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Introduction

Apply techniques of “mass lumping” and “mixed
formulation”, which are efficient in temporal domain

Application of these techniques to Helmholtz and
time-harmonic Maxwell equations
Gain in storage and time, by using these techniques in
frequential domain
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Introduction

Apply techniques of “mass lumping” and “mixed
formulation”, which are efficient in temporal domain

Application of these techniques to Helmholtz and
time-harmonic Maxwell equations
Gain in storage and time, by using these techniques in
frequential domain

Choose an efficient preconditioning technique to solve
linear systems issued from these equations

Apply the developped algorithms to evaluate accurately
radar cross sections of electromagnetic targets
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Outline

Resolution of Helmholtz equation
Advantage to use high-order methods
Fast matrix-vector product on hexahedral elements
Comparison between tetrahedral elements and
hexahedral elements
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Outline

Resolution of Helmholtz equation
Advantage to use high-order methods
Fast matrix-vector product on hexahedral elements
Comparison between tetrahedral elements and
hexahedral elements

Resolution of time-harmonic Maxwell equations
Spurious modes for Nedelec’s second family
Discontinuous Galerkin method
Fast matrix-vector product for Nedelec’s first family

Maxwell equations in axisymmetric domains
Model equations
Advantages of high-order methods
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Outline

Resolution of Helmholtz equation

Resolution of time-harmonic Maxwell equations

Maxwell equations in axisymmetric domains
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Softwares and libraries used

Mesh generators : Modulef, Gmsh
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Softwares and libraries used

Mesh generators : Modulef, Gmsh

Visualization tools : Matlab, Medit
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Softwares and libraries used

Mesh generators : Modulef, Gmsh

Visualization tools : Matlab, Medit

MUMPS : Fortran library to solve large sparse linear
systems

ARPACK : Fortran library to solve large sparse
eigenvalue problems

Seldon : C++ linear algebra library
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A test case : an optical filter
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A test case : an optical filter
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Frequency F = 1.0 is a resonant frequency of the device
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A test case : an optical filter
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At right, transmission coefficient according to the frequency

Frequency F = 1.0 is a resonant frequency of the device

Enlightment of the device by a gaussian beam.

PML around the computational domain.
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Advantage to use high order method

Numerical solution for Q5 with 10 points by wavelength

Numerical integration and high-order finite element methods applied to time-harmonic Maxwell equations – p.7/44



Advantage to use high order method

At right, numerical solution for Q2 with 10 points by wave-

length
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Advantage to use high order method
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Advantage to use high order method
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 ||
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Norm of the solution at the ouput, according to the frequency
Which order is optimal to reach an error less than 10% ?

Order 2 3 4 5 6 7

Nb dofs 453 000 69 800 52 000 33 200 47 700 42 200
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Helmholtz equation

−ρω2 u − div(µ∇u) = f ∈ Ω
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Helmholtz equation

−ρω2 u − div(µ∇u) = f ∈ Ω

Use of finite element method leads to the following linear
system :

(−ω2Dh + Kh)Uh = Fh
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Helmholtz equation

−ρω2 u − div(µ∇u) = f ∈ Ω

Use of finite element method leads to the following linear
system :

(−ω2Dh + Kh)Uh = Fh

Mass matrix Dh =

∫

Ω
ρϕGL

i ϕGL
j dx

Stiffness matrix Kh =

∫

Ω
µ∇ϕGL

i · ∇ϕGL
j dx
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Helmholtz equation

−ρω2 u − div(µ∇u) = f ∈ Ω

Use of finite element method leads to the following linear
system :

(−ω2Dh + Kh)Uh = Fh

Mass matrix Dh =

∫

Ω
ρϕGL

i ϕGL
j dx

Stiffness matrix Kh =

∫

Ω
µ∇ϕGL

i · ∇ϕGL
j dx

Our aim is to develop an efficient iterative solver for an high

order of approximation r. We need then a fast matrix-vector

product (−ω2Dh + Kh)Uh
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Use of Gauss-Lobatto points

Gauss-Lobatto points for Q5

on the unit square K̂
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Use of Gauss-Lobatto points

Gauss-Lobatto points for Q5

on the unit square K̂

Use of these points both for interpolation and numerical
quadrature leads to a diagonal mass matrix Dh and a fast
matrix-vector product for Kh Uh
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Use of Gauss-Lobatto points

Gauss-Lobatto points for Q5

on the unit square K̂

Use of these points both for interpolation and numerical
quadrature leads to a diagonal mass matrix Dh and a fast
matrix-vector product for Kh Uh

