
=

∏
j∈S

(X − αj).

We admit that that
∑

j∈S j = 0. Prove that

gS(X) = X
n−1
2 gS (1/X) .

Answer :

X
n−1
2 gS(1/X) =

∏
j∈S

(1− αjX)

=
∏
j∈S

αj(X − α−j)

= α
∑

j∈S j
∏
j∈S

(X − αj)

The result is a consequence of the assumption
∑

j∈S j = 0. Note that the assumption can
be proved as follows : squares in Z/nZ× for the group of n−1

2 –th roots of unity in Z/nZ
and hence their sum is zero.

The objective of the end of the exercise is to get a lower bound for the minimum distance of the code
C associated to gS(X). Denote by d its minimum distance and we assume from now on that d is odd. Let
a(X) =

∑n−1
i=0 aiX

i ∈ C (hence gS divides a) with weight d.

7°) Let a′(X)
def
= Xn−1a(1/X) =

∑n−1
j=0 ajX

n−1−j . Prove that the polynomial a(X)a′(X) when regarded as
an element of F2[X] (not in F2[X]/(Xn − 1)) has at most d2 − d+ 1 monomials.
Hint. Compute the number of pairs of a monomial of a and a monomial of a′ whose product is a monomial
of degree n− 1.

Answer : Computing the product consists in computing d2 products of monomials. However,
d pairs of monomials yield a product of the same degree. Namely the pairs (aiX

i, aiX
n−1−i)

all give a multiple of Xn−1. Therefore, the resulting product has at most d2 − d + 1 distinct
monomials.

8°) Prove that gSgS divides aa′.

Answer : gS(X) divides a(X), which means that a(X) = gS(X)u(X) for some polynomial
u of degree deg(a)− |S|. Then,

Xn−1a(1/X) = Xn−1−deg(a)X |S|gS(1/X)Xdeg(a)−|S|u(1/X)

= Xn−1−deg(a)gS(X)Xdeg(a)−|S|u(1/X).

Therefore, gS divides a′ and hence gSgS divides aa′.
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9°) Prove that for any P (X) ∈ F2[X],

P (X)gS(X)gS(X) ≡ P (1)gS(X)gS(X) mod Xn − 1.

Answer : Note first that

gS(X)gS(X) =
∏

i∈Z/nZ×

(X − αi) =
Xn − 1

X − 1

.
Next, for P ∈ F2[X] decomposed as, P (X) = P (1)+ (X − 1)Q(X) for some polynomial Q, we
have

P (X)gS(X)gS(X) = P (1)
Xn − 1

X − 1
+ (Xn − 1)Q(X) ≡ P (1)gS(X)gS(X) mod Xn − 1.

10°) Recall that d is assumed to be odd. Prove that a(1) = a′(1) = 1.

Answer : a(1) is the sum of the coefficients of a, which is 1 (modulo 2) since a has odd
weight. The same holds for a′.

11°) Deduce that aa′ ≡ gSgS mod Xn − 1.

Answer : This is a direct consequence of the two previous questions.

12°) What is the weight of aa′ ∈ F2[X]/(Xn − 1) ?

Answer : From the previous question, its weight is n since

a(X)a′(X) ≡ Xn − 1

X − 1
= 1 +X + · · ·+Xn−1.

13°) Prove that d2 − d+ 1 ⩾ n.

Answer : We proved in question 7 that aa′ has weight at most d2 − d+ 1 when regarded in
F2[X], thus its weight modulo Xn−1 is bounded from above by d2−d+1. From the previous
question we deduce that d2 − d+ 1 ⩾ n.
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