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Outline of the presentation

Analysis of quadrilateral finite element with eigenvalue

computations.

Edge finite element and Discontinuous Galerkin method.
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Outline of the presentation

Analysis of quadrilateral finite element with eigenvalue

computations.

Edge finite element and Discontinuous Galerkin method.

Convergence of these methods for the scattering of a disk.

Comparative study with triangles for the scattering of a

diedron-disk.

Numerical results in 3-D
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Eigenvalue Problem

Find (ω, ~E, ~H) 6= (0, 0, 0) so that

−iω ε(x) ~E(x) − curl ~H(x) = 0 x ∈ Ω

−iω µ(x) ~H(x) + curl ~E(x) = 0 x ∈ Ω

ν × ~E(x) = 0 x ∈ Γ

(1)
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Eigenvalue Problem

Find (ω, ~E, ~H) 6= (0, 0, 0) so that

−iω ε(x) ~E(x) − curl ~H(x) = 0 x ∈ Ω

−iω µ(x) ~H(x) + curl ~E(x) = 0 x ∈ Ω

ν × ~E(x) = 0 x ∈ Γ

(1)

Use of second order formulation :

−ω2 ~E(x) + curl(
1

µ(x)
curl( ~E(x))) = 0
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A first approach : discretization of the H(curl) space

Variational formulation of second order in ~E

−k2

∫

Ω

εr ~E · ~ϕ +

∫

Ω

1

µr
(∇× ~E) · (∇× ~ϕ) = 0 (2)
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A first approach : discretization of the H(curl) space

Variational formulation of second order in ~E

−k2

∫

Ω

εr ~E · ~ϕ +

∫

Ω

1

µr
(∇× ~E) · (∇× ~ϕ) = 0 (2)

~E, ~ϕ ∈ H(curl,Ω) = {~u ∈
(

L2(Ω)
)2

and ∇× ~u ∈ L2(Ω)}
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A first approach : discretization of the H(curl) space

Variational formulation of second order in ~E

−k2

∫

Ω

εr ~E · ~ϕ +

∫

Ω

1

µr
(∇× ~E) · (∇× ~ϕ) = 0 (2)

~E, ~ϕ ∈ H(curl,Ω) = {~u ∈
(

L2(Ω)
)2

and ∇× ~u ∈ L2(Ω)}

After discretization, we obtain the eigenvalue system :

−ω2MhE − KhE = 0
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A first approach : discretization of the H(curl) space

Variational formulation of second order in ~E

−k2

∫

Ω

εr ~E · ~ϕ +

∫

Ω

1

µr
(∇× ~E) · (∇× ~ϕ) = 0 (2)

~E, ~ϕ ∈ H(curl,Ω) = {~u ∈
(

L2(Ω)
)2

and ∇× ~u ∈ L2(Ω)}

After discretization, we obtain the eigenvalue system :

−ω2MhE − KhE = 0

Use of Arpack++ to solve this eigenvalue system
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Nedelec’s first family on quadrilaterals

Space of approximation

Vh = { ~u ∈ H(curl,Ω) so that DF t
i ~u ◦ Fi ∈ Qr−1,r × Qr,r−1 } (3)
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Nedelec’s first family on quadrilaterals

Space of approximation

Vh = { ~u ∈ H(curl,Ω) so that DF t
i ~u ◦ Fi ∈ Qr−1,r × Qr,r−1 } (3)

Basis functions

~̂ϕ1
i,j(x̂, ŷ) = ψ̂G

i (x̂) ψ̂GL
j (ŷ) ~ex 1 ≤ i ≤ r 1 ≤ j ≤ r + 1

~̂ϕ2
j,i(x̂, ŷ) = ψ̂GL

j (x̂) ψ̂G
i (ŷ) ~ey 1 ≤ i ≤ r 1 ≤ j ≤ r + 1

(3)
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Nedelec’s first family on quadrilaterals

Space of approximation

Vh = { ~u ∈ H(curl,Ω) so that DF t
i ~u ◦ Fi ∈ Qr−1,r × Qr,r−1 } (3)

Basis functions

~̂ϕ1
i,j(x̂, ŷ) = ψ̂G

i (x̂) ψ̂GL
j (ŷ) ~ex 1 ≤ i ≤ r 1 ≤ j ≤ r + 1

~̂ϕ2
j,i(x̂, ŷ) = ψ̂GL

j (x̂) ψ̂G
i (ŷ) ~ey 1 ≤ i ≤ r 1 ≤ j ≤ r + 1

(3)

