Module 2.13.2 : Error correcting codes and applications to cryptography

Solutions to mid term exam, December, 32015

Exercice 1. 1. By definition of the covering radius, for every $y \in \mathbb{F}_{q}^{n}$, there exists $c \in C$ such that $d_{H}(c, y) \leqslant \rho$. Thus, $y \in \mathbf{B}_{H}(c, \rho)$. Conseqeuntly,

$$
\bigcup_{c \in C} \mathbf{B}_{H}(c, \rho)=\mathbb{F}_{q}^{n}
$$

2. The Hamming code is perfect and has minimum distance 3 . Hence, its covering radius is 1 .
3. From Question 1, we have

$$
\forall s \in \mathbb{N}, q^{k_{s}} \operatorname{Vol}_{q}\left(\rho_{s}, n_{s}\right) \geqslant q^{n_{s}} .
$$

Moreover,

$$
\operatorname{Vol}_{q}\left(\rho_{s}, n_{s}\right) \leqslant q^{n_{s} H_{q}\left(\frac{\rho_{s}}{n_{s}}\right)} .
$$

Therefore, after applying $\log _{q}$, which is an increasing function, we get :

$$
\frac{k_{s}}{n_{s}}+H_{q}\left(\frac{\rho_{s}}{n_{s}}\right) \geqslant 1
$$

and, by continuity of H_{q}, when s tends to infinity, we get

$$
H_{q}(P) \geqslant 1-R .
$$

4. After a possible permutation of the coordinates, one can obtain by Gaussian elimination a generator matrix for C in systematic form. That is a generator matrix of the form

$$
\mathbf{G}=\left(\begin{array}{c|c}
\mathrm{I}_{k} & (*)
\end{array}\right)
$$

where I_{k} denotes the $k \times k$ identity matrix. Now, let $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{q}^{n}$. Then, $c_{y}:=\left(y_{1}, \ldots, y_{k}\right) \mathbf{G}$ is in C and the words, y, c_{y} coincide on the k first positions. Therefore, $d_{H}\left(y, c_{y}\right) \leqslant n-k$. Thus $\rho \leqslant n-k$.
5. Let $g \in \mathbb{F}_{q}[X]_{<k}$ and $c_{g} \in \mathbf{R S}_{k}(\alpha)$ the word $c_{g}:=\left(g\left(\alpha_{1}\right), \ldots, g\left(\alpha_{n}\right)\right)$ such that

$$
d_{H}\left(y_{f}, c_{g}\right)=d_{H}\left(y_{f}, \mathbf{R S}_{k}(\alpha)\right)
$$

Then $w_{H}\left(y_{f}-c_{g}\right)=w_{H}\left(\left((f-g)\left(\alpha_{1}\right), \ldots,(f-g)\left(\alpha_{n}\right)\right)\right)$. Since $\operatorname{deg}(f-g)=k$, the polynomial $f-g$ has at most k roots and hence,

$$
w_{H}\left(y_{f}-c_{g}\right)=d_{H}\left(y_{f}, \mathbf{R S}_{k}(\alpha)\right) \geqslant n-k .
$$

Using the previous question, we see than the above inequality should be an equality.
6 . We proved in the previous question that words obtained by evaluation of polynomials of degree k are at distance $n-k$ from the code. Since the covering radius is at most $n-k$. The covering radius of an RS code is $n-k$ and the words associated to polynomials of degree k are at distance $n-k$ from the code.
7. Let $f \in \mathbb{F}_{q}[X]_{<k}$.

$$
\begin{aligned}
d_{H}\left(\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right),\left(\alpha_{1}^{-1}, \ldots, \alpha_{n}^{-1}\right)\right) & =w_{H}\left(\left(f\left(\alpha_{1}\right)-\alpha_{1}^{-1}, \ldots, f\left(\alpha_{n}\right)-\alpha_{n}^{-1}\right)\right) \\
& =w_{H}\left(\left(\alpha_{1} f\left(\alpha_{1}\right)-1, \ldots, \alpha_{n} f\left(\alpha_{n}\right)-1\right)\right)
\end{aligned}
$$

and the last quantity is bounded below by n minus the number of roots of the polynomial $X f(X)-1$. Since this polynomial has degree at most k, it has at most k roots. Hence,

$$
d_{H}\left(\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right),\left(\alpha_{1}^{-1}, \ldots, \alpha_{n}^{-1}\right)\right) \geqslant n-k
$$

and from Question 4, the above inequality is an equality.

