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Bibliography and motivation

@ Case of second-order hyperbolic problems treated by :
Jean-Charles Gilbert and Patrick Joly Higher order time stepping
for second order hyperbolic problems and optimal CFL conditions,
Julien Diaz and Marcus Grote, Energy Conserving Explicit Local
Time-Stepping for Second-Order Wave Equations

@ For first-order hyperbolic problems, second-order time scheme :
Serge Piperno Symplectic local time-stepping in non-dissipative
DGTD methods applied to wave propagation problems

Duruflé, Imperiale (INRIA) High-order local time stepping September 13, 2011 2/18



Model problem

First-order hyperbolic problem :

ou

with A;(x) symmetric matrices.
Use of Local Discontinuous formulation with centered fluxes :

d
oU B
m@dx—/}<§i_1:A,(x)Uaxidx+ / §:A )m){ U} o dx

= / f(x,t)pdx
K

U,pe Vy,={ue (L3Q))°suchthat uoc Fo € P,, or Q. }
Order of approximation r, is different for each element e of the mesh
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Model problem

First-order hyperbolic problem :
W < aU
—— A(x)— = f
a7 T ,§:1 i(X) 55 = 1)

with A;(x) symmetric matrices.
Associated evolution problem :

au
E +KhU— Fh

With conservative boundary conditions, K}, is skew-symmetric.
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Modified equation approach

Second-order leap-frog scheme :

Un+1 o U”*1 5 .
oar U= T
Stability condition of this scheme :
At|[Kpll2 <1

Small elements in the mesh =- restrictive CFL
In absence of source, the exact solution is given by
Un+1 _ Un—1

2

Taylor expansion of the sinus provide the following scheme of order
2m+2:

yn+1 _ yn-1 AtKh)2q+1 N
2 7 [A’K”ZW =0

= isin(iAtKy)U"

Cost of this scheme : 2m + 1 matrix-vector products with K,
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Stability condition of modified equation

Let us denote the polynomial :
o Xx29+1
= x+) (- 2q (2q+ 1)

q:

Stability is obtained if

lTm(x)] <1 & x €[0,am]
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Stability condition of modified equation

For m even, om < —
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Stability condition of modified equation

For m odd, am < g
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Improvement of modified equation

Higher-order terms are added to increase CFL number

+1 —1 m 2g+1 r
is . un [Z (?;::_):)l ]Un+[ Z aq(AtKh)zq“} Un—0
=0 ’ q=m+1

This scheme is written under the form

U™ — U1 4 2i T4 (IALK,) U™ = 0
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Improvement of modified equation

Higher-order terms are added to increase CFL number

1_ -1 m 2q-+1 r
q=0 '

g=m+1
This scheme is written under the form
U™t — U1 4 2i Tor 1 (IALK,) U™ = 0

Optimal polynomial for m = 0 (second-order), and nearly optimal for
m = 1 (fourth-order)
1 (=) x
m _ ' 7Cheb r
a0 = g )
where 7,27 are Chebyshev polynomials of the first kind and

2r +1

§=1 &= 71—
2/r(r +1)
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Improvement of modified equation

Optimal polynomial for m = 0 (second-order), and nearly optimal for
m = 1 (fourth-order)

m 1 e 1) Ir'n
Tori1(X) = [ 2?11%%)

where 7,27 are Chebyshev polynomials of the first kind and
O 1, ¢ = 2r +1
A /e (O D
Stability condition :
2r +1
Atl|Kplle < —7
¥
with
& =1+0(3)
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Optimal polynomials

Optimal polynomial is sought, by searching tangent points 71, 7o, ..., 7k
such that
{ %pt(Ti) =—1or1
Tc;pt(Ti) =0

The associated non-linear system with unknowns 74, ..., 74 is solved
numerically with Newton’s method.
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Optimal polynomials

Tangents points in red :
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Optimal polynomials

CFL ap, obtained with this procedure :

m/r|0 1 2 3 4 5 6

0 1 3 5 7 9 11 13

1 - 285 491 6.94 895 10.96 12.97
2 - - 149 3.84 5.80 7.71 9.61
3 - - - 3.79 577 7.69 9.59
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Optimal polynomials

Efficiency compared to leap-frog scheme :

m/r| 0 1 2 3 4 5 6

0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1 - 0.95 0.982 0.991 0.994 0.996 0.998
2 - - 0.298 0.549 0.644 0.701 0.739
3 - - - 0.541 0.641 0.699 0.738

Duruflé, Imperiale (INRIA) High-order local time stepping September 13, 2011 7/18



Chebyshev reccurence

@ Use of Horner algorithm leads to numerical instabilities for large

values of r

@ Use of Chebyshev reccurence leads to stable algorithms :

Duruflé, Imperiale (INRIA)

Qo= U"
& n
Q1= or 1 AtK,U
2
On = or if 1 AtKpQn_1 + Qn-2

2
U = et = —Qoryq
r
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Two-level time stepping

Computational domain split into a “fine region” and a “coarse region”
Py, : projector onto the fine region
Un+1 Un 1 [i AtKh 2g+1 ] U
e (2g +1)!

