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Université P&M Curie, 175 rue du Chevaleret, 75013 Paris, France

e-mail: dobrzyns@ann.jussieu.fr, pironneau@ann.jussieu.fr, frey@ann.jussieu.fr

‡ INRIA - Gamma
Domaine de Voluceau, BP 105, F-78153 Le Chesnay cedex

Key words: mesh adaptation, Navier-Stokes incompressible, computational fluid dy-
namics, anisotropic meshes, parallel computing

Abstract. The numerical simulation of air flow in a building or a house is certainly a

very challenging field of engineering applications. The objectives differ from one applica-

tion to the other, ranging from the optimization of air conditioning systems in buildings

to the study of the propagation of harmful products via the air conditioning system. With

the recent developments in numerical techniques, it is now possible to carry out, in a

reasonable amount of time, a complex three dimensional adaptive simulation based on

efficient mesh adaptation algorithms, accurate error estimates, robust and accurate pro-

jection methods for solving Navier-Stokes PDE’s.

In this paper, we address the problem of computing the temperature distribution inside a

complex geometry featuring various industrial buildings. We present some tools to make

the simulations easier and faster. The method is fairly general and applies to other cases

as well. Furthermore, we illustrate the natural convection problem on a single room and

another example treated here is the heating of the last floor of a two-storeyed furnished

house.
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1 INTRODUCTION

There are thousands of engineering problems related to air and temperature, from en-
gineering cooling devices to temperature comfort. Some of these problems are relevant to
fields such as architecture, which do not normally solve the Navier-Stokes equations for an
answer. So air flow and convective heat exchange are modelled by an empirical formula
which depends on the size of the windows, the size of the room, the wall material, etc.
This method gives a rough estimate of all the energy loss. With the recent developments
in numerical techniques, it is now possible to carry out, in a reasonable amount of time,
a complex three dimensional adaptive simulation based on efficient mesh adaptation al-
gorithms, accurate error estimates, robust and accurate projection methods for solving
Navier-Stokes PDE’s.

Flow solvers are making progress especially for three dimensional flows and that is due
to a better understanding of turbulence models, a better mastery of the mesh generators
and more efficient algorithms for iterative solutions of the pressure equation on parallel
processors.

On the modeling side it is well established that at temperatures between -20 and 100
degrees, ambiant air is an incompressible Newtonian fluid but its density is a function
of the temperature. So the fluid flow is governed by the Navier-Stokes equations for in-
compressible viscous flows coupled with the temperature equation. As the density varies
weakly with the temperature the Boussinesq approximation is sufficient, thus neglecting
the variation in density everywhere except in the buoyancy term.

The problem we adress here is related to the coupling between the Navier-Stokes equa-
tions for an incompressible fluid and a temperature equation with flow convection, via a
forcing term. It is also well established that in most cases each equation can be solved
independently at each time step (see [1]). Similarly, as the Reynolds numbers for these
problems are high, pressure projection algorithms are efficient, giving then an equation
for the velocity and a Poisson problem for the pressure at each time step; then the tem-
perature is computed by solving the advection-diffusion equation of energy conservation.

For these incompressible flows the finite volume method is not superior to the finite
element methods. The real problem is one of accuracy and multiple scales. For turbu-
lence the k-epsilon model is currently adequate [2] however when computer resources will
increase LES will probably be better. For numerical accuracy there is no real choice:
adaptivity and if possible non-isotropic mesh elements.

In this paper, we present the equations governing the numerical simulation of air flow
and temperature distribution. Then we recall the general mesh adaptation scheme based
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on a geometric error estimate and surface and volume meshing algorithms. Finally, results
of the numerical simulation on a complex three-dimensional geometry are presented to
emphasize the potentiality of the proposed approach.

2 PROBLEM APPROXIMATION

2.1 Incompressible flow model

Let us consider a closed bounded domain Ω ∈ R
3. The flow velocity u and pressure p

are governed by Navier-Stokes equations for incompressible viscous flow with non constant
density ρ, that can be written as follows [3] [4]:





ρ(
∂u

∂t
+ u.∇u) = ∇ . S − ρ g e3

∇ . (ρu) = 0 in Ω × (0, T ),

(1)

where S is the stress tensor and g is the gravity.