See the thesis of S. Fauqueux, 2003

Numerical integration and high-order finite element methods applied to time-harmonic Maxwell equations – p.9/44



Use of Gauss-Lobatto points

Gauss-Lobatto points for Q5

on the unit square K̂

Use of these points both for interpolation and numerical
quadrature leads to a diagonal mass matrix Dh and a fast
matrix-vector product for Kh Uh

See the thesis of S. Fauqueux, 2003
These points permit a fast matrix-vector product
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Elementary matrices

(0,0) (1,0)

(1,1)(0,1)

K̂
Fi Ki

A4

A1

A2

A3

The transformation Fi

Numerical integration and high-order finite element methods applied to time-harmonic Maxwell equations – p.10/44



Elementary matrices

(0,0) (1,0)

(1,1)(0,1)

K̂
Fi Ki

A4

A1

A2

A3

The transformation Fi

(Dh)i,j =

∫

K̂

ρJi ϕ̂
GL
i ϕ̂GL

j dx̂

(Kh)i,j =

∫

K̂

µJiDF
−1
i DF ∗−1

i ∇̂ ϕ̂GL
i · ∇̂ϕ̂GL

j dx̂

Numerical integration and high-order finite element methods applied to time-harmonic Maxwell equations – p.10/44



Elementary matrices

(Dh)i,j =

∫

K̂

ρJi ϕ̂
GL
i ϕ̂GL

j dx̂

(Kh)i,j =

∫

K̂

µJiDF
−1
i DF ∗−1

i ∇̂ ϕ̂GL
i · ∇̂ϕ̂GL

j dx̂

Use of quadrature formulas (ωX
k , ξX

k ) on the unit square
X can be equal to GL (Gauss-Lobatto quadrature)
X can be equal to G (Gauss quadrature)
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Elementary matrices

(Dh)i,j =

∫

K̂

ρJi ϕ̂
GL
i ϕ̂GL

j dx̂

(Kh)i,j =

∫

K̂

µJiDF
−1
i DF ∗−1

i ∇̂ ϕ̂GL
i · ∇̂ϕ̂GL

j dx̂

Use of quadrature formulas (ωX
k , ξX

k ) on the unit square

Diagonal matrix

(Ah)k,k = ρ Ji(ξ
X
k )ωX

k

Bloc-diagonal matrix

(Bh)k,k = µJiDF
−1
i DF ∗−1

i (ξX
k )ωX

k
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Fast matrix vector product with any points
Let us introduce the two following matrices, independant of
the geometry :

Ĉi,j = ϕ̂GL
i (ξX

j ) R̂i,j = ∇̂ϕ̂X
i (ξX

j )
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Fast matrix vector product with any points
Let us introduce the two following matrices, independant of
the geometry :

Ĉi,j = ϕ̂GL
i (ξX

j ) R̂i,j = ∇̂ϕ̂X
i (ξX

j )

Thus, we have : Dh = Ĉ AhĈ
∗ Kh = ĈR̂ BhR̂

∗Ĉ∗
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Fast matrix vector product with any points
Let us introduce the two following matrices, independant of
the geometry :

Ĉi,j = ϕ̂GL
i (ξX

j ) R̂i,j = ∇̂ϕ̂X
i (ξX

j )

Thus, we have : Dh = Ĉ AhĈ
∗ Kh = ĈR̂ BhR̂

∗Ĉ∗

r is the order of approximation
If Ĉ and R̂ are stored as full matrices

Complexity of Ĉ U : 2 (r + 1)6 operations in 3-D
Complexity of R̂ U : 6 (r + 1)6 operations in 3-D

Complexity of standard matrix vector product : 2 (r + 1)6

operations in 3-D
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Fast matrix vector product with any points
Let us introduce the two following matrices, independant of
the geometry :

Ĉi,j = ϕ̂GL
i (ξX

j ) R̂i,j = ∇̂ϕ̂X
i (ξX

j )

Thus, we have : Dh = Ĉ AhĈ
∗ Kh = ĈR̂ BhR̂

∗Ĉ∗

For hexahedral elements (tensorization), we have
Complexity of Ĉ U : 6 (r + 1)4 operations in 3-D
Complexity of R̂ U : 6 (r + 1)4 operations in 3-D
Complexity of Ah U and Bh V : 16 (r + 1)3 operations in 3-D
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Fast matrix vector product with any points
Let us introduce the two following matrices, independant of
the geometry :

Ĉi,j = ϕ̂GL
i (ξX

j ) R̂i,j = ∇̂ϕ̂X
i (ξX

j )