-+ Z ag (AtK, P29 AtK, U™ = 0,
g=m+1

Presence of P, = terms of second sum are computed only on the
“fine region”

Skew-symmetry of the matrices K,PyKj, - - - KnPr K, = stability of this
scheme (CFL not controlled)

agq are the coefficients defined previously so that CFL is increased.
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Stable two-level algorithm

For m = 0, it is equivalent to the following scheme (obtained by
reproducing the strategy of Diaz and Grote) :

[ Wh = Kn(I— Pp)U"
Q = U"
At

Q = _2r+1(Wh+KhPhQO)
Fork =1,2r

Qi1 = Q1 —
End For
Un+1 _ Un—1 + 202r+1

2At
2r +-1

(KnPhQx + Wik even)

\

Stable algorithm even for large values of r
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Multilevel algorithm

Domain split into hierarchical subdomains

Q:UQ:U&

with
QD50 D0 ---DQ,
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Multilevel algorithm

For each element, a nominal time step is computed

(2r+1)c

Ate= —— 2~
7 €&|PeKnPell2

where c is a safety coefficient depending on the element.
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Multilevel algorithm

by considering only direct neighbors of each element
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Multilevel algorithm

Global time step At is chosen by the user, then a level i is affected to
each element with respect to the rule :
EMAt

. < &AL )
if Ate_2i+1, then Kg € Q;
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Multilevel algorithm

We consider the following time scheme

Un+1 . Un—1

oy +K,U" + AP K, P Ky Py K, U"

+ A KL Py Ky Pa Ky Pa K Py Ky U
+At6KhP1 Kh P2 K P3 Kn P3Kp Po K P KhUn +--=0

where P, are diagonal matrices :

with
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Multilevel algorithm

If we write the expansion of optimal polynomial Tf,‘pt(X) as:
Tgpt(X) = X+")/4(X3 + 7§X5 d oo +")/Ik(X2k+1

Coefficients 3} are chosen to coincide with these polynomials for each

level
Fork=1,r
Form =1, k-1
BT =0
End For
Form=Kk,r
BE =V
Forn=1, k-1
Be = BK/B
End For
End For
End For
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Multilevel algorithm

Use of Horner algorithm :
Qy = AtK,U"
Q1 = AtKyP1Qq
Q = AtKyP>Qy

Q = AI'KhPrQr—1
Qr—1 = C)r—1 + AtKhPrQr
Q2 = Q2+ AtKhPr—1Qr_1

Qy = Qy + AtKyP1 Q4
Un+1 _ Un—1 _200

unstable due to round-off errors when r > 14.
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2-D numerical results

We consider wave equation

_ (0 €
A'_<ei 0>

and Neumann boundary conditions so that K}, is skew-symmetric
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2-D numerical results

Box pierced with two small holes

each color corresponds to a different order of approximation in space
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2-D numerical results

Solution obtained for t = 2
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2-D numerical results

Solution obtained for t = 4
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2-D numerical results

Solution obtained for t = 6
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2-D numerical results

Solution obtained for t = 8
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2-D numerical results

Atmax = 0.01036, Aty = 0.000737
Ratio Almax _ 14.1

min

Computational time with optimized fourth order (At = 0.005): 767s
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2-D numerical results

Atmax = 0.01036, Aty = 0.000737
Ratio Almax _ 14.1

min

Computational time with optimized fourth order (At = 0.005): 767s

Fourth-order local time stepping with the following repartition :

Level 1 2 3 4 5 6 7 8
Number of elements | 1024 0 O O O 0O 16 4

L? error for t = 10 : 7.78e-6
Computational time (At = 0.01): 177s
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3-D numerical results

Scattering by a satellite
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3-D numerical results
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3-D numerical results

Solution obtained for t = 0.1

0.1 '
® .

