Modes parasites pour les éléments finis hexaédriques d'ordre élevé, appliqués aux équations de Maxwell en régime harmonique

M. Duruflé, G. Cohen

INRIA Rocquencourt

Modes parasites pour les éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique - p.1/3

Bibliographie et motivation

- Thèse de S. Pernet, Méthode de Galerkin discontinue pour les équations de Maxwell en régime transitoire, pour des maillages hexaédriques.
- Thèse de M. Duruflé, Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique.
- M. Costabel, M. Dauge, Computation of resonance frequencies for Maxwell equations in non-smooth domains
- A. Buffa et I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem

Bibliographie et motivation

- Thèse de M. Duruflé, Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique.
- M. Costabel, M. Dauge, Computation of resonance frequencies for Maxwell equations in non-smooth domains
- A. Buffa et I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem
- J. Hesthaven, T. Warburton, High order discontinuous Galerkin methods for the Maxwell eigenvalue problem

- Première famille de Nédélec sur les hexaèdres
 - Produit matrice-vecteur rapide
 - Intégration numérique et modes parasites
 - Convergence dans le cas de domaines "singuliers"

- Première famille de Nédélec sur les hexaèdres
 - Produit matrice-vecteur rapide
 - Intégration numérique et modes parasites
 - Convergence dans le cas de domaines "singuliers"
- Seconde famille de Nédélec sur les hexaèdres
 - Modes parasites dans le cas 2-D et 3-D
 - Deux types de pénalisation
 - Effet de la pénalisation dans le cas de domaines "singuliers"

- Première famille de Nédélec sur les hexaèdres
 - Produit matrice-vecteur rapide
 - Intégration numérique et modes parasites
 - Convergence dans le cas de domaines "singuliers"
- Seconde famille de Nédélec sur les hexaèdres
 - Modes parasites dans le cas 2-D et 3-D
 - Deux types de pénalisation
 - Effet de la pénalisation dans le cas de domaines "singuliers"
- Méthode de Galerkin discontinue
 - Modes parasites en 2-D et 3-D
 - Effet de la pénalisation en 3-D

- Seconde famille de Nédélec sur les hexaèdres
 - Modes parasites dans le cas 2-D et 3-D
 - Deux types de pénalisation
 - Effet de la pénalisation dans le cas de domaines "singuliers"
- Méthode de Galerkin discontinue
 - Modes parasites en 2-D et 3-D
 - Effet de la pénalisation en 3-D
- Benchmark
 - Valeurs propres de référence
 - Comparaison des trois méthodes
 - Bilan, quelle méthode choisir ?

Hexaèdres de la première famille de Nédelec

Éléments finis de la seconde famille

Méthode de Galerkin discontinue

Benchmark et comparaison entre les méthodes

Première famille de Nédelec sur les hexaèdre

Equations de Maxwell en régime harmonique :

$$-\omega^2 \varepsilon \vec{E}(x) + \operatorname{curl}(\frac{1}{\mu(x)} \operatorname{curl}(\vec{E}(x))) = 0$$

Espace d'approximation

 $V_h = \{ \vec{u} \in \mathsf{H}(\mathsf{curl}, \Omega) \text{ tel que } DF_i^t \vec{u} \circ F_i \in Q_{r-1,r,r} \times Q_{r,r-1,r} \times Q_{r,r,r-1} \}$

Première famille de Nédelec sur les hexaèdre

Equations de Maxwell en régime harmonique :

$$-\omega^2 \varepsilon \vec{E}(x) + \operatorname{curl}(\frac{1}{\mu(x)} \operatorname{curl}(\vec{E}(x))) = 0$$

Espace d'approximation

 $V_h = \{ \vec{u} \in \mathsf{H}(\mathsf{curl}, \Omega) \text{ tel que } DF_i^t \vec{u} \circ F_i \in Q_{r-1, r, r} \times Q_{r, r-1, r} \times Q_{r, r, r-1} \}$