Thus, we have : Dh = Ĉ AhĈ
∗ Kh = ĈR̂ BhR̂

∗Ĉ∗

For hexahedral elements (tensorization), we have
Complexity of Ĉ U : 6 (r + 1)4 operations in 3-D
Complexity of R̂ U : 6 (r + 1)4 operations in 3-D
Complexity of Ah U and Bh V : 16 (r + 1)3 operations in 3-D
If we use Gauss-Lobatto points to integrate : Ĉ = I

In this case : “equivalence theorem” of S. Fauqueux
Same storage for Gauss or GL points (Ah and Bh)
MV product two times slower with Gauss integration
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Matrix vector-product faster than standard methods ?
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Standard formulation
Mixed formulation

3-D comparison between the classical matrix-vector
algorithm and the fast algorithm (mixed formulation), in 3-D.
At left, time according to the order of approximation, at right
storage.

Numerical integration and high-order finite element methods applied to time-harmonic Maxwell equations – p.12/44



Matrix vector-product faster than standard methods ?
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3-D comparison between the classical matrix-vector
algorithm and the fast algorithm (mixed formulation), in 3-D.
At left, time according to the order of approximation, at right
storage.
Gain in time for r ≥ 4, gain in storage for r ≥ 2.
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Matrix vector-product faster than standard methods ?

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

Order of approximation

Ti
m

e

Tetrahedral elements
Mixed hexahedral

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Order of approximation

M
em

or
y

Tetrahedral elements
Mixed hexahedral

Comparison between hexahedral and tetrahedral elements,

for time computation (at left) and storage (at right)
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Iterative methods used
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BICGCR
BICGSTAB
GMRES

Evolution of the residual norm for the scattering of a perfectly conductor disc
(Dirichlet condition).

GMRES, BICGSTAB and QMR for complex unsymmetric matrices

COCG, BICGCR for complex symmetric matrices
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Iterative methods used
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Evolution of the residual norm for the scattering of a dielectric

disc (ρ = 4).
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Iterative methods used
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QMR
BICGCR
BICGSTAB

We choose to use BICGCR for all future experiments

Need of preconditioning techniques to have less iterations
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Preconditioning used

Incomplete factorization with threshold on the damped
Helmholtz equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems
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Preconditioning used

Incomplete factorization with threshold on the damped
Helmholtz equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems
We use a Q1 subdivided mesh to compute matrix

At left, initial mesh Q3, at right, subdivided mesh Q1
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Preconditioning used

Incomplete factorization with threshold on the damped
Helmholtz equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems

Multigrid method on the damped Helmholtz equation
see Y. A. Erlangga and al, Report of Delft University
Technology, 2004
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Preconditioning used

Incomplete factorization with threshold on the damped
Helmholtz equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems

Multigrid method on the damped Helmholtz equation
see Y. A. Erlangga and al, Report of Delft University
Technology, 2004

Without damping, both preconditioners doesn’t lead to
convergence.

A good choice of parameter is α = 1, β = 0.5
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Scattering by a dielectric sphere

Dielectric sphere of radius 2 and with ρ = 4 ω = 2π

First order absorbing boundary condition on a sphere of
radius 3
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Scattering by a dielectric sphere

Number of dofs to reach less than 5 % L2 error
Finite element structured Q2 struct Q4 struct Q6 n.s. Q4 n.s. P4

Number of dofs 220 000 85 000 78 000 243 000 180 000

Numerical integration and high-order finite element methods applied to time-harmonic Maxwell equations – p.15/44



Scattering by a dielectric sphere

Finite element structured Q4 non-structured Q4 non-structured P4

No preconditioning 708 s 5 795 s 1 597 s
ILUT(0.01) 91 s 534 s 363 s
Multigrid 185 s 729 s 695 s

Numerical integration and high-order finite element methods applied to time-harmonic Maxwell equations – p.15/44



Scattering by a dielectric sphere

Finite element structured Q4 non-structured Q4 non-structured P4

No preconditioning 34 Mo 99 Mo 136 Mo
ILUT(0.01) 137 Mo 420 Mo 507 Mo
Multigrid 50 Mo 143 Mo 327 Mo
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Scattering by a coated cone-sphere

Coated cone-sphere of radius 2 and length 12

Dielectric layer of thickness 0.8 with
ρ = 3 + 0.5i µ = 0.5 − 0.5i

First order absorbing boundary condition on the outside
boundary
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Scattering by a coated cone-sphere

