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Abstract

This paper concerns the sequential estimation of a hidden state vector from noisy observations delivered by

several sensors. Different from the standard framework, we assume here that the sensors may switch autonomously

between different sensor states, that is, between different observation models. This includes sensor failure or sensor

functioning conditions change. In our model, sensor states are represented by discrete latent variables, which prior

probabilities are Markovian. We propose a family of efficient particle filters, for both synchronous and asynchronous

sensor observations, as well as for important special cases. Moreover, we discuss connections with previous works.

Finally, we study thoroughly a wheel land vehicle positioning problem where the GPS information may be unreliable

because of multipath/masking effects.
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Index Terms

Sequential Monte Carlo Methods, Particle Filter, Multisensor System, Data Fusion, Global Positioning System,

Switching Observation Model, Fault Detection.

I. INTRODUCTION

Statistical Bayesian filtering aims at computing the posterior probability density function (pdf) of a state vector

xt ∈ X from sequentially obtained sensor measurements, called observations. It relies, in the state-space formulation,

on a state evolution model

xt = f(xt−1,vt) (1)
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where f is a nonlinear function and vt is a white noise. In the following, the time index t is assumed to be an

integer, that is, t ∈ {1, 2, 3, . . .}. Eq. (1) can be equivalently written in terms of the conditional pdf xt ∼ p(xt|xt−1),

where ∼ means ’statistically distributed according to’. The state xt is assumed to evolve in a very general state

space X , which might be continuous and/or discrete1.

In complex problems, a single sensor is usually unable to provide full knowledge about the hidden state. It is then

necessary to achieve the fusion of several observations zk,t (k = 1, . . . , n) provided by n sensors. Each observation

is related to the hidden state by an observation probability law p(zk,t|xt).

Sensors delivering observations are generally assumed to be in their nominal state of work (i.e., a nominal

observation pdf pk,1(zk,t|xt) for each sensor k = 1, .., n). For example, the observation pdf of a camera may be

identified during a bright and non-smoggy day. However, in realistic contexts, the sensor functioning conditions may

change, resulting in an observation pdf that is quite different from the nominal one. This usually happen because

of, e.g., external environment changes or sensor damage. In such cases, it is necessary to detect that the sensor

is no more in its nominal state of work and, whenever possible, identify the true state of work of each sensor in

order to avoid dramatic state estimation errors. In our framework, this comes down to selecting an observation pdf

pk,j(zk,t|xt) in a list. In the camera example discussed above, the statistical relationship between the state xt and

an observation zk,t (k = 1, . . . , n) may undergo changes along the day, due to smog, dust or dawn. Other such

examples are provided in the Results Section below. The case of fatal sensor failure is also considered as a major

sub-case in the following.

A. Problem statement

In this paper, we address sequential estimation problems where a sensor may switch between states of work,

using Bayesian filtering. These states of work are denoted by discrete variables ck,t, where we adopt the convention

ck,t ∈ {0, . . . , dk} for k = 1, . . . , n. In the following, the ck,t’s are also referred to as latent variables, or sensor

states. Of course, the observation model is determined by ck,t. More precisely, for each sensor k = 1, . . . , n, there

are dk possible observation models, denoted (for sensor state ck,t ∈ {1, . . . , dk})

zk,t = hk,ck,t,t(xt) + wk,ck,t,t (2)

where hk,ck,t,t and wk,ck,t,t are the (nonlinear) observation function and observation noise of the observation model

ck,t of sensor k at time t. We adopt the following convention for the definition of the latent variables ck,t:



ck,t = 0 if the observation zk,t is independent of xt

ck,t = 1 if the sensor k is in its nominal state of work

ck,t = j, j ∈ {2, .., dk} if the sensor k is in

its jth state of work

1For the sake of clarity, we use a slight abuse of notation throughout the paper: though the state/observations may contain discrete components,

we denote the state probability distribution as a pdf with p(·|·).
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When a sensor undergoes fatal failure, that is, when zk,t is statistically independent of xt, zk,t follows a vague pdf

denoted pk,0(zk,t). In the general case, the joint observation pdf for all the n sensors is written compactly as

zt ∼ p(zt|xt, ct) (3)

where

p(zt|xt, ct) =
n∏

k=1

p(zk,t|xt, ck,t) (4)

and

p(zk,t|xt, ck,t) = δ0(ck,t)pk,0(zk,t) +
dk∑

j=1

δj(ck,t)pk,j(zk,t|xt) (5)

with zt = {z1,t, . . . , zn,t} and ct = {c1,t, . . . , cn,t}. δa is the Dirac delta function centered on a.

The state transition equation (1) and the observation equation (3) being defined, the sequential Bayesian filtering

model is almost completely set. In order to make it complete, the prior probability that ck,t (for k = 1, . . . , n) is

in a given state j (j = 0, . . . , dk) is denoted αk,j,t. The αk,j,t’s represent the confidence we have in each sensor to

be in a given state, as

Pr(ck,t = j) = αk,j,t, 0 ≤ j ≤ dk (6)

where αk,j,t ≥ 0 and
∑dk

j=0 αk,j,t = 1.

Let αt be the vector built from the individual αk,j,t’s for k = 1, . . . , n, and j = 0, . . . , dk. These confidence

variables are, in practice, quite difficult to tune a priori, because the sensors external conditions may change rapidly

and unexpectedly. In order to tune them adaptatively, we propose to define Markov evolution model for the vector

of probabilities αt, as follows

αt ∼ p(αt|αt−1) (7)

Of course, the pdf p(αt|αt−1) is defined so that the αk,j,t’s are probabilities for all t (i.e., they are positive and

sum up to one for each sensor k).

B. Estimation objectives and algorithms

Bayesian filtering aims at estimating the posterior pdf p(x0:t, c1:t, α0:t|z1:t) with a special interest in the marginal

posterior p(xt|z1:t). (The notation at1:t2 denotes all the elements of a vector a between times t1 and t2.) In general,

p(xt|z1:t) has a very complex shape, and cannot be calculated in closed-form. Sequential Monte Carlo methods

for Bayesian filtering [1], [2], [3], [4], [5] (also called particle filters) provide a numerical approximation of this

marginal pdf using a set of weighted random samples, called particles. More precisely, the particles x̃(i)
0:t, with

weights w̃
(i)
t , approximate the posterior pdf p(x0:t|z1:t) thanks to the empirical distribution PN (dx0:t)

PN (dx0:t) '
N∑

i=1

w̃
(i)
t δex(i)

0:t
(dx0:t) (8)
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(for the sake of notational simplicity, we assume that the state reduces to xt, up to the end of this subsection).

This empirical distribution can be used to compute Bayesian estimates of the state vector x0:t. For example the

minimum mean squared error (MMSE) estimate is

Ep(x0:t|z1:t) [x0:t] =
∫

X t+1
x0:tp(x0:t|z1:t)dx0:t

≈
∫

X t+1
x0:tPN (dx0:t) =

N∑

i=1

w̃
(i)
t x̃(i)

0:t (9)

This approximation becomes more precise as the number N of particles increases [6]. Particle filters have many

good properties that make them attractive for practical problems.

• As opposed to Kalman filters-based algorithms (Extended [7] or Unscented [8] Kalman filters), they do not

assume Gaussian distribution. They can be implemented for arbitrary (multimodal or highly skewed) posterior

pdf, which arise in particular when faced with nonlinear observation and evolution models or non-Gaussian

noises [3]

• They can deal with hybrid state vector (both continuous and discrete), see e.g. [9]

• The tradeoff between estimation accuracy and computational load comes down to adjusting the number of

particles [3]

The standard particle filter algorithm is based on sequential importance sampling, with weight normalization. It

is presented in Algorithm 1 below.

Algorithm 1: Standard Particle filter

% Step 1.1 Initialization

• For particles i = 1, .., N , do

– Sample the initial state according to some initial distribution π0, that is x(i)
0 ∼ π0(x0)

– Compute the initial weights w
(i)
0 = p(x

(i)
0 )

π0(x
(i)
0 )

• Normalize the weights so that
∑N

i=1 w
(i)
0 = 1

• For t = 1, 2, ... do

% Step 1.2 Iterations

– For particles i = 1, .., N do

∗ Sample the state at time t using the importance distribution q, that is x̃(i)
t ∼ q(xt|x(i)

t−1, z1:t)

∗ Update the weight

w̃
(i)
t ∝w̃

(i)
t−1

p(zt|x̃(i)
t )p(x̃(i)

t |x̃(i)
t−1)

qt(x̃
(i)
t |x̃(i)

t−1)

where the proportionality constant is such that
∑N

i=1 w̃
(i)
t = 1

% Step 1.3 Resampling

– Compute

Neff =

[
N∑

i=1

(
w̃

(i)
t

)2
]−1

(10)
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– If Neff ≤ η then resample the particles: duplicate particles with large weights and suppress particles with

low weights. The resulting particles are denoted x(i)
t and their weights are w

(i)
t = 1

N . (η is a threshold set

to, e.g., 0.8×N .)