Fonctions de base, utilisant les point des Gauss et Gauss-Lobatto

$$\begin{split} \vec{\varphi}_{i,j,k}^{1}(\hat{x},\hat{y},\hat{z}) &= \hat{\psi}_{i}^{G}(\hat{x}) \ \hat{\psi}_{j}^{GL}(\hat{y}) \ \hat{\psi}_{k}^{GL}(\hat{z}) \ \vec{e_{x}} & 1 \leq i \leq r \quad 1 \leq j,k \leq r+1 \\ \vec{\varphi}_{j,i,k}^{2}(\hat{x},\hat{y},\hat{z}) &= \hat{\psi}_{j}^{GL}(\hat{x}) \ \hat{\psi}_{i}^{G}(\hat{y}) \ \hat{\psi}_{k}^{GL}(\hat{z}) \ \vec{e_{y}} & 1 \leq i \leq r \quad 1 \leq j,k \leq r+1 \\ \vec{\varphi}_{k,j,i}^{3}(\hat{x},\hat{y},\hat{z}) &= \hat{\psi}_{k}^{GL}(\hat{x}) \ \hat{\psi}_{j}^{GL}(\hat{y}) \ \hat{\psi}_{i}^{G}(\hat{x}) \ \vec{e_{z}} & 1 \leq i \leq r \quad 1 \leq j,k \leq r+1 \end{split}$$

Première famille de Nédelec sur les hexaèdre

Espace d'approximation

 $V_h = \{ \vec{u} \in \mathsf{H}(\mathsf{curl}, \Omega) \text{ tel que } DF_i^t \vec{u} \circ F_i \in Q_{r-1, r, r} \times Q_{r, r-1, r} \times Q_{r, r, r-1} \}$

Fonctions de base, utilisant les point des Gauss et Gauss-Lobatto

$$\begin{split} \vec{\hat{\varphi}}_{i,j,k}^{1}(\hat{x},\hat{y},\hat{z}) &= \hat{\psi}_{i}^{G}(\hat{x}) \ \hat{\psi}_{j}^{GL}(\hat{y}) \ \hat{\psi}_{k}^{GL}(\hat{z}) \ \vec{e_{x}} & 1 \leq i \leq r \quad 1 \leq j,k \leq r+1 \\ \vec{\hat{\varphi}}_{j,i,k}^{2}(\hat{x},\hat{y},\hat{z}) &= \hat{\psi}_{j}^{GL}(\hat{x}) \ \hat{\psi}_{i}^{G}(\hat{y}) \ \hat{\psi}_{k}^{GL}(\hat{z}) \ \vec{e_{y}} & 1 \leq i \leq r \quad 1 \leq j,k \leq r+1 \\ \vec{\hat{\varphi}}_{k,j,i}^{3}(\hat{x},\hat{y},\hat{z}) &= \hat{\psi}_{k}^{GL}(\hat{x}) \ \hat{\psi}_{j}^{GL}(\hat{y}) \ \hat{\psi}_{i}^{G}(\hat{x}) \ \vec{e_{z}} & 1 \leq i \leq r \quad 1 \leq j,k \leq r+1 \end{split}$$

 ψ_i^G, ψ_i^{GL} fonctions d'interpolation de Lagrange, liées respectivement aux points de Gauss points et de Gauss-Lobatto.

Matrices élémentaires

Matrice élémentaire de masse :

$$(M_h)_{i,j} = \int_{\hat{K}} J_i DF_i^{-1} \varepsilon DF_i^{*-1} \hat{\varphi}_i \cdot \hat{\varphi}_k d\hat{x}$$

Matrice élémentaire de rigidité :

$$(K_h)_{i,j} = \int_{\hat{K}} \frac{1}{J_i} DF_i^t \mu^{-1} DF_i \hat{\nabla} \times \hat{\varphi}_i \cdot \hat{\nabla} \times \hat{\varphi}_k d\hat{x}$$

Matrices élémentaires

Matrice élémentaire de masse :

$$(M_h)_{i,j} = \int_{\hat{K}} J_i DF_i^{-1} \varepsilon DF_i^{*-1} \hat{\varphi}_i \cdot \hat{\varphi}_k d\hat{x}$$

Matrice élémentaire de rigidité :

$$(K_h)_{i,j} = \int_{\hat{K}} \frac{1}{J_i} DF_i^t \mu^{-1} DF_i \hat{\nabla} \times \hat{\varphi}_i \cdot \hat{\nabla} \times \hat{\varphi}_k d\hat{x}$$

• points d'intégration de Gauss-Lobatto (ω_k^{GL} , ξ_k^{GL})

Matrices élémentaires

Matrice élémentaire de masse :

$$(M_h)_{i,j} = \int_{\hat{K}} J_i DF_i^{-1} \varepsilon DF_i^{*-1} \hat{\varphi}_i \cdot \hat{\varphi}_k d\hat{x}$$