Number of dofs to reach less than 5 % L2 error
Finite element n.s. Q2 n.s. Q4 n.s. P2 n.s. P4

Number of dofs 494 000 3 838 000 178 000 166 000
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Scattering by a coated cone-sphere

Finite element n.s. Q2 n.s. Q4 n.s. P2 n.s. P4

No preconditioning 1 787 s 42 200 s 193 s 516 s
ILUT(0.01) 370 s - 24 s 27 s
Multigrid 274 s 1 426 s 21 s 107 s
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Scattering by a coated cone-sphere

Finite element n.s. Q2 n.s. Q4 n.s. P2 n.s. P4

No preconditioning 1 787 s 42 200 s 193 s 516 s
ILUT(0.01) 370 s - 24 s 27 s
Multigrid 274 s 1 426 s 21 s 107 s

Finite element n.s. Q2 n.s. Q4 n.s. P2 n.s. P4

No preconditioning 447 Mo 1 590 Mo 150 Mo 150 Mo
ILUT(0.01) 1 100 Mo - 350 Mo 417 Mo
Multigrid 609 Mo 2 340 Mo 311 Mo 326 Mo
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Scattering by a cobra cavity

Cobra cavity of length 20, and depth 4

First order absorbing boundary condition on the yellow
face
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Scattering by a cobra cavity

Number of dofs to reach less than 5 % L2 error
Order struct Q4 struct Q6 struct Q8 n.s. Q4 n.s. Q6 n.s. P4

Nb dofs 330 000 185 000 95 600 567,000 466 000 360 000
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Scattering by a cobra cavity

Finite element structured Q8 non-structured Q6 non-structured P4

No preconditioning 9 860 s NC NC
ILUT(0.01) 1 021 s 13 766 s 8 036 s
Two-grid 1 082 s 6 821 s 14 016 s
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Scattering by a cobra cavity

Finite element structured Q8 non-structured Q6 non-structured P4

No preconditioning 9 860 s NC NC
ILUT(0.01) 1 021 s 13 766 s 8 036 s
Two-grid 1 082 s 6 821 s 14 016 s

Finite element structured Q8 non-structured Q6 non-structured P4

No preconditioning 32 Mo 162 Mo 251 Mo
ILUT(0.01) 150 Mo 1 250 Mo 1 400 Mo
Two-grid 60 Mo 283 Mo 710 Mo
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Outline

Resolution of Helmholtz equation

Resolution of time-harmonic Maxwell equations

Maxwell equations in axisymmetric domains
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Nedelec’s second family on quadrilaterals
Time-harmonic Maxwell’s equations :

−ω2 ε ~E(x) + curl(
1

µ(x)
curl( ~E(x))) = 0

Space of approximation

Vh = { ~u ∈ H(curl,Ω) such as DF ∗
i ~u ◦ Fi ∈ (Qr)

2 }
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Nedelec’s second family on quadrilaterals
Time-harmonic Maxwell’s equations :

−ω2 ε ~E(x) + curl(
1

µ(x)
curl( ~E(x))) = 0
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Nedelec’s second family on quadrilaterals
Time-harmonic Maxwell’s equations :

−ω2 ε ~E(x) + curl(
1

µ(x)
curl( ~E(x))) = 0

Mass lumping and factorization of stiffness matrix

Low-storage and fast matrix-vector product
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The unwanted oscillations
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0
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3

Scattering of a dielectric square. Left, mesh used for the si-

mulations . Right, numerical solution with Q5 finite edge ele-

ments with mass-lumping.
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Eigenmodes with the second family
Mesh used for the simulations (Q5)
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Eigenmodes with the second family

ω2 = 32.08 ω2 = 32.08 ω2 = 37.54 ω2 = 37.95
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Eigenmodes with the second family

ω2 = 32.08 ω2 = 32.08 ω2 = 37.54 ω2 = 37.95

ω2 = 37.98 ω2 = 38.00 ω2 = 38.03 ω2 = 38.03
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Eigenmodes with the second family

ω2 = 37.98 ω2 = 38.00 ω2 = 38.03 ω2 = 38.03

ω2 = 38.04 ω2 = 38.05 ω2 = 38.07 ω2 = 38.20
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Eigenmodes with the second family

ω2 = 38.04 ω2 = 38.05 ω2 = 38.07 ω2 = 38.20

ω2 = 39.48 ω2 = 39.48 ω2 = 41.95 ω2 = 41.95
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Discontinuous Galerkin method