The law of perfect gas p = ρRθ gives an inverse law in terms of the temperature θ
at constant pressure.The Boussinesq approximation to Navier-Stokes equations assumes
that θ varies little around a mean temperature θ0 and its effect is felt only in the term
g/ρ. Hence one may divide (1) by ρ and obtain:





∂u

∂t
+ u.∇u + ∇p − ν∆u = −e3g

ρ

ρ0

∇ . u = 0 in Ω × (0, T ),

(2)

where ν is the kinematic viscosity and p the reduced pressure.
To evaluate the buoyancy term f/ρ the Boussinesq approximation writes

θ = θ0 + θ′, |θ′| << |θ0| ⇒ ρ =
p0

R(θ0 + θ′)
∼

p0

Rθ0
(1 −

θ′

θ0
)

This can be re-written equivalently as

ρ − ρ0 = −αρ0(θ − θ0) (3)

where α is the coefficient of volume expansion. Therefore the variation in density is ne-
glected everywhere except in the buoyancy term which is a linear function of temperature
θ. Notice that ρ has gone out of the divergence operator in the mass conservation equation
only because we assumed ρ0 constant.
Notice also that −e3g(ρ0 + αρ0θ0)/ρ0 is the gradient of g(1 + αθ0)z when θ0 is constant,
so that this term can be absorbed into the pressure and finally −ρge3/ρ0 ∼ e3gαθ.
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2.2 Temperature

The temperature equation comes from the energy conservation equation where it is
assumed that the flow is incompressible with constant density and the fluid viscosity
effects are neglected.

∂θ

∂t
+ u∇θ − κ∆θ = 0 in Ω, (4)

where κ is the temperature diffusion.

2.3 Boundary Conditions

The boundary ∂Ω is subjected to the typical no slip or no-stress boundary conditions
[4, 5] :

• specified velocity (Dirichlet boundary conditions) :

u = w on Γ1, (5)

• specified tractions (Neumann boundary conditions) :

−p + (ν(∇u + ∇uT ).n.n) = 0 and (ν(∇u + ∇uT ).n.s) = 0 on Γ2, (6)

where Γ1 ∪ Γ2 = ∂Ω, n and s represent the outward unit normal and corresponding unit
tangent respectively. Γ1 represents the walls and the flow input, and Γ2 represents the
flow output.

The initial condition is a prescribed velocity:

u(x, 0) = u0(x). (7)

Connected to the temperature equation we have the following boundary conditions:

• specified temperature (Dirichlet boundary conditions):

θ = θ0 on Γ1, (8)

• Fourier conditions:

∂θ

∂n
+ aθ + b(θ4 − θ4

e) = 0 on Γ2, (9)

where Γ1 ∪ Γ2 = ∂Ω, θe the external temperature, a represents the absorption coefficient
and b the radiation coefficient.
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3 NUMERICAL SCHEME

3.1 Navier-Stokes resolution

The numerical resolution of these equations is obtained using a projection method
introduced first by Chorin [6] and later improved by numerous works. The key idea is
to decouple the solution for u (velocity) and p (pressure) in the original problem into a
series of problems to approximate u and p(T ) which are ”good” approximations of the
solution. The general scheme of the projection method, as suggested by [6], is composed
of the following stages:

1. Given the initial conditions u0 with ∇.u0 = 0 (approximate the gradient ∇p(t)),

2. Solve the momentum equations at projection time t = T (without taking care of the
divergence-free constraint), for the intermediate velocity ũ, with ũ0 = u0 at t = 0:





∂ũ

∂t
+ ũ.∇ũ = ∇ . S̃ + f̃ in Ω ,

ũ = w on Γ1 ,

(S̃.n).n = 0 and (S̃.n).s = 0 on Γ2 .

3. Solve for Φ from: 



∇2Φ = ∇ . ũ(T ) in Ω,

∂Φ

∂n
= 0 on Γ1,

Φ = 0 on Γ2.