Matrice élémentaire de rigidité :

$$(K_h)_{i,j} = \int_{\hat{K}} \frac{1}{J_i} DF_i^t \mu^{-1} DF_i \hat{\nabla} \times \hat{\varphi}_i \cdot \hat{\nabla} \times \hat{\varphi}_k d\hat{x}$$

- points d'intégration de Gauss-Lobatto (ω_k^{GL} , ξ_k^{GL})
- Matrices bloc-diagonales

$$(A_h)_{k,k} = \left[J_i DF_i^{-1} \varepsilon DF_i^{*-1}\right] (\xi_k^{GL}) \omega_k^{GL}$$
$$(B_h)_{k,k} = \left[\frac{1}{J_i} DF_i^t \ \mu^{-1} DF_i\right] (\xi_k^{GL}) \omega_k^{GL}$$

Introduisons les matrices suivantes indépendantes de la géométrie :

$$\hat{C}_{i,j} = \hat{\varphi}_i(\xi_j^{GL}) \qquad \hat{R}_{i,j} = \hat{\nabla} \times \hat{\varphi}_i^{GL}(\xi_j^{GL})$$

Introduisons les matrices suivantes indépendantes de la géométrie :

$$\hat{C}_{i,j} = \hat{\varphi}_i(\xi_j^{GL}) \qquad \hat{R}_{i,j} = \hat{\nabla} \times \hat{\varphi}_i^{GL}(\xi_j^{GL})$$

Alors, nous avons : $M_h = \hat{C} A_h \hat{C}^* \qquad K_h = \hat{C} \hat{R} B_h \hat{R}^* \hat{C}^*$

Introduisons les matrices suivantes indépendantes de la géométrie :

$$\hat{C}_{i,j} = \hat{\varphi}_i(\xi_j^{GL}) \qquad \hat{R}_{i,j} = \hat{\nabla} \times \hat{\varphi}_i^{GL}(\xi_j^{GL})$$

Alors, nous avons : $M_h = \hat{C} A_h \hat{C}^*$ $K_h = \hat{C} \hat{R} B_h \hat{R}^* \hat{C}^*$

- Complexité de $\hat{C} U$: $6 (r+1)^4$ opérations en 3-D
- Complexité de $\hat{R} U$: $12 (r+1)^4$ opérations en 3-D
- Complexité de $A_h U + B_h U$: $30 (r+1)^3$ opérations Complexité d'un produit matrice-vecteur standard : $18r^3 (r+1)^3$

Introduisons les matrices suivantes indépendantes de la géométrie :

$$\hat{C}_{i,j} = \hat{\varphi}_i(\xi_j^{GL}) \qquad \hat{R}_{i,j} = \hat{\nabla} \times \hat{\varphi}_i^{GL}(\xi_j^{GL})$$

Alors, nous avons : $M_h = \hat{C} A_h \hat{C}^*$ $K_h = \hat{C} \hat{R} B_h \hat{R}^* \hat{C}^*$

- Complexité de $\hat{C} U$: $6 (r+1)^4$ opérations en 3-D
- Complexité de $\hat{R} U$: $12 (r+1)^4$ opérations en 3-D
- Complexité de $A_h U + B_h U$: $30 (r+1)^3$ opérations Complexité d'un produit matrice-vecteur standard : $18r^3 (r+1)^3$
- Produit matrice-vecteur 67% plus lent avec une intégration exacte (ou avec des points d'interpolation quelconques)

Maillage utilisé pour les simulations (Q_5)

- Intégration avec r points de Gauss pour la rigidité génère des parasites
- Intégration avec r + 1 points de Gauss-Lobatto est libre de parasites

Convergence de la méthode

Diffraction par une sphère parfaitement conductrice $E \times n = 0$

Convergence de la méthode

Convergence de la première famille de Nédélec sur des maillages réguliers

• Convergence optimale $O(h^r)$ en norme H(rot, Ω)

Convergence de la méthode

Convergence sur des maillages tétraédriques découpés en hexaèdres

• Perte d'un ordre, convergence $O(h^{r-1})$ en norme H(rot, Ω)

Le produit matrice-vecteur est-il rapide ?