0.1
02 -01 0 01 02
Y
02 S ]
0.1
N 2 10
-0.1
0 02 04 06 08 0.2

0 02 04 06 08
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3-D numerical results

Solution obtained for t = 0.2

0.1

-0.1

0.2

04 06 08

0.1

-0.1

0.2

-0.2

02 01 0 01 02

02 04 06 08
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3-D numerical results

Solution obtained for t = 0.3

0.1 T
N g .
-
-0.1

0 02 04 06 08

0 02 04 06 08
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3-D numerical results

Solution obtained for t = 0.4

0 02 04 06 08
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3-D numerical results

Solution obtained for t = 0.5

0 02 04 06 08
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3-D numerical results

Ratio Almax _ 81.6

min

Computational time with standard leap frog (At = 1e — 5): 63.4h
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3-D numerical results

Ratio Almax _ 81.6

min

Computational time with standard leap frog (At = 1e — 5): 63.4h

Second-order local time stepping with the following repartition :

Level 1 2 3 4 5 6 7 8 9 10
Number of elements | 64468 7629 867 35 3 0 0 3 2 1

L? error for t = 0.5 : 2.31e-3
Computational time (At = 2.5e — 4) : 9.48h
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Runge-Kutta schemes

Another interesting set of schemes is obtained by considering Taylor
expansion of the exponential. In absence of source :

Un—H _ i (A”I(h)q un
q=0 g

Such schemes coincide with Runge-Kutta schemes for m < 4
Advantage : K, can be any matrix (not only skew-symmetric matrices)
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Runge-Kutta schemes

Cost of this scheme : m matrix-vector products
Stability condition for a skew-symmetric matrix :

AtHKhHZ = Om

with :
e m=4k+1orm=4k + 2, an = 0 = scheme always unstable

e m= 4k+3,am<7randtendstog

3
om=4k, an < ?W and tends to 7
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Optimal Runge-Kutta schemes

For second-order schemes, the following polynomials provide a CFL of
m along the imaginary axis :

Rm(z) = %Vm_1 (2) + Vim(2) + %Vm_H(Z)

with Vin(2) = ime(%)
associated scheme :

U™ = Rp(AtK,)U"
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Optimal Runge-Kutta schemes

For second-order schemes, the following polynomials provide a CFL of
m along the imaginary axis :

1 1
with Vin(2) = ime(%)
associated scheme :
U™' = Rp(AtK,)U"
For fourth-order schemes, Kinmark-Gray polynomials :

1 . iz
)= e (3T
in iz iz
7 |(M=2Tn(3) - mTa(5)] )

CFL=p = J/(m—1)2—1
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Local time-stepping with Runge-Kutta approach

Multilevel algorithm :

At? At At?
n+1 __ n 2 4
urtt = u +(AtKh+—2 K + 6K 24K)U

+APK,PI KU + ALK, P Ky P K U”

coefficients of diagonal matrices Py, P», etc, deduced from coefficients
of Kinmark polynomials
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At? At At?
n+1 __ n 2 4
urtt = u +(AtKh+—2 K + 6K 24K)U

+APK,PI KU + ALK, P Ky P K U”

coefficients of diagonal matrices Py, P», etc, deduced from coefficients
of Kinmark polynomials

Duruflé, Imperiale (INRIA) High-order local time stepping September 13, 2011 17/18



Local time-stepping with Runge-Kutta approach

Numerical experiments with a mesh refined at the origin
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Local time-stepping with Runge-Kutta approach

Aeroacoustics with an uniform flow and absorbing boundary condition

4 T T T T T T T T T 0.010

0.008
0.006
0.004
0.002
0 ‘ 0.000
—0.002
—0.004
—0.006

—0.008

a1 L L L L . L L L ~0.010
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0.010

0.008

0.006

0.004
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0.000

—0.002
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—=0.008

—0.010

Duruflé, Imperiale (INRIA)

High-order local time stepping

September 13, 2011

17/18



Local time-stepping with Runge-Kutta approach

Aeroacoustics with an uniform flow and absorbing boundary condition
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0.004
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Local time-stepping with Runge-Kutta approach

Aeroacoustics with an uniform flow and absorbing boundary condition

4 T T T T T T T r 0.010

0.008

w

0.006

N

0.004

-

0.002

=)

0.000

—0.002

—0.004

—0.006

—=0.008

_qls L L L L L L L L —0.010
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Local time-stepping with Runge-Kutta approach

Aeroacoustics with an uniform flow and absorbing boundary condition

0.010

0.008

0.006

0.004

0.002

0.000

—0.002

—0.004

—0.006

—0.008

—-0.010

L2 error : 1.8e-3
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@ Stable multi-level algorithm for large values of r
@ Better knowledge of the global CFL from the local time steps Afe

@ Handle dissipative terms (due to upwind fluxes) locally with
uncentered approximations
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