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Bibliography and motivation

Case of second-order hyperbolic problems treated by :
Jean-Charles Gilbert and Patrick Joly Higher order time stepping
for second order hyperbolic problems and optimal CFL conditions,
Julien Diaz and Marcus Grote, Energy Conserving Explicit Local
Time-Stepping for Second-Order Wave Equations

For first-order hyperbolic problems, second-order time scheme :
Serge Piperno Symplectic local time-stepping in non-dissipative
DGTD methods applied to wave propagation problems
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Model problem

First-order hyperbolic problem :

∂U
∂t

+
d∑

i=1

Ai(x)
∂U
∂xi

= f (x , t)

with Ai(x) symmetric matrices.
Use of Local Discontinuous formulation with centered fluxes :∫

K

∂U
∂t
ϕdx −

∫
K

d∑
i=1

Ai(x) U
∂ϕ

∂xi
dx +

∫
∂K

(
d∑

i=1

Ai(x)ni){U}ϕdx

=

∫
K

f (x , t)ϕdx

U, ϕ ∈ Vh = {u ∈ (L2(Ω))s such that u ◦ Fe ∈ Pre or Qre}
Order of approximation re is different for each element e of the mesh
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Model problem

First-order hyperbolic problem :

∂U
∂t

+
d∑

i=1

Ai(x)
∂U
∂xi

= f (x , t)

with Ai(x) symmetric matrices.
Associated evolution problem :

dU
dt

+ KhU = Fh

With conservative boundary conditions, Kh is skew-symmetric.
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Modified equation approach

Second-order leap-frog scheme :

Un+1 − Un−1

2∆t
+ KhUn = Fn

h ,

Stability condition of this scheme :

∆t ||Kh||2 ≤ 1

Small elements in the mesh⇒ restrictive CFL
In absence of source, the exact solution is given by

Un+1 − Un−1

2
= i sin(i∆tKh)Un

Taylor expansion of the sinus provide the following scheme of order
2m + 2 :

Un+1 − Un−1

2
+
[
∆t Kh +

m∑
q=1

(∆t Kh)2q+1

(2q + 1)!

]
Un = 0.

Cost of this scheme : 2m + 1 matrix-vector products with Kh
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Stability condition of modified equation

Let us denote the polynomial :

τm(x) = x +
m∑

q=1

(−1)q x2q+1

(2q + 1)!

Stability is obtained if

|τm(x)| ≤ 1 ⇔ x ∈ [0, αm]
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Stability condition of modified equation

For m even, αm ≤
3π
2
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Stability condition of modified equation

For m odd, αm ≤
π

2
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Duruflé, Imperiale (INRIA) High-order local time stepping September 13, 2011 5 / 18



Stability condition of modified equation
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π
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Improvement of modified equation

Higher-order terms are added to increase CFL number

Un+1 − Un−1

2
+
[ m∑

q=0

(∆t Kh)2q+1

(2q + 1)!

]
Un +

[ r∑
q=m+1

αq(∆tKh)2q+1
]
Un = 0

This scheme is written under the form

Un+1 − Un−1 + 2i T2r+1(i∆tKh)Un = 0
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Improvement of modified equation

Higher-order terms are added to increase CFL number

Un+1 − Un−1

2
+
[ m∑

q=0

(∆t Kh)2q+1

(2q + 1)!

]
Un +

[ r∑
q=m+1

αq(∆tKh)2q+1
]
Un = 0

This scheme is written under the form

Un+1 − Un−1 + 2i T2r+1(i∆tKh)Un = 0

Optimal polynomial for m = 0 (second-order), and nearly optimal for
m = 1 (fourth-order)

T m
2r+1(x) =

1
ξr
T Cheb

2r+1

((−1)rξm
r x

(2r + 1)

)
where T Cheb

2r+1 are Chebyshev polynomials of the first kind and

ξ0
r = 1, ξ1

r =
2r + 1

2
√

r(r + 1)
,
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Improvement of modified equation

Optimal polynomial for m = 0 (second-order), and nearly optimal for
m = 1 (fourth-order)

T m
2r+1(x) =

1
ξr
T Cheb

2r+1

((−1)rξm
r x

(2r + 1)

)
where T Cheb

2r+1 are Chebyshev polynomials of the first kind and

ξ0
r = 1, ξ1

r =
2r + 1

2
√

r(r + 1)
,

Stability condition :

∆t ||Kh||2 ≤
2r + 1
ξm

r

with
ξ1

r = 1 + O(
1
r2 )
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Optimal polynomials

Optimal polynomial is sought, by searching tangent points τ1, τ2, ..., τk
such that {

Topt (τi) = −1 or 1

T ′opt (τi) = 0

The associated non-linear system with unknowns τ1, ..., τk is solved
numerically with Newton’s method.