Comparaison entre une formulation standard et la factorisation discrète

Order	1	2	3	4	5
Temps, formulation standard	55s	127s	224s	380s	631
Temps, factorisation discrète	244s	128s	106s	97s	96s
Stockage, formulation standard	18 Mo	50 Mo	105 Mo	187 Mo	308 Mo
Storage, factorisation discrète	23 Mo	9.9 Mo	6.9 Mo	5.7 Mo	5.0 Mo

Le produit matrice-vecteur est-il rapide ?

Comparaison entre éléments tétraédriques et hexaédriques

A gauche, temps de calcul pour 1000 itérations de COCG A droite, stockage pour le maillage et les matrices

Vecteurs propres pour le domaine en L

- Les cinq premiers modes de la géométrie en L
- Premier mode le plus singulier

Modes parasites pour les éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique - p.10/3

Vecteurs propres pour le domaine en L

A gauche, erreur effectuée sur la première valeur propre. A droite, erreur effectuée sur le premier vecteur propre.

- Les maillages utilisés sont des triangles découpés.
- Convergence en O(h^{1.33}) pour les valeurs propres, en O(h) pour les vecteurs propres

Vecteurs propres pour le coin Fichera

- Les huit premiers modes de la géométrie en L
- Premier mode le plus singulier

Vecteurs propres pour le coin Fichera

- Les huit premiers modes de la géométrie en L
- Premier mode le plus singulier

Vecteurs propres pour le coin Fichera

A gauche, erreur effectuée sur la première valeur propre. A droite, erreur effectuée sur le premier vecteur propre.

- Les maillages utilisés sont des hexaèdres réguliers.
- Convergence en O(h^{1.33}) pour les valeurs propres, en O(h) pour les vecteurs propres.

Hexaèdres de la première famille de Nédelec

Éléments finis de la seconde famille

Méthode de Galerkin discontinue

Benchmark et comparaison entre les méthodes

Seconde famille de Nédélec

Espace d'approximation

 $V_h = \{ \vec{u} \in \mathsf{H}(\mathsf{curl},\Omega) \text{ tel que } DF_i^* \vec{u} \circ F_i \in (Q_r)^2 \}$

Seconde famille de Nédélec

Espace d'approximation

 $V_h = \{ \vec{u} \in \mathsf{H}(\mathsf{curl},\Omega) \text{ tel que } DF_i^* \vec{u} \circ F_i \in (Q_r)^2 \}$

Seconde famille de Nédélec

Espace d'approximation

 $V_h = \{ \vec{u} \in \mathsf{H}(\mathsf{curl},\Omega) \text{ tel que } DF_i^* \vec{u} \circ F_i \in (Q_r)^2 \}$

- Condensation de masse et factorisation de la matrice de rigidité
- Faible stockage et produit matrice-vecteur rapide
Parasitage de la solution

Diffraction par un carré diélectrique. A gauche, maillage utilisé pour les simulations . A droite, solution numérique avec des éléments finis d'arête Q_5 avec condensation de masse.

Maillage utilisé pour les simulations (Q_5)

$\omega^2 = 32.08$ $\omega^2 = 32.08$ $\omega^2 = 37.54$ $\omega^2 = 37.95$

 $\omega^2 = 32.08$ $\omega^2 = 32.08$ $\omega^2 = 37.54$ $\omega^2 = 37.95$

 $\omega^2 = 37.98$ $\omega^2 = 38.00$ $\omega^2 = 38.03$ $\omega^2 = 38.03$

 $\omega^2 = 37.98$ $\omega^2 = 38.00$ $\omega^2 = 38.03$ $\omega^2 = 38.03$

 $\omega^2 = 38.04$ $\omega^2 = 38.05$ $\omega^2 = 38.07$ $\omega^2 = 38.20$

 $\omega^2 = 38.04$ $\omega^2 = 38.05$ $\omega^2 = 38.07$ $\omega^2 = 38.20$

 $\omega^2 = 39.48$ $\omega^2 = 39.48$ $\omega^2 = 41.95$ $\omega^2 = 41.95$

Maillage utilisé pour les simulations (Q₃)

Modes parasites pour les éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique - p.16/3

Modes parasites pour les éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique - p.16/3