−ω

∫

Ki

ε ~E · ~ϕ −

∫

Ki

H∇× ~ϕ −

∫

∂Ki

{H} ~ϕ× ~ν = 0

−ω

∫

Ki

µH ψ −

∫

Ki

∇× ~E ψ −
1

2

∫

∂Ki

[ ~E] × ~ν ψ = 0

Let us notice that

{H} = 1
2(Hi +Hj)

[ ~E] = ( ~Ei − ~Ej)

(1)
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Discontinuous Galerkin method

−ω

∫

Ki

ε ~E · ~ϕ −

∫

Ki

H∇× ~ϕ −

∫

∂Ki

{H} ~ϕ× ~ν = 0

−ω

∫

Ki

µH ψ −

∫

Ki

∇× ~E ψ −
1

2

∫

∂Ki

[ ~E] × ~ν ψ = 0

Unknowns in L2 ⇒ Gauss points instead of GL points

Mass lumping and fast matrix vector product

Thesis of S. Pernet, in time-domain
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Eigenmodes in DG method (2-D)
Mesh used for the simulations (Q5)
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Eigenmodes in DG method (2-D)

ω2 = 26.92 ω2 = 32.08 ω2 = 32.08 ω2 = 39.48
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Eigenmodes in DG method (2-D)

ω2 = 26.92 ω2 = 32.08 ω2 = 32.08 ω2 = 39.48

ω2 = 39.48 ω2 = 41.95 ω2 = 41.95
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Eigenmodes in DG method (2-D)

ω2 = 39.48 ω2 = 41.95 ω2 = 41.95

“Constant” number of spurious modes on regular meshes

“Decreasing” number of spurious on split meshes
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Eigenmodes in DG method (3-D)
Mesh used for the simulations (Q4)
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Eigenmodes in DG method (3-D)
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Eigenmodes in DG method (3-D)
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Eigenmodes in DG method (3-D)
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Eigenmodes in DG method (3-D)
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Eigenmodes in DG method (3-D)

Increasing number of spurious modes
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Penalization terms, eigenvalues
To the first equation in E, we add :

−iω α

∫

∂Ki

[E× n] · ϕ × n dx

We take α = 0.5
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Penalization terms, eigenvalues

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

Number eigenvalue

ω
2

Eigenvalues, if no penalization is used α = 0

Blue points are numeric eigenvalues, red lines analytic
eigenvalues.
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Penalization terms, eigenvalues
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Eigenvalues if penalization is used α = 0.5

Blue points are numeric eigenvalues, red squares analytic
eigenvalues.
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Penalization terms, eigenvalues
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Numeric eigenvalues − DG Q3

Penalization terms reject ALL spurious modes in complex
plane
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Effects of penalization

At left, numerical solution with α = 0, at right with α = 0.5
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Effects of penalization

Fine solution on split meshes

Negligible overcost in computational time
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Nedelec’s first family on hexahedra
Space of approximation

Vh = { ~u ∈ H(curl,Ω) so that DF t
i ~u ◦ Fi ∈ Qr−1,r,r × Qr,r−1,r × Qr,r,r−1 }
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Nedelec’s first family on hexahedra
Space of approximation

Vh = { ~u ∈ H(curl,Ω) so that DF t
i ~u ◦ Fi ∈ Qr−1,r,r × Qr,r−1,r × Qr,r,r−1 }

Basis functions

~̂ϕ1

i,j,k(x̂, ŷ, ẑ) = ψ̂G
i (x̂) ψ̂GL

j (ŷ) ψ̂GL
k (ẑ) ~ex 1 ≤ i ≤ r 1 ≤ j, k ≤ r + 1

~̂ϕ2

j,i,k(x̂, ŷ, ẑ) = ψ̂GL
j (x̂) ψ̂G

i (ŷ) ψ̂GL
k (ẑ) ~ey 1 ≤ i ≤ r 1 ≤ j, k ≤ r + 1

~̂ϕ3

k,j,i(x̂, ŷ, ẑ) = ψ̂GL
k (x̂) ψ̂GL

j (ŷ) ψ̂G
i (x̂) ~ez 1 ≤ i ≤ r 1 ≤ j, k ≤ r + 1
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Nedelec’s first family on hexahedra
Space of approximation