– Otherwise, rename particles, that is, set x(i)
t ← x̃(i)

t .

C. Main contributions and paper organization

This paper proposes several contributions. First, in Section II, we present the general framework, and the statistical

models chosen. Second, the switching sensor states model presented above is fully explored, and a family of

particle filtering algorithms especially designed for this model are presented, see Section III. In particular, we

propose efficient importance distributions for the state xt, the latent variables ct and the probabilities αt. Third, we

consider the important case where the sensors deliver their observations in an asynchronous way. Indeed, in practice,

there might be a different sampling device for each sensor, and these devices may not have the same sampling

frequencies, nor the same clocks, and the observations are collected at different times for different sensors. We also

discuss several important subcases:

• Binary valid/fail sensor states. In most applications, users have one observation model for each sensor,

corresponding to the nominal state of work. The important matter concerns possible sensor failures. In this

case, the state variable of sensor k is binary, i.e., ck,t ∈ {0, 1} for all t.

• A Rao-Blackwellized algorithm [3] is proposed, for cases where the state evolution and observation models are

linear and Gaussian. This enables easy sensor failure detection in already existing Kalman filter-based systems.

• Switching variance observation models are investigated, i.e. when the statistics of the additive noise wk,j,t

switch between different values, while the observation function hk,j,t = hk,t remains the same. These noise

characteristics changes may be caused by, e.g., external environment conditions which bring supplementary

noise.

In Section IV, we propose a survey of related approaches. In particular, the connections of our approach to Jump

systems with fixed priors, Jump Markov (Linear) Systems, and that of Hue et. al. [10] are discussed, as well as the

differences and relevance of our statistical jump model with respect to these models. Simulations concerning two

academic, synthetic data where sensors have two or three states of work, including sensor fatal failure are presented in

order to show the accuracy of the method. Comparisons are provided with Jump systems with fixed priors and Jump

Markov Systems. Various interpretations and possible extensions are also proposed. In Section V, a real example

is fully addressed. It concerns the localization of a land wheel vehicle where the sensors provide measurements

of steering, speed and GPS position, potentially corrupted due to multipath or mask effects. Several state-of-the-

art Bayesian estimation methods are tested, and our particle filtering approach, together with an unscented-based

approximation shows to have the best performance.
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Fig. 1. Overall Bayesian sequential model for multisensor fusion with switching observation models. The discrete vector ct indicates the

observation model of each sensor, with prior probabilities αt. The evolution of the hidden state xt and αt is tuned by the hyperparameter

vector σt which also evolves. The aim of this model is to estimate accurately the hidden state xt from the sensor measurements zt even though

the sensor state of work may be switching.

II. SEQUENTIAL BAYESIAN MODELS

In this section, we give details about the switching observation model. Moreover, we propose several explicit

evolution pdfs for the probabilities αt, and prior pdfs over the observations.

The parameters to be estimated are essentially the state vector xt and the discrete variables ct. We propose to

apply sequential Bayesian estimation of these parameters, based on the following evolution models

xt ∼ p(xt|xt−1, σt) (11)

ct ∼ Pr(ct|αt) (12)

αt ∼ p(αt|αt−1, σt) (13)

σt ∼ p(σt|σt−1) (14)

This general dynamic model is summarized in Fig. 1. It should be noted that, through the incorporation of the

Markov prior over αt, the sensor states ct are not i.i.d.. Actually, ct depends on the past values c0, . . . , ct−1 by

marginalizing out the α0, . . . , αt. These evolution models (also called prior pdfs) are:

• p(xt|xt−1,σt) is the state evolution model, defined in Eq. (1) for t = 1, 2, . . .. At time 0, it is assumed that

x0 ∼ p0(x0).

• Pr(ct|αt) is the prior over the sensor state variables ck,t, k = 1, . . . , n. It is defined as

Pr(ct|αt) =
n∏

k=1

Pr(ck,t|αk,t) (15)

with

Pr(ck,t|αk,t) =
dk∑

j=0

δj(ck,t)αk,j,t (16)
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where αk,t = {αk,0,t...αk,dk,t}. The choice of probabilities αk,j,t is extremely sensitive for the correct

estimation of sensors state of work. Moreover, the αk,j,t’s might evolve, because sensor reliability decreases as

the sensor becomes older, for example. Consequently, these probabilities are considered as unknown parameters

with a Markov prior, and they are also estimated.

• The evolution model p(αt|αt−1) for αt is as a Dirichlet distribution for each sensor k = 1, . . . , n

(αk,0,t, . . . , αk,dk,t) ∼ D(σα
k,tαk,0,t−1, . . . , σ

α
k,tαk,dk,t−1) (17)

where σα
k,t is a sensor specific coefficient which adjusts the spread of the αk,j,t’s. We recall the definition of

a Dirichlet distribution for a set of random variables (b0, .., bp) ∼ D(a0, .., ap)

D(a0, .., ap) =
Γ(

∑p
l=0 al)∏p

l=0 Γ(al)

p∏

l=0

bal−1
l δ1(

p∑

l=1

bl) (18)

where Γ is the gamma function. In the important special case where ck,t ∈ {0, 1} (dk = 1), the Dirichlet

distribution reduces then to a beta distribution.

At time t = 0, we assume that αk,0 ∼ p0(αk,0). The coefficient σα
k,t tunes the evolution of αk,t. In order

to avoid setting a fixed value for σα
k,t (and thus fixed dynamics for αk,t) this coefficient is also estimated, as

explained below, Eq (19).

• p(σt|σt−1) is the hyperparameter transition equation. In many problems, it is assumed that the evolution

noise vt is Gaussian. In this case, each scalar component of vt is assumed to have variance (σv
t )2. As these

variances have an important influence on the Bayesian filter behavior, it may be important to consider them

as unknowns. For each of these variances, the evolution model may be

log(σv
t ) = log(σv

t−1) + λv (19)

where λv is a zero mean white Gaussian noise with fixed and known variance. The log function is used to ensure

that the variances remain positive. This can also be applied to the hyperparameter that tunes the evolution of αt,

denoted σα
k,t above. A similar hyperparameter evolution model may be found in [9] where it is shown that letting

the hyperparameters follow this model robustifies the estimation. The shorthand σt = {σv
t , σα

k,t|k = 1, .., n}
denotes the full set of hyperparameters. In the following, the hyperparameter σv

t will be assumed as known

and fixed (considering that it is not the central point of this article) and the shorthand σt = {σα
k,t|k = 1, .., n}.

The model defined above allows, in theory, the estimation of the augmented state composed of the state vector xt,

the discrete latent variables ct, the confidence coefficients αt and the hyperparameters σt. In the general case, it is

not possible to calculate the posterior p(x0:t, c1:t, α0:t,σ0:t|z1:t) in closed form at each time step. Particle filters [3]

are widely used and provide the most convincing approach to tackle such problems. In the following section, we

present several algorithms for synchronous/asynchronous sensor measurements, and for important special cases.

III. PARTICLE FILTERING ALGORITHMS FOR SWITCHING OBSERVATION MODELS

In this section, we present several particle filtering algorithms for switching observation models. The cases of

synchronous and asynchronous measurements are resp. addressed in Subsections III-A and III-B, where dedicated
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algorithms are presented. In Subsection III-C, importance distributions are presented, some being designed for

the general switching observation model framework, and some especially for the special cases a) Binary case

valid/failing (ck,t ∈ {0, 1}), b) conditionally linear and Gaussian System and c) Switching observation variances.

A. SISR algorithm for synchronous sensors

In some cases, the measurements provided by the n sensors are synchronous, that is, all the sensors have the

same sampling frequency and the measurements from all the sensors arrive at the same time. The corresponding

algorithm is presented in Algorithm 2 below.