Duruflé, Imperiale (INRIA) High-order local time stepping September 13, 2011 7 / 18



Optimal polynomials

Tangents points in red :
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Optimal polynomials

CFL αm obtained with this procedure :

m / r 0 1 2 3 4 5 6
0 1 3 5 7 9 11 13
1 - 2.85 4.91 6.94 8.95 10.96 12.97
2 - - 1.49 3.84 5.80 7.71 9.61
3 - - - 3.79 5.77 7.69 9.59
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Optimal polynomials

Efficiency compared to leap-frog scheme :

m / r 0 1 2 3 4 5 6
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 - 0.95 0.982 0.991 0.994 0.996 0.998
2 - - 0.298 0.549 0.644 0.701 0.739
3 - - - 0.541 0.641 0.699 0.738
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Chebyshev reccurence

Use of Horner algorithm leads to numerical instabilities for large
values of r

Use of Chebyshev reccurence leads to stable algorithms :

Q0 = Un

Q1 =
ξr

2r + 1
∆tKhUn

Qn =
2ξr

2r + 1
∆tKhQn−1 +Qn−2

· · ·

Un+1 = Un−1 − 2
ξr
Q2r+1
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Two-level time stepping

Computational domain split into a “fine region” and a “coarse region”
Ph : projector onto the fine region

Un+1 − Un−1

2
+
[ m∑

q=0

(∆t Kh)2q+1

(2q + 1)!

]
Un

+[
r∑

q=m+1

αq (∆tKhPh)2q] ∆tKhUn = 0,

Presence of Ph ⇒ terms of second sum are computed only on the
“fine region”
Skew-symmetry of the matrices KhPhKh · · ·KhPhKh ⇒ stability of this
scheme (CFL not controlled)
αq are the coefficients defined previously so that CFL is increased.
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Stable two-level algorithm

For m = 0, it is equivalent to the following scheme (obtained by
reproducing the strategy of Diaz and Grote) :

wh = Kh(I − Ph)Un

Q0 = Un

Q1 = − ∆t
2r + 1

(wh + KhPhQ0)

For k = 1,2r

Qk+1 = Qk−1 −
2∆t

2r + 1
(KhPhQk + wδk even)

End For

Un+1 = Un−1 + 2Q2r+1

Stable algorithm even for large values of r

Duruflé, Imperiale (INRIA) High-order local time stepping September 13, 2011 10 / 18



Multilevel algorithm

Domain split into hierarchical subdomains

Ω =
⋃

Ωi =
⋃

Ke

with
Ω ⊃ Ω1 ⊃ Ω2 · · · ⊃ Ωr
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Multilevel algorithm

For each element, a nominal time step is computed

∆te =
(2r + 1)c

ξm
r ||PeKhPe||2

where c is a safety coefficient depending on the element.
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Multilevel algorithm

by considering only direct neighbors of each element
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Multilevel algorithm

Global time step ∆t is chosen by the user, then a level i is affected to
each element with respect to the rule :

if ∆te ≤
ξm

i ∆t
2i + 1

, then Ke ∈ Ωi .

Duruflé, Imperiale (INRIA) High-order local time stepping September 13, 2011 11 / 18



Multilevel algorithm

We consider the following time scheme

Un+1 − Un−1

2∆t
+KhUn + ∆t2KhP1KhP1KhUn

+∆t4KhP1KhP2KhP2KhP1KhUn

+∆t6KhP1KhP2KhP3KhP3KhP2KhP1KhUn + · · · = 0

where Pk are diagonal matrices :

Pk =


β0

k · · ·
· · · β1

k · · ·
· · · · · · · · ·

· · · βr
k


with

βm
k = 0, ∀m < k
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Multilevel algorithm

If we write the expansion of optimal polynomial τ k
opt (X ) as :

τ k
opt (X ) = X + γk

1 X 3 + γk
2 X 5 + · · ·+ γk

k X 2k+1

Coefficients βm
k are chosen to coincide with these polynomials for each

level
For k = 1, r

For m = 1, k-1
βm

k = 0
End For
For m = k, r

βm
k =

√
γm

k
For n = 1, k-1

βm
k = βm

k /β
m
n

End For
End For

End For
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Multilevel algorithm

Use of Horner algorithm :

Q0 = ∆tKhUn

Q1 = ∆tKhP1Q0

Q2 = ∆tKhP2Q1

· · ·
Qr = ∆tKhPr Qr−1

Qr−1 = Qr−1 + ∆tKhPr Qr

Qr−2 = Qr−2 + ∆tKhPr−1Qr−1

· · ·
Q0 = Q0 + ∆tKhP1Q1

Un+1 = Un−1 − 2Q0

unstable due to round-off errors when r ≥ 14.
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2-D numerical results

We consider wave equation

Ai =

(
0 e∗i
ei 0

)
and Neumann boundary conditions so that Kh is skew-symmetric
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2-D numerical results

Box pierced with two small holes

each color corresponds to a different order of approximation in space
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2-D numerical results

Solution obtained for t = 2
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2-D numerical results

Solution obtained for t = 4
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2-D numerical results

