High Order Edge Finite Element Method for Vlasov-Maxwell Equation on Hexahedral Meshes

Marc Duruflé

22 June 2009

Marc Duruflé ()

Edge Finite Elements for Vlasov

22 June 2009 1 / 16

G. Cohen, M. Duruflé Non Spurious Spectral-Like Element Methods for Maxwell's Equations

C.K. Birdsall, A.B. Langdon
 Plasma Physics via Computer Simulation

• G. B. Jacobs, J. S. Hesthaven

High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids

 Use of finite difference code : QuickSilver developed in Sandia Labs

A (1) > A (1) > A

Vlasov-Maxwell equations

Maxwell system

$$\varepsilon \frac{\partial E}{\partial t}(x,t) - \operatorname{curl} H(x,t) = -J(x,t)$$
$$\mu \frac{\partial H}{\partial t}(x,t) + \operatorname{curl} E(x,t) = 0$$

Relativistic motion of particles

$$\frac{\mathrm{d}\mathbf{x}_{k}}{\mathrm{d}t}(t) = \mathbf{v}_{k}(t)$$

$$\frac{\mathrm{d}\mathbf{p}_{k}}{\mathrm{d}t}(t) = \frac{q}{m}(\mathbf{E}(\mathbf{x}_{k}(t), t) + \mu\mathbf{v}_{k}(t) \times \mathbf{H}(\mathbf{x}_{k}(t), t))$$

Relation between current J and particles

$$J(x,t) = \sum_{k} \omega_{k} q_{k} \mathbf{v}_{k}(t) S(x - \mathbf{x}_{k}(t))$$

э

Radial distribution function with influence radius R

$$S(x-x_k) = \hat{S}(|x-x_k|) = \beta(1-(\frac{r}{R})^2)^{\alpha}$$

< (□) < □ >

Finite element variational formulation

Mesh including hexahedra/quadrilaterals

$$\Omega = \bigcup_{e} K_{e}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Edge finite elements :

$$V_{E} = \{ u \in H(\operatorname{curl}, \Omega) \text{ so that } DF_{e}^{*} u \in Q_{r}^{d} \}$$

$$V_{H} = \{ u \in L^{2}(\Omega) \text{ so that } u \in Q_{r}^{d} \}$$

$$\frac{\partial}{\partial t} \int_{\Omega} \varepsilon \mathbf{E} \cdot \varphi - \int_{\Omega} \mathbf{H} \cdot \nabla \times \varphi + \gamma \sum_{e} \int_{\Sigma_{e}} [\mathbf{E} \cdot \mathbf{n}] [\varphi \cdot \mathbf{n}] = -\int_{\Omega} \mathbf{J} \cdot \varphi$$

$$\frac{\partial}{\partial t} \int_{\Omega} \mu \mathbf{H} \cdot \psi + \int_{\Omega} \nabla \times \mathbf{E} \cdot \psi + \delta \sum_{e} \int_{\Sigma_{e}} [\mathbf{H} \times \mathbf{n}] [\varphi \times \mathbf{n}] = 0$$

< ロ > < 四 > < 回 > < 回 > < 回 >

Finite element variational formulation

$$B_h \frac{dE}{dt} - R_h H + S_h^1 E = C_h V$$

$$D_h \frac{dH}{dt} + R_h^* E + S_h^2 H = 0$$

- Mass lumping : $\Rightarrow B_h, D_h, S_h^1, S_h^2$ block-diagonal
- Tensorial basis functions : efficient matrix-vector product with R_h
- Coupling term C_h strategic to have an efficient method

▲ 同 ▶ ▲ 三 ▶

Coupling strategy with particles

$$\frac{\mathrm{d}\mathbf{x}_{k}}{\mathrm{d}t}(t) = \mathbf{v}_{k}(t)$$

$$\frac{\mathrm{d}\mathbf{p}_{k}}{\mathrm{d}t}(t) = \frac{q_{k}}{m_{k}}(\mathbf{E}_{k} + \mu(\mathbf{x}_{k}(t))\mathbf{v}_{k}(t) \times \mathbf{H}_{k})$$

Mean values of E and H

Linear system :

$$E_{k} = \int_{\Omega} E(x) S_{k}(x)$$
$$H_{k} = \int_{\Omega} H(x) S_{k}(x)$$
$$\frac{dX}{dt} = V$$
$$\frac{d\tilde{P}}{dt} = C_{h}^{*}E + bv(V, H)$$