Algorithm 2: Particle filter for switching

observation models – Synchronous case

% Step 2.1 Initialization

• For particles i = 1, .., N sample2 x
(i)
0 ∼ p0(x0)

• For particles i = 1, .., N , sample σ
(i)
0 ∼ p0(σ0)

• For particles i = 1, .., N , sample α
(i)
0 ∼ p0(α0|σ(i)

0 )

• Set the initial weights w
(i)
0 ← 1

N

% Step 2.2 Iterations

• For t=1,2,... do

– For particles i = 1, .., N , do

∗ Sample the sensor state variable c̃(i)
t ∼ q(ct|x(i)

t−1, α
(i)
t−1, zt)

∗ Sample the state vector x̃(i)
t ∼ q(xt|x(i)

t−1, c̃
(i)
t , zt)

∗ Sample the probabilities α̃
(i)
t ∼ q(αt|α(i)

t−1, c̃
(i)
t , σ

(i)
t−1)

∗ Sample the hyperparameter vector σ̃
(i)
t ∼ q(σt|σ(i)

t−1, α̃
(i)
t ,α

(i)
t−1)

– For particles i = 1, .., N , update the weights

w̃
(i)
t ∝ w

(i)
t−1

p(zt|x̃(i)
t , c̃(i)

t )p(x̃(i)
t |x(i)

t−1)

q(x̃(i)
t |x(i)

t−1, c̃
(i)
t , zt)q(c̃

(i)
t |x(i)

t−1, α
(i)
t−1, zt)

× p(c̃(i)
t |α̃(i)

t )p(α̃(i)
t |α(i)

t−1, σ̃
(i)
t )p(σ̃(i)

t |σ(i)
t−1)

q(α̃(i)
t |α(i)

t−1)q(σ̃
(i)
t |σ(i)

t−1, α̃
(i)
t ,α

(i)
t−1)

(20)

– Normalize the weights so that
∑N

i=1 w̃
(i)
t = 1

% Step 2.3 Resampling

– Compute Neff as in Eq. (10) and perform particle resampling whenever Neff < η , see Step 1.3 in

Algorithm 1.

The importance distributions q(·) used in Algorithm 2 are presented in Subsection III-C below.

2The pdfs p0(·) used in the initialization can be any pdf over the state space, e.g., uniform or derived from some heuristics.
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B. SISR algorithm for asynchronous sensors

In many cases, the sensors are equipped with individual sampling devices which do not have the same sampling

frequencies nor the same clock. As a result, the measurements originating from each of the sensors are available

at different times. This requires a specific particle filtering algorithm, which is presented in Algorithm 3 below.

Algorithm 3: Particle filter for switching

observation models – Asynchronous case

% Step 3.1: Initialization

• This step is similar to Step 2.1 in Algorithm 2.

% Step 3.2: Iterations

• For t=1,2,... do

– Await the arrival of a new measure zk,t, delivered by sensor k, k = 1, . . . , n and, for particles i = 1, .., N ,

do

∗ Sample the state of sensor k as c̃
(i)
k,t ∼ q(ck,t|x(i)

t−1,α
(i)
k,t−1, zk,t)

∗ Sample the state variable x̃(i)
t ∼ q(xt|x(i)

t−1, c̃
(i)
k,t, zk,t)

∗ Sample the sensor state probabilities α̃
(i)
k,t ∼ q(αk,t|α(i)

k,t−1, c̃
(i)
k,t, σ

(i)
t−1) for sensor k

∗ Sample the relevant hyperparameters σ̃
α (i)
k,t ∼ q(σα

k,t|σα (i)
k,t−1, α̃

(i)
k,t,α

(i)
k,t−1)

– For particles i = 1, .., N , update the weights

w̃
(i)
t ∝ w

(i)
t−1

p(zk,t|x̃(i)
t , c̃

(i)
k,t)p(x̃(i)

t |x(i)
t−1)

q(x̃(i)
t |x(i)

t−1, c̃
(i)
k,t, zk,t)

× p(c̃(i)
k,t|α̃(i)

k,t)p(α̃(i)
k,t|α(i)

k,t−1, σ̃
α (i)
k,t )

q(c̃(i)
k,t|x(i)

t−1,α
(i)
k,t−1, zk,t)q(α̃

(i)
k,t|α(i)

k,t−1)

× p(c̃(i)
k,t|α̃(i)

k,t)p(σ̃α (i)
k,t |σα (i)

k,t−1)

q(σ̃α (i)
k,t |σα (i)

k,t−1, α̃
(i)
t , α

(i)
t−1)

(21)

Normalize the weights so that
∑N

i=1 w̃
(i)
t = 1

% Step 3.3 Resampling

– This step is similar to Step 2.3 in Algorithm 2.

The principle of this algorithm is quite close to that of Algorithm 2. In the latter algorithm, however, the state

vector xt is updated each time a new observation arrives from one of the sensors. In practice, Algorithm 3 is more

likely to be used, as many new sensors incorporate a sampling/pre-processing unit.

The importance distributions used in Algorithm 3, as well as those of Algorithm 2, are described in the next

subsection.
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C. Importance distributions

In Algorithms 2 and 3, particles are extended from time t−1 to time t using importance distributions denoted q(·).
We have defined one for each of the variables, namely q(ct|x(i)

t−1,α
(i)
t−1, zt), q(xt|x(i)

t−1, c̃
(i)
t , zt), q(αt|α(i)

t−1, c̃
(i)
t ,σ

(i)
t−1)

and q(σt|σ(i)
t−1, α̃

(i)
t , α

(i)
t−1). Their choice is of paramount importance for particle filtering algorithm efficiency [2].

The selection of the state importance distribution q(xt|x(i)
t−1, c̃

(i)
t , zt) is not specific to our framework, i.e., it may be

one of the standard choices [2], [3]: the optimal importance distribution q(xt|x(i)
t−1, c̃

(i)
t , zt) = p(xt|x(i)

t−1, c̃
(i)
t , zt),

or approximations of it obtained by applying Extended/Unscented Kalman filtering [2], [11].

The choice of the importance distribution q(ct|x(i)
t−1, α

(i)
t−1, zt) is crucial and it is specific to our framework. A

first remark is that the number of possible values of vector ct is
n∏

k=1

(1 + dk), and testing each possible combination

is not realistic. For optimal efficiency, it is necessary that the distribution q(ct|x(i)
t−1,α

(i)
t−1, zt) proposes the most

probable configurations, that is, the most probable states ck,t for each sensor, k = 1, . . . , n. Since the sensors are

likely to switch state independently of the other sensors, this importance distribution is written

q(ct|x(i)
t−1, α

(i)
t−1, zt) =

n∏

k=1

q(ck,t|x(i)
t−1, α

(i)
k,t−1, zk,t) (22)

where the individual importance distributions q(ck,t|x(i)
t−1, α

(i)
k,t−1, zk,t) are also used in Algorithm 3. The optimal

importance distribution is q(ck,t|x(i)
t−1, α

(i)
k,t−1, zk,t) = Pr(ck,t|x(i)

t−1,α
(i)
k,t−1, zk,t), defined by

Pr(ck,t|x(i)
t−1, α

(i)
k,t−1, zk,t) =

α
(i)
k,ck,t,t−1p(zk,t|ck,t,x

(i)
t−1)∑dk

j=0 α
(i)
k,j,t−1p(zk,t|j,x(i)

t−1)
(23)

As this optimal importance distribution cannot be computed analytically, we use an approximation of it as

importance function. Using an EKF step, the pdfs p(zk,t|j,x(i)
t−1) for j = 0, . . . , dk are approximated by

p(zk,t|j,x(i)
t−1) ' N (hk,j,t(x̂

(i)
t|t−1), S

(i)
k,j,t)

where x̂(i)
t|t−1 = f(x(i)

t−1) is the state prediction and S
(i)
k,j,t is the approximated innovation covariance matrix defined

by

S
(i)
k,j,t = ∇h

(i)
k,j,tQ

(i)
t ∇h

(i)
k,j,t

T + R
(i)
k,j,t

where R
(i)
k,j,t is the covariance matrix of the additive noise w(i)

k,j,t for sensor k and particle i (which reduces to

σ
(i)
k,j,t in case of scalar observations), Q

(i)
t is the covariance matrix of the state evolution noise vt (which reduces

to its diagonal components {σv (i)
t } in case of independent state components evolution) and

∇h
(i)
k,j,t =

∂hk,j,t(x)
∂x

∣∣∣∣
x=bx(i)

t|t−1

(24)

The importance distribution q(ck,t|x(i)
t−1,α

(i)
k,t−1, zk,t) is thus defined by

q(ck,t|x(i)
t−1,α

(i)
k,t−1, zk,t) =

α
(i)
k,ck,t,t−1N (hk,ck,t,t(x̂

(i)
t|t−1), S

(i)
k,ck,t,t

)
∑dk

j=0 α
(i)
k,j,t−1N (hk,j,t(x̂

(i)
t|t−1), S

(i)
k,j,t)

(25)

