
Two-Party ECDSA from Hash Proof Systems and
Efficient Instantiations

Guilhem Castagnos1, Dario Catalano2, Fabien Laguillaumie3,
Federico Savasta2,4, and Ida Tucker3

1 Université de Bordeaux, INRIA, CNRS, IMB UMR 5251, F-33405 Talence, France.
2 Università di Catania, Italy.

3 Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France.
4 Scuola Superiore di Catania, Italy

Abstract. ECDSA is a widely adopted digital signature standard. Unfortunately,
efficient distributed variants of this primitive are notoriously hard to achieve and
known solutions often require expensive zero knowledge proofs to deal with malicious
adversaries. For the two party case, Lindell [Lin17] recently managed to get an efficient
solution which, to achieve simulation-based security, relies on an interactive, non
standard, assumption on Paillier’s cryptosystem. In this paper we generalize Lindell’s
solution using hash proof systems. The main advantage of our generic method is that
it results in a simulation-based security proof without resorting to any interactive
assumptions.

Moving to concrete constructions, we show how to instantiate our framework using
class groups of imaginary quadratic fields. Our implementations show that the prac-
tical impact of dropping such interactive assumptions is minimal. Indeed, while for
128-bit security our scheme is marginally slower than Lindell’s, for 256-bit security it
turns out to be better both in key generation and signing time. Moreover, in terms
of communication cost, our implementation significantly reduces both the number of
rounds and the transmitted bits without exception.

1 Introduction

Threshold cryptography [Des88,DF90,GJKR96,SG98,Sho00,Boy86,CH89,MR04] allows n
users to share a common key in such a way that any subset of t parties can use this key to
decrypt or sign, while any coalition of less than t can do nothing. The key feature of this
paradigm is that it allows to use the shared key without explicitly reconstructing it in the
clear. This means a subset of t parties have to actively participate in the protocol whenever
the secret key is used.

Applications of threshold cryptography range from contexts where many signers need
to agree to sign one common document to distributed scenarios where sensitive documents
should become accessible only by a quorum. This versatility sparked intense research ef-
forts that, mainly in the decade from the early 1990s to the early 2000s, produced efficient
threshold versions of most commonly used cryptographic schemes. Recent years have seen
renewed interest in the field (e.g. [GGN16,Lin17,GG18,DKLs18,LN18,GG18,DKLs19]) for
several reasons. First a number of start-up companies are using this technology to protect
keys in real life applications [Ser,Unb,Sep]. Moreover, Bitcoin and other cryptocurrencies
– for which security breaches can result in concrete financial losses – use ECDSA as un-
derlying digital signature scheme. While multisignature-based countermeasures are built-in

to Bitcoin, they offer less flexibility and introduce anonymity and scalability issues (see
[GGN16]). Finally, some of the schemes developed twenty years ago are not as efficient as
current applications want them to be. This is the case, for instance, for ECDSA/DSA sig-
natures. Indeed, while for many other schemes fast threshold variants are known (e.g. RSA
decryption/signing and ECIES decryption) constructing efficient threshold variant of these
signatures proved to be much harder. The main reason for this unfair distribution seems to
result from the inversion step that requires one to compute k−1 mod q from an unknown k.
To explain why this is the case, let us first briefly recall how ECDSA actually works5. The
public key is an elliptic curve point Q and the signing key is x, such that Q← xP , where P
is a generator of the elliptic curve group of points of order q. To sign a message m one first
hashes it using some suitable hash function H and then proceeds according to the following
algorithm

1. Choose k random in Z/qZ
2. Compute R← kP
3. Let r ← rx mod q where R = (rx, ry)
4. Set s← k−1(H(m) + rx) mod q
5. Output (r, s)

Now, the natural approach to make the above algorithm distributed would be to share
x additively among the participants and then start a multiparty computation protocol to
produce the signature. In the two party case, this means that players start with shares x1

and x2 such that Q = (x1+x2)P . The players can then proceed by generating random shares
k1, k2 such that R = (k1 + k2)P . At this point, however, it is not clear how to compute,
efficiently, shares k′1, k

′
2 such that k′1 + k′2 = k′−1 mod q.