Deux types de pénalisation

Formulation mixte des équations de Maxwell

$$-\omega \int_{\Omega} \mathbf{E} \cdot \varphi + \int_{\Omega} \mathbf{H} \cdot \operatorname{rot}(\varphi) - i\alpha \sum_{e \text{ face}} \int_{\Gamma_{e}} [\mathbf{E} \cdot n] [\varphi \cdot n] = \int_{\Omega} f \cdot \varphi$$
$$-\omega \int_{\Omega} \mathbf{H} \cdot \varphi + \int_{\Omega} \operatorname{rot}(\mathbf{E}) \cdot \varphi - i\delta \sum_{e \text{ face}} \int_{\Gamma_{e}} [\mathbf{H} \times n] \cdot [\varphi \times n] = 0$$

Espace d'approximation pour H $W_h = \{ \vec{u} \in L^2(\Omega) \text{ tel que } DF_i^* \vec{u} \circ F_i \in (Q_r)^3 \}$

Deux types de pénalisation

Formulation mixte des équations de Maxwell

$$-\omega \int_{\Omega} \mathbf{E} \cdot \varphi + \int_{\Omega} \mathbf{H} \cdot \operatorname{rot}(\varphi) - i\alpha \sum_{e \text{ face}} \int_{\Gamma_{e}} [\mathbf{E} \cdot n] [\varphi \cdot n] = \int_{\Omega} f \cdot \varphi$$
$$-\omega \int_{\Omega} \mathbf{H} \cdot \varphi + \int_{\Omega} \operatorname{rot}(\mathbf{E}) \cdot \varphi - i\delta \sum_{e \text{ face}} \int_{\Gamma_{e}} [\mathbf{H} \times n] \cdot [\varphi \times n] = 0$$

Espace d'approximation pour H $W_h = \{ \vec{u} \in L^2(\Omega) \text{ tel que } DF_i^* \vec{u} \circ F_i \in (Q_r)^3 \}$

- Equivalence avec la formulation d'ordre 2 ($\alpha = \delta = 0$)
- Termes de pénalisation dissipatifs en régime temporel
- Pénalisation en α ne nécessite pas de formulation mixte

Effets de la pénalisation

- Cas du cubé maillé en tétraèdres découpés
- A gauche $\alpha = 0.1$, a droite $\alpha = 0.5$

Effets de la pénalisation

- Cas du coin Fichera maillé en tétraèdres découpés
- A gauche $\alpha = 0.5$, a droite $\delta = 0.5$

Effets de la pénalisation

- Cas du domaine en L, maillé en triangles découpés
- A gauche $\alpha = 0.5$, a droite $\delta = 0.5$
- Pénalisations efficaces dans le cas de domaines réguliers
- Delta-pénalisation plus robuste pour les domaines singuliers

Hexaèdres de la première famille de Nédelec

Éléments finis de la seconde famille

Méthode de Galerkin discontinue

Benchmark et comparaison entre les méthodes

Méthode de Galerkin discontinue

$$-\omega \int_{K_i} \varepsilon \vec{E} \cdot \vec{\varphi} - \int_{K_i} H \nabla \times \vec{\varphi} - \int_{\partial K_i} \{H\} \vec{\varphi} \times n = 0$$
$$-\omega \int_{K_i} \mu H \psi - \int_{K_i} \nabla \times \vec{E} \psi - \frac{1}{2} \int_{\partial K_i} [\vec{E}] \times n \psi = 0$$

Avec les notations :

$$\{H\} = \frac{1}{2}(H_i + H_j)$$
(1)
$$[\vec{E}] = (\vec{E}_i - \vec{E}_j)$$

Méthode de Galerkin discontinue

$$-\omega \int_{K_i} \varepsilon \vec{E} \cdot \vec{\varphi} - \int_{K_i} H \nabla \times \vec{\varphi} - \int_{\partial K_i} \{H\} \vec{\varphi} \times n = 0$$
$$-\omega \int_{K_i} \mu H \psi - \int_{K_i} \nabla \times \vec{E} \psi - \frac{1}{2} \int_{\partial K_i} [\vec{E}] \times n \psi = 0$$

- Inconnues dans $L^2 \Rightarrow$ on peut utiliser les points de Gauss
- Condensation de masse et produit matrice-vecteur rapide
- Thèse de S. Pernet dans le domaine temporel

Maillage utilisé pour les simulations (Q_5)