Vh = { ~u ∈ H(curl,Ω) so that DF t
i ~u ◦ Fi ∈ Qr−1,r,r × Qr,r−1,r × Qr,r,r−1 }

Basis functions

~̂ϕ1

i,j,k(x̂, ŷ, ẑ) = ψ̂G
i (x̂) ψ̂GL

j (ŷ) ψ̂GL
k (ẑ) ~ex 1 ≤ i ≤ r 1 ≤ j, k ≤ r + 1

~̂ϕ2

j,i,k(x̂, ŷ, ẑ) = ψ̂GL
j (x̂) ψ̂G

i (ŷ) ψ̂GL
k (ẑ) ~ey 1 ≤ i ≤ r 1 ≤ j, k ≤ r + 1

~̂ϕ3

k,j,i(x̂, ŷ, ẑ) = ψ̂GL
k (x̂) ψ̂GL

j (ŷ) ψ̂G
i (x̂) ~ez 1 ≤ i ≤ r 1 ≤ j, k ≤ r + 1

ψG
i , ψ

GL
i lagragian functions linked respectively with Gauss points and

Gauss-Lobatto points.

See. G. Cohen, P. Monk, Gauss points mass lumping
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Elementary matrices
Mass matrix :

(Mh)i,j =

∫

K̂

Ji DF
−1

i εDF ∗−1

i ϕ̂i · ϕ̂k dx̂

Stiffness matrix :

(Kh)i,j =

∫

K̂

1

Ji

DF t
i µ

−1DFi ∇̂ × ϕ̂i · ∇̂ × ϕ̂k dx̂
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Elementary matrices
Mass matrix :

(Mh)i,j =

∫

K̂

Ji DF
−1

i εDF ∗−1

i ϕ̂i · ϕ̂k dx̂

Stiffness matrix :

(Kh)i,j =

∫

K̂

1

Ji

DF t
i µ

−1DFi ∇̂ × ϕ̂i · ∇̂ × ϕ̂k dx̂

Use of Gauss-Lobatto quadrature (ωGL
k , ξGL

k )
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Elementary matrices
Mass matrix :

(Mh)i,j =

∫

K̂

Ji DF
−1

i εDF ∗−1

i ϕ̂i · ϕ̂k dx̂

Stiffness matrix :

(Kh)i,j =

∫

K̂

1

Ji

DF t
i µ

−1DFi ∇̂ × ϕ̂i · ∇̂ × ϕ̂k dx̂

Use of Gauss-Lobatto quadrature (ωGL
k , ξGL

k )

Block-diagonal matrix

(Ah)k,k =
[

JiDF
−1

i εDF ∗−1

i

]

(ξGL
k )ωGL

k

Block-diagonal matrix

(Bh)k,k =
[ 1

Ji

DF t
i µ−1DFi

]

(ξGL
k )ωGL

k
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Fast matrix vector product
Let us introduce the two following matrices, independant of
the geometry :

Ĉi,j = ϕ̂i(ξ
GL
j ) R̂i,j = ∇̂ × ϕ̂GL

i (ξGL
j )
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Fast matrix vector product
Let us introduce the two following matrices, independant of
the geometry :

Ĉi,j = ϕ̂i(ξ
GL
j ) R̂i,j = ∇̂ × ϕ̂GL

i (ξGL
j )

Then, we have : Mh = Ĉ AhĈ
∗ Kh = ĈR̂ BhR̂

∗Ĉ∗
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Fast matrix vector product
Let us introduce the two following matrices, independant of
the geometry :

Ĉi,j = ϕ̂i(ξ
GL
j ) R̂i,j = ∇̂ × ϕ̂GL

i (ξGL
j )

Then, we have : Mh = Ĉ AhĈ
∗ Kh = ĈR̂ BhR̂

∗Ĉ∗

Complexity of Ĉ U : 6 (r + 1)4 operations in 3-D

Complexity of R̂ U : 12 (r + 1)4 operations in 3-D

Complexity of Ah U + Bh U : 30 (r + 1)3 operations
Complexity of standard matrix vector product 18r3 (r + 1)3
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Fast matrix vector product
Let us introduce the two following matrices, independant of
the geometry :

Ĉi,j = ϕ̂i(ξ
GL
j ) R̂i,j = ∇̂ × ϕ̂GL

i (ξGL
j )

Then, we have : Mh = Ĉ AhĈ
∗ Kh = ĈR̂ BhR̂

∗Ĉ∗

Complexity of Ĉ U : 6 (r + 1)4 operations in 3-D

Complexity of R̂ U : 12 (r + 1)4 operations in 3-D

Complexity of Ah U + Bh U : 30 (r + 1)3 operations
Complexity of standard matrix vector product 18r3 (r + 1)3

Matrix-vector product 67% slower by using exact
integration
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Spurious free method
Mesh used for the simulations (Q5)
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Spurious free method
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Spurious free method
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Spurious free method

Approximate integration leads to a spurious-free method
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Convergence of the method

Scattering by a perfectly conductor sphere E × n = 0

Numerical integration and high-order finite element methods applied to time-harmonic Maxwell equations – p.31/44



Convergence of the method

Convergence of Nedelec’s first family on regular
meshes
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Optimal convergence O(hr) in H(curl,Ω) norm
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Convergence of the method

Convergence on tetrahedral meshes split in hexahedra
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Is the matrix-vector product fast ?