4. Compute v = ũ(T ) −∇Φ in Ω̄.

The pressure p(T ) is given by p(T ) =
Φ

T
,

5. Report v, set t = 0, u0 = v in Ω and on Γ2 and go to step (2).

In this scheme, the choice of the boundary conditions, for both ũ and Φ, is crucial
and requires the use of the pressure field p0 and the rate of the change of the pressure
field ṗ0, thus leading to the resolution of two Poisson problems. The overall cost of
this scheme related to the need for solving three Poisson problems per projection cycles.
Simplifications can be made by ignoring the compatibility conditions for the boundary
conditions thus avoiding the tedious computation of ∇p and of ∇ṗ on Γ.
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3.2 Temperature resolution

The resolution of the advection-diffusion problem is performed using a SUPG (Stream-
line Upwind/Petrov-Galerkin) approach as a pure Galerkin approach can perform poorly
when dealing with such problem [7]. To solve the non-symmetric matrices we use the it-
erative Generalized Minimal Residual (GMRES) technique. In our case, we use a specific
version of GMRES which allows a variable preconditioner implemented with a reverse
communication protocole for more flexibility.

4 MESH ADAPTATION

In this context, it is well known that the quality of the numerical solutions is strongly
related to the underlying (shape and size) mesh quality [8]. Hence, it is desirable to find a
compromise between the desired accuracy and the time required to compute the solutions,
thus to reduce as much as possible the number of degrees of freedom. Mesh adaptation
is the key point of this strategy.

4.1 A posteriori error estimation

If we assume that the finite element (approximation) error is bounded by the inter-
polation error [9], the problem consist to characterize the optimal mesh on which the
interpolation error is bounded by a given tolerance value. In other words, the goal is
to equidistribute the interpolation error over the mesh elements in order to control the
numerical accuracy of the solution.

We consider the L∞ norm of the interpolation error defined in a mesh element K as:

‖u − Πhu‖∞,K ≤ c max
x∈K

max
~e∈EK

〈~e, |Hu(x)|~e〉 , (10)

where c is a constant, EK is the set of the edges of K and |Hu| is the absolute value of the
Hessian of the variable u. More precisely, we have |Hu| = R|Λ| R−1, with |Λ| = diag(|λi|),
where R is the eigenvector matrix and Λ = diag(λi) is the eigenvalue matrix1.

This error is related to the Hessian of the variable u and the mesh edges, so it provides
anisotropic (directional) information. In practice, this estimation can’t be used because

|Hu| isn’t known. So, a metric tensor M̃(K) dependant on Hu is defined as :

εK = c max
~e∈EK

〈~e,M̃(K)~e〉 . (11)

where εK denotes the interpolation error.
Finally, for a mesh element K, we introduce the metric tensor M(K) = c ε−1 M̃(K)

(with ε a fixed error) and each mesh edge e must then comply with the equality:

〈~e,M(K)~e〉 = 1 . (12)

1The Hessian matrix is symmetric, it can always be decomposed in such manner.
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This metric tensor M prescribes unit edge lengths. We have shown that controlling
the mesh edges (i.e., the length of the edges) allows to control (equidistribute) the inter-
polation error on the mesh elements [10].

4.2 Metric creation

Let ε be the choosen interpolation error. To avoid unrealistic metrics, we define hmin

(resp hmax) the minimal (resp maximal) allowed edge lenght. The previous section intro-
duced a global bound on the interpolation error over the mesh elements, thus leading to
define an anisotropic metric tensor. Practically, we have to bound the eigenvalues λi of
Hu as follows:

λ̃i = min
i

(max
i

(cε−1|λi|, h
−2
max), h

−2
min). (13)

Relative error. The Equation (10) gives a global majoration of interpolation error.
However, we often use many variables to define the metric what involve to have a relative
majoration of interpolation error. That allows to remove dimensional constraint of the
variables. To normalize the Equation (10), we obtain :

‖u − Πhu‖∞,K

‖u‖∞,Ω

≤ c max
x∈K

max
~e∈EK

〈~e, |Hu(x)|~e〉 ,

‖u‖∞,Ω

(14)

Metric intersection. Moreover, in the context of numerical simulations (especially in
CFD), it is often desirable to combine various metrics together, each of which associated
to a single variable (e.g. pression, temperature, velocity, etc.). To this end, we introduce a
metric intersection algorithm based on the simultaneous reduction of the quadratic forms
underlying the metric tensors.