Starting from [MR04] two party ECDSA signature protocols started adopting a less
common multiplicative sharing both for x and k. The basic idea of these constructions is
very simple. Players start holding shares x1, x2 such that Q = x1x2P = xP . Whenever a new
signature has to be generated they generate random k1, k2 such that R = k1k2P = kP . This
immediately allows to get shares of the inverse k′ as clearly (k1)−1(k2)−1 = (k1k2)−1 mod q.
As a final ingredient, the parties use Paillier’s homomorphic encryption to secretly add their
shares and complete the signature. For instance, player P1 computes c1 ← Enc((k1)−1H(m))
and c2 ← Enc((k1)−1x1r). P2 can then complete the signature, using the homomorphic
properties of the scheme as follows

c← c
k−1
2

1 c
k−1
2 x2

2 = Enc(k−1H(m))Enc(k−1xr) = Enc(k−1(H(m) + xr))

P2 concludes the protocol by sending back c to P1. Now, if P1 also knows the decryption
key, he can extract the signature s← k−1(H(m) + xr)) from c.

However, proving that each party followed the protocol correctly turns out to be hard.
Initial attempts [MR04] addressed this via expensive zero knowledge proofs. More recently
Lindell in [Lin17] managed to provide a much simpler and efficient protocol. The crucial
idea of Lindell’s protocol is the observation that, in the above two party ECDSA signing
protocol, dishonest parties can create very little trouble. Indeed, if in a preliminary phase
P2 receives both Paillier’s encryption key and an encryption Enc(x1) of P1’s share of the
secret signing key, essentially, all a corrupted P1 can do is participate in the generation

5 From now on we will focus on the elliptic curve variant of the scheme, as this is the most commonly
used scheme in applications. We stress that our reasoning apply to the basic DSA case as well.

2

of R ← k1k2P . Notice however that the latter is just the well established Diffie-Hellman
protocol for which very efficient and robust protocols exist.

On the other hand, if P2 is corrupted all she can do (except again participate in the
generation of R) is to create a bad c as a final response for P1. However, while P2 can
certainly try that, this would be easy to detect by simply checking the validity of the
resulting signature.

Turning this nice intuition into a formal proof induces some caveats though. A first
problem comes from the fact that Paillier’s plaintexts space is Z/NZ (N is a large composite)
whereas ECDSA signatures live in Z/qZ (q is prime). Thus to avoid inconsistencies one needs
to make sure that N is taken large enough so that no wraparounds occur during the whole
signature generation process. This also means that, when sending Enc(x1) to P2, P1 needs
to prove that the plaintext x1 is in the right range (i.e. sufficiently small).

A more subtle issue arises from the use of Paillier’s encryption in the proof. Indeed, if
one wants to use the scheme to argue indistinguishability of an adversary’s view in real and
simulated executions, it seems necessary to set up a reduction to the indistinguishability
of Paillier’s cryptosystem. This means one must design a proof technique that manages to
successfully use Paillier’s scheme without knowing the corresponding secret key. In Lindell’s
protocol the issue arises when designing the simulator’s strategy against a corrupted player
P2. In such a case, P2 might indeed send a wrong ciphertext c (i.e. one that does not encrypt
a signature) that the simulator simply cannot recognize as bad.

Lindell [Lin17] proposes two alternative proofs to overcome this. The first one relies on
a game-based definition and avoids the problem by simply allowing the simulator to abort
with a probability that depends on the number of issued signatures qs. This results in a
proof of security that is not tight (as the reduction looses a factor qs). The second proof is
simulation based, avoids the aborts, but requires the introduction of a new interactive non
standard assumption regarding Paillier’s encryption.

Thus, it is fair to say that, in spite of recent progress in the area, the following question
remains open:

Is it possible to devise a two party ECDSA signing protocol which is practical (both in
terms of computational efficiency and in terms of bandwidth consumption), does not require
interactive assumptions and allows for a tight security reduction?6

1.1 Our contribution

In this paper we provide a positive answer to the question above. In this sense, our contri-
bution is twofold.

First, we provide a generic construction for two-party ECDSA signing from hash proof
systems (HPS). Our solution can be seen as a generalization of Lindell’s scheme [Lin17] to the
general setting of HPSs that are homomorphic in the sense of [HO09]. This generic solution is
not efficient enough for practical applications as, for instance, it employs general purpose zero
knowledge as underlying building block. Still, beyond providing a clean, general framework
which is of interest in its own right, it allows us to abstract away the properties we want to
realize. In particular, our new protocol allows for a proof of security that is both tight and
does not require artificial interactive assumptions when proving simulation security. Indeed,

6 We note here that the very recent two party protocol of [DKLs18] is very fast in signing time
and only relies on the ECDSA assumption. However its bandwidth consumption is much higher
than [Lin17].