The importance distributions q(αt|α(i)
t−1, c̃

(i)
t ,σ

(i)
t−1) and q(σt|σ(i)

t−1, α̃
(i)
k,t,α

(i)
k,t−1) can be chosen as the optimal

importance distributions, that is those that minimize the variance of the weights, conditional on the observations [3].
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Actually, these can be computed in closed-form, and reject sampling [12] may be implemented whenever direct

sampling is not possible. Considering that the Dirichlet distribution is conjugate to the multinomial distribution, the

optimal importance distributions q(αk,t|α(i)
k,t−1, c

(i)
k,t, σ

α (i)
k,t ) for each sensor are given by

q(αk,t|α(i)
k,t−1, c

(i)
k,t, σ

α (i)
k,t ) = D(σ′ α (i)

k,t α
′(i)
k,t−1) (26)

where σ
′ α (i)
k,t = σ

α (i)
k,t + 1 and α

′(i)
k,j,t−1 =

σ
α (i)
k,t

σ
α (i)
k,t +1

α
(i)
k,j,t−1 + 1

σ
α (i)
k,t +1

δ
c
(i)
k,t

(j) for j = 1, . . . , dk. For the full set

of sensors,

q(αt|α(i)
t−1, c

(i)
t ,σ

α (i)
t ) =

n∏

k=1

q(αk,t|α(i)
k,t−1, c

(i)
k,t, σ

α (i)
k,t ) (27)

Concerning the hyperparameter σα
k,t−1, the optimal importance distribution is

q(log(σα
k,t)|α(i)

k,t,α
(i)
k,t−1, σ

α (i)
k,t−1) =

D(α(i)
k,t; σ

α
k,tα

(i)
k,t−1)

D(α(i)
k,t; σ

α (i)
k,t−1α

(i)
k,t−1)

×N (log(σα
k,t); log(σα (i)

k,t−1), λ
α) (28)

D. Important special cases

In this subsection, we present additional details for three special cases, which have some importance in applica-

tions.

1) Binary valid/failing sensor states: The binary valid/failing sensor states case is of great importance. For

example, in the chemical industry, sensors are immersed into reagents which may be quite corrosive, making sensor

faults likely, and difficult to check on-site. Another example is that of autonomous vehicles, which need to check

the information from the sensors are valid in order to avoid dramatic state estimation errors which would result in

vehicle crash. For this case, we present the specific choices of the importance distributions q(ck,t|x(i)
t−1, α

(i)
k,t−1, zk,t)

and q(xt|x(i)
t−1, c̃

(i)
t , zt).

Here, the sensor states may be either j = 0 or j = 1. The importance distribution, q(ck,t|x(i)
t−1, α

(i)
k,t−1, zk,t)

reduces to

q(ck,t|x(i)
t−1,α

(i)
k,t−1, zk,t) ∝ (1− α

(i)
k,1,t−1)p0(zk,t)δ0(ck,t)

+α
(i)
k,1,t−1N (hk,1(x̂

(i)
t|t−1), S

(i)
k,1,t)δ1(ck,t) (29)

Once c̃
(i)
k,t has been sampled in Algorithm 2 or in Algorithm 3, the state x̃(i)

t is sampled using q(xt|x(i)
t−1, c̃

(i)
t , zt),

which is a Gaussian distribution whose mean and covariance matrix are given by the multisensor extended Kalman

filter, as follows: First, compute the estimate

x̂(i)
t|t = x̂(i)

t|t−1 +
n∑

k=1

c̃
(i)
k,tK

(i)
k,tν

(i)
k,t (30)

where ν
(i)
k,t = zk,t − hk,1,t(x̂

(i)
t|t−1) and the Kalman gain is

K
(i)
k,t = Σ(i)

t|t
(
∇h

(i)
k,1,t

)T

R
(i)
k,1,t

−1 (31)
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Finally, let

Σ(i)
t|t =

[
Σ−1

t|t−1 +
n∑

k=1

c̃
(i)
k,t

(
∇h

(i)
k,1,t

)T

R−1
k,1,t∇h

(i)
k,1,t

]−1

(32)

and set q(xt|x(i)
t−1, c̃

(i)
t , zt) = N (xt; x̂

(i)
t|t , Σ

(i)
t|t). The advantage of this approach is that the extended Kalman filter

quantities are used to sample both c̃
(i)
k,t and x̃(i)

t , which saves computations. The other importance distributions are

as explained above.

2) Conditionally linear and Gaussian model: Another important special case is when the Bayesian model is

linear and Gaussian, conditional on the sensor state variable ct (and on the hyperparameters σt):

xt = Ftxt−1 + Gtvt (33)

zk,t = Hk,j,txt + wk,j,t (34)

with Ft the state matrix, Gt the noise transition matrix, vt a zero mean white Gaussian noise of covariance matrix

Qt, Hk,j,t the observation matrix for the sensor k in state j and wk,j,t the zero mean white Gaussian noise with

covariance matrix Rk,j,t. This case is important when we have an already existing Kalman filter working for a

given sensor state j, and we want to add the extra possibility of detecting sensor faults, or state of work switch. The

corresponding algorithm implements a bank of interacting Kalman filters, known as a Rao-Blackwellized particle

filter, or a Mixture Kalman Filter, see [13], [14], [15], [16], [17] for examples. The algorithm below concerns the

asynchronous case. The proposal distributions are those described in Subsection III-C.

Algorithm 4: Rao-Blackwellized particle filter for

switching observation models – Asynchronous case

% Step 4.1 Initialisation

• For particles i = 1, .., N sample x̂(i)
0|0 ∼ p0(x̂0|0)

• For particles i = 1, .., N , sample Σ(i)
0|0 ∼ p0(Σ0|0)

• For particles i = 1, .., N , sample σ
(i)
0 ∼ p0(σ0)

• For particles i = 1, .., N , sample α
(i)
0 ∼ p0(α0|σ(i)

0 )

• Set the initial weights w
(i)
0 ← 1

N

% Step 4.2 Iterations

• For t=1,2,... do

– Await the arrival of a new measure zk,t, delivered by sensor k, k = 1, . . . , n and, for particles i = 1, .., N ,

do

∗ Sample the sensor state variable c̃
(i)
k,t ∼ q(ck,t|x̂(i)

t−1|t−1, Σ
(i)
t−1|t−1, α

(i)
k,t−1, zk,t)

∗ Sample the probabilities α̃
(i)
k,t ∼ q(αk,t|α(i)

k,t−1, c̃
(i)
k,t,σ

(i)
t−1)

∗ Sample the hyperparameter vector σ̃
(i)
t ∼ q(σt|σ(i)

t−1, α̃
(i)
k,t, α

(i)
k,t−1)

∗ Update mean and covariance matrix with a Kalman filter step (x̂(i)
t|t ,Σ

(i)
t|t) =KF(x̂(i)

t−1|t−1, Σ
(i)
t−1|t−1, c̃

(i)
k,t, zk,t)
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– For particles i = 1, .., N , update the weights

w̃
(i)
t ∝ w

(i)
t−1

p(zk,t|c̃(i)
1:t, z1:t−1)p(c̃(i)

k,t|α̃(i)
k,t)

q(c̃(i)
k,t|x̂(i)

t−1|t−1,Σ
(i)
t−1|t−1,α

(i)
k,t−1, zk,t))

× p(α̃(i)
k,t|α(i)

k,t−1)p(σ̃(i)
t |σ(i)

t−1)

q(α̃(i)
k,t|α(i)

k,t−1, c̃
(i)
k,t,σ

(i)
t−1)q(σ̃

(i)
t |σ(i)

t−1, α̃
(i)
t , α

(i)
t−1)

(35)

– Normalize the weights so that
∑N

i=1 w̃
(i)
t = 1

% Step 4.3 Resampling

– Compute Neff as in Eq. (10) and perform particle resampling whenever Neff < η , see Step 1.3 in

Algorithm 1.

3) Switching observation variances: A last important case is when the observation model hk, j, t in Eq. (2) of a

given sensor k does not change, but the additive white noise pdf may switch between pre-defined distributions [18].

The additive noise of the jth pdf is denoted wk,j,t. An interesting case is when all the wk,j,t, j = 1, . . . , dk are

zero-mean and monomodal, with different variances (we assume the noises are sorted so that wk,1,t has the smallest

variance whereas wk,dk,t the largest). Similar to the above cases, the importance distribution q(ct|x(i)
t−1, α

(i)
t−1, zt)

can be computed from the approximated optimal pdf using an EKF step.

An alternative solution consist of defining an evolution model for the variance of wk,t under the sensor state

j = 1. This simple solution, however, does not enable switching between discrete variance states, as there is a

continuity across the noise variances. An attractive solution consists of setting an upper bound on the variance of

wk,t and switching to the state j = 0 whenever the variance becomes too large, thus detecting sensor failure.

IV. DISCUSSION

In this section, we first survey previous related works, and we discuss their connection with our approach. Then,

we present an alternative interpretation and possible extensions. Some simulation results for synthetic data showing

the efficiency of the approach are proposed in Subsection IV-C (the real example of land vehicle positioning is

presented in the next section).