ψG
i , ψ

GL
i lagrangian functions linked with respectively Gauss and

Gauss-Lobatto points.
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Eigenmodes with the first family

Mesh used for the simulations (Q5)
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Eigenmodes with the first family

ω2 = 32.076 ω2 = 32.076 ω2 = 39.478
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Eigenmodes with the first family

ω2 = 32.076 ω2 = 32.076 ω2 = 39.478

ω2 = 32.076 ω2 = 41.945 ω2 = 41.945

Nedelec’s first family seems spectrally correct on quadrilaterals

and triangles.
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Nedelec’s second family for quadrilaterals

Space of approximation

Vh = { ~u ∈ H(curl,Ω) such as DF t
i ~u ◦ Fi ∈ (Qr)

2 } (4)
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Nedelec’s second family for quadrilaterals

Space of approximation

Vh = { ~u ∈ H(curl,Ω) such as DF t
i ~u ◦ Fi ∈ (Qr)

2 } (4)

Use of Gauss-Lobatto points both for integration and interpolation
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Nedelec’s second family for quadrilaterals

Space of approximation

Vh = { ~u ∈ H(curl,Ω) such as DF t
i ~u ◦ Fi ∈ (Qr)

2 } (4)

Use of Gauss-Lobatto points both for integration and interpolation

Mass matrix block-diagonal (mass-lumping)

Gain in storage and time for the matrix-vector product
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Eigenmodes with the second family

Mesh used for the simulations (Q5)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

High-Order Finite Element – p.8/21



Eigenmodes with the second family

ω2 = 32.08 ω2 = 32.08 ω2 = 37.54 ω2 = 37.95
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Eigenmodes with the second family

ω2 = 32.08 ω2 = 32.08 ω2 = 37.54 ω2 = 37.95

ω2 = 37.98 ω2 = 38.00 ω2 = 38.03 ω2 = 38.03
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Eigenmodes with the second family

ω2 = 37.98 ω2 = 38.00 ω2 = 38.03 ω2 = 38.03

ω2 = 38.04 ω2 = 38.05 ω2 = 38.07 ω2 = 38.20
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Eigenmodes with the second family

ω2 = 38.04 ω2 = 38.05 ω2 = 38.07 ω2 = 38.20

ω2 = 39.48 ω2 = 39.48 ω2 = 41.95 ω2 = 41.95
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Eigenvalues with the second family
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Eigenvalues with a non-regular mesh.

Analytical eigenvalues are symbolized by red lines.
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Eigenvalues with the second family
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Eigenvalues with a regular mesh (incorrect multiplicity)
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Eigenvalues with the second family
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Eigenvalues with a regular mesh (incorrect multiplicity)

Spurious eigenvalues and modes are dependent of the mesh.

Nedelec’s second family is NOT spectrally correct on

quadrilaterals

Nedelec’s second family seems spectrally correct on triangles.
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Consequency of spurious modes

Gaussian source at the center of the square, and ω2 = 38.00
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Consequency of spurious modes

Gaussian source at the center of the square, and ω2 = 38.00

Solution with Q5 for the first (left) and second family (right)
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Discontinuous Galerkin variational formulation

System in ~E and H

−k2

∫

Ki

εr ~E · ~ϕ −

∫

Ki

H ∇× ~ϕ −

∫

∂Ki

{H} ~ϕ× ~ν = 0

∫

Ki

µrH ψ +

∫

Ki

∇× ~E ψ +
1

2

∫

∂Ki

[ ~E] × ~ν ψ = 0

(5)
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Discontinuous Galerkin variational formulation

System in ~E and H

−k2

∫

Ki

εr ~E · ~ϕ −

∫

Ki

H ∇× ~ϕ −

∫

∂Ki

{H} ~ϕ× ~ν = 0

∫

Ki

µrH ψ +

∫

Ki

∇× ~E ψ +
1

2

∫

∂Ki

[ ~E] × ~ν ψ = 0

(5)

Let us remind that

{H} = 1

2
(Hi +Hj)

[ ~E] = ( ~Ei − ~Ej)

(5)
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Eigenvectors with DG on quadrilaterals
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Eigenvalues, only one spurious mode.
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Eigenvectors with DG on quadrilaterals
ω2 = 26.92 ω2 = 32.08 ω2 = 32.08 ω2 = 39.48
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Eigenvectors with DG on quadrilaterals
ω2 = 26.92 ω2 = 32.08 ω2 = 32.08 ω2 = 39.48