Exercice 2. 1.

$$
\pi_{\mathbf{c}} \pi_{\mathbf{c}^{\prime}}=\prod_{i=1}^{n}\left(X-x_{i}\right)^{a_{i}}
$$

where

$$
a_{i}=\left\{\begin{array}{lll}
2 & \text { if } & c_{i}=c_{i}^{\prime}=1 \\
1 & \text { if } & \text { only one of the } c_{i}^{\prime} s \text { equals } 1 \\
0 & \text { else } &
\end{array}\right.
$$

It is easy to observe that $\pi_{\mathbf{c}+\mathbf{c}^{\prime}} \pi_{\mathbf{c} \cap \mathbf{c}^{\prime}}$ has the same factorization.
2. $\pi_{\mathbf{c}}$ is split with simple roots among x_{1}, \ldots, x_{n} while g does not vanish at these elements. Thus g and π_{c} have no common irreducible factor.
3. One proves first that

$$
\left(\pi_{\mathbf{c}+\mathbf{c}^{\prime}} \pi_{\mathbf{c} \cap \mathbf{c}^{\prime}}^{2}\right)^{\prime}=\pi_{\mathbf{c} \cap \mathbf{c}^{\prime}}^{2} \pi_{\mathbf{c}+\mathbf{c}^{\prime}}^{\prime}
$$

Indeed, since we are in characteristic 2 , the derivative of a square is 0 . Next, we also have

$$
\left(\pi_{\mathbf{c}+\mathbf{c}^{\prime}} \pi_{\mathbf{c} \cap \mathbf{c}^{\prime}}^{2}\right)^{\prime}=\left(\pi_{\mathbf{c}} \pi_{\mathbf{c}^{\prime}}\right)^{\prime}=\pi_{\mathbf{c}}^{\prime} \pi_{\mathbf{c}^{\prime}}+\pi_{\mathbf{c}} \pi_{\mathbf{c}^{\prime}}^{\prime}
$$

Therefore, if $\mathbf{c}, \mathbf{c}^{\prime} \in \Gamma(\mathbf{x}, g)$, then g divides $\pi_{\mathbf{c}}^{\prime}$ and $\pi_{\mathbf{c}^{\prime}}^{\prime}$. Thus, it divides $\pi_{\mathbf{c}}^{\prime} \pi_{\mathbf{c}^{\prime}}+\pi_{\mathbf{c}} \pi_{\mathbf{c}^{\prime}}^{\prime}$ which equals $\pi_{\mathbf{c} \cap \mathbf{c}^{\prime}}^{2} \pi_{\mathbf{c}+\mathbf{c}^{\prime}}^{\prime}$. Finally, from the previous question, g is prime to $\pi_{\mathbf{c} \cap \mathbf{c}^{\prime}}$ and hence it divides $\pi_{\mathbf{c}+\mathbf{c}^{\prime}}^{\prime}$. Therefore $\mathbf{c}+\mathbf{c}^{\prime} \in \Gamma(\mathbf{x}, g)$
4. Let $\mathbf{c} \in \Gamma(\mathbf{x}, g) \backslash\{0\}$. Then $g \mid \pi_{\mathbf{c}}^{\prime}$ and hence either $\operatorname{deg} \pi_{\mathbf{c}}^{\prime} \geqslant \operatorname{deg} g$ or $\pi_{\mathbf{c}}^{\prime}=0$. But $\pi_{\mathbf{c}}$ is squarefree, while the polynomials with zero derivative in $\mathbb{F}_{2^{m}}[X]$ are the squares.
Thus, $\operatorname{deg} \pi_{\mathbf{c}}^{\prime} \geqslant \operatorname{deg} g$ and $\operatorname{deg} \pi_{\mathbf{c}} \geqslant \operatorname{deg} g+1$. To conclude, it suffices to notice that $\operatorname{deg} \pi_{\mathbf{c}}=w_{H}(\mathbf{c})$.
5. Write $f=f_{0}+f_{1} X+\cdots+f_{n} X^{n}$. Then, $f^{\prime}=f_{1}+f_{3} X^{2}+f_{5} X^{4}+\cdots$ In particular f^{\prime} has only terms of even degree. Then, since the Frobenius map is surjective in $\mathbb{F}_{2^{m}}$, we get