A. Previous works

Switching state-space models, or jump state-space models, have been widely studied in the literature. Such models

are composed of

• A discrete random indicator variable ct, with some statistical structure, which governs the behavior of the

statistical state-space model that switches from one model to another

• A state vector xt that evolves according to a stochastic evolution model p(xt|xt−1, ct)

• An observation vector zt that is related to the state vector xt through a stochastic observation model p(zt|xt, ct)
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Different ways of defining the statistical structure of the indicator variable ct have been investigated3

• The ct’s may be defined as random iid variables with (known or unknown) fixed prior Pr(ct). In that case we

have

Pr(ct|c1:t−1) = Pr(ct)

• The ct’s may be defined as a discrete-time homogeneous Markov chain with (known or unknown) fixed

transition matrix, and then

Pr(ct|c1:t−1) = Pr(ct|ct−1)

These last models, known as Jump Markov Systems (JMS), have been widely studied in the literature, especially

when the state-space models are conditionnally linear and Gaussian (Jump Markov Linear Systems, JMLS) [19],

[20], [21]. Many algorithms have been defined to solve this estimation problem, mainly based on Gaussian mixture

approximations, like the Interacting Multiple Model (IMM) algorithm [22], [23], or the Generalized Pseudo-Bayes

(GPB) algorithms [24]. Efficient sequential Monte Carlo algorithms have then been defined for both JMS [9],

[25], [26] and JMLS [27], [15]. These algorithms have been successfully applied in various area like digital

communications [28], [29], multitarget tracking [30], [31], [32], fault diagnosis [13], [33], [34], geoscience [35] or

image processing [18].

In our model, we do not make such a Markovian assumption for the indicator variable ct, but for its prior αt.

By doing this, one has

Pr(ct|c1:t−1) =
∫

Pr(ct|αt) Pr(αt|c1:t−1)dαt

and, through αt, ct is a priori dependent of the whole trajectory c1:t−1, which is more likely for the problem we

are considering. Our model thus introduces a memory over the past sensor states, rather than simply considering the

last one. This memory is tuned by the hyperparameters σα
k,t (a high value results in a long memory and conversely).

This is of particular interest when considering sensor failures. For example, in chemical industry, the confidence in

a sensor will generally decrease with time. In land vehicle positioning, the confidence in the GPS should decrease

when GPS failures have occurred recently, because it indicates the vehicle is in an area where it is subjected to

multipath effects (an urban canyon for example). Our approach is compared to both iid and Markovian indicator

variable models in the Section IV-C where it is shown that our non stationary approach is more robust in case of

a change of statistical properties of the indicator variables.

Hue et. al. work [10] is the closest to our approach. They used a prior over the probabilities of the latent state

(the data association variable in [10], which is the counterpart of ct in this paper), and this prior could evolve.

However, its evolution model is defined implicitly, whereas we handle it explicitly with the reliability coefficients

αk,t. Moreover, in [10], a Gibbs sampler is used to update these quantities, whereas we have a computationally

cheaper, and efficient, importance distributions, see simulations below.

3As pointed out by a reviewer, a possible statistical structure could be an m-order Markov model where Pr(ct|c1:t−1) = Pr(ct|ct−m:t−1).

As we found no reference using such a model for jump systems, we didn’t provide a comparison of our approach with this potentially interesting

model.
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B. Interpretations and possible extensions

An interesting interpretation of our model is that of mixture of pdfs. More precisely, for a sensor k, the

switching observation model with latent variable ck,t can also be interpreted as a single observation equation

denoted p(zk,t|xt,αk,t, σt) whose pdf is the mixture of the individual sensor state pdfs,

p(zk,t|xt, αk,t, σt) =
dk∑

j=0

αk,j,tp(zk,t|xt, ck,t = j, σt) (36)

In this interpretation, the variable ck,t is the mixture latent variable, and the weights αk,j,t evolve with time,

as well as the individual pdf parameters xt and σt. A direct extension of our algorithm concerns unsupervised

sequential classification using time-varying mixtures of Gaussian.

C. Illustrating examples

In this subsection, we present simulations for two scenarios: The first one concerns a widely used academic

model with two sensors, one of which switches state. The second example concerns a conditionally linear and

Gaussian model where the two sensors may fail.

1) First example: Consider the following nonlinear model from [3], [36], [37]

xt+1 =
1
2
xt + 25

xt

1 + x2
t

+ 8 cos(1, 2(t + 1)) + vt (37)

with vt ∼ N (0, 10) and x0 ∼ N (0, 10). We assume that two sensors deliver observations. Sensor #1 has two valid

and one faulty states of work, given by the following three observation models

z1,t =





xt + w1,0,t w1,0,t ∼ U([−25, 25]) if c1,t = 0
x2

t

20 + w1,t w1,1,t ∼ N (0, 1) if c1,t = 1
(xt−10)2

20 + w1,2,t w1,1,t ∼ N (0, 3) if c1,t = 2

(38)

where U([a, b]) is the uniform pdf on the interval [a, b]. The second sensor has only one nominal and one faulty

states of work corresponding to the following observation models

z2,t =





xt + w2,0,t w2,0,t ∼ U([−25, 25]) if c2,t = 0

xt + w2,1,t w2,1,t ∼ N (0, 2) if c2,t = 1
(39)

Both sensor are assumed not totally reliable and thus may be faulty. Observations from sensors #1 and #2 are

synchronous. Algorithm 2 is applied over 100 time iterations with N = 500 particles. The importance distribution

for q(xt|x(i)
t−1, c̃

(i)
t , zt) is chosen to be based on an Extended Kalman Filter step. Sensor #1 follows the second

observation model in Eq. (38) for t ∈ T1 ∪ T2 with T1 = [10, 30] and T2 = [50, 70] and is faulty for t ∈ T4

where T4 = [70, 80]. For other time instants, Sensor #1 follows the first observation model in Eq. (38). Sensor

#2 is faulty for t ∈ T3 where T3 = [20, 50]. These faults are simulated by adding a random offset sampled from

U([−20, 20]) to the observations z1,t and z2,t.

In Fig.’s 2-6, we have reported the MAP/MMSE estimates at each time t of c1,t, c2,t, αt and the error et, where

et = xt −
N∑

i=1

w
(i)
t x

(i)
t (40)
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The empirical standard deviation used to compute the 2-sigma bounds in Fig.’s 5 and 9 is computed by

σe =

√√√√ N∑

i=1

w
(i)
t

(
x

(i)
t −

N∑

i=1

w
(i)
t x

(i)
t

)2

(41)

As can be seen, the sensor states are accurately estimated, and the mean squared error is kept low, thanks to the

ability to accurately switch from one observation model to another.

10 30 50 70 80 100

c=0

c=1

c=2

Time

Latent variable c
1,t

 of sensor 1

10 30 50 70 80 100

c=0

c=1

c=2

Time

Round Latent variable c
1,t

 of sensor 1

Fig. 2. (Top) Posterior probability of each state c1,t ∈ {0, 1, 2} at each iteration t = 1, . . . , 100. Black corresponds to a zero probability,

whereas white corresponds to probability one. (Bottom) MAP estimate of the sensor state c1,t ∈ {0, 1, 2} (white = estimated state). During

time intervals T1 = [10, 30] and T2 = [50, 80], the true state is c1,t = 2, during the time interval T4 = [70, 80] the true state is c1,t = 0,

and c1,t = 1 for any other time instants. The sensor states are accurately estimated.

20 50 100

c=0

c=1

Time

Latent variable c
2,t

 of sensor 2

20 50 100

c=0

c=1

Time

Round latent variable c
2,t

 of sensor 2

Fig. 3. (Top) Posterior probability of each state c2,t ∈ {0, 1} at each iteration t = 1, . . . , 100. Black corresponds to a zero probability,

whereas white corresponds to probability one. (Bottom) MAP estimate of the sensor state c2,t ∈ {0, 1} (white = estimated state). During the

time interval T3 = [20, 50], the sensor if faulty, and it is valid for any other time instant. The sensor state is correctly estimated.
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10 30 50 70 80 100
0

0.2

0.4

0.6

0.8

1

Time

Evolution of α
1,1,t

 and α
1,2,t

Observation model n°1 of sensor 1
Observation model n°2 of sensor 1
Faulty model of sensor 1

20 50 100
0

0.2

0.4

0.6

0.8

1

Time

Evolution of α
2,1,t

Observation model of sensor 2
Faulty observation model of sensor 2

Fig. 4. (Top) MMSE estimate of α1,0,t, α1,1,t and α1,2,t. During time intervals T1 = [10, 30] and T2 = [50, 80], the confidence in state 2

(that is α1,2,t) increases, while α1,1,t decreases. The opposite happens outside T1, T2 and T4. Both coefficients α1,1,t and α1,1,t decrease

during the interval T4. During the interval T3 = [20, 50], the α2,1,t decreases because the sensor is estimated to be faulty. It increases outside

of T3, because the sensor is estimated as valid. (Bottom) MMSE estimate of α2,0,t and α2,1,t. During the interval T3 = [20, 50], the α2,1,t

decreases because the sensor is estimated to be faulty. It increases outside of T3, because the sensor is estimated as valid.

