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Ranked Data

“Rank these 5 movies by preference”

“Rank your 5 favourite movies among these 30”

“Rank your 5 favourite movies”

Aim

I Bayesian nonparametric model to model top-m partial rankings of a
potentially infinite number of items.

I Each item is modelled using a positive rating parameter that is
inferred from partial rankings.

I Develop efficient computational procedure for posterior simulation.

I Mixture generalizations.

I Application to preferences in college programmes
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Preferences for college degree programmes

I Application for college degree programmes in Ireland in 2000
I 53 757 applicants provided top-10 rankings
I 533 degree programmes available for selection
I Heterogenity in the data

Table: Two samples from the preference data.

Rank CAO code College Degree Programme
1 DN002 University College Dublin Medicine
2 GY501 NUI - Galway Medicine
3 CK701 University College Cork Medicine
4 DN006 University College Dublin Physiotherapy
5 TR053 Trinity College Dublin Physiotherapy
6 DN004 University College Dublin Radiotherapy
7 TR007 Trinity College Dublin Clinical Speech
8 FT223 Dublin IT Human Nutrition
9 TR084 Trinity College Dublin Social Work
10 DN007 University College Dublin Social Science

Rank CAO code College Degree Programme
1 MI005 Mary Immaculate Limerick Education - Primary Teaching
2 CK301 University College Cork Law
3 CK105 University College Cork European Studies
4 CK107 University College Cork Language - French
5 CK101 University College Cork Arts
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Parametric Plackett-Luce Model

I Population of M items X1, . . . , XM .

I To each item Xk assign a rating parameter wk > 0.

Stage-wise interpretation:

I Pick first item with probabilities proportional to wk’s.

I Remove first item.

I Pick second item with probabilities proportional to wk’s.

I Remove second item.

I . . .

The probability of a ranking (Xρ1, . . . , XρM ), with ρ = (ρ1, . . . , ρM)
a permutation, is

P (ρ|w) =

M∏
i=1

wρi∑M
k=1wk −

∑i−1
j=1wρj

[Luce, 1959, Plackett, 1975], [Gormley and Murphy, 2008, Gormley and Murphy, 2009]
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Nonparametric Plackett-Luce Model

I Population of items X1, X2, . . . of infinite size.

I Each item Xk assigned a rating parameter wk > 0.

Stage-wise interpretation:

I Pick first item with probabilities proportional to wk’s.

I Remove first item.

I Pick second item with probabilities proportional to wk’s.

I Remove second item.

I . . .

The probability of a (finite, partial) ranking Xρ1, . . . , Xρm is

P (ρ|w) =

m∏
i=1

wρi∑∞
k=1wk −

∑i−1
j=1wρj
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Thurstonian Interpretation

I For each item Xk define an exponential random variate:

zk ∼ Exp(wk)

I Induces a partial permutation ρ such that zρ1 < · · · < zρm < · · ·

A race among items:

I zk is the time that item Xk finished the race.

I ρ is the order of champion, runner-up, second runner-up...

The probability of a partial permutation is:

P (ρ|w) =P (zρ1 < zρ2 < · · · < zρm < everything else)

=

m∏
i=1

wρi∑∞
k=1wk −

∑i−1
j=1wρj
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Thurstonian Interpretation
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P (ρ|w) =P (zρ1 < zρ2 < · · · < zρm < everything else)

=
m∏
i=1

wρi∑∞
k=1wk −

∑i−1
j=1wρj
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Data Augmentation

I Reparametrize in terms of inter-arrival durations:

Z1 = zρ1, Z2 = zρ2 − zρ1, . . . Zm = zρm − zρm−1
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Data Augmentation

I Augmented system with auxiliary variables Z1, . . . , Zm:

Zi|ρ,w,X ∼ Exp

 ∞∑
k=1

wk −
i−1∑
j=1

wρj


Joint probability is:

P (ρ, Z|w,X) =

m∏
i=1

wρi exp

−
 ∞∑
k=1

wk −
i−1∑
j=1

wρj

Zi


What prior to use for w,X?

I Independent Gamma’s for wk’s do not work.

I Gamma process.

I Better: completely random measures.
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Completely Random Measures

I Lévy intensity λ(w).
I Base distribution H with density h(x).
I Random atomic measure

G =

∞∑
k=1

wkδXk

Construction: two-dimensional Poisson process N = {wk, Xk} with
intensity λ(w)h(x):

[Kingman, 1967, Lijoi and Prünster, 2010]
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Completely Random Measures

Conditions on Lévy intensity:∫ ∞
0

λ(w)dw =∞ ⇒ infinitely many items.∫ ∞
0

(1− e−w)λ(w)dw <∞ ⇒ finite total
∞∑
k=1

wk.

Plackett-Luce sampling without replacement:

I Pick first item with probabilities proportional to wk’s; remove.

I Pick second item with probabilities proportional to wk’s; remove;

I . . .

⇒ Size-biased sampling of the atoms in G.
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Prior Draws

Generalized Gamma process with λ(w) = α
Γ(1−σ)

w−σ−1e−τw, τ = 1.
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(a) α = 0.1, σ = 0
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(b) α = 1, σ = 0
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(c) α = 3, σ = 0
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(d) α = 1, σ = 0.1
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(e) α = 1, σ = 0.5
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(f) α = 1, σ = 0.9
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Posterior Characterization

I Observe L partial rankings Y` = (Y`1, . . . , Y`m`) for ` = 1, . . . , L.
I X∗1 , . . . , X

∗
K are the K unique items among observations

I Associated auxiliary variables Z`1, . . . , Z`m` .