Given two metric tensors M1 and M2, the intersection metric M = M1 ∩ M2 is
represented by the ellipsoid2: EM = sup

Mi∈Md

EMi
⊂ EM1

∩ EM2
.

4.3 Unit mesh adaptation

Given a discrete metric tensor field M prescribing the size and stretching of the ele-
ments at the vertices of a mesh Hi, the aim is to generate a new mesh Hi+1 in which all
elements comply with the specification M. To this end, the length of edge PX, incident
to P , is computed with respect to M as:

lM(P )(
−−→
PX) = 〈

−−→
PX,

−−→
PX〉

1

2

M(P ) =

√
t
−−→
PXM(P )

−−→
PX . (15)

2A metric tensor M(P) can be represented by an ellipsoid E describing the geometric locus of the

points equidistant from point P : ‖
−−→
OP‖M = 1.
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According to Equation (12), it is possible to define a normalized metric tensor M so as

to prescribe unit length edges, i.e., lM(P )(
−−→
PX) = 1. Actually, as the metric varies from

vertex to vertex, we need to use the definition of the average length of edge PX:

lM(
−−→
PX) =

1∫

0

√
t
−−→
PXM(P + t

−−→
PX)

−−→
PX = 1 . (16)

Given such a metric M, the desired mesh is such that each and every edge has a unit

length (lM(
−−→
PX) ≈ 1). Such a mesh is naturally called a unit mesh [11], [12].

Surface mesh adaptation. In our approach, the surface discretization is first adapted
using local mesh modification operations in order to generate a unit mesh. This stage
is based on the edge length analysis with respect to the discrete metric tensor [13, 14].
Practically, the algorithm computes the length of each mesh edge in the metric and (i)
edge too short are deleted while (ii) edges too large are splitted into unit sub-segments.
To this end, two sets of local operations are carried out:

• topological: edge flipping, edge collapsing, degree relaxation,

• geometric: edge splitting, node smoothing.

Volume mesh adaptation. Once a new adapted surface has been created, it is used to
construct an adapted volume mesh. This stage is also based on the edge length analysis
and involves the Delaunay kernel to insert newly created internal nodes into the current
triangulation. In the anisotropic context, this algorithm has been modified so as to take
into account metric tensors at the element vertices [15]. Again, local mesh modification
operations are carries out to improve the overall mesh quality.

4.4 General scheme

According to the previous discussion, the global adaptation scheme can be decomposed
into the five following stages:

1. Given a mesh Hi and a solution ui,

2. Compute the solution ui+1 on the mesh Hi,

3. Use the geometric error estimate to compute a discrete metric tensor Mi,

4. Adapt the mesh Hi using Mi,

5. Interpolate the solution ui on the new mesh Hi+1 and iterate to step 1 with i = i+1.
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5 APPLICATIONS

In this section, we present two results on air flow computation coupled with temperature
computation in three-dimensionnal computational domain. Firstly, we consider a single
room to illustrate the natural convection problem and secondly, we study the heating of
the last floor of a two-storeyed furnished house.

5.1 Computational mesh construction

The domain of interest is defined through a discrete representation, namely a piecewise
linear approximation of the domain boundary or a surface mesh. In this case, the initial
surface triangulation (Figure 1) contains very few (821) points and can be considered as
a geometric mesh [13].

Obviously such a mesh is not well suited for computational purposes and especially not
intended for finite element computations as envisaged here. To this end, a computational
mesh has been created (using YAMS software[16]), representing an accurate approximation
of the domain geometry (the edge length is related to the local curvatures) in which
the element shape quality and the mesh gradation have been both taken into account.
This initial computational mesh contains 1, 252 vertices and 24, 138 triangles. Then,
a three-dimensional computational volume mesh has been generated using a Delaunay-
based approach (using GHS3D software [15]), that contains 43, 130 vertices and 225, 035
tetrahedra.

