Efficient resolution of time-harmonic Maxwell equations with high-order edge finite elements

M. Durufle, G Cohen
INRIA, project POEMS

23rd july 2007

Bibliography and motivation

- Cohen, Monk, mass lumping for Maxwell's equations (hexahedra)
- S. Fauqueux, mixed spectral elements for wave and elastic equations (hexahedra)
- S. Pernet, Discontinuous Galerkin methods for Maxwell's equations (hexahedra)
- M. Durufle, Numerical integration and high order finite element method applied to time-harmonic Maxwell equations
- Apply techniques of "mass lumping" and "mixed formulation", which are efficient in temporal domain
- Efficient preconditioning technique to solve linear system

Nedelec's first family on hexahedra

Space of approximation

$$
V_{h}=\left\{\vec{u} \in \mathrm{H}(\operatorname{curl}, \Omega) \text { so that } D F_{i}^{t} \vec{u} \circ F_{i} \in Q_{r-1, r, r} \times Q_{r, r-1, r} \times Q_{r, r, r-1}\right\}
$$

Nedelec's first family on hexahedra

Space of approximation

$$
V_{h}=\left\{\vec{u} \in \mathrm{H}(\operatorname{curl}, \Omega) \text { so that } D F_{i}^{t} \vec{u} \circ F_{i} \in Q_{r-1, r, r} \times Q_{r, r-1, r} \times Q_{r, r, r-1}\right\}
$$

Basis functions

$$
\begin{aligned}
& \overrightarrow{\hat{\varphi}}_{i, j, k}^{1}(\hat{x}, \hat{y}, \hat{z})=\hat{\psi}_{i}^{G}(\hat{x}) \hat{\psi}_{j}^{G L}(\hat{y}) \hat{\psi}_{k}^{G L}(\hat{z}){\overrightarrow{e_{x}}} \quad 1 \leq i \leq r \quad 1 \leq j, k \leq r+1 \\
& \overrightarrow{\hat{\varphi}}_{j, i, k}^{2}(\hat{x}, \hat{y}, \hat{z})=\hat{\psi}_{j}^{G L}(\hat{x}) \hat{\psi}_{i}^{G}(\hat{y}) \hat{\psi}_{k}^{G L}(\hat{z}) \overrightarrow{e_{y}} \quad 1 \leq i \leq r \quad 1 \leq j, k \leq r+1 \\
& \overrightarrow{\hat{\varphi}}_{k, j, i}^{3}(\hat{x}, \hat{y}, \hat{z})=\hat{\psi}_{k}^{G L}(\hat{x}) \hat{\psi}_{j}^{G L}(\hat{y}) \hat{\psi}_{i}^{G}(\hat{x}) \overrightarrow{e_{z}} \quad 1 \leq i \leq r \quad 1 \leq j, k \leq r+1
\end{aligned}
$$

ψ_{i}, l_{i} lagragian functions linked respectively with Gauss points and

Nedelec's first family on hexahedra

Space of approximation

$$
V_{h}=\left\{\vec{u} \in \mathrm{H}(\mathrm{curl}, \Omega) \text { so that } D F_{i}^{t} \vec{u} \circ F_{i} \in Q_{r-1, r, r} \times Q_{r, r-1, r} \times Q_{r, r, r-1}\right\}
$$

Basis functions

$$
\begin{aligned}
& \overrightarrow{\hat{\varphi}}_{i, j, k}^{1}(\hat{x}, \hat{y}, \hat{z})=\hat{\psi}_{i}^{G}(\hat{x}) \hat{\psi}_{j}^{G L}(\hat{y}) \hat{\psi}_{k}^{G L}(\hat{z}){\overrightarrow{e_{x}}} \quad 1 \leq i \leq r \quad 1 \leq j, k \leq r+1 \\
& \overrightarrow{\hat{\varphi}}_{j, i, k}^{2}(\hat{x}, \hat{y}, \hat{z})=\hat{\psi}_{j}^{G L}(\hat{x}) \hat{\psi}_{i}^{G}(\hat{y}) \hat{\psi}_{k}^{G L}(\hat{z}) \overrightarrow{e_{y}} \quad 1 \leq i \leq r \quad 1 \leq j, k \leq r+1 \\
& \overrightarrow{\hat{\varphi}}_{k, j, i}^{3}(\hat{x}, \hat{y}, \hat{z})=\hat{\psi}_{k}^{G L}(\hat{x}) \hat{\psi}_{j}^{G L}(\hat{y}) \hat{\psi}_{i}^{G}(\hat{x}) \overrightarrow{e_{z}} \quad 1 \leq i \leq r \quad 1 \leq j, k \leq r+1
\end{aligned}
$$