0 20 40 60 80 100
−30

−20

−10

0

10

20

30

Time

Error between estimate and true state
2−sigma bound of the empirical distribution

Fig. 5. Evolution of the error et computed as in Eq. (40) (solid line). In dashed lines, the 2-sigma bounds are plotted. The 2-sigma bounds

increase and decrease, depending on the observation model used (some are less informative than others). In particular, when t ∈ T3 = [20, 50],

sensor 2 is estimated as faulty, and it does not provide information about the hidden state xt. Overall, the estimation accuracy is good, even

though the sensors models switch.

For this particular example, our approach has been compared to the approach when the prior probabilities of the
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10 30 50 70 80 100
0

0.5

1

1.5

Hyperparameter σ
1,t

Time

σ 1,
t

20 50 100
0

2

4

6

Hyperparameter σ
2,t

Time

σ 2,
t

Fig. 6. (Top) Evolution of the hyperparameter σα
1,t. This hyperparameter tunes the dynamics of the reliability coefficient α1,t. More precisely, the

value of σ1,t decreases at times t=30, 50, 70 80, to allow the reliability coefficients to quickly change. (Bottom) Evolution of the hyperparameter

σα
2,t. This hyperparameter tunes the dynamics of the reliability coefficients α2,t.

ct are assumed fixed and known. These prior probabilities are set according to the relative frequencies of the states

on the interval [0, 100], thus α′1 =
[

0.1 0.5 0.4
]

and α′2 =
[

0.3 0.7
]

where

Pr(ck,t|ck,1:t−1) = Pr(ck,t) = α′k(ck,t + 1)

The importance function for the ck,t’s remain the same as for our approach, except that it priors are then time-

invariant and fixed to α′k. Results of this method for the same simulation are shown in Fig.’s 7-9. Similar simulations

has been performed 500 times. They showed that our method provides an absolute mean error that is 21% less than

the absolute mean error of the fixed prior approach.

2) Second example: Consider the following linear model [7], [14].

xt+1 =


 1 T

0 1


xt +




1
2T 2

T


 γt (42)

with γt ∼ N (0, 10) and T = 0.1 is the sampling period. Two synchronous sensors deliver observations, each of

them having one observation model only:

z1,t =
[

1 0
]
xt + w1,t (43)

z2,t =
[

0 1
]
xt + w2,t (44)

Both sensors are assumed potentially faulty. When the sensors are in their nominal state of work, it is assumed

that the noises have pdfs w1,t ∼ N (0, 2) and w2,t ∼ N (0, 1). Whenever these sensors become faulty, the variances

are assumed to follow the vague pdfs w1,t ∼ N (0, 100) and w2,t ∼ N (0, 100). This is a conditionally linear and

Gaussian model, which can be implemented with the Rao-Blackwellized algorithm similar to Algorithm 4, for the

synchronous case, however.
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10 30 50 70 80 100

c=0

c=1

c=2
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Latent variable c
1,t

 of sensor 1
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c=1
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Time

Round Latent variable c
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 of sensor 1

Fig. 7. (Top) Posterior probability of each state c1,t ∈ {0, 1, 2} at each iteration t = 1, . . . , 100 for the switching model with fixed priors. Black

corresponds to a zero probability, whereas white corresponds to probability one. (Bottom) MAP estimate of the sensor state c1,t ∈ {0, 1, 2}
(white = estimated state). The sensor states are less accurately estimated, especially the sensor failure (c1,t = 0) during the time interval

T4 = [70, 80]

20 50 100
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 of sensor 2

Fig. 8. (Top) Posterior probability of each state c2,t ∈ {0, 1} at each iteration t = 1, . . . , 100 for the switching model with fixed priors.

Black corresponds to a zero probability, whereas white corresponds to probability one. (Bottom) MAP estimate of the sensor state c2,t ∈ {0, 1}
(white = estimated state). During the time interval T3 = [20, 50], the sensor if faulty, and it is valid for any other time instant. The sensor state

is less correctly estimated.

We simulated failures of Sensor #1 and #2 with two Markovian models defined by the two transition matrices

Π[0,100] =


 .85 .15

.15 .85


 on the interval T1 = [0, 100] and Π[100,200] =


 .15 .85

.85 .15


 on the interval T2 =

[100, 200], where

Pr(ck,t = j|ck,t−1 = i) = πi+1,j+1

with Π = (πi,j). The algorithm is run over 200 iterations with N = 500 particles. Fig. 10 displays the evolution of
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Fig. 9. Evolution of the error et computed as in Eq. (40) (solid line) for the switching model with fixed priors. In dashed lines, the 2-sigma

bounds are plotted. The 2-sigma bounds increase and decrease, depending on the observation model used (some are less informative than others).

In particular, when t ∈ T3 = [20, 50], sensor 2 is estimated as faulty, and it does not provide information about the hidden state xt. The

absolute mean error is 20% higher than the error with our model.

the two components xt(1) and xt(2) of xt, as well as the observations z1(t) and z2(t). The MAP/MMSE estimates

of ct, αt and σt are displayed in Fig.’s 11–13, where the errors of position and velocity are defined by Eq. 40 for

each component of the vector xt.

As can be seen, the true sensor states are estimated very accurately, in spite of sensor failures. Simulations performed

with the same observations and a standard model (that is, the same model as in Eq.’s (42)–(44), without defining

a faulty sensor state) show a much higher error each time the sensors fail (for the sake of brevity this simulations

are not reported here ; see also the results in the following section).

Our model has been compared with a Jump Markov Linear System. The transition matrix of the JMLS is set to

Π = Π[0,100] =


 .85 .15

.15 .85


. The algorithm employed is the optimal Rao-Blackwellised particle filter algorithm

provided by Doucet et al. [27]. Simulations have been run 500 times and the absolute mean position errors are

given in Tab. I for both models.

TABLE I

COMPARISON OF OUR MODEL WITH A JMLS

Model/Interval T1 T2 T1 ∪ T2

Abs. mean error of our model 0.6767 0.6241 0.6504

Abs. mean error of the JMLS 0.6149 0.7870 0.7070

Improvement −10.05% 20.70% 7.21%

The JMLS model provides better results on the first interval where the indicator variables are sampled according

to the fixed transition matrix Π, which was expected as the data are generated according to the evolution model.
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Fig. 10. (Top) Evolution of the MMSE estimate of the first component xt(1) of xt as well as the observation z1(t) provided by sensor #1.

(Bottom) Evolution of the MMSE estimate of the first component xt(2) of xt as well as the observation z2(t) provided by sensor #2.
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Fig. 11. (Top) True sensor state c1,t. Its evolution model follows the Markov transition matrix Π[0, 100] on the interval T1 = [0, 100] and

the Markov transition matrix Π[100, 200] on the interval T2 = [100, 200]. (Middle) MAP estimate of the the nominal sensor state c1,t = 1

(white = estimated state). (Bottom) MMSE estimate of the reliability coefficient α1,1,t. This coefficient decreases when the sensor is faulty.

However, on the second interval T2, our model outperforms the JMLS model, although it doesn’t define a Markov

structure on the indicator variables. As it is more realistic to consider that the dynamics of the indicator variables

may evolve with time, our algorithm provides a more robust estimation algorithm.

In the following section, we present an application of our framework to wheel land vehicle positioning.
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Fig. 12. (Top) True sensor state c2,t. Its evolution model follows the Markov transition matrix Π[0, 100] on the interval T1 = [0, 100] and

the Markov transition matrix Π[100, 200] on the interval T2 = [100, 200]. (Middle) MAP estimate of the the nominal sensor state c2,t = 1

(white = estimated state). (Bottom) MMSE estimate of the reliability coefficient α2,1,t. This coefficient decreases when the sensor is faulty.

20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

Time

Horizontal position error

Error between position estimate and true position
2−sigma bound

20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

Time

Velocity error

Error between velocity estimate and true position
2−sigma bound

Fig. 13. (Top) Evolution of the position error (solid line). In dashed lines, the 2-sigma bounds are plotted. The 2-sigma bounds increase and

decrease, depending on the observation model used (some are less informative than others). (Bottom) Evolution of the velocity error (solid line).

In dashed lines, the 2-sigma bounds are plotted. Overall, the estimation accuracy is good, even though the sensors models switch.

