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Edge finite element and Discontinuous Galerkin method.
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Outline of the presentation

o .

® Analysis of quadrilateral finite element with eigenvalue
computations.
Edge finite element and Discontinuous Galerkin method.

® Convergence of these methods for the scattering of a disk.

® Comparative study with triangles for the scattering of a
diedron-disk.

® Numerical results in 3-D
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Eigenvalue Problem

- =

Find (w, E, H) # (0,0,0) so that

—iw e(x) E(z) — curl H(z) = 0 z€Q
—iw p(z) H(z) + curl E(z) = 0 z€Q
v x E(z) = 0 zel

(1)

-

High-Order Finite Element — p.3/2:



Eigenvalue Problem

- =

Find (w, E, H) # (0,0,0) so that

—iw e(x) E(z) — curl H(z) = 0 z€Q
—iw p(z) H(z) + curl E(z) = 0 z€Q
v x E(z) = 0 zel

Use of second order formulation :

_ W2 () + curl( ﬁcurl(ﬁ(:p))) ~ 0

(1)
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A first approach : discretization of the H(curl) space

=

. 1 ~
—k2/€TE-gB+/—(V><E)-(V><gB):O (2)
0 Q HMr

Variational formulation of second order in £

-
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A first approach : discretization of the H(curl) space

=

. 1 ~
—k2/€TE-gB+/—(V><E)-(V><gB):O (2)
0 Q HMr

Variational formulation of second order in £

—

E,@eHeur) = {ge (L*(Q)) andV x i e L*(Q)}
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A first approach : discretization of the H(curl) space

Variational formulation of second order in £

. 1 ~
—k2/€7aE'QB—|—/—<V><E)'(VXQB):O (2)
0 Q HMr

E,@eHeun) = {de (L*Q))*andV x @ e L*(Q)}

After discretization, we obtain the eigenvalue system :

— My E — K E =0

-
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A first approach : discretization of the H(curl) space

=

. 1 ~
—]{2/€¢E'QB—|—/—<VXE)'(VXQB):O (2)
0 Q HMr

Variational formulation of second order in £

E,@eHeun) = {de (L*Q))*andV x @ e L*(Q)}

After discretization, we obtain the eigenvalue system :

— My E — K E =0

Use of Arpack++ to solve this eigenvalue system
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Nedelec’s first family on quadrilaterals

o .

Vi, = {@ € Heur,Q) sothat DF' o F; € Qr_1, X Qrr_1}t  (3)

Space of approximation
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Nedelec’s first family on quadrilaterals

-

Space of approximation
Vi, = {@ € Heur,Q) sothat DF' o F; € Qr_1, X Qrr_1}t  (3)
Basis functions
oLi(2,9) = VE@) @) e 1<i<r 1<j<r+1

(3)
g)é, 1<i<r 1<j<r+1
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Nedelec’s first family on quadrilaterals

o .

Vi, = {@ € Heur,Q) sothat DF' o F; € Qr_1, X Qrr_1}t  (3)

Space of approximation

Basis functions
L@, = C@PFE@ e 1<i<r 1<j<r+]

(3)
g)é, 1<i<r 1<j<r+1

&, &L lagrangian functions linked with respectively Gauss and

Gauss-Lobatto points.
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Eigenmodes with the first family

fl\/lesh used for the simulations (Q5) T

0.6
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Eigenmodes with the first family

f w? = 32.076 w? = 32.076 w? = 39.478
- _
‘oo’

w? = 41.945

.".‘
- -
"‘.‘ n" A'

® Nedelec’s first family seems spectrally correct on quadrilaterals

L and triangles.



Nedelec’s second family for quadrilaterals

-

Space of approximation

Vi, = { @ € H(url,(2) such as DFZ-t uo F; € (Q7~)2 } (4)
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Nedelec’s second family for quadrilaterals

o .

Vi, = { @ € H(url,(2) such as DFZ-t uo F; € (QT)Q } (4)

Space of approximation

Use of Gauss-Lobatto points both for integration and interpolation
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Nedelec’s second family for quadrilaterals

o .

