Mid term exam, December, 3 2015

You have 1h30. Your personal lecture notes, the online lecture notes and the exercise sheets together with the solutions are authorised

The two exercises are independent.

Exercice 1. Let $C \subseteq \mathbb{F}_q^n$ be a linear code. The *covering radius* of C is defined as the integer

$$\rho := \max_{y \in \mathbb{F}_q^n} \min_{c \in C} d_H(y, c).$$

Equivalently, it is the maximal distance between a word of \mathbb{F}_{q}^{n} and the code C.

1. Prove that

$$\bigcup_{c \in C} \mathbf{B}_H(c, \rho) = \mathbb{F}_q^n$$

- 2. What is the covering radius of a Hamming code?
- 3. Let $(C_s)_{s\in\mathbb{N}}$ be a sequence of codes with parameters $[n_s, k_s, d_s]$ such that $\lim_{s\to+\infty} n_s = +\infty$ and such that the sequence $(\frac{k_s}{n_s})$ converges to a real number $R \in [0, 1]$. Let ρ_s be the covering radius of C_s and assume that the sequence $(\frac{\rho_s}{n_s})$ converges to $P \in [0, 1]$. Prove that

$$H_q(P) \ge 1 - R.$$

4. Prove that for any code $C \subseteq \mathbb{F}_q^n$ of dimension k, the covering radius of C is less than or equal to n-k. Hint: One can proceed to Gaussian elimination.

We will now focus on the covering radius of Reed–Solomon codes. Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ be an *n*-tuple of distinct elements of \mathbb{F}_q . Remind that for all $0 < k \leq n$,

$$\mathbf{RS}_k(\alpha) := \{ (f(\alpha_1), \dots, f(\alpha_n)) \mid f \in \mathbb{F}_q[X], \ \deg f < k \}.$$

5. Let $f \in \mathbb{F}_q[X]$ be a polynomial of degree k and $y_f := (f(\alpha_1), \ldots, f(\alpha_n))$. Prove that the distance from y_f to $\mathbf{RS}_k(\alpha)$ satisfies

$$\min_{c \in \mathbf{RS}_k(\alpha)} d_H(y_f, c) = n - k.$$

- 6. Deduce that the covering radius of $\mathbf{RS}_k(\alpha)$ is n k and that, for every polynomial f of degree k, the distance between $(f(\alpha_1), \ldots, f(\alpha_n))$ and $\mathbf{RS}_k(\alpha)$ equals this radius.
- 7. Assume that for all $i, \alpha_i \neq 0$. Prove that the distance between $(\alpha_1^{-1}, \ldots, \alpha_n^{-1})$ and the code $\mathbf{RS}_k(\alpha)$ equals the covering radius of the code.

Continued next page please.

Exercice 2. In this exercise, m > 1 denotes an integer, x_1, \ldots, x_n is a tuple of distinct elements of \mathbb{F}_{2^m} and $g \in \mathbb{F}_{2^m}[X]$ is a polynomial such that for all $i \in \{1, \ldots, n\}$, we have $g(x_i) \neq 0$. To any $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{F}_2^n$, we associate the polynomial $\pi_{\mathbf{c}} := \prod_{i=1}^n (X - x_i)^{c_i}$. We define the **binary** code

$$\Gamma(\mathbf{x},g) := \{ \mathbf{c} \in \mathbb{F}_2^n \mid g \text{ divise } \pi'_{\mathbf{c}} \},\$$

where $\pi'_{\mathbf{c}}$ denotes the derivative of $\pi_{\mathbf{c}}$.

The objective of the exercise is to study the parameters of these codes. Let us emphasize again that even if $g \in \mathbb{F}_{2^m}[X]$ and $x_1, \ldots, x_n \in \mathbb{F}_{2^m}$, the code $\Gamma(\mathbf{x}, g)$ is **binary** (its elements are in \mathbb{F}_2^n).