V. APPLICATION TO MULTISENSOR FUSION FOR LAND VEHICLE POSITIONING

The framework and algorithms presented above are well adapted to Mobile Robotics problems. Developing

autonomous vehicles such as drones or automated taxi cabs, is quite important for goods/people transportation

or operation in hostile environments (martian exploration, land mines removal). In order to ensure high accuracy

positioning and external environment mapping, many sensors, possibly redundant, are required. Typical positioning

sensors are GPS, inertial units, magnetic compasses. For obstacle detection, sensors may be radars or cameras.

An important characteristics of mobile robotics is that the observations delivered by some sensors may be easily
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Fig. 14. Nomenclature of the vehicle. ψ is the angle between true North and longitudinal axis of the land vehicle and β is the steering angle.

Position is calculated at point P (X, Y ). Speed encoder is situated on the left rear wheel and GPS sensor on the front right side of the vehicle.

Position of the vehicle is calculated in the North-East coordinate frame.

blurred because of hard external conditions. For example, a camera lens may become dirty because of a sand

storm on Mars, and a radar may have additional noise due to snowfalls. Other sensors, like GPS are subject to

multipath phenomena in urban canyons and magnetic compass are sensitive to parasite electromagnetic fields: they

may deliver totally erroneous measurements in some conditions.

Several previous works apply sequential particle filtering to land vehicle positioning. Yang et al. [38] made

a comparative comparison between EKF and particle filter, showing the interest of the latter for the problem

considered. Giremus et al. [39] and Gustafsson et al. [16], [17] used a Rao-Blackwellized bootstrap filter. Giremus

et al. [40] proposed a fixed-lag Rao-Blackwellised particle filter to estimate multipath biases associated to the GPS

measurements. They used a switching observation model whose indicator variables have fixed priors.

In this section, we address the positioning of a land vehicle with four wheels, two of which may steer. The state

evolution model is presented in the next subsection.

A. State model based on land vehicle kinematics

The land vehicle considered is depicted in Fig. 14. Its kinematic model is inspired from [41] and [42]. The

differential equations governing the kinematics of the vehicle at point Pc are based on an Ackerman steering model

of simplified bicycle model (the variables are presented in Tab. II, here taken at point C):




Ẋc(t) = Vc(t) cos ψ(t)

Ẏc(t) = Vc(t) sin ψ(t)

ψ̇(t) = Vc(t)
L tan β(t)

Let P (X, Y ) be the position of the vehicle at the GPS antenna (point P ). At point P , X and Y are expressed
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TABLE II

STATE VARIABLES USED IN THE LAND WHEEL VEHICLE MODEL.

X , Y North and East positions of the vehicle at point P

V Speed of the vehicle at point PC

ψ Heading of the vehicle

β Steering angle

T Sampling time

as functions of Xc and Yc by
X(t) = Xc(t) + a cos ψ(t) + b sinψ(t)

Y (t) = Yc(t) + a sin ψ(t)− b cosψ(t)

We adopt the following discrete first order approximation (where we note Vt = Vc(t))

Xt+1 = Xt + T

[
Vt cosψt + (−a sin ψt + b cos ψt)

Vt

L
tan βt

]

Yt+1 = Yt + T

[
Vt sinψt + (a cos ψt + b sin ψt)

Vt

L
tan βt

]

Vt+1 = Vt + T V̇t

ψt+1 = ψt + T
Vt

L
tan(βt)

βt+1 = βt + T β̇t

β̇t+1 = β̇t + T β̈t

These equations may be rewritten as the following nonlinear model

xt+1 = f1(xt) + Gt · vt (45)

where f1 is the state transition function, Gt is the noise transfer matrix, the state vector is

xt = [Xt, Yt, Vt, ψt, βt, β̇t, ]T and vt = [V̇t, β̈t]T . The state noise vt = [V̇t, β̈t]T is assumed zero mean

white Gaussian with known covariance matrix Qt = E[vtvT
t ].

B. Observation models

The vehicle is equipped with three sensors, see Fig. 14. These sensors are:

• A centimeter-level precision DGPS receiver, providing North and East position of the vehicle

• A speed sensor

• A steering sensor

Speed and steering measurements are synchronous. However, the GPS measurements are asynchronous w.r.t.

these other two sensors. The GPS measurements frequency is low (5 Hz) when compared to the Speed/Steering

measurement frequency (40 Hz). We detail below the sensor observation equations.
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1) GPS sensor model: The observation model for the GPS is given by

z1,t = h1(xt) + w1,t =


 Xt

Yt


 + w1,t

with w1,t a zero mean white Gaussian noise of known covariance matrix R1,t =


 0.002 0

0 0.002


. When the

sensor is non-faulty, the likelihood is written as p(z1,t|xt) = N (h1(xt), R1,t).

The GPS receiver cannot be assumed fully reliable due to multipath, diffraction and mask phenomena likely to

alter the measurements, especially in urban areas [43]. It is supposed that the GPS sensor has two classes of work:

• A nominal state of work corresponding to the measurement model defined above

• A faulty state of work when data are corrupted by multipath. In that case we define a vague pdf p0(z1,t),

uniform on a large interval centered about the last position estimate

This is thus a sensor for which the discrete variable c1,t is in {0, 1} (binary case). The evolution pdf for α1,t is

that of Eq. (17).

2) Speed and Steering sensors: The observation models of the speed and steering sensors are respectively

z2,t = h2(xt) + w2,t = (1 + tan(βt)
H

L
)vt + w2,t

and

z3,t = h3(xt) + w3,t = βt + w3,t

with w2,t and w3,t zero mean white Gaussian noises of assumed known covariances matrix R2,t = 0.1 and

R3,t = 0.002. These sensors are not supposed to be faulty.

C. Estimation objectives and algorithm

Given the model and assumptions about the sensors, the estimation objective is as follows: each time the

speed/steering measurements are collected, we estimate xt by MMSE. Whenever a GPS measurement is collected,

we estimate xt, α1,t and σα
1,t by MMSE and c1,t by MAP.

In this model, components of the state evolution noise have a negligible variance (almost deterministic evolution).

This makes the design of an efficient importance distribution q(xt|x(i)
t−1, c̃

(i)
t , zt) quite difficult: on the one hand,

using the state evolution pdf p(xt|x(i)
t−1) as q(xt|x(i)

t−1, c̃
(i)
t , zt) (bootstrap filter choice) is not efficient. On the other

hand, UKF and EKF based approaches cannot be applied because the evolution model is highly informative and

the particle states x̃(i)
t sampled from such importance pdfs are very likely to have very small weights.

Here, however, the posterior distribution p(xt, ct, αt, σt|z1:t) is almost always monomodal and little skewed.

We propose to use an approximate particle filtering approach, whose computational load is reduced, and which

is very accurate. This approach, proposed in [44] under the name of Rao-Blackwellised UKF, is inspired by the

Rao-Blackwellized particle filter, where the Kalman filters are replaced by Unscented Kalman filters [8], [45], [46],

[11]. Here, the state xt is estimated by a bank of UKFs, whereas the other parts of the full state (that is, ct, αt, σt)
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are updated using the importance distributions described in Section III, for variables c1:t, α0:t, σ0:t are as explained

in Section III. The algorithm is presented below.

Algorithm 5: Rao-Blackwellized UKF particle filter

for switching observation models – Asynchronous case

% Step 5.1 Initialisation

• For particles i = 1, .., N sample x̂(i)
0|0 ∼ p0(x̂0|0)

• For particles i = 1, .., N , sample Σ(i)
0|0 ∼ p0(Σ0|0)

• For particles i = 1, .., N , sample σ
α (i)
1,0 ∼ p0(σα

1,0)

• For particles i = 1, .., N , sample α
(i)
1,0 ∼ p0(α1,0|σ(i)

1,0)

• Set the initial weights w
(i)
0 ← 1

N

% Step 5.2 Iterations

• For t=1,2,... do

– Await the arrival of new measure zk,t, delivered by sensor #k, k = 1, 2, 3 and, for particles i = 1, .., N ,

do

% If arrival of measures z2,t and z3,t

∗ Update mean x̂
(i)
t|t and covariance matrix Σ(i)

t|t with a Unscented Kalman filter step, that

is (x̂(i)
t|t , Σ

(i)
t|t) = UKF(x̂(i)

t−1|t−1, Σ
(i)
t−1|t−1, z2,t, z3,t)

∗ update of variables related to the GPS sensor

∗ set c
(i)
1,t ← c

(i)
1,t−1

∗ set α
(i)
1,t ← α

(i)
1,t−1

∗ set σ
α (i)
1,t ← σ

α (i)
1,t−1

– For particles i = 1, .., N , update the weights

w̃
(i)
t = w

(i)
t−1p(z2,t|z1:t−1)p(z3,t|z1:t−1)

% If arrival of a GPS measure z1,t

∗ Sample the sensor state variable c̃
(i)
1,t ∼ q(c1,t|x̂(i)

t−1|t−1,Σ
(i)
t−1|t−1, α

(i)
1,t−1, z1,t)