Theorem
The posterior distribution given partial rankings Y and auxiliary variables
Z is a CRM with fixed atoms:

G|Y, Z = G∗ +
K∑
k=1

w∗kδX∗
k

where G∗ and w∗1, . . . , w
∗
K are mutually independent. The law of G∗ is

still CRM with Lévy intensity λ∗(w) = λ(w)e−w(
∑

`i Z`i)

while the masses have distributions,
P (w∗k|Y, Z) ∝ (w∗k)

nke−w
∗
k(

∑
`i δ`ikZ`i)λ(w∗k).

I Characterization similar to that for normalized random measures.

[Prünster, 2002, James, 2002, James et al., 2009]
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Bayesian Inference via Gibbs Sampling

I Rating parameters w∗k of observed items.

I Latent variables Z`i.

I CRM G∗ containing unobserved items.

I Marginalize out G∗, keeping only its total mass w∗∗.

Easy Gibbs sampler for generalized gamma process class of CRM

Z`i|rest ∼ Exponential

w∗k|rest ∼ Gamma

w∗∗|rest ∼ Exponentially tilted stable
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Nonparametric Plackett-Luce Mixture Model

Partial rankings reflecting the preferences of a heteroge-
nous population.

π ∼ GEM(θ)

c`|π ∼ Discrete(π)

Y`|c`, Gc` ∼ PL(Gc`)

Gk|Ck ∼ Gamma(αH + Ck, τ + φ)

Ck|G0 ∼ Poisson(φG0)

G0 ∼ Gamma(αH, τ )

I Gk ∼ Gamma(αH, τ ) does not work.

π

Gk

c�

ρ�

G0

Ck
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Irish University Programme Applications

I 53757 Irish university applicants.

I Each applicant ranks their top-10 desired university programmes.

I Point estimate of the partition

ĉ = argmin
c(i)∈{c(1),...,c(N)}

∑
k

∑
`

(δ
c
(i)
k c

(i)
`

− ζk`)2

where the coclustering matrix ζ is obtained with

ζk` =
1

N

N∑
i=1

δ
c
(i)
k c

(i)
`

c(i), i = 1, . . . , N are the Monte Carlo samples and δk` = 1 if
k = `, 0 otherwise.
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Irish University Programme Applications

Table: Description of the different clusters. The size of the clusters, the entropy
and a cluster description are provided.

Cluster Size Entropy Description Cluster Size Entropy Description
1 3325 0.72 Social Science/Tourism 14 1918 0.71 Engineering
2 3214 0.71 Science 15 1835 0.48 Teaching/Arts
3 3183 0.64 Business/Commerce 16 1835 0.68 Art/Music - Dublin
4 2994 0.58 Arts 17 1740 0.71 Engineering - Dublin
5 2910 0.63 Business/Marketing - Dublin 18 1701 0.55 Medicine
6 2879 0.68 Construction 19 1675 0.70 Arts/Religion/Theology
7 2803 0.66 CS - outside Dublin 20 1631 0.76 Arts/History - Dublin
8 2225 0.67 CS - Dublin 21 1627 0.66 Galway
9 2303 0.67 Arts/Social - outside Dublin 22 1392 0.70 Limerick
10 2263 0.63 Business/Finance - Dublin 23 1273 0.65 Law
11 2198 0.65 Arts/Psychology - Dublin 24 1269 0.72 Business - Dublin
12 2086 0.63 Cork 25 1225 0.79 Arts/Bus. - Dublin
13 2029 0.64 Comm./Journalism - Dublin 26 47 0.96 Mixed
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Irish University Programme Applications

Table: Cluster 7: Computer Science - outside Dublin

Rank Aver. Norm. Weight College Degree Programme
1 0.081 Cork IT Computer Applications
2 0.075 Limerick IT Software Development
3 0.072 University of Limerick Computer Systems
4 0.064 Waterford IT Applied Computing
5 0.061 Cork IT Software Dev & Comp Net
6 0.046 IT Carlow Computer Networking
7 0.038 Athlone IT Computer and Software Engineering
8 0.036 University College Cork Computer Science
9 0.033 Dublin City University Computer Applications

10 0.033 University of Limerick Information Technology

Table: Cluster 8: Computer Science - Dublin

Rank Aver. Norm. Weight College Degree Programme
1 0.141 Dublin City University Computer Applications
2 0.054 University College Dublin Computer Science
3 0.049 NUI - Maynooth Computer Science
4 0.043 Dublin IT Computer Science
5 0.040 National College of Ireland Software Systems
6 0.038 Dublin IT Business Info. Systems Dev.
7 0.036 Trinity College Dublin Computer Science
8 0.035 Dublin IT Applied Sciences/Computing
9 0.030 Trinity College Dublin Information & Comm. Tech.

10 0.029 University College Dublin B.A. (Computer Science)
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Irish University Programme Applications

Table: Cluster 12: Cork

Rank Aver. Norm. Weight College Degree Programme
1 0.105 University College Cork Arts
2 0.072 University College Cork Computer Science
3 0.072 University College Cork Commerce
4 0.067 University College Cork Business Information Systems
5 0.057 Cork IT Computer Applications
6 0.049 Cork IT Software Dev & Comp Net
7 0.035 University College Cork Finance
8 0.031 University College Cork Law
9 0.031 University College Cork Accounting

10 0.026 University College Cork Biological and Chemical Sciences
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Irish University Programme Applications
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Summary

I A Bayesian nonparametric Plackett-Luce model for partial rankings.

I Completely random measures and posterior characterization.

I Easy Gibbs sampling for posterior simulation.

I Mixture generalization.
I Future:

I Dependent general CRM models
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