$$
f^{\prime}=\left(f_{1}^{1 / 2}+f_{3}^{1 / 2} X+f_{5}^{1 / 2} X^{2}+\cdots\right)^{2}
$$

where $f_{i}^{1 / 2}$ denotes the inverse image of f_{i} by the Frobenius map.
6. Inclusion \supseteq is obvious, indeed, if $g^{2} \mid \pi_{\mathbf{c}}^{\prime}$, then $g \mid \pi_{\mathbf{c}}^{\prime}$.

Conversely, if $g \mid \pi_{\mathbf{c}}^{\prime}$, then, since g is squarefree and, from the previous question, $\pi_{\mathbf{c}}^{\prime}$ is a square, then $g^{2} \mid \pi_{\mathrm{c}}^{\prime}$.
7.

$$
\begin{aligned}
\psi(f g) & =\frac{f^{\prime} g+f g^{\prime}}{f g} \\
& =\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g}
\end{aligned}
$$

8. First notice that ψ sends squares onto 0 . Hence, thanks to the previous question, for all $\mathbf{c}, \mathbf{c}^{\prime} \in \mathbb{F}_{2}^{n}$, we have

$$
\psi\left(\pi_{\mathbf{c}+\mathbf{c}^{\prime}}\right)=\psi\left(\pi_{\mathbf{c}+\mathbf{c}^{\prime}} \pi_{\mathbf{c} \cap \mathbf{c}^{\prime}}^{2}\right)
$$

Next, form question 1, we get

$$
h\left(\mathbf{c}+\mathbf{c}^{\prime}\right)=\psi\left(\pi_{\mathbf{c}+\mathbf{c}^{\prime}}\right)=\psi\left(\pi_{\mathbf{c}} \pi_{\mathbf{c}^{\prime}}\right)=h(\mathbf{c})+h\left(\mathbf{c}^{\prime}\right) .
$$

This proves the \mathbb{F}_{2}-linearity of h. Now, to prove injectivity, notice that $h(\mathbf{a})=0$ entails that $\pi_{\mathbf{a}}^{\prime}=0$ and hence that $\pi_{\mathbf{a}}$ is a square which is impossible since this polynomial is squarefree unless $\mathbf{a}=0$.
9. The dimension $\mathbb{F}_{2^{m}}$-dimension of E is n and its \mathbb{F}_{2}-dimension is $m n$. The $\mathbb{F}_{2^{m}}$-dimension of E_{g} is $n-\operatorname{deg} g$ and its \mathbb{F}_{2}-dimension is $m(n-\operatorname{deg} g)$.
10. Let $\mathbf{a} \in \mathbb{F}_{2}^{n}$. Then, $\pi_{\mathbf{a}} \mid \prod_{i=1}^{n}\left(X-x_{i}\right)$. and $\pi_{\mathbf{a}}^{\prime}$ has degree at most $n-1$. Thus, $h(\mathbf{a}) \in E$.
11. $\Gamma(\mathbf{x}, g)$ is the kernel of the composition of the maps $h: \mathbb{F}_{2}^{n} \rightarrow E$ and the canonical quotient projection $E \rightarrow E / E_{g}$. By the rank nullity theorem, this kernel has dimension at least $n-\operatorname{dim}_{\mathbb{F}_{2}} E / E_{g}$. We conclude using question 9 .

