Module 2.13.2 : Error correcting codes and applications to cryptography

Mid term exam, December, 32015

You have 1h30. Your personal lecture notes, the online lecture notes and the exercise sheets together with the solutions are authorised

The two exercises are independent.
Exercice 1. Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear code. The covering radius of C is defined as the integer

$$
\rho:=\max _{y \in \mathbb{F}_{q}^{n}} \min _{c \in C} d_{H}(y, c) .
$$

Equivalently, it is the maximal distance between a word of \mathbb{F}_{q}^{n} and the code C.

1. Prove that

$$
\bigcup_{c \in C} \mathbf{B}_{H}(c, \rho)=\mathbb{F}_{q}^{n}
$$

2. What is the covering radius of a Hamming code?
3. Let $\left(C_{s}\right)_{s \in \mathbb{N}}$ be a sequence of codes with parameters $\left[n_{s}, k_{s}, d_{s}\right]$ such that $\lim _{s \rightarrow+\infty} n_{s}=+\infty$ and such that the sequence $\left(\frac{k_{s}}{n_{s}}\right)$ converges to a real number $R \in[0,1]$. Let ρ_{s} be the covering radius of C_{s} and assume that the sequence $\left(\frac{\rho_{s}}{n_{s}}\right)$ converges to $P \in[0,1]$. Prove that

$$
H_{q}(P) \geqslant 1-R .
$$

4. Prove that for any code $C \subseteq \mathbb{F}_{q}^{n}$ of dimension k, the covering radius of C is less than or equal to $n-k$. Hint : One can proceed to Gaussian elimination.

We will now focus on the covering radius of Reed-Solomon codes. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ be an n-tuple of distinct elements of \mathbb{F}_{q}. Remind that for all $0<k \leqslant n$,

$$
\mathbf{R S}_{k}(\alpha):=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right) \mid f \in \mathbb{F}_{q}[X], \operatorname{deg} f<k\right\}
$$

5. Let $f \in \mathbb{F}_{q}[X]$ be a polynomial of degree k and $y_{f}:=\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$. Prove that the distance from y_{f} to $\mathbf{R S}_{k}(\alpha)$ satisfies

$$
\min _{c \in \mathbf{R S}_{k}(\alpha)} d_{H}\left(y_{f}, c\right)=n-k .
$$

6. Deduce that the covering radius of $\mathbf{R S}_{k}(\alpha)$ is $n-k$ and that, for every polynomial f of degree k, the distance between $\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$ and $\mathbf{R S}_{k}(\alpha)$ equals this radius.
7. Assume that for all $i, \alpha_{i} \neq 0$. Prove that the distance between $\left(\alpha_{1}^{-1}, \ldots, \alpha_{n}^{-1}\right)$ and the code $\mathbf{R S}_{k}(\alpha)$ equals the covering radius of the code.

Exercice 2. In this exercise, $m>1$ denotes an integer, x_{1}, \ldots, x_{n} is a tuple of distinct elements of $\mathbb{F}_{2^{m}}$ and $g \in \mathbb{F}_{2^{m}}[X]$ is a polynomial such that for all $i \in\{1, \ldots, n\}$, we have $g\left(x_{i}\right) \neq 0$. To any $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{F}_{2}^{n}$, we associate the polynomial ${ }^{1} \pi_{\mathbf{c}}:=\prod_{i=1}^{n}\left(X-x_{i}\right)^{c_{i}}$. We define the binary code

$$
\Gamma(\mathbf{x}, g):=\left\{\mathbf{c} \in \mathbb{F}_{2}^{n} \mid g \text { divise } \pi_{\mathbf{c}}^{\prime}\right\}
$$

where $\pi_{\mathbf{c}}^{\prime}$ denotes the derivative of $\pi_{\mathbf{c}}$.
The objective of the exercise is to study the parameters of these codes. Let us emphasize again that even if $g \in \mathbb{F}_{2^{m}}[X]$ and $x_{1}, \ldots, x_{n} \in \mathbb{F}_{2^{m}}$, the code $\Gamma(\mathbf{x}, g)$ is binary (its elements are in \mathbb{F}_{2}^{n}).