1. For all $\mathbf{c}, \mathbf{c}' \in \mathbb{F}_2^n$ we denote by $\mathbf{c} \cap \mathbf{c}' := (u_1, \ldots, u_n)$ the vector with entries :

$$\forall i \in \{1, \dots, n\}, \quad u_i = \begin{cases} 1 & \text{if } c_i = c'_i = 1\\ 0 & \text{otherwise.} \end{cases}$$

Prove that for all $\mathbf{c}, \mathbf{c}' \in \mathbb{F}_2^n$, we have

$$\pi_{\mathbf{c}}\pi_{\mathbf{c}'} = \pi_{\mathbf{c}+\mathbf{c}'}\pi_{\mathbf{c}\cap\mathbf{c}'}^2$$

- 2. Prove that for all $\mathbf{c} \in \mathbb{F}_2^n \setminus \{0\}$, g is coprime to $\pi_{\mathbf{c}}$.
- 3. Use the previous results to prove that $\Gamma(\mathbf{x}, g)$ is linear. Remark : Since the code is binary, proving that it is linear consists only in proving that the sum of two codewords is a codeword.
- 4. Prove that the minimum distance of $\Gamma(\mathbf{x}, g)$ is larger than or equal to $\deg(g) + 1$.
- 5. Prove that if $f \in \mathbb{F}_{2^m}[X]$, then f' is a square, i.e. there exists $a \in \mathbb{F}_{2^m}[X]$ such that $f' = a^2$.
- 6. Prove that if g is squarefree, then $\Gamma(\mathbf{x}, g) = \Gamma(\mathbf{x}, g^2)$. Deduce in that particular case a better lower bound for the minimum distance of $\Gamma(\mathbf{x}, g)$.

If you did everything well up to here, you'll have 20/20. The remaining questions are bonus questions.

7. Let $\mathbb{F}_{2^m}(X)$ be the field of rational fractions with coefficients in \mathbb{F}_{2^m} . For any $f \in \mathbb{F}_{2^m}(X)$, we denote by f' its derivative. Let ψ be the map :

$$\psi: \left\{ \begin{array}{ccc} \mathbb{F}_{2^m}(X)^{\times} & \to & \mathbb{F}_{2^m}(X) \\ f & \mapsto & \frac{f'}{f} \end{array} \right.$$

Prove that for all $f, g \in \mathbb{F}_{2^m}(X)^{\times}$, we have $\psi(fg) = \psi(f) + \psi(g)$.

8. Let

$$h: \left\{ \begin{array}{ccc} \mathbb{F}_2^n & \to & \mathbb{F}_{2^m}(X) \\ \mathbf{a} & \mapsto & \frac{\pi'_{\mathbf{a}}}{\pi_{\mathbf{a}}} \end{array} \right.$$

Prove that h is \mathbb{F}_2 -linear and injective.

Hint : One can start by proving that for all $f \in \mathbb{F}_{2^m}[X]$, f' = 0 if and only if f is a square.

9. Let $E, E_g \subseteq \mathbb{F}_{2^m}(X)$ be the \mathbb{F}_{2^m} -vector spaces

$$E = \left\{ \frac{f(X)}{\prod_{i=1}^{n} (X - x_i)} \mid f \in \mathbb{F}_{2^m}[X]_{< n} \right\}, \quad E_g = \left\{ \frac{f(X)g(X)}{\prod_{i=1}^{n} (X - x_i)} \mid f \in \mathbb{F}_{2^m}[X]_{< n - \deg(g)} \right\}.$$

What are the \mathbb{F}_{2^m} -dimensions of E and E_g ? and their \mathbb{F}_2 -dimensions?

10. Prove that h has its image contained in E.

11. Prove that $\Gamma(\mathbf{x}, g)$ has \mathbb{F}_2 -dimension larger than or equal to $n - m \deg g$. Hint : One can start by proving that $\Gamma(\mathbf{x}, g)$ is isomorphic (as an \mathbb{F}_2 -vector space) to $E_g \cap Im(h)$.

^{1.} We allow ourselves the following abuse of language : we denote by c_i the integer 0 if $c_i = 0$ in \mathbb{F}_2 and 1 if $c_i = 1$