$\psi_{i}^{G}, \psi_{i}^{G L}$ lagragian functions linked respectively with Gauss points and Gauss-Lobatto points.
See. G. Cohen, P. Monk, Gauss points mass lumping

Elementary matrices

Mass matrix :

$$
\left(M_{h}\right)_{i, j}=\int_{\hat{K}} J_{i} D F_{i}^{-1} \varepsilon D F_{i}^{*-1} \hat{\varphi}_{i} \cdot \hat{\varphi}_{k} d \hat{x}
$$

Stiffness matrix :

$$
\left(K_{h}\right)_{i, j}=\int_{\hat{K}} \frac{1}{J_{i}} D F_{i}^{t} \mu^{-1} D F_{i} \hat{\nabla} \times \hat{\varphi}_{i} \cdot \hat{\nabla} \times \hat{\varphi}_{k} d \hat{x}
$$

- Block-diagonal matrix

Elementary matrices

Mass matrix :

$$
\left(M_{h}\right)_{i, j}=\int_{\hat{K}} J_{i} D F_{i}^{-1} \varepsilon D F_{i}^{*-1} \hat{\varphi}_{i} \cdot \hat{\varphi}_{k} d \hat{x}
$$

Stiffness matrix :

$$
\left(K_{h}\right)_{i, j}=\int_{\hat{K}} \frac{1}{J_{i}} D F_{i}^{t} \mu^{-1} D F_{i} \hat{\nabla} \times \hat{\varphi}_{i} \cdot \hat{\nabla} \times \hat{\varphi}_{k} d \hat{x}
$$

- Use of Gauss-Lobatto quadrature $\left(\omega_{k}^{G L}, \xi_{k}^{G L}\right)$
- Block-diagonal matrix

Elementary matrices

Mass matrix :

$$
\left(M_{h}\right)_{i, j}=\int_{\hat{K}} J_{i} D F_{i}^{-1} \varepsilon D F_{i}^{*-1} \hat{\varphi}_{i} \cdot \hat{\varphi}_{k} d \hat{x}
$$

Stiffness matrix :

$$
\left(K_{h}\right)_{i, j}=\int_{\hat{K}} \frac{1}{J_{i}} D F_{i}^{t} \mu^{-1} D F_{i} \hat{\nabla} \times \hat{\varphi}_{i} \cdot \hat{\nabla} \times \hat{\varphi}_{k} d \hat{x}
$$

- Use of Gauss-Lobatto quadrature $\left(\omega_{k}^{G L}, \xi_{k}^{G L}\right)$
- Block-diagonal matrix

$$
\left(A_{h}\right)_{k, k}=\left[J_{i} D F_{i}^{-1} \varepsilon D F_{i}^{*-1}\right]\left(\xi_{k}^{G L}\right) \omega_{k}^{G L}
$$

- Block-diagonal matrix

$$
\left(B_{h}\right)_{k, k}=\left[\frac{1}{J_{i}} D F_{i}^{t} \mu^{-1} D F_{i}\right]\left(\xi_{k}^{G L}\right) \omega_{k}^{G L}
$$

Fast matrix vector product

Let us introduce the two following matrices, independant of the geometry :

$$
\hat{C}_{i, j}=\hat{\varphi}_{i}\left(\xi_{j}^{G L}\right) \quad \hat{R}_{i, j}=\hat{\nabla} \times \hat{\varphi}_{i}^{G L}\left(\xi_{j}^{G L}\right)
$$