Solution obtained for t = 6
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2-D numerical results

Solution obtained for t = 8
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2-D numerical results

∆tmax = 0.01036, ∆tmin = 0.000737

Ratio
∆tmax

∆tmin
= 14.1

Computational time with optimized fourth order (∆t = 0.005): 767s
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2-D numerical results

∆tmax = 0.01036, ∆tmin = 0.000737

Ratio
∆tmax

∆tmin
= 14.1

Computational time with optimized fourth order (∆t = 0.005): 767s

Fourth-order local time stepping with the following repartition :

Level 1 2 3 4 5 6 7 8
Number of elements 1024 0 0 0 0 0 16 4

L2 error for t = 10 : 7.78e-6

Computational time (∆t = 0.01): 177s
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3-D numerical results

Scattering by a satellite
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3-D numerical results

Mesh used for the simulations

each color corresponds to a different order of approximation in space
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3-D numerical results

Solution obtained for t = 0.1
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3-D numerical results

Solution obtained for t = 0.2
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3-D numerical results

Solution obtained for t = 0.3
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3-D numerical results

Solution obtained for t = 0.4
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3-D numerical results

Solution obtained for t = 0.5
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3-D numerical results

∆tmax = 1.177e − 3, ∆tmin = 1.442e − 5

Ratio
∆tmax

∆tmin
= 81.6

Computational time with standard leap frog (∆t = 1e − 5): 63.4h
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3-D numerical results

∆tmax = 1.177e − 3, ∆tmin = 1.442e − 5

Ratio
∆tmax

∆tmin
= 81.6

Computational time with standard leap frog (∆t = 1e − 5): 63.4h

Second-order local time stepping with the following repartition :

Level 1 2 3 4 5 6 7 8 9 10
Number of elements 64468 7629 867 35 3 0 0 3 2 1

L2 error for t = 0.5 : 2.31e-3

Computational time (∆t = 2.5e − 4) : 9.48h

Duruflé, Imperiale (INRIA) High-order local time stepping September 13, 2011 14 / 18



Runge-Kutta schemes

Another interesting set of schemes is obtained by considering Taylor
expansion of the exponential. In absence of source :

Un+1 =
m∑

q=0

(∆tKh)q

q!
Un

Such schemes coincide with Runge-Kutta schemes for m ≤ 4
Advantage : Kh can be any matrix (not only skew-symmetric matrices)
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Runge-Kutta schemes

Cost of this scheme : m matrix-vector products
Stability condition for a skew-symmetric matrix :

∆t ||Kh||2 = αm

with :

m = 4k + 1 or m = 4k + 2, αm = 0⇒ scheme always unstable

m = 4k + 3, αm < π and tends to
π

2

m = 4k , αm <
3π
2

and tends to π
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Optimal Runge-Kutta schemes

For second-order schemes, the following polynomials provide a CFL of
m along the imaginary axis :

Rm(z) =
1
2

Vm−1(z) + Vm(z) +
1
2

Vm+1(z)

with Vm(z) = imTm(
z
im

)

associated scheme :

Un+1 = Rm(∆tKh)Un
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Optimal Runge-Kutta schemes

For second-order schemes, the following polynomials provide a CFL of
m along the imaginary axis :

Rm(z) =
1
2

Vm−1(z) + Vm(z) +
1
2

Vm+1(z)

with Vm(z) = imTm(
z
im

)

associated scheme :

Un+1 = Rm(∆tKh)Un

For fourth-order schemes, Kinmark-Gray polynomials :

Km(z) =
1√
β2 + 1

(
im+1 β Tm−1(

iz
β

) +

im

2

[
(m − 2) Tm(

iz
β

)−mTm−2(
iz
β

)

])
CFL = β =

√
(m − 1)2 − 1
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Local time-stepping with Runge-Kutta approach

Multilevel algorithm :

Un+1 = Un + (∆tKh +
∆t2

2
K 2

h +
∆t3

6
K 3

h +
∆t4

24
K 4

h )Un

+∆t5KhP1K 4
h Un + ∆t6KhP2KhP1K 4

h Un

coefficients of diagonal matrices P1, P2, etc, deduced from coefficients
of Kinmark polynomials

Duruflé, Imperiale (INRIA) High-order local time stepping September 13, 2011 17 / 18



Local time-stepping with Runge-Kutta approach

Multilevel algorithm :

Un+1 = Un + (∆tKh +
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Local time-stepping with Runge-Kutta approach

Numerical experiments with a mesh refined at the origin
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Local time-stepping with Runge-Kutta approach

Aeroacoustics with an uniform flow and absorbing boundary condition
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Local time-stepping with Runge-Kutta approach

Aeroacoustics with an uniform flow and absorbing boundary condition

L2 error : 1.8e-3
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Prospects

Stable multi-level algorithm for large values of r

Better knowledge of the global CFL from the local time steps ∆te

Handle dissipative terms (due to upwind fluxes) locally with
uncentered approximations
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