$\omega^2 = 26.92$ $\omega^2 = 32.08$ $\omega^2 = 32.08$ $\omega^2 = 39.48$

 $\omega^2 = 26.92$ $\omega^2 = 32.08$ $\omega^2 = 32.08$ $\omega^2 = 39.48$

 $\omega^2 = 39.48$ $\omega^2 = 41.95$ $\omega^2 = 41.95$

Modes parasites pour les éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique - p.23/33

- nombre "constant" de modes parasites en maillages réguliers
- nombre "décroissant" de modes parasites en maillages non-structurés

Maillage utilisé pour les simulations (Q₄)

 Nombre croissant de modes parasites en maillage non-structuré

A la première équation en E, on ajoute :

$$-i\omega \, \alpha \int_{\partial K_i} \left[\mathbf{E} \times \mathbf{n} \right] \cdot \boldsymbol{\varphi} \times \mathbf{n} \, dx$$

Nous prenons $\alpha = 0.5$

Valeurs propres si pas de pénalisation $\alpha = 0$ Les points bleus sont les valeurs propres numériques, les lignes rouges les valeurs propres analytiques.

Valeurs propres avec pénalisation $\alpha = 0.5$ Les points bleus sont les valeurs propres numériques, les points rouges les valeurs propres analytiques.

- Les termes de pénalisation rejettent presque tous les modes parasites
- Persistance des modes parasites proches de 0

Conséquence sur un problème source

A gauche, solution numérique pour $\alpha = 0$, a droite $\alpha = 0.5$ (Q4)

Modes parasites pour les éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique - p.26/33

Conséquence sur un problème source

- Solution correcte sur maillages non-structurés
- Incidence faible sur le coût du produit matrice-vecteur

Cas des domaines singuliers

Valeurs propres numériques pour DG pénalisé. Cas du coin Fichera sur un maillage tétraédrique découpé.

- Bonne approximation des valeurs propres singulières
- Pas de nécessité de pénaliser en 2-D

Hexaèdres de la première famille de Nédelec

Éléments finis de la seconde famille

Méthode de Galerkin discontinue

Benchmark et comparaison entre les méthodes

Benchmark pour le domaine en L

1.47562182397e+00 3.53403136678e+00 9.86960440109e+00 9.86960440109e+00 1.13894793979e+01

Cinq premières valeurs propres de référence calculées sur un maillage Q7 localement raffiné. On espère que tous les chiffres sont corrects.
Benchmark pour le domaine en L

Calcul des valeurs propres pour les différentes méthodes sur ces deux maillages localement raffinés.

First family	Second Family	α LDG Lobatto	δ Second Family	Weighted Reg
2480 DOF	2976 DOF	3456 DOF	2976 DOF	3162 DOF
4.59e-6	4.59e-6	2.57e-6	4.26e-6	3.69e-4
8.65e-8	8.65e-8	3.80e-9	7.16e-8	2.03e-8
1.46e-6	1.46e-6	1.85e-6	7.14e-7	9.05e-9
1.46e-6	1.46e-6	1.85e-6	7.14e-7	1.08e-9
1.23e-6	1.23e-6	1.62e-6	1.05e-6	1.40e-5

Erreurs relatives commises sur les cinq premières valeurs propres. Utilisation

de Q_5 sur maillage régulier.

First family	Second Family	α LDG Lobatto	Penalized Second Family
1.07e-3	1.07e-3	2.31e-3	1.67e-3
3.49e-4	3.49e-4	1.90e-4	2.32e-4
2.41e-4	Spurious	5.02e-4	Spurious
2.41e-4	Spurious	5.02e-4	Spurious
5.29e-4	5.29e-4	5.00e-4	9.89e-4

Erreurs L^2 commises sur les cinq premiers vecteurs propres. Utilisation de Q_5

sur maillage régulier.

First family	Second Family	α LDG Lobatto	Penalized Second Family
3370 DOF	4044 DOF	4752 DOF	4044 DOF
4.00e-5	4.01e-5	2.20e-5	3.83e-5
2.44e-7	7.06e-6	2.73e-8	2.42e-7
7.79e-10	1.73e-8	4.85e-9	7.18e-9
3.03e-9	7.84e-8	2.53e-9	5.26e-9
1.00e-7	2.38e-7	2.97e-10	1.10e-7

Erreurs relatives commises sur les cinq premières valeurs propres. Utilisation

de Q_5 sur maillage non-structuré.