- Complexity of $\hat{C} U: 6(r+1)^{4}$ operations in 3-D - Comnlexity of $\hat{R} / /: 12(r+1)^{4}$ onerations in 3-n - Complexity of $A_{h} U+B_{h} U: 30(r+1)^{3}$ operations

Fast matrix vector product

Let us introduce the two following matrices, independant of the geometry :

$$
\hat{C}_{i, j}=\hat{\varphi}_{i}\left(\xi_{j}^{G L}\right) \quad \hat{R}_{i, j}=\hat{\nabla} \times \hat{\varphi}_{i}^{G L}\left(\xi_{j}^{G L}\right)
$$

Then, we have : $M_{h}=\hat{C} A_{h} \hat{C}^{*} \quad K_{h}=\hat{C} \hat{R} B_{h} \hat{R}^{*} \hat{C}^{*}$
\square

- Matrix-vector product 67% slower by using exact integration

Fast matrix vector product

Let us introduce the two following matrices, independant of the geometry :

$$
\hat{C}_{i, j}=\hat{\varphi}_{i}\left(\xi_{j}^{G L}\right) \quad \hat{R}_{i, j}=\hat{\nabla} \times \hat{\varphi}_{i}^{G L}\left(\xi_{j}^{G L}\right)
$$

Then, we have: $M_{h}=\hat{C} A_{h} \hat{C}^{*} \quad K_{h}=\hat{C} \hat{R} B_{h} \hat{R}^{*} \hat{C}^{*}$

- Complexity of $\hat{C} U: 6(r+1)^{4}$ operations in 3-D
- Complexity of $\hat{R} U: 12(r+1)^{4}$ operations in 3-D
- Complexity of $A_{h} U+B_{h} U: 30(r+1)^{3}$ operations

Complexity of standard matrix vector product $18 r^{3}(r+1)^{3}$

- Matrix-vector product 67% slower by using exact integration

Fast matrix vector product

Let us introduce the two following matrices, independant of the geometry :

$$
\hat{C}_{i, j}=\hat{\varphi}_{i}\left(\xi_{j}^{G L}\right) \quad \hat{R}_{i, j}=\hat{\nabla} \times \hat{\varphi}_{i}^{G L}\left(\xi_{j}^{G L}\right)
$$

Then, we have : $M_{h}=\hat{C} A_{h} \hat{C}^{*} \quad K_{h}=\hat{C} \hat{R} B_{h} \hat{R}^{*} \hat{C}^{*}$

- Complexity of $\hat{C} U: 6(r+1)^{4}$ operations in 3-D
- Complexity of $\hat{R} U: 12(r+1)^{4}$ operations in 3-D
- Complexity of $A_{h} U+B_{h} U: 30(r+1)^{3}$ operations

Complexity of standard matrix vector product $18 r^{3}(r+1)^{3}$

- Matrix-vector product 67% slower by using exact integration

Spurious free method

Computation of eigenvalues in a cubic cavity, with tetrahedra split in hexahedra

Spurious free method

Computation of eigenvalues in a cubic cavity, with tetrahedra split in hexahedra

Spurious free method

Computation of eigenvalues in a cubic cavity, with tetrahedra split in hexahedra

Numerical eigenvalues if we use Gauss-Lobatto points at right, or Gauss points for the stiffness matrix at left.

- Gauss-Lobatto integration leads to a spurious-free method

Convergence of the method

Scattering by a perfectly conductor sphere $E \times n=0$

Convergence of the method

Convergence of Nedelec's first family on regular meshes

- Optimal convergence $O\left(h^{r}\right)$ in $\mathrm{H}($ curl,$\Omega)$ norm

Convergence of the method

Convergence on tetrahedral meshes split in hexahedra

- Loss of one order, convergence $O\left(h^{r-1}\right)$ in $\mathrm{H}($ curl, $\Omega)$ norm

Is the matrix-vector product fast?

Comparison between standard formulation and discrete factorization

Order	1	2	3	4	5
Time, standard formulation	55 s	127 s	224 s	380 s	631
Time, discrete factorization	244 s	128 s	106 s	97 s	96 s
Storage standard formulation	18 Mo	50 Mo	105 Mo	187 Mo	308 Mo
Storage, discrete factorization	23 Mo	9.9 Mo	6.9 Mo	5.7 Mo	5.0 Mo

Is the matrix-vector product fast?