Comparison between standard formulation and discrete
factorization

Order 1 2 3 4 5
Time, standard formulation 55s 127s 224s 380s 631
Time, discrete factorization 244s 128s 106s 97s 96s
Storage, standard formulation 18 Mo 50 Mo 105 Mo 187 Mo 308 Mo
Storage, discrete factorization 23 Mo 9.9 Mo 6.9 Mo 5.7 Mo 5.0 Mo
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Is the matrix-vector product fast ?

Comparison between tetrahedral and hexahedral
elements
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At left, time computation for a thousand iterations of COCG

At right, storage for mesh and matrices
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Comparison DG method vs first family

Both methods are spectrally correct

Both methods have a fast MV product
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Comparison DG method vs first family

Both methods are spectrally correct

Both methods have a fast MV product
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Preconditioning used

Incomplete factorization with threshold on the damped
Maxwell equation :

−k2(α + iβ)εE − ∇× (
1

µ
∇× E) = 0

ILUT threshold ≥ 0.05 in order to have a low storage
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Preconditioning used

Incomplete factorization with threshold on the damped
Maxwell equation :

−k2(α + iβ)εE − ∇× (
1

µ
∇× E) = 0

ILUT threshold ≥ 0.05 in order to have a low storage
Use of a Q1 subdivided mesh to compute matrix

=⇒
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Preconditioning used

Incomplete factorization with threshold on the damped
Maxwell equation :

−k2(α + iβ)εE − ∇× (
1

µ
∇× E) = 0

Multigrid method on the damped Maxwell equation
Use of the Q1 mesh to do the multigrid iteration
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Preconditioning used

Incomplete factorization with threshold on the damped
Maxwell equation :

−k2(α + iβ)εE − ∇× (
1

µ
∇× E) = 0

Multigrid method on the damped Maxwell equation
Use of the Q1 mesh to do the multigrid iteration

Without damping, both preconditioners doesn’t lead to
convergence.

A good choice of parameter is α = 0.7, β = 0.35
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Transparent condition
Silver-Muller condition is a first-order ABC :

E × n+ n×H × n = 0
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Transparent condition
Silver-Muller condition is a first-order ABC :

E × n+ n×H × n = 0

Use of a transparent condition based on integral representation formulas :

E
pot(x) =

Z

Γ

ik (G(x, y) +
1

k2
∇y∇yG(x, y)) (n×H)(y) dy +

Z

Γ

(n×E)(y)×∇yG(x, y) dy

new boundary condition E × n + n × H × n = Epot
× n + n × Hpot

× n

Needs of a virtual boundary Γ

Σ

Incident Plane Wave

Γ

Ω

µ = µ0
ε = ε0

GMRES iterations to solve linear system
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Transparent condition
Silver-Muller condition is a first-order ABC :

E × n+ n×H × n = 0

Use of a transparent condition based on integral representation formulas :

Needs of a virtual boundary Γ

Σ

Incident Plane Wave

Γ

Ω

µ = µ0
ε = ε0

GMRES iterations to solve linear system

C. Hazard, M. Lenoir, On the solution of time-harmonic scattering problems
for Maxwell’s equations
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Radar cross section

Computation of far field of the electromagnetic objects
by the formula

σ(u) =
k2

4π

∫

Σ
eiku·OM

[

u× (n×H) + (u⊗ u − I)(E× n)
]

dM
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Radar cross section

Computation of far field of the electromagnetic objects
by the formula

σ(u) =
k2

4π

∫

Σ
eiku·OM

[

u× (n×H) + (u⊗ u − I)(E× n)
]

dM

Bistatic RCS : the vector of observation u varies

Monostatic RCS : the wave vector k varies and u = k
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Scattering by a dielectric sphere

Sphere of radius 2 with ε = 3.5 µ = 1

Outside boundary on a sphere of radius 3.
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Scattering by a dielectric sphere

How many dofs/time to reach an error less than 0.5 dB

−350 −300 −250 −200 −150 −100 −50 0
−5

0

5

10

15

20

25

30

35

40

θ (in degrees)

Rc
s (

dB
 m

2 )