3

in public key encryption (PKE) schemes based on HPSs, indistinguishability of ciphertexts
is not compromised by the challenger knowing the scheme’s secret keys as it relies on a
computational assumption and a statistical argument.

The correctness of our protocol follows from homomorphic properties that we require
of the underlying HPS. We define the notion of homomorphically-extended projective hash
families which ensure the homomorphic properties of the HPS hold for any public key
sampled from an efficiently recognisable set, thus no zero-knowledge proofs are required for
the public key.

Towards efficient solutions, we then show how to instantiate our (homomorphic) HPS
construction using class groups of imaginary quadratic fields. Although the devastating at-
tack from [CL09] shows that large families of protocols built over such groups are insecure,
Castagnos and Laguillaumie [CL15] showed that, if carefully designed, discrete logarithm
based cryptosystems within such groups are still possible and allow for very efficient so-
lutions. Algorithms to compute discrete logarithms in such groups have been extensively
studied since the 80’s and the best ones known to date have a subexponential complexity7

of O(L[1/2, o(1)]) (compared to an O(L[1/3, o(1)]) complexity for factorisation or discrete
logarithm computation in finite fields). In [BH03], Bauer and Hamdy also showed that, for
the specific case of imaginary quadratic fields, better complexities seem unlikely. Thus, the
resulting schemes benefit from (asymptotically) shorter keys. Moreover, interest in the area
has recently been renewed as it allows versatile and efficient solutions such as encryption
switching protocols [CIL17], inner product functional encryption [CLT18] or verifiable delay
functions [BBBF18,Wes19].

Concretely, the main feature of the Castagnos and Laguillaumie cryptosystem and its
variants (CL from now on) is that they rely on the existence of groups with associated easy
discrete log subgroups, for which hard decision problems can be defined. More precisely,
in [CL15] there exist a cyclic group G := 〈g〉 of order qs where s is unknown, q is prime
and gcd(q, s) = 1, and an associated cyclic subgroup of order q, F := 〈f〉. Denoting with
Gq := 〈gq〉 the subgroup of q-th powers in G (of unknown order s), one has G = F × Gq,
and one can define an hard subgroup membership problem. Informally, and deferring for
later the necessary mathematical details, this allows to build a linearly homomorphic PKE
scheme where the plaintext space is Z/qZ for arbitrarily large q. This also means that if one
uses the very same q underlying the ECDSA signature, one gets a concrete instantiation
of our general protocol which naturally avoids all the inefficiencies resulting from N and q
being different!

We remark that, similarly to Lindell’s solution, our schemes require P2 to hold an encryp-
tion Enc(x1) of P1’s share of the secret key. As for Lindell’s case, this imposes a somewhat
heavy key registration phase in which P1 has to prove, among other things, that the public
key is correctly generated. While, in our setting we can achieve this without resorting to ex-
pensive range proofs, difficulties arise from the fact that (1) we work with groups of unknown
order and (2) we cannot assume that all ciphertexts are valid (i.e., actually encrypt a mes-
sage)8. We address this by developing a new proof that solves both issues at the same time.
Our proof is inspired by the Girault et al. [GPS06] identification protocol but introduces
new ideas to adapt it to our setting and to make it a proof of knowledge. As for Lindell’s
case, it uses a binary challenge, which implies that the proof has to be repeated t times to
get soundness error 2t. We believe that it should be possible to enlarge the challenge space

7 L[α, c] denotes Lα,c(x) := exp(c log(x)α log(log(x))1−α)
8 For Paillier’s scheme, used in [Lin17], this is not an issue: every ciphertext is valid

4

using techniques similar to those [CKY09] adapted to work in the context of class groups.
Exploring the actual feasibility of this idea is left as a future work. Clearly, advances in this
direction would lead to substantial efficiency improvements.

