Année universitaire 2013-2014

Licence 3 de mathématiques

Espaces de Hilbert et analyse de Fourier - Devoir Maison 1

Exerice 1

Dans chacun des cas suivants, décrire explicitement la projection P_F sur le sousespace vectoriel F de H. On justifiera bien enendu les réponses.

- 1. $H = \mathbb{R}^2$, $F = \{(x, y) \in \mathbb{R}^2 ; x 2y = 0\}$;
- 2. $H = \mathbb{R}^3$, F = Im(A) où A est la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 2 & 0 & 2 \\ 2 & 0 & 4 \end{array}\right) .$$

- 3. $H = l^2(\mathbb{N}, \mathbb{C})$ et F est le sous-espace des suites dont les coefficients de rang pair sont nuls.
- 4. $H = L^2(]0,1[)$ et F est le sous-espace des fonctions nulles presque partout sur]0,1/2[.

Exercice 2

On définit un produit scalaire sur $\mathbb{R}[X]$ de la manière suivante :

$$\langle P, Q \rangle = \int_{t \in I} f(t)g(t)w(t)dt$$
 (1)

où I est un intervalle de \mathbb{R} et w une fonction strictement positive et intégrable sur I. Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes orthogonaux pour ce produit scalaire telle que $deg(P_n) = n$. On note λ_n le coefficient de plus haut degré de P_n , λ'_n le coefficient du monôme de degré n-1 et $h_n = \|P_n\|_2^2$. Le but de cet exercice est de montrer que la suite P_n vérifie la relation de récurrence suivante :

$$\forall n \in \mathbb{N}^* \quad P_{n+1}(x) = (a_n x + b_n) P_n(x) - c_n P_{n-1}(x).$$
 (2)

avec

$$a_n = \frac{\lambda_{n+1}}{\lambda_n}, \quad b_n = a_n \left(\frac{\lambda'_{n+1}}{\lambda_{n+1}} - \frac{\lambda'_n}{\lambda_n}\right), \quad c_n = a_n \left(\frac{\lambda_{n-1}h_n}{\lambda_n h_{n-1}}\right).$$
 (3)

On traitera ensuite l'exemple des polynomes de Tchebichev

1. Justifier l'existence de réels $\mu_{n,j}$ tels que

$$(a_n x + b_n) P_n(x) - P_{n+1}(x) = \sum_{j=0}^{n-1} \mu_{n,j} P_j(x).$$
 (4)

2. En effectuant un produit scalaire avec P_i dans l'égalité précédente, montrer que $\mu_{n,i} = 0$ si $i \leq n-2$ et en déduire la relation de récurrence (??).

3. Montrer que les polynômes P_n admettent n racines distincts sur I.

On pourra utiliser le polynome $Q(x) = \prod_{i=1}^{k} (x - x_i)$ où les $(x_i)_{i \leq k}$ sont les racines de P_n incluses dans l'intervalle I.

Pour tout $x \in]-1,1[$ et pour tout $n \in \mathbb{N}$ on définit la fonction $T_n(x) = \cos(n \arccos x)$.

- 4. Calculer T_0 et T_1 .
- 5. Etablir que pour tout $n \ge 1$

$$T_{n+1}(x) + T_{n-1}(x) = 2xT_n(x).$$
 (5)

- 6. En déduire que T_n est un polynôme de degré n dont on précisera le terme de plus haut degré. On appelle ces polynomes, les polynomes de Tchebichev.
- 7. Expliciter les racines de T_n ainsi que la valeur de $\max_{[-1,1]} |T(x)|$.
- 8. Montrer que les polynômes de Tchebichev sont orthogonaux pour le produit scalaire défini sur les polynômes par :

$$\langle f, g \rangle = \int_{t=-1}^{1} \frac{f(t)g(t)}{\sqrt{1-t^2}} dt.$$

9. Montrer que le polynôme T_n est soltuion de l'équation différentielle :

$$(1 - x^2)y^{(2)} - xy' + n^2y = 0. (6)$$