Analytical RCS
Numerical RCS

Finite Element Q2 Q4 Q6 Q8

Nb dofs 940 000 88 000 230 000 88 000
No preconditioning 19 486 s 894 s 4 401 s 1 484 s
ILUT(0.05) - 189 s 1 035 s 307 s
Two-grid 4 4344 s 488 s 1 095 s 952 s
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Scattering by a cobra cavity

Cobra cavity of length 10, and depth 2

Outside boundary at a distance of 1
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Scattering by a cobra cavity

How many dofs/time to reach an error less than 0.5 dB

−450 −400 −350 −300 −250 −200 −150 −100
0

10

20

30

40

50

60

θ

Rc
s (

dB
 m

2 )

Finite Element Q4 Q6

Nb dofs 412 000 187 000
No preconditioning 14 039 s 12 096 s
ILUT(0.05) 2 247 s 846 s
Two-grid 9 294 s 10 500 s
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Outline

Resolution of Helmholtz equation

Resolution of time-harmonic Maxwell equations

Maxwell equations in axisymmetric domains
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Maxwell equations in axisymmetric domains

Polar coordinates (r, θ, z) and associated vectors (r̂, θ̂, ẑ)

Fourier decomposition of electric and magnetic field :

E =
+∞
∑

m=−∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

Er,m

Eθ,m

Ez,m

e−imθ H =
+∞
∑

m=−∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hr,m

Hθ,m

Hz,m

e−imθ

Four unknowns : E = (Er, Ez), Eθ, H, Hθ
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Maxwell equations in axisymmetric domains

Polar coordinates (r, θ, z) and associated vectors (r̂, θ̂, ẑ)

Four unknowns : E = (Er, Ez), Eθ, H, Hθ

Independant equations for each mode m

−ω2 εE +
m

r
H̃ −

1

r
rot(r Hθ) = 0

µH +
m

r
Ẽ −

1

r
rot(r Eθ) = 0

−ω2 εEθ + rot H = 0

µHθ + rot E = 0
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Discretization

Mixed formulation with E, Eθ ∈ H(curl,Ω) ×H1(Ω)

H, Hθ ∈ (L2(Ω))3

High-order edge elements and nodal elements
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Discretization

Mixed formulation with E, Eθ ∈ H(curl,Ω) ×H1(Ω)

H, Hθ ∈ (L2(Ω))3

High-order edge elements and nodal elements

Coupling with an integral equation at the boundary

Additional unknown J = n×H, is discretized in H1(Γ)

Numerical integration of singularities (Duffy, polar...)
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Discretization

Mixed formulation with E, Eθ ∈ H(curl,Ω) ×H1(Ω)

H, Hθ ∈ (L2(Ω))3

High-order edge elements and nodal elements

Coupling with an integral equation at the boundary

Additional unknown J = n×H, is discretized in H1(Γ)

Numerical integration of singularities (Duffy, polar...)

CFIE (Combined Field Integral Equation) formulation is
used to avoid resonant problems

Curved elements to have a good approximation of
geometry
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Perfectly conductor case

Only integral equations are used
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Perfectly conductor case

Only integral equations are used
Cone-sphere case :
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Perfectly conductor case

Only integral equations are used
Monostatic RCS, polarization HH :
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Perfectly conductor case

Only integral equations are used
Monostatic RCS, polarization HH :

Number of dofs to reach error less than 0.5 dB

Order Q1 Q2 Q3 Q4 Q5

Dofs 120 66 62 74 72
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Dielectric case
Cone-sphere case, with dielectric material :

ε = 15 + 1.8i µ = 1.7 + 1.7i

0 20 40 60 80 100 120 140 160 180
−30

−20

−10

0

10

20

30
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R
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 (d
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 m
2 )
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Dielectric case
Cone-sphere case, with dielectric material :

ε = 15 + 1.8i µ = 1.7 + 1.7i

0 20 40 60 80 100 120 140 160 180
−30

−20

−10

0

10

20

30

θ

R
cs

 (d
B

 m
2 )

Number of dofs (for the unknown J ) to reach error ≤ 0.5 dB :

Order Q1 Q2 Q3 Q4 Q5

Nb dofs 634 258 182 170 162
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Prospects

Improvement of preconditioning techniques for 3-D
Maxwell’s equations

Coupling of integral equations and finite element in 3-D
Integration of singularities is more difficult than in
axisymmetric case
Non-conformity of surfacic mesh and volumic mesh, in
order to use different orders of approximation

Coupling of 3-D solver and axisymmetric solver

Coupling of Discontinuous Galerkin method with
Nedelec’s first family
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