Figure 1: Geometric coarse mesh describing the domain boundary (on the left). Computational mesh :
mesh generated by YAMS (on the right).

5.2 Parallel implementation

The solver is parallelized by a Domain Decomposition algorithm (using METIS decom-
poser [17]) with MPI to run on PC cluster. The explicit steps achieve perfect parallelism
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of course. It is only the pressure projection which create problems. The parallelization
is implemented at the matrix-vector multiply level, so that with a decent preconditioner
and with a PC cluster with 2 Gig memory boards the communications are not felt.

5.3 Natural convection

Temperature distribution. In this example, we consider a table and a refrigerator
within a room which has a window. For the simulation, the refrigerator is heating the
room and the window is cooling it. Figure 2 (on the left) illustrates the isosurfaces of the
temperature distribution within the room. This isosurfaces show the equilibrium which
is created between the hot source and the cool source.

Air flow computation. For this simulation, all walls and internal furnitures are con-
sidered as viscous walls. So there is only the temperature which creates an air flow. On
the right of the Figure 2, we visualize some streamlines of the velocity vector. We can
observe the air movement, it goes up to the hot part and goes back down in the cool part.
The modulus of the air velocity is very small (about 10−3 m.s−1).

Figure 2: Isosurfaces of the temperature distribution (on the left). Streamlines of the velocity field (on
the right).

5.4 Heating of a house

Air flow computation. In this example, the geometry we consider is the last floor
of a two-storeyed furnished house. Two inputs and two outputs (boundary conditions)
have been prescribed on external windows. All house walls and internal furnitures are
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considered here as viscous walls. Figure 3 illustrates the distribution of streamlines of the
velocity vector.

Figure 3: Streamlines of the velocity field.

Temperature distribution. Two heat sources have been set on two windows and
absorbtion and diffusion conditions have been prescribed on the remaining part of the
domain. Figure 4 illustrates the isosurfaces of the temperature distribution within the
building.

Figure 4: Isosurfaces of the temperature distribution within the house.
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Mesh Adaptation. The result presented here is a first anisotropic result. To create
the metric, we consider three variables corresponding at the three velocity composants.
Indeed, if we adapted based on the L2 norm of the velocity field, the vortex are not
captured because like seen in last example, the modulus of velocity is very small in this
zones. In this example, the mesh has been adapted 7 times and at each iteration, we
compute about 1 seconde of physical time. The time to create the new mesh is close to 5
minutes on a PC workstation. The time to solve the Navier-Stokes equations is close to 4
hours 30 minutes on 6 PC workstation. The time required to solve the advection-diffusion
problem is close to 6 hours 30 minutes on 6 PC workstation. The last mesh constains
about 96, 000 vertices and 535, 800 tetrahedra. Figure 5 shows various cut through the
adapted volume meshes at final iteration.

Figure 5: Adapted meshes: cut through the tetrahedra and associated velocity field.

6 CONCLUSIONS

The results presented in this paper have demonstrated the feasibility and the efficiency
of the global approach for coupling Navier-Stokes and advection-diffusion problems in an
adaptative scheme. Indeed, the anisotropy mesh adaptation reduces by far the number
of nodes, so increase the computation speed. However, progress should be done to find a
better adaptation criterion to create more optimal mesh.
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[5] G. Medić, B. Mohammadi (1999), NSIKE: An Incompressible Navier-Stokes

Solver for Unstructured Meshes, RT-3644, INRIA-Rocquencourt.

[6] J.A. Chorin (1967), A numerical method for solving incompressible viscous flow

problems, J. Compt. Phys., 2, 12-26.

[7] A. Quarteroni and A. Valli (1994), Numerical approximation of partial differ-

ential equations, Springer-Verlag, Berlin, Heidelberg.

[8] P.G. Ciarlet (1991), Basic Error Estimates for Elliptic Problems, in Handbook of

Numerical Analysis, vol II, Finite Element methods (Part 1), P.G. Ciarlet and J.L.
Lions Eds, North Holland, 17-352.
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