Vi, = { @ € H(url,(2) such as DF; uo F; € (QT)Q } (4)

Space of approximation

Use of Gauss-Lobatto points both for integration and interpolation

® Mass matrix block-diagonal (mass-lumping)
® Gain in storage and time for the matrix-vector product
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Eigenmodes with the second family

-

Mesh used for the simulations (Q5)
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Eigenmodes with the second family

L -
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Eigenmodes with the second family

w? = 37.54
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Eigenmodes with the second family

w? = 3798 w? = 38.00 w? = 38.03 w? = 38.03

w? = 38.04 w? = 38.05 w? = 38.07 w? = 3820
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w? = 38.04
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w? = 39.48
-

Eigenmodes with the second family

w? = 38.07 w? = 38.20
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Eigenvalues with the second family
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Eigenvalues with a non-regular mesh.
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Analytical eigenvalues are symbolized by red lines.
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Eigenvalues with the second family
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Eigenvalues with a regular mesh (incorrect multiplicity)
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Eigenvalues with the second family

| . " o
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Eigenvalues with a regular mesh (incorrect multiplicity)

® Spurious eigenvalues and modes are dependent of the mesh.

® Nedelec’s second family is NOT spectrally correct on
guadrilaterals

® Nedelec’s second family seems spectrally correct on triangles.
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Consequency of spurious modes

=

Gaussian source at the center of the square, and w? = 38.00
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Consequency of spurious modes

-

Gaussian source at the center of the square, and w? = 38.00
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Solution with Q5 for the first (left) and second family (right)
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Discontinuous Galerkin variational formulation

System in £ and H

—k2/ & F - @ —/ HYV x g —/ {H}gxv = 0
K; K; OK;

B 1 B
/ o H 1 +/ V x E +—/ Eixiyp = 0
K, K, 2 Jox,

(5)
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Discontinuous Galerkin variational formulation

System in £ and H

—k2/ & F - @ —/ HYV x g —/ {H}gxv = 0
K; K; OK;

. 1 B
/ u H 1 +/ V x E o +—/ Bl x i = 0
K, K, 2 Jok,

(5)
Let us remind that

(5)
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Eigenvectorswith DG on quadrilaterals

-
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Eigenvalues, only one spurious mode.
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Eigenvectorswith DG on quadrilaterals
f w? = 2692 w? = 32.08 w? = 3208 w?* = 39.48 T

N - > w_w
S \\N// ’...‘
AN :\ ‘ - ’A..‘
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Eigenvectorswith DG on quadrilaterals
f w? = 2692 w? = 32.08 w? = 3208 w?* = 39.48 T
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® DG method is NOT spectrally correct on quadrilaterals.
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Study of the scattering of a perfectly conducting disk

o .

Scattering by a disk of diameter 20 wavelengths
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Study of the scattering of a perfectly conducting disk

o .

Scattering by a disk of diameter 20 wavelengths
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Study of the scattering of a perfectly conducting disk

o .

Scattering by a disk of diameter 20 wavelengths

T
o "

® Use of a transparency condition
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Study of the scattering of a perfectly conducting disk

-

(DD |
10 | ‘.0..:::‘05:.;:2.‘.

® Use of a transparency condition
L’ Use of curved elements

Scattering by a disk of diameter 20 wavelengths

R 0.2

q-0.2
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-0.6
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-
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Comparison with finite edge elements

o

(curl, 2) error according the mesh step
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o

Comparison with finite edge elements

(curl, 2) error according the mesh step

0

-0.5f

-1+

-15F

-2+

r— Q3 X Q3, second family

v . Q3 X Qs' DG Gauss-Lobatto
a

3L = = Q_,xQ_ DG Gauss points
3 3
)3
. ) )
— Qz’3 X Q3’2, first family
7/

-35F of

-4 1 | | | | | |
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Comparison with finite edge elements

o

(curl, 2) error according the mesh step

0
-05F
_l =
15k
_2 |
o5k +—+ Q,xQ,, second family
v 7 Q,xQ, DG Gauss-Lobatto
a
st o = o Q,xQ,DG Gauss points
):l
4 —v Q2 o X Q3 o first family
350 of
-4 | | | | | | |
-15 -1.4 -13 -1.2 -1.1 -1 -0.9 -0.8 -0.7

® Erratic convergence of second family
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Comparison with finite edge elements

o

(curl, 2) error according the mesh step

0

-05F

_l =
15k

_2 |
o5k +—+ Q,xQ,, second family

v 7 Q,xQ, DG Gauss-Lobatto
a
st o = o Q,xQ,DG Gauss points
)]
4 —v Q2 o X Q3 o first family

350 of

-4 | | | | | | |

-15 -1.4 -13 -1.2 -1.1 -1 -0.9 -0.8 -0.7

® Erratic convergence of second family
® Use of Gauss points for DG method gives better accuracy
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o