First family	Second Family	α LDG Lobatto	Penalized Second Family
7.35e-3	7.22e-3	2.55e-3	7.56e-3
4.92e-4	2.42e-1	3.09e-4	4.97e-4
1.70e-4	4.02e-3	6.95e-5	5.59e-4
2.11e-4	1.53e-2	1.06e-4	1.88e-4
3.29e-4	1.80e-3	1.97e-4	3.56e-4

Erreurs L^2 commises sur les cinq premiers vecteurs propres. Utilisation de Q_5

sur maillage non-structuré.

Benchmark pour le coin Fichera

Eigenvalues	Number of hopefully reliable digits
3.21987401386e+00	4
5.88041891178e+00	6
5.88041891780e+00	6
1.06854921311e+01	4
1.06937829409e+01	5
1.06937829737e+01	5
1.23165204656e+01	6
1.23165204669e+01	6

Huit premières valeurs propres de référence calculées sur un maillage Q5 localement raffiné (177 720 ddl).

Benchmark pour le coin Fichera

Calcul des valeurs propres pour les différentes méthodes sur ces deux maillages localement raffinés.

irst family	Second Family	α LDG Lobatto	δ Second Family	Weighted Re
816 DOF	49 770 DOF	36 288 DOF (Q3)	49 770 DOF	41 691 D0
1.51e-4	1.51e-4	6.96e-3	2.32e-4	2.92e-2
5.36e-6	5.36e-6	5.01e-4	1.70e-5	1.01e-3
5.35e-6	5.35e-6	5.01e-4	1.29e-5	1.01e-3
2.56e-5	2.56e-5	2.52e-3	5.96e-5	8.44e-4
5.83e-5	5.83e-5	9.38e-4	2.94e-5	6.84e-5
5.83e-5	5.83e-5	9.38e-4	4.48e-5	6.36e-4
6.08e-5	6.08e-5	3.91e-3	9.76e-5	1.46e-3
6.08e-5	6.08e-5	3.91e-3	8.02e-5	1.46e-3

Erreurs relatives commises sur les huit premières valeurs propres. Utilisation

de Q_4 sur maillage régulier.

First family	Second Family	α LDG Lobatto	Penalized Second Family
5.35e-3	5.35e-3	2.74e-2	5.26e-3
1.03e-3	1.03e-3	6.22e-3	1.05e-3
1.03e-3	1.03e-3	6.22e-3	1.05e-3
4.41e-3	4.41e-3	2.75e-2	2.86e-2
9.79e-4	9.79e-4	1.55e-2	3.39e-2
9.79e-4	9.79e-4	1.55e-2	3.39e-2
3.61e-3	3.61e-3	3.88e-2	3.48e-3
3.61e-3	3.61e-3	3.88e-2	3.48e-3

Erreurs L^2 commises sur les huit premiers vecteurs propres. Utilisation de Q_5

sur maillage régulier.

First family	Second Family	α LDG Lobatto
44 335 DOF	53 202 DOF	42 000 DOF (Q4)
1.74e-3	1.80e-3	4.10e-2
9.35e-5	7.77e-5	2.37e-3
9.47e-5	8.10e-5	1.65e-3
6.14e-4	5.44e-4	7.05e-3
7.60e-4	2.32e-4	1.23e-3
7.92e-4	7.26e-4	1.11e-3
7.58e-5	3.93e-5	7.51e-3
7.71e-5	4.37e-5	7.78e-3

Erreurs relatives commises sur les huit premières valeurs propres. Utilisation

de Q_5 sur maillage non-structuré.

First family	Second Family	α LDG Lobatto
2.41e-2	2.40e-2	3.10e-1
6.91e-3	6.96e-3	7.53e-2
6.91e-3	6.96e-3	7.53e-2
2.54e-2	2.79e-2	1.33e-1
2.77e-2	3.03e-2	5.24e-2
2.77e-2	3.03e-2	5.24e-2
2.08e-2	1.84e-2	1.49e-1
2.08e-2	1.84e-2	1.49e-1

Erreurs L^2 commises sur les huit premiers vecteurs propres. Utilisation de Q_5

sur maillage non-structuré.

- Première famille la plus robuste vis-à-vis des modes parasites
- En régime harmonique, choix de la première famille
 - Première famille plus facile à préconditionner
 - Première famille nécessite moins de ddl que les deux autres méthodes
- En régime temporel, choix de DG
 - Condensation de masse pour la seconde famille et DG
 - Flexibilité plus grande de DG