As final contribution, we propose a C implementation of our protocol9. Our results show
that our improved security guarantees come almost at no additional cost. Indeed, while our
scheme is slightly slower (by a factor 1.5 for key generation and 3.5 for signing) for 128-bit
security level, we are actually better for larger parameters: for 256-bit security, we are more
efficient both in terms of key generation and signing time (by respective factors of 4.2 and
1.3). Intuitively, this behavior is due to the fact that our interactive key generation requires
fewer exponentiations than that of Lindell’s protocol (160 vs. 360), but an exponentiation
in a class group is more expensive than an exponentiation in Z/nZ. The effect of the L1/2

complexity and the fewer number of exponentiations starts at 192 bit of security. In terms of
bandwidth, our protocol dramatically improves the communication cost by factors varying
from 5 (112 bit security) to 10 (256 bit security) for key generation, and from 1.2 to 2.1 for
signatures. It reduces the number of rounds from 175 (in Lindell’s protocol) to 126 for the
key generation process (the two signatures have the same number of rounds). We refer to
Section 5 for precise implementation considerations and timings.

As a final remark, our HPS methods also allow a concrete implementation based on
Paillier’s decisional composite residuosity assumption, competitive with Lindell’s for 112
and 128 bits of security as detailed in Section 6.

Differences with the the published version. We point out that the original proof of our
main protocol, as given in [CCL+19], was incomplete. Very informally, the issue was related
to the fact that one game hop cannot be justified using a purely information theoretically
argument, as implicitly assumed in [CCL+19]. To fix this we need to assume an additional
(and new) property from the underlying hash proof system. This property, relies on the
intractability of what we call double encoding assumption, a (non interactive) assumption
that we discuss and formalize in section 3.4.

2 Preliminaries

Notations. For a distribution D, we write d ←↩ D to refer to d being sampled from D and

b
$←− B if b is sampled uniformly in the set B. In an interactive protocol IP, between parties

P1 and P2, we denote by IP〈x1;x2〉 → 〈y1; y2〉 the joint execution of parties {Pi}i∈{1,2} in
the protocol, with respective inputs xi, and where Pi’s private output at the end of the
execution is yi.

The elliptic curve digital signature algorithm. ECDSA is the elliptic curve analogue of the
Digital Signature Algoritm (DSA). It was put forth by Vanstone [Van92] and accepted as
ISO, ANSI, IEEE and FIPS standards. It works in a group (G,+) of prime order q (of say
µ bits) of points of an elliptic curve over a finite field, generated by P and consists of the
following algorithms.

KeyGen(G, q, P)→ (x,Q) where x
$←− Z/qZ is the secret signing key and Q ← xP is the

public verification key.

9 We also re-implemented Lindell’s protocol to ensure a fair comparison

5

Sign(x,m)→ (r, s) where r and s are computed as follows:
1. Compute m′: the µ leftmost bits of SHA256(m) where m is to be signed.

2. Sample k
$←− (Z/qZ)∗ and compute R ← kP ; denote R = (rx, ry) and let r ← rx

mod q. If r = 0 chose another k.
3. Compute s← k−1(m′ + rx) mod q

Verif(Q,m, (r, s))→ {0, 1} indicating whether or not the signature is accepted.

Two-party ECDSA. This consists of the following interactive protocols:

IKeyGen〈(G, q, P); (G, q, P)〉 → 〈(x1, Q); (x2, Q)〉 such that KeyGen(G, q, P)→ (x,Q) where
x1 and x2 are shares of x.

ISign〈(x1,m); (x2,m)〉 → 〈∅; (r, s)〉 or 〈(r, s); ∅〉 or 〈(r, s); (r, s)〉 where ∅ is the empty out-
put, signifying that one of the parties may have no output and Sign(x,m)→ (r, s).

The verification algorithm is non interactive and identical to that of ECDSA.

Interactive zero-knowledge proof systems. A zero-knowledge proof system (P, V) for a lan-
guage L is an interactive protocol between two probabilistic algorithms: a prover P and a
polynomial-time verifier V . Informally P , detaining a witness for a given statement, must
convince V that it is true without revealing anything other to V . A more formal definition
is provided in Appendix I.

Simulation-based security and ideal functionalities. In order to prove a protocol is secure, one
must first define what secure means. Basically, the Ideal/Real paradigm is to imagine what
properties one would have in an ideal world; then if a real world (constructed) protocol has
similar properties it is considered secure. We consider static adversaries, that choose which
parties are corrupted before the protocol begins. For a detailed explanation of the simulation
paradigm we refer the reader to [Lin16].