Comparison between tetrahedral and hexahedral elements

At left, time computation for a thousand iterations of COCG At right, storage for mesh and matrices

Preconditioning used

- Incomplete factorization with threshold on the damped Maxwell equation :

$$
-k^{2}(\alpha+i \beta) \varepsilon E-\nabla \times\left(\frac{1}{\mu} \nabla \times E\right)=0
$$

- ILUT threshold ≥ 0.05 in order to have a low storage

Preconditioning used

- Incomplete factorization with threshold on the damped Maxwell equation :

$$
-k^{2}(\alpha+i \beta) \varepsilon E-\nabla \times\left(\frac{1}{\mu} \nabla \times E\right)=0
$$

- ILUT threshold ≥ 0.05 in order to have a low storage
- Use of a Q_{1} subdivided mesh to compute matrix

Preconditioning used

- Incomplete factorization with threshold on the damped Maxwell equation :

$$
-k^{2}(\alpha+i \beta) \varepsilon E-\nabla \times\left(\frac{1}{\mu} \nabla \times E\right)=0
$$

- Multigrid iteration on the damped Maxwell equation
- Use of the Hiptmair smoother
- Low-storage algorithm even with high order
- Without damping, both preconditioners does not lead to convergence.
- A good choice of parameter is $\alpha=1, \beta=1$

Caracteristics of the incomplete factorization

Let us count the number of iterations and the memory used by the preconditioner, for different values of (α, β)

Threshold	$1 e-4$	$1 e-3$	0.01	0.05	0.1
$\alpha=1 \beta=0$	$30 / 370$ Mo	$\infty / 350$ Mo	$\infty / 340$ Mo	$\infty / 326$ Mo	$\infty / 314$ Mo
$\alpha=1 \beta=0.5$	$55 / 299$ Mo	$55 / 242$ Mo	$55 / 149$ Mo	$82 / 74$ Mo	$145 / 47$ Mo
$\alpha=1 \beta=1$	$97 / 244$ Mo	$97 / 197$ Mo	$99 / 108$ Mo	$110 / 53$ Mo	$155 / 34$ Mo

Caracteristics of the incomplete factorization

The use of a Q1 subdivided mesh is very accurate for the scalar Helmholtz equation, but has some difficulties for Maxwell equations. Let us count the number of iterations depending the frequency. The frequency 1 corresponds to the "normal" frequency.

| Order | $F=0.125$ | $F=0.25$ | $F=0.5$ | $F=1.0$ | $F=1.5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q_{2}(110000 \mathrm{ddl})$ | $N C$ | 49 | 19 | 16 | 49 |
| $Q_{4}(92000 \mathrm{ddl})$ | $N C$ | $N C$ | 42 | 30 | 123 |
| $Q_{6}(72000 \mathrm{ddl})$ | $N C$ | $N C$ | 71 | 47 | 159 |

Caracteristics of the incomplete factorization

The use of a Q1 subdivided mesh is very accurate for the scalar Helmholtz equation, but has some difficulties for Maxwell equations. Let us count the number of iterations depending the frequency. The frequency 1 corresponds to the "normal" frequency.

Order	$F=0.125$	$F=0.25$	$F=0.5$	$F=1.0$	$F=1.5$
$Q_{2}(110000 \mathrm{ddl})$	$N C$	49	19	16	49
$Q_{4}(92000 \mathrm{ddl})$	$N C$	$N C$	42	30	123
$Q_{6}(72000 \mathrm{ddl})$	$N C$	$N C$	71	47	159

Problems in low-frequency case, because of the difference between the discrete kernels (of Q1 and high order).

Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

$$
E=\nabla \varphi+u
$$

Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

$$
E=\nabla \varphi+u
$$

The potential φ is solution of the "Laplacian" variationnal formulation :

$$
\int_{\Omega} \nabla \varphi \nabla \psi-i k \int_{\Sigma} \nabla \varphi \times n \cdot \nabla \psi \times n=\int_{\Omega} f \cdot \nabla \psi
$$

A_{ϕ} finite element matrix associated to this formulation

Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

$$
E=\nabla \varphi+u
$$

Let us introduce the operator P :

$$
\begin{aligned}
P: H_{0}^{1}(\Omega) & \leftrightarrow H(\operatorname{curl}, \Omega) \\
\varphi & \leftrightarrow \nabla \varphi
\end{aligned}
$$

then $A_{\phi}=P^{*} A_{e} P$ and the smoother can be written as :

- Relaxation on edge finite element operator $A_{e} x=b$
- Projection on nodal finite element $b_{\phi}=P^{*}\left(b-A_{e} x\right)$
- Relaxation on nodal finite element operator $A_{\phi} x_{\phi}=b_{\phi}$
- Projection on edge finite element $x=x+P x_{\phi}$

Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

$$
E=\nabla \varphi+u
$$

- Jacobi relaxation used, because it avoids us storing the matrices (compared to a SSOR relaxation).
- Prolongation operator is an interpolation from the coarse order to the fine order. A matrix-free implementation of the prolongation operator is used.
- Incomplete factorization for the resolution of the coarsest order
- Use of a W-cycle, and one step of pre and post-smoothing (in order to get the symmetry of the preconditioning)

Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

$$
E=\nabla \varphi+u
$$

The use of a multigrid iteration on the Q1 subdivided mesh is not optimal

- Fail of a good preconditioning in low-frequency case, because the "Q1" discrete kernel is different from the high order discrete kernel
- Overcost in storage, because we store all the needed Q1 matrices

Scattering by a dielectric sphere

- Sphere of radius 2 with $\varepsilon=3.5 \mu=1$
- Outside boundary on a sphere of radius 3 .

Scattering by a dielectric sphere

How many dofs/time to reach an error less than 0.5 dB

Finite Element	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{4}}$	$\mathbf{Q}_{\mathbf{6}}$
Nb dofs	940000	88000	230000
No preconditioning	19486 s	894 s	4401 s
ILUT(0.05)	-	189 s	1035 s
Two-grid	5814 s	280 s	1379 s
Multi-grid	5814 s	499 s	2515 s
Q1 Two-grid	44344 s	488 s	1095 s

Scattering by a dielectric sphere

How many dofs/time to reach an error less than 0.5 dB

Finite Element	$\mathbf{Q}_{\mathbf{2}}$	$\mathbf{Q}_{\mathbf{4}}$	$\mathbf{Q}_{\mathbf{6}}$
No preconditioning	171 Mo	10 Mo	24 Mo
ILUT(0.05)	-	99 Mo	271 Mo
Two-grid	402 Mo	34 Mo	132 Mo
Multi-grid	402 Mo	12 Mo	28 Mo
Q1 Two-grid	947 Mo	67 Mo	180 Mo

Scattering by a cobra cavity

- Cobra cavity of length 10, and depth 2
- Outside boundary at a distance of 1

Scattering by a cobra cavity

How many dofs/time to reach an error less than 0.5 dB

Finite Element	$\mathbf{Q}_{\mathbf{4}}$	$\mathbf{Q}_{\mathbf{6}}$
Nb dofs	42000	187000
No preconditioning	$14039 \mathrm{~s}(47 \mathrm{Mo})$	$12096 \mathrm{~s}(22 \mathrm{Mo})$
ILUT(0.05)	$2247 \mathrm{~s}(391 \mathrm{Mo})$	$846 \mathrm{~s}(161 \mathrm{Mo})$
Two-grid	$2355 \mathrm{~s}(91 \mathrm{Mo})$	$2319 \mathrm{~s}(65 \mathrm{Mo})$
Multigrid	$4519 \mathrm{~s}(59 \mathrm{Mo})$	$-10500-(130 \mathrm{Mo})$
Q1 Two-grid	$9294 \mathrm{~s}(260 \mathrm{Mo})$	$10500 \mathrm{~s}(13 \mathrm{Mo}$

Local refinement for the Fichera corner

Local refinement for the Fichera corner

- Q4 approximation on a local refined mesh
- Incomplete factorization fails on this case
- Multigrid preconditioning needs SSOR smoother to be efficient
- 480000 dofs and cells 256 times smaller than other ones

Local refinement for the Fichera corner

Algorithm	Iterations	Time	Memory
No preconditioning	>1000000	∞	33 Mo
Multigrid with Jacobi smoother	30560	35 h	63 Mo
Multigrid with SSOR smoother	579	1 h	790 Mo

Eigenmodes with the second family

The second family uses Q_{r}^{3} instead of $Q_{r-1, r, r} \times Q_{r, r-1, r} \times Q_{r, r, r-1}$ Mesh used for the simulations $\left(\mathbf{Q}_{\mathbf{3}}\right)$

Eigenmodes with the second family

The second family uses Q_{r}^{3} instead of $Q_{r-1, r, r} \times Q_{r, r-1, r} \times Q_{r, r, r-1}$

Eigenmodes with the second family

The second family uses Q_{r}^{3} instead of $Q_{r-1, r, r} \times Q_{r, r-1, r} \times Q_{r, r, r-1}$

Two types of penalization

Mixed formulation of Maxwell equations

$$
\begin{aligned}
& -\omega \int_{\Omega} E \cdot \varphi+\int_{\Omega} H \cdot \operatorname{rot}(\varphi)-i \alpha \sum_{\text {face }} \int_{\Gamma_{e}}[E \cdot n][\varphi \cdot n]=\int_{\Omega} f \cdot \varphi \\
& -\omega \int_{\Omega} H \cdot \varphi+\int_{\Omega} \operatorname{rot}(E) \cdot \varphi-i \delta \sum_{e} \int_{\Gamma_{e}}[H \times n] \cdot[\varphi \times n]=0
\end{aligned}
$$

Approximation space for H

$$
W_{h}=\left\{\vec{u} \in L^{2}(\Omega) \text { so that } D F_{i}^{*} \vec{u} \circ F_{i} \in\left(Q_{r}\right)^{3}\right\}
$$

- Equivalence with second-order formulation $(\alpha=\delta=0)$
- Dissipative terms of penalization
- Penalization in α does not need of a mixed formulation

Two types of penalization

Mixed formulation of Maxwell equations

$$
\begin{aligned}
& -\omega \int_{\Omega} E \cdot \varphi+\int_{\Omega} H \cdot \operatorname{rot}(\varphi)-i \alpha \sum_{\text {face }} \int_{\Gamma_{e}}[E \cdot n][\varphi \cdot n]=\int_{\Omega} f \cdot \varphi \\
& -\omega \int_{\Omega} H \cdot \varphi+\int_{\Omega} \operatorname{rot}(E) \cdot \varphi-i \delta \sum_{e} \int_{\Gamma_{e}}[H \times n] \cdot[\varphi \times n]=0
\end{aligned}
$$

Approximation space for H

$$
W_{h}=\left\{\vec{u} \in L^{2}(\Omega) \text { so that } D F_{i}^{*} \vec{u} \circ F_{i} \in\left(Q_{r}\right)^{3}\right\}
$$

- Equivalence with second-order formulation ($\alpha=\delta=0$)
- Dissipative terms of penalization
- Penalization in α does not need of a mixed formulation

Effects of penalization

- Case of the cubic cavity meshed with split tetrahedrals
- At left $\alpha=0.1$, at right $\alpha=0.5$

Effects of penalization

Four modes of the Fichera corner

Effects of penalization

- Case of the Fichera corner
- At left $\alpha=0.5$, at right $\delta=0.5$
- Both penalizations efficient for regular domains
- Delta-penalization more robust for singular domains

Why choosing first family compared to second family or DG method?

- All the methods are spectrally correct
- All the methods have a fast MV product
- DG and second family need more dof
- Helmholtz decomposition more natural for the first family

Because of spurious modes, DG and second family need specific
preconditioning

Why choosing first family compared to second family or DG method?

- All the methods are spectrally correct
- All the methods have a fast MV product
- DG and second family need more dof
- Helmholtz decomposition more natural for the first family
- Because of spurious modes, DG and second family need specific preconditioning