ω2 = 39.48 ω2 = 41.95 ω2 = 41.95

DG method is NOT spectrally correct on quadrilaterals.
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Study of the scattering of a perfectly conducting disk

Scattering by a disk of diameter 20 wavelengths
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Study of the scattering of a perfectly conducting disk

Scattering by a disk of diameter 20 wavelengths

Use of a transparency condition
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Study of the scattering of a perfectly conducting disk

Scattering by a disk of diameter 20 wavelengths

Use of a transparency condition

Use of curved elements
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Comparison with finite edge elements

H(curl,Ω) error according the mesh step
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Comparison with finite edge elements

H(curl,Ω) error according the mesh step
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Comparison with finite edge elements
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Comparison with finite edge elements
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Comparison with finite edge elements

H(curl,Ω) error according the mesh step
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Q
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Erratic convergence of second family

Use of Gauss points for DG method gives better accuracy

Order 3 of convergence for first family, order 4 for DG method
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Scattering of a diedron-disk

Let us consider a diedron-disk coated by a dielectric

(ε = 15 + 1.8i µ = 1.7 + 1.7i)
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Scattering of a diedron-disk

Let us consider a diedron-disk coated by a dielectric

(ε = 15 + 1.8i µ = 1.7 + 1.7i)

Diffracted field
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Scattering of a diedron-disk

Let us consider a diedron-disk coated by a dielectric

(ε = 15 + 1.8i µ = 1.7 + 1.7i)

Total field
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Scattering of a diedron-disk

Let us consider a diedron-disk coated by a dielectric

(ε = 15 + 1.8i µ = 1.7 + 1.7i)
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Radar Cross Section
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L∞ error on the rcs according to the number of degrees of freedom (Q5).
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Radar Cross Section
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L∞ error on the rcs according to the number of degrees of freedom (Q5).

First family on quadrilaterals is the most efficient

No irregular convergence for the second family (use of a

quasi-regular mesh)
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Direct solver

Error level of 0.1dB
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Direct solver

Error level of 0.1dB

Finite element Number of dof Memory used to factorize

First Family 2 300 3Mo

Second Family 21 420 35Mo

DG Lobatto 14 250 15Mo
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Direct solver

Error level of 0.1dB

Mesh used for the first family
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Direct solver

Error level of 0.1dB

Mesh used for Discontinuous Galerkin method

High-Order Finite Element – p.17/21



Iterative solver

COCG (conjugate gradient for complex symmetric matrices) without

preconditioning (ε = 1e− 6)

Finite element Number of iterations Time

First Family 4 100 7 s

Second Family > 100 000 −

DG Lobatto > 100 000 −
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Direct solver

Non-overlapping Schwarz method
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Direct solver

Non-overlapping Schwarz method

Decomposition in subdomains Ω =

Ns
⋃

i=1

Ωi
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Direct solver

Non-overlapping Schwarz method

Decomposition in subdomains Ω =

Ns
⋃

i=1

Ωi

M−1 =

Ns
∑

i=1

PiA
−1

i P t
i
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Direct solver

Non-overlapping Schwarz method

Decomposition in subdomains Ω =

Ns
⋃

i=1

Ωi

M−1 =

Ns
∑

i=1

PiA
−1

i P t
i

Pi, projection operator from Ωi to Ω

Ai finite element matrix of Ωi
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Direct solver

Non-overlapping Schwarz method

Decomposition in subdomains Ω =

Ns
⋃

i=1

Ωi

M−1 =

Ns
∑

i=1

PiA
−1

i P t
i

Pi, projection operator from Ωi to Ω

Ai finite element matrix of Ωi

Factorization of matrices Ai with a direct solver (MUMPS)
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Iterative solver with preconditioner

With 8 subdomains, we obtain :

Finite element Number of iterations Time

First Family 148 1 s

Second Family 3 200 182 s

DG Lobatto 37 1 s
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Scattering by a sphere

Use of first family on hexahedrals, with Silver-Muller condition and

curved elements.

Diffracted field (real part of Ex) on three planes
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Scattering by a sphere

Use of first family on hexahedrals, with Silver-Muller condition and

curved elements.

Results for COCG without preconditioning (ε = 1e− 6)

Order Number dof Memory used Number iterations Time

5 120 000 30Mo 6 800 940 s

Use of a specific matrix-vector product in order to have a low storage

(Gain of time too).
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