We will use ideal functionalities for commitments, zero-knowledge proofs of knowledge
(ZKPoK) and commitments to non interactive zero-knowledge (NIZK) proofs of knowledge
between two parties P1 and P2. We give the intuition behind these ideal functionalities with
the example of ZKPoK. We consider the case of a prover Pi with i ∈ {1, 2} who wants to
prove the knowledge of a witness w for an element x which ensures that (x,w) satisfy the
relation R, i.e. (x,w) ∈ R. In an ideal world we can imagine an honest and trustful third
party, which can communicate with both Pi and P3−i. In this ideal scenario, Pi could give
(x,w) to this trusted party, the latter would then check if (x,w) ∈ R and tell P3−i if this
is true or false. In the real world we do not have such trusted parties and must substitute
them with a cryptographic protocol between P1 and P2. Roughly speaking, the Ideal/Real
paradigm requires that whatever information an adversary A (corrupting either P1 or P2)
could recover in the real world, it can also recover in the ideal world. The trusted third party
can be viewed as the ideal functionality and we denote it by F. If some protocol satisfies
the above property regarding this functionality, we call it secure.

Formally, we denote F〈x1;x2〉 → 〈y1; y2〉 the joint execution of the parties via the func-
tionality F, with respective inputs xi, and respective private outputs at the end of the
execution yi. Each transmitted message is labelled with a session identifier sid, which iden-
tifies an iteration of the functionality. The ideal ZKPoK functionality [HL10, Section 6.5.3],
denoted Fzk, is defined for a relation R by Fzk〈(x,w); ∅〉 → 〈∅; (x,R(x,w))〉, where ∅ is the
empty output, signifying that the first party receives no output (cf. Fig. 1).

The ideal commitment functionality, denoted Fcom, is depicted in Fig. 2. We also use an
ideal functionality FR

com−zk for commitments to NIZK proofs for a relation R (cf. Fig. 3).
Essentially, this is a commitment functionality, where the committed value is a NIZK proof.

6

– Upon receiving (prove, sid, x, w) from a party Pi (for i ∈ {1, 2}): if (x,w) /∈ R or sid has been
previously used then ignore the message. Otherwise, send (proof, sid, x) to party P3−i

Fig. 1: The FR
zk functionality

– Upon receiving (commit, sid, x) from party Pi (for i ∈ {1, 2}), record (sid, i, x) and send
(receipt, sid) to party P3−i. If some (commit, sid, ∗) is already stored, then ignore the message.

– Upon receiving (decommit, sid) from party Pi , if (sid, i, x) is recorded then send (decommit,
sid, x) to party P3−i.

Fig. 2: The Fcom functionality

The ideal functionality for two-party ECDSA. The ideal functionality FECDSA (cf. Fig. 4)
consists of two functions: a key generation function, called once, and a signing function,
called an arbitrary number of times with the generated keys.

– Upon receiving (com− prove, sid, x, w) from a party Pi (for i ∈ {1, 2}): if (x,w) /∈ R or
sid has been previously used then ignore the message. Otherwise, store (sid, i, x) and send
(proof − receipt, sid) to P3−i.

– Upon receiving (decom− proof, sid) from a party Pi (for i ∈ {1, 2}): if (sid, i, x) has been
stored then send (decom− proof, sid, x) to P3−i

Fig. 3: The FR
com−zk functionality

Consider an Elliptic-curve group G of order q with generator a point P , then:
– Upon receiving KeyGen(G, P, q) from both P1 and P2:

1. Generate an ECDSA key pair (Q, x), where x
$←− (Z/qZ)∗ is chosen randomly and Q

is computed as Q← x · P .
2. Choose a hash function Hq : {0, 1}∗ → {0, 1}blog |q|c, and store (G, P, q,Hq, x).
3. Send Q (and Hq) to both P1 and P2.
4. Ignore future calls to KeyGen.

– Upon receiving Sign(sid,m) from both P1 and P2, where keys have already been generated
from a call to Keygen and sid has not been previously used, compute an ECDSA signature

(r, s) on m, and send it to both P1 and P2. (To do this, choose a random k
$←− (Z/qZ)∗,

compute (rx, ry) ← k · P and set r ← rx mod q. Finally, compute s ← k−1(Hq(m) + rx)
and output (r, s).)