э

A (1) > A (1) > A

Coupling strategy with particles

Mean values of E and H

$$E_{k} = \int_{\Omega} E(x) S_{k}(x)$$
$$H_{k} = \int_{\Omega} H(x) S_{k}(x)$$

Linear system :

$$\frac{\mathrm{d}\boldsymbol{X}}{\mathrm{d}t} = \boldsymbol{V}$$
$$\frac{\mathrm{d}\tilde{\boldsymbol{P}}}{\mathrm{d}t} = \boldsymbol{C}_{h}^{*}\boldsymbol{E} + \boldsymbol{b}\boldsymbol{v}(\boldsymbol{V},\boldsymbol{H})$$

Presence of $C_h^* \Rightarrow$ conservation of a discrete energy :

$$\frac{1}{2}B_{h}\boldsymbol{E}\cdot\boldsymbol{E}+\frac{1}{2}D_{h}\boldsymbol{H}\cdot\boldsymbol{H}+\sum_{k}\omega_{k}m_{k}c_{0}^{2}(\gamma_{k}-1)=\text{Constant}$$

Coupling strategy with particles by using interpolation

Instead of a direct integration, we use interpolation first :

$$J(x) = \sum J_i \psi_i(x)$$

where J_i the value of J on interpolation point ζ_i :

$$J_i = \sum_k \omega_k \, q_k \, \mathbf{v}_k \, \mathbf{S}(\zeta_i - \mathbf{x}_k)$$

Mean values of *E* and *H* with the interpolate of S_k instead of S_k

$$E_{k} = \int_{\Omega} E(x) \Pi S_{k}(x)$$
$$H_{k} = \int_{\Omega} H(x) \Pi S_{k}(x)$$

Linear system :

$$\frac{\mathrm{d}X}{\mathrm{d}t} = V$$

$$\frac{\mathrm{d}\tilde{P}}{\mathrm{d}t} = C_h^* E + bv(V, H)_{\text{constant}}$$

Coupling strategy with particles by using interpolation

Mean values of *E* and *H* with the interpolate of S_k instead of S_k

$$E_{k} = \int_{\Omega} E(x) \Pi S_{k}(x)$$
$$H_{k} = \int_{\Omega} H(x) \Pi S_{k}(x)$$

Linear system :

$$\frac{\mathrm{d}X}{\mathrm{d}t} = V$$
$$\frac{\mathrm{d}\tilde{P}}{\mathrm{d}t} = C_h^* E + bv(V, H)$$

- Presence of $C_h^* \Rightarrow$ conservation of a discrete energy
- Less interpolation points needed (than quadrature points), more flexible

$$B_{h} \frac{E^{n+1} - E^{n}}{\Delta t} = R_{h} H^{n+1/2} + C_{h} V^{n+1/2}$$

$$D_{h} \frac{H^{n+3/2} - H^{n+1/2}}{\Delta t} = -R_{h}^{*} E^{n+1}$$

$$\frac{X^{n+1} - X^{n}}{\Delta t} = V^{n+1/2}$$

$$\frac{\tilde{P}^{n+3/2} - \tilde{P}^{n+1/2}}{\Delta t} = -C_{h}^{*} E^{n+1} + bv(\frac{V^{n+3/2} + V^{n+1/2}}{2}, \bar{H}^{n+1})$$

(日) (四) (日) (日) (日)

$$\mathsf{CFL}_{\mathsf{Maxwell}} = \mathsf{max}|\lambda(D_h^{-1/2} R_h^* B_h^{-1/2})|$$

⇒ Maxwell CFL is the most restrictive except for high density plasmas Low-storage Runge-Kutta about four times more expensive and $\frac{CFL_{RK}}{CFL_{LF}} = 1.68$ Evolution of energy for a highly dense plasma

Evolution of CFL according to plasma density

< 同 > < ∃ >

Computation of C_h

matrix vector-product $C_h V$:

Computation of

$$S_{k,m} = \hat{S}(|\zeta_m - x_k|)$$

for each interpolation point ζ_m so that

$$|\zeta_m - x_k| \leq R$$

• Computation of current *J* on interpolation points ζ_m :

$$J_m = \sum_k q_k \, \omega_k \, \mathbf{v}_k \, \mathbf{S}_{k,m}$$

Integration against basis functions

$$(C_h V)_i = \sum_m \int_{\Omega} \psi_m J_m \cdot \varphi_i$$

Complexity of C_h

Use of a regular grid to localize both interpolation points and particles

- ⇒ no need to localize particles in the elements (need of the inverse of *F_i*)
- Easy to detect when the particle is completely outside the mesh (useful to eliminate particles)
- Cost of C_h in $N_{part}k + 2r^4N_{elt}$ in 3-D (r : order of approximation)

• Boris correction \Rightarrow resolution of a Poisson equation

$$\Delta \phi = \rho - \operatorname{div}(\varepsilon \boldsymbol{E})$$

Hyperbolic correction

$$\varepsilon \frac{\partial E}{\partial t} - \nabla \times H + \nabla \phi = -J$$

$$\mu \frac{\partial H}{\partial t} + \nabla \times E = 0$$

$$\frac{1}{\chi^2 c_0^2} \frac{\partial \phi}{\partial t} = \rho - \operatorname{div}(\varepsilon E)$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Charge conservation

22 June 2009 11 / 16

æ

<.≣

Charge conservation

22 June 2009 11 / 16

æ

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Destruction/Creation of particles

- For beams, particles created with a negative shift compared to the emitting surface, in order to have null intersection
- When $|\mathbf{E} \cdot \mathbf{n}| > E_{breakdown}$, creation of np particules with

$$np \, q_0 \, \omega_k \, = \, \int_{\Gamma} \, \boldsymbol{E} \cdot \boldsymbol{n}$$

Particles created with a small random heigh and a small random initial velocity \Rightarrow Boris Correction in this case

• Destruction of particles when the influence area does not intersect with the mesh

\Rightarrow No correction for the destruction

Destruction/Creation of particles

- For beams, particles created with a negative shift compared to the emitting surface, in order to have null intersection
- When $|\mathbf{E} \cdot \mathbf{n}| > E_{breakdown}$, creation of np particules with

$$np \, q_0 \, \omega_k \, = \, \int_{\Gamma} \, \boldsymbol{E} \cdot \boldsymbol{n}$$

Particles created with a small random heigh and a small random initial velocity \Rightarrow Boris Correction in this case

 Destruction of particles when the influence area does not intersect with the mesh

\Rightarrow No correction for the destruction

Marc Duruflé ()

Edge Finite Elements for Vlasov

Beam with a small current Beam with current J = 1, and velocity 1e8

Field E_x for t = 4e - 9, t = 8e - 9 and t = 12e - 9

< 同 > < 三 > < 三 >

Beam with a high current

Beam with current J = 3e3, and velocity 1e8

Field E_x for t = 4e - 9, t = 8e - 9 and field E_y for t = 8e - 9

Marc Duruflé ()

Edge Finite Elements for Vlasov

22 June 2009 13 / 16

A (10) > A (10) > A (10)

Motion of particles in a 2-D experiment

<ロ> <問> <問> < 同> < 同> < 同> 、

L2 Error versus influence radius R

Marc Duruflé ()

22 June 2009 13 / 16

A ►

Magnetic Insulated Transmission Line

On top, finite difference solution; on bottom, finite element solution

< (□) < ∃ >

Magnetic Insulated Transmission Line

Alternative approach : replace perfect conductor boundary by a plasma

< (□) < □ >

Magnetic Insulated Transmission Line

Particles trapped by staircase finite difference

▲ @ ▶ ▲ 臣 ▶ ▲ 臣

Cold plasma in the box $[0.4, 0.6] \times [0, 0.2]$, with density 10^{17}

-

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cold plasma in the box $[0.4, 0.6] \times [0, 0.2]$, with density 10^{17}

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Plasma Opening Switch

Cold plasma in the box $[0.4, 0.6] \times [0, 0.2]$, density 10^{21}

Marc Duruflé ()

22 June 2009 15 / 16

< E

< A > < > > <

Plasma Opening Switch

Cold plasma in the box $[0.4, 0.6] \times [0, 0.2]$, density 10^{21}

- Particle in cell method using efficient high order finite element for the solution of Maxwell equations
- Almost constant cost when order is increased, because of the use of hexahedral finite element
- No conservation charge technique needed if no particle is created inside the domain
- Energy conservation with proposed scheme, no grid heating