1. For all $\mathbf{c}, \mathbf{c}^{\prime} \in \mathbb{F}_{2}^{n}$ we denote by $\mathbf{c} \cap \mathbf{c}^{\prime}:=\left(u_{1}, \ldots, u_{n}\right)$ the vector with entries :

$$
\forall i \in\{1, \ldots, n\}, \quad u_{i}= \begin{cases}1 & \text { if } c_{i}=c_{i}^{\prime}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Prove that for all $\mathbf{c}, \mathbf{c}^{\prime} \in \mathbb{F}_{2}^{n}$, we have

$$
\pi_{\mathbf{c}} \pi_{\mathbf{c}^{\prime}}=\pi_{\mathbf{c}+\mathbf{c}^{\prime}} \pi_{\mathbf{c} \cap \mathbf{c}^{\prime}}^{2}
$$

2. Prove that for all $\mathbf{c} \in \mathbb{F}_{2}^{n} \backslash\{0\}, g$ is coprime to $\pi_{\mathbf{c}}$.
3. Use the previous results to prove that $\Gamma(\mathbf{x}, g)$ is linear.

Remark : Since the code is binary, proving that it is linear consists only in proving that the sum of two codewords is a codeword.
4. Prove that the minimum distance of $\Gamma(\mathbf{x}, g)$ is larger than or equal to $\operatorname{deg}(g)+1$.
5. Prove that if $f \in \mathbb{F}_{2^{m}}[X]$, then f^{\prime} is a square, i.e. there exists $a \in \mathbb{F}_{2^{m}}[X]$ such that $f^{\prime}=a^{2}$.
6. Prove that if g is squarefree, then $\Gamma(\mathbf{x}, g)=\Gamma\left(\mathbf{x}, g^{2}\right)$. Deduce in that particular case a better lower bound for the minimum distance of $\Gamma(\mathbf{x}, g)$.

If you did everything well up to here, you'll have 20/20. The remaining questions are bonus questions.
7. Let $\mathbb{F}_{2^{m}}(X)$ be the field of rational fractions with coefficients in $\mathbb{F}_{2^{m}}$. For any $f \in \mathbb{F}_{2^{m}}(X)$, we denote by f^{\prime} its derivative. Let ψ be the map :

$$
\psi:\left\{\begin{array}{ccc}
\mathbb{F}_{2^{m}}(X)^{\times} & \rightarrow & \mathbb{F}_{2^{m}}(X) \\
f & \mapsto & \frac{f^{\prime}}{f}
\end{array}\right.
$$

Prove that for all $f, g \in \mathbb{F}_{2^{m}}(X)^{\times}$, we have $\psi(f g)=\psi(f)+\psi(g)$.
8. Let

$$
h:\left\{\begin{array}{ccc}
\mathbb{F}_{2}^{n} & \rightarrow & \mathbb{F}_{2^{m}}(X) \\
\mathbf{a} & \mapsto & \frac{\pi_{\mathbf{a}}^{\prime}}{\pi_{\mathbf{a}}} .
\end{array}\right.
$$

Prove that h is \mathbb{F}_{2}-linear and injective.
Hint : One can start by proving that for all $f \in \mathbb{F}_{2^{m}}[X], f^{\prime}=0$ if and only if f is a square.
9. Let $E, E_{g} \subseteq \mathbb{F}_{2^{m}}(X)$ be the $\mathbb{F}_{2^{m}}$-vector spaces

$$
E=\left\{\left.\frac{f(X)}{\prod_{i=1}^{n}\left(X-x_{i}\right)} \right\rvert\, f \in \mathbb{F}_{2^{m}}[X]_{<n}\right\}, \quad E_{g}=\left\{\left.\frac{f(X) g(X)}{\prod_{i=1}^{n}\left(X-x_{i}\right)} \right\rvert\, f \in \mathbb{F}_{2^{m}}[X]_{<n-\operatorname{deg}(g)}\right\}
$$

What are the $\mathbb{F}_{2^{m}}$-dimensions of E and E_{g} ? and their \mathbb{F}_{2}-dimensions?
10. Prove that h has its image contained in E.
11. Prove that $\Gamma(\mathbf{x}, g)$ has \mathbb{F}_{2}-dimension larger than or equal to $n-m \operatorname{deg} g$.

Hint : One can start by proving that $\Gamma(\mathbf{x}, g)$ is isomorphic (as an \mathbb{F}_{2}-vector space) to $E_{g} \cap \operatorname{Im}(h)$.

[^0]
[^0]: 1. We allow ourselves the following abuse of language : we denote by c_{i} the integer 0 if $c_{i}=0$ in \mathbb{F}_{2} and 1 if $c_{i}=1$