Fig. 4: The FECDSA functionality

7

3 Two-Party ECDSA from Hash Proof Systems

In this section we provide a generic construction for two-party ECDSA signing from hash
proof systems (HPS) which we prove secure in the simulation based model. Throughout
the section we consider the group of points of an elliptic curve G of order q, generated by
P . In Subsection 3.1, we first recall the HPS framework from [CS02], before defining ba-
sic properties required for our construction in Subsection 3.2. In particular, to guarantee
correctness of the protocol (in order for party P2 to be able to perform homomorphic oper-
ations on ciphertexts provided by P1, which are encryptions of elements in Z/qZ) the HPS
must be homomorphic; and for security to hold against malicious adversaries we also require
that the subset membership problem underlying the HPS be hard, and that the HPS be
smooth. We note that diverse group systems (often used as a foundation for constructions
of HPSs) imply all the aforementioned properties. Such HPSs define linearly homomorphic
encryption schemes as described in Subsection 3.3. In Subsection 3.4, we summarise all the
properties required to build simulation secure two party ECDSA from hash proof systems.
This includes two new definitions. The first, decomposability, imposes some requirement on
the structure of the HPS. It holds for a variety of HPSs (such as the Decision Diffie Hellman
based HPS of [CS02], and the class group based HPS presented in Section 4). The second,
called the double encoding assumption, is slightly more ad-hoc, and is necessary to capture
the information leaked from the public parameters of centralised ECDSA. We also back
that this assumption seems hard. Finally, before presenting the overall two party signing
protocol and proving its security, we describe zero-knowledge proofs (ZKP) related to the
aforementioned HPSs, and justify that they fulfil the Fcom/Fcom-zk hybrid model.

3.1 Background on Hash Proof Systems

Hash proof systems were introduced in [CS02] as a generalisation of the techniques used in
[CS98] to design chosen ciphertext secure PKE schemes. Consider a set of words X, an NP
language L ⊂ X such that L := {x ∈ X | w ∈ W : (x,w) ∈ R} where R is the relation
defining the language, L is the language of true statements in X, and for (x,w) ∈ R, w ∈W

is a witness for x ∈ L. The set (X,L,W,R) defines an instance of a subset membership
problem, i.e. the problem of deciding if an element x ∈ X is in L or in X\L. We denote
GenSM an algorithm which on input a parameter 1λ, outputs the description (X,L,W,R)
of a subgroup membership problem.

A HPS associates a projective hash family (PHF) to such a subset membership problem.
The PHF defines a key generation algorithm PHF.KeyGen which outputs a secret hashing
key hk sampled from distribution of hashing keys Dhk over a hash key space Khk, and a
public projection key hp ← projkg(hk) in projection key space Khp (where projkg : Khk 7→
Khp is an efficient auxiliary function). The secret hashing key hk defines a hash function
hashhk : X 7→ Π, and hp allows for the (public) evaluation of the hash function on words
x ∈ L, i.e. projhashhp(x,w) = hashhk(x) for (x,w) ∈ R. A projective hash family PHF is thus
defined by PHF := ({hashhk}hk∈Khk

,Khk,X,L, Π,Khp, projkg).

3.2 Basic Properties

δs-smoothness. The standard smoothness property of a PHF requires that for any x /∈ L, the
value hashhk(x) be uniformly distributed knowing hp. In this work messages will be encoded
in a subgroup F of Π of order q, generated by f . Indeed, for integration with ECDSA it

8

must hold that the group in which the message is encoded has order q, since the message
space is dictated by the order of the elliptic curve group G. In some instantiations F = Π,
but F may also be a strict subgroup of Π. For m ∈ Z/qZ one encodes m in F as fm, this
induces an efficient isomorphism. The inverse isomorphism logf : fm 7→ m must also be
efficiently computable.

If F (Π, we require smoothness over X on F [CS02, Subsection 8.2.4]. A projective
hash family is δs-smooth over X on F if for any x ∈X\L, a random π ∈ F and a randomly
sampled hashing key hk ←↩ Dhk , the distributions U := {x, projkg(hk), hashhk(x) · π} and
V := {x, projkg(hk), hashhk(x)} are δs-close.

δL−hard subset membership problem. For security to hold (X,L,W,R) must be an instance
of a hard subset membership problem, i.e. no polynomial time algorithm can distinguish
random elements of X\L from those of L with significant advantage. Consider a positive
integer λ. We say GenSM is a generator for a δL(λ)-hard subset membership problem if
for any (X,L,W,R)← GenSM(1λ), δL is the maximal advantage of any polynomial time
adversary in distinguishing random elements of X\L from those of L. For conciseness, we
often simply say (X,L,W,R) is a δL−hard subset membership problem.