∗ Sample the probabilities α̃
(i)
1,t ∼ q(α1,t|α(i)

1,t−1, c̃
(i)
1,t, σ

α (i)
1,t−1)

∗ Sample the hyperparameter vector σ̃
α (i)
1,t ∼ q(σα

1,t|σα (i)
1,t−1, α̃

(i)
1,t, α

(i)
1,t−1)

∗ Update mean x̂
(i)
t|t and covariance matrix Σ(i)

t|t with a Unscented Kalman filter step, that

is (x̂(i)
t|t , Σ

(i)
t|t) =UKF(x̂(i)

t−1|t−1,Σ
(i)
t−1|t−1, c̃

(i)
1,t, z1,t)

– For particles i = 1, .., N , update the weights

w̃
(i)
t ∝ w

(i)
t−1

p(z1,t|c̃(i)
1,1:t, z1:t−1)p(c̃(i)

1,t|α̃(i)
1,t)

q(c̃(i)
1,t|x̂(i)

t−1|t−1, Σ
(i)
t−1|t−1, α

(i)
1,t−1, z1,t)

× p(α̃(i)
1,t|α(i)

1,t−1, σ̃
α (i)
1,t )p(σ̃α (i)

1,t |σα (i)
1,t−1)

q(α̃(i)
1,t|α(i)

1,t−1, c̃
(i)
1,t, σ

α (i)
1,t−1)q(σ̃

α (i)
1,t |σα (i)

1,t−1, α̃
(i)
1,t,α

(i)
1,t−1)

(46)
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– Normalize the weights so that
∑N

i=1 w̃
(i)
t = 1

% Step 5.3 Resampling

– Compute Neff as in Eq. (10) and perform particle resampling whenever Neff < η , see Step 1.3 in

Algorithm 1.

D. Results

Algorithm 5 is applied to real sensor measurements. These observations have been collected by the Australian

Center for Field Robotics (ACFR)4. These very clean data were not altered by the standard observations errors.

Two types of errors have been added to GPS signal to test the algorithm:

• Simulation of multipath and diffraction, by addition of a piecewise constant random offset to the real, non

altered data, see Fig. 15. Multipath are simulated at times in T1 = [50, 60], T2 = [62, 68] and T3 = [75, 80]

(time instants corresponds to GPS data indexes, i.e., it is increased by t ← t + 1 each time a GPS observation

is collected).

• Simulation of side-slipping of the vehicle, simulated by replacing the real steering angle observations by

erroneous ones, over the interval T4 = [12, 14] (see Fig. 16).

−4 −2 0 2 4 6 8
−25

−20

−15

−10

−5

0

5
Trajectory of the land vehicle

Y East (m)

X
 N

or
th

 (
m

)

UKF+PF estimated position
GPS data

Multipath

Fig. 15. MMSE Estimation of the trajectory of the vehicle obtained using our algorithm. Squares represent the GPS data. Both are plotted in

the North-East coordinate frame. GPS failures occur due to multipath effects, these have been simulated by adding a piecewise constant random

bias to the true GPS observation.

The state estimation results of Algorithm 5 have been compared to those obtained by two Unscented Kalman

filters. In the first UKF, the ability to detect sensor failures is not implemented. In the second UKF, sensor failures

are detected from the normalized quadratic innovation, as detailed in Appendix A.

4These data may be found at the Internet address http://www.acfr.usyd.edu.au/homepages/academic/enebot/dataset.

htm.

July 12, 2006 DRAFT



28

4.5 4.6 4.7 4.8 4.9 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

Zoom on the side−slip

Y East (m)

X
 N

or
th

 (
m

)

UKF+PF estimated position
UKF(with rejection) estimated position
GPS data

Fig. 16. MMSE Estimation of the trajectory of the vehicle, obtained with our algorithm and with a UKF algorithm which rejects invalid

measures. The segment of the trajectory represented here is a magnified view of Fig. 15. Vehicle side-slip is simulated by adding a random

offset to the steering measurement angle. In this case, the UKF algorithm rejects GPS data and fails in tracking again the true vehicle trajectory.

Our algorithm first rejects GPS data, but comes back to the true trajectory.

Fig. 17 represents the evolution of the posterior probability of c1,t for the GPS sensor. It also shows the MMSE

estimate of α1,t (which is here interpreted as a reliability coefficient). During intervals T1, T2 and T3, our algorithm

succeeds at detecting GPS failure and c1,t is estimated close to 0. The parameter α1,t drops during these intervals

from 80% to 40% GPS reliability.

Fig. 18 compares the positioning of our algorithm and that of the first UKF (which does not enable GPS

failure detection). Of course, this UKF performs poorly whenever erroneous measurements arrive, because they are

integrated in the fusion process, resulting in large errors during time intervals T1, T2 and T3. Our algorithm, on

the other hand, keeps good performance, though the error increases slightly over T1, T2 and T3. The error increase

is due to the lack of GPS information, and not to the algorithm itself.

Fig. 19 is similar to Fig. 18. In Fig. 19, however, our algorithm is compared to the UKF with erroneous

observations detection, see Appendix A. The latter algorithm considers the GPS measurements as erroneous (steering

measurements are assumed reliable), however, it fails at coming back to the true trajectory. This can be explained

as follows: due to side-slip, GPS measurements disagree with the evolution model during time interval T4 and they

are rejected by the UKF algorithm. As a consequence, the estimated vehicle trajectory diverges from the true one

as time increases, involving rejection of all the following GPS measurements: the UKF algorithm assumes wrongly

that the GPS is failing. The same phenomenon happens in case of GPS errors due to multipath problems in time

intervals T1, T2 and T3 (see Fig. 19). On the contrary, our algorithm tests all the sensor valid/failure hypotheses.

For example, at time t = 12, the most likely hypothesis is ”the GPS is faulty”, but at t = 13, the most likely

hypothesis becomes ”the GPS is valid” because the new GPS observation is coherent with the evolution model.

This explains that the position estimated by our algorithm follows the true trajectory (see Fig. 16).
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Fig. 17. (Top) Posterior probability of the GPS state c1,t = 1. During time intervals T1 = [50, 60], T2 = [62, 68] and T3 = [75, 80], the

true state of GPS sensor is c1,t = 0 (faulty), and c1,t = 1 for any other time instants. The sensor states are accurately estimated. (Bottom)

MMSE estimate of the GPS reliability coefficient α1,1,t. During the intervals T1 = [50, 60], T2 = [62, 68] and T3 = [75, 80], GPS reliability

coefficient α1,1,t decreases because the GPS is detected to be faulty. Outside of these intervals, GPS reliability coefficient increases because

GPS is detected to be valid.
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Fig. 18. Comparison of the mean square positioning error between our algorithm and UKF algorithm (without detection of sensor failures).

UKF algorithm gives large errors during time intervals T1 = [50, 60], T2 = [62, 68] and T3 = [75, 80] (GPS failures) because it uses these

data into the fusion algorithm, as if they were reliable. Our algorithm largely outperforms UKF algorithm.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed new model and algorithm for sensor failure detection and, more generally,

to switching observation models. We propose a family of algorithms for situations where the sensors deliver

measurements in a synchronous way, or in an asynchronous way. We proposed an alternative interpretation of our

model in terms of mixture of pdfs. Simulation results for two academic problems, and for a real wheel land vehicle

positioning problem show the interest of our model, and the efficiency of the proposed particle filter algorithms.

Extensions of this work will concern sequential unsupervised data classification. Further applications are in chemical

processes monitoring and visual tracking.
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Fig. 19. Comparison of the mean square positioning error between our algorithm and UKF algorithm (with detection of sensor failures). First

drift of UKF estimated position (t = 12) is due to the rejection of GPS data when side-slip occurs. Our algorithm better performs in this case

and also in presence of GPS sensor failures during time intervals T1 = [50, 60], T2 = [62, 68] and T3 = [75, 80]: UKF algorithm first rejects

GPS data, but UKF estimate quickly drift and is then unable to follow the good trajectory.
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APPENDIX

A. UKF based sensor failure detection

The innovation νt, which measures the difference between the observation and the predicted observations follows,

if Kalman filters assumptions are verified, a zero mean Gaussian pdf of covariance matrix St.

νt ∼ N (0, St)

The quadratic normalized innovation rt, defined by

rt = νT
t S−1

t νt

then follows a χ2 pdf with l = dim νt degrees of freedom [7]. A study of the value of rt permits, if this value is

very high and improbable compared to χ2 tables, to detect a conflict between the new observation and the predicted

observation (given by the last estimate and the evolution model). If the last estimate and the evolution model are

supposed correct, then the sensor is supposed failing and the measure is rejected. This study permits to avoid to

integrate failed data in the Kalman filter, causing long term damages.
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