°

(curl, 2) error according the mesh step

Comparison with finite edge elements

0

-0.5f

-1+

-15F

-2+

+—+ Q,xQ,, second family
v . Q,xQ, DG Gauss-Lobatto
7]

st o = o Q,xQ,DG Gauss points

— Qz’3 X Q3’2, first family

I I I I I I I
-15 -14 -1.3 -1.2 -11 -1 -0.9 -0.8 -0.7

Erratic convergence of second family
Use of Gauss points for DG method gives better accuracy
Order 3 of convergence for first family, order 4 for DG method
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Scattering of a diedron-disk

-

Let us consider a diedron-disk coated by a dielectric
(e = 154+ 1.8¢ u = 1.7+ 1.77)

o -
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Scattering of a diedron-disk

-

Let us consider a diedron-disk coated by a dielectric
(e = 154+ 1.8¢ u = 1.7+ 1.77)

Diffracted field

o -
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Scattering of a diedron-disk

-

Let us consider a diedron-disk coated by a dielectric
(e = 154+ 1.8¢ u = 1.7+ 1.77)

Total field

o -
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Scattering of a diedron-disk

-

Let us consider a diedron-disk coated by a dielectric
(e = 154+ 1.8¢ u = 1.7+ 1.77)
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20+
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-40

| | | | | | |
-150 -100 -50 0 50 100 150
6

Radar Cross Section

-

High-Order Finite Element — p.15/2.



Radar Cross Section

10 ,
D —+— First family
N Second family

100 Py T —v— DG Lobatto

R T - © - DG Gauss
N

10 10" 10
Number degrees of freedom

L°° error on the rcs according to the number of degrees of freedom (Q5).

o -
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Radar Cross Section

10 ,
D —+— First family
N Second family

10" Py T —— DG Lobatto
o T e, - © - DG Gauss

10 10° 10
Number degrees of freedom

L°° error on the rcs according to the number of degrees of freedom (Q5).

® First family on quadrilaterals is the most efficient
® No irregular convergence for the second family (use of a
guasi-regular mesh)
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Direct solver

|7Error level of 0.1dB T

o -
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Direct solver

|7Error level of 0.1dB

Finite element | Number of dof | Memory used to factorize

First Family 2300 3 Mo
Second Family | 21420 35 Mo
DG Lobatto 14 250 15 Mo

o -
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Direct solver

|7Error level of 0.1dB T

Mesh used for the first family

o -
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Direct solver

|7Error level of 0.1dB T

Mesh used for Discontinuous Galerkin method

o -
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Iterative solver

COCG (conjugate gradient for complex symmetric matrices) WithoutT
preconditioning (¢ = le — 6)

Finite element | Number of iterations | Time
First Family 4100 7s
Second Family | > 100000 —
DG Lobatto > 100000 —

-
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Direct solver

-

Non-overlapping Schwarz method
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Direct solver

-

Non-overlapping Schwarz method

N,
Decomposition in subdomains Q = | | ;
1=1
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Direct solver

-

Non-overlapping Schwarz method

N,
Decomposition in subdomains Q = | | ;
1=1

N
M=) PATP
1=1

o -
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Direct solver

Non-overlapping Schwarz method
N,
Decomposition in subdomains Q = | | ;
1=1
N,
M=) PATP
i=1

P;, projection operator from €2; to €}
A; finite element matrix of €2;

-

High-Order Finite Element — p.19/2.



Direct solver

o .

Non-overlapping Schwarz method

N,
Decomposition in subdomains Q = | | ;
1=1

N
M=) PATP
1=1

P;, projection operator from €2; to €}
A; finite element matrix of €2;

Factorization of matrices A; with a direct solver (MUMPS)

o -
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Iterative solver with preconditioner

With 8 subdomains, we obtain :

Finite element | Number of iterations | Time
First Family 148 s
Second Family | 3200 182 s
DG Lobatto 37 ls

-
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Scattering by a sphere

o .

Use of first family on hexahedrals, with Silver-Muller condition and
curved elements.

)

-
N ——
:"-—-—-; T —

Diffracted field (real part of E,) on three planes

o -
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Use of first family on hexahedrals, with Silver-Muller condition and

Scattering by a sphere

curved elements.

Results for COCG without preconditioning (¢ = 1e — 6)

=

Order

Number dof

Memory used

Number iterations

Time

120000

30 Mo

6 800

940 s

Use of a specific matrix-vector product in order to have a low storage

(Gain of time too).

-
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