Linearly homomorphic PHF. In order for the homomorphic operations performed by P2 to
hold in the two party ECDSA protocol, we require that the projective hash family also be
homomorphic as defined in [HO09].

Definition 1 ([HO09]). The projective hash family PHF := ({hashhk}hk∈Khk
,Khk,X, L, Π,

Khp, projkg) is homomorphic if (X, ?) and (Π, ·) are groups, and for all hk ∈ Khk, and
u1, u2 ∈ X, we have hashhk(u1) · hashhk(u2) = hashhk(u1 ? u2), that is to say hashhk is a
homomorphism for each hk.

This clearly implies that for hp← projkg(hk) the public projective hash function is linearly
homomorphic with respect to elements u1, u2 ∈ L.

Homomorphically extended PHF. Note that the co-domain of projkg, which specifies the set
of valid projection keys, may not be efficiently recognisable. Though we do not require – as
did the protocol of [Lin17] – a costly ZKPoK of the secret key associated to the public key,
it is essential in our protocol that even if a public key is chosen maliciously (i.e. there does
not exist hk ∈ Khk such that hp ← projkg(hk), which may go unnoticed to honest parties
in the protocol), the homomorphic properties of the public projective hash function still
hold. We thus require that the co-domain of projkg, which defines valid projection keys, be
contained in an efficiently recognisable space K ′hp, such that for all hp′ ∈ K ′hp, hashhp′ is a
homomorphism (respectively to its inputs in L).

Definition 2 (Homomorphically extended PHF). We say that the projective hash
family PHF := ({hashhk}hk∈Khk

,Khk,X, L, Π,Khp,K
′
hp, projkg) is homomorphically extended

if PHF := ({hashhk}hk∈Khk
, Khk,X, L, Π,Khp, projkg) is a homomorphic PHF and that there

exists an efficiently recognizable space K ′hp ⊇ Khp such that for any hp′ ∈ K ′hp, the function
projhashhp′ is a homomorphism (respectively to its inputs in L).

Key homomorphic PHF. Finally for our security proofs we also need projective hash families
which are linearly homomorphic w.r.t. the hashing keys.

9

Definition 3. A projective hash family PHF is key homomorphic if Khk is a cyclic additive
Abelian group, Π is a multiplicative finite Abelian group; and ∀x ∈X and ∀hk0, hk1 ∈ Khk,
it holds that hash(hk0, x) · hash(hk1, x) = hash(hk0 + hk1, x).

Remark 1. We note that for correctness and security of our construction, it is not necessary
that Khk be cyclic. However imposing this greatly simplifies presentation. The interested
reader can verify that our results hold even without this requirement on Khk. We also point
out that if one does not require Khk to be cyclic, the resulting definition is that of [BBL17].

3.3 Resulting Encryption Scheme

We use the standard chosen plaintext attack secure encryption scheme which results from
a HPS [CS02]. The key generation algorithm simply runs PHF.KeyGen and sets hk ∈ Khk

as the secret key, and the associated public key is hp ← projkg(hk). Encryption of a plain-
text message m in Z/qZ is done by sampling a random pair (u,w) ∈ R and computing
Enc(hp,m) ← (u, projhashhp(u,w)fm). To specify the randomness used in the encryption
algorithm, we sometimes use the notation Enc((u,w); (hp,m)). To decrypt a ciphertext
(u, e) ∈ X ×Π with secret key hk do: Dec(hk, (u, e)) ← logf (e · hashhk(u)−1). Note that if
e · hashhk(u)−1 /∈ F = 〈f〉, the decryption algorithm returns the special error symbol ⊥.

The scheme is semantically secure under chosen plaintext attacks assuming both the
smoothness of the HPS and the hardness of the underlying subset membership problem.

Homomorphic properties. Given encryptions (u1, e1) and (u2, e2) of respectively m1 and m2,
and an integer a, we require that there exist two procedures EvalSum and EvalScal such that
Dec(hk,EvalSum(hp, (u1, e1), (u2, e2))) = m1 + m2 and Dec(hk, EvalScal(hp, (u1, e1), a)) =
a ·m1; which is the case if the projective hash family is homomorphic.

Invalid ciphertexts. We define the notion of invalid ciphertexts as these will be useful in our
security proofs. A ciphertext is said to be invalid if it is of the form (u, e) := (u, hashhk(u)fm)
where u ∈X\L. Note that one can compute such a ciphertext using the secret hashing key
hk, but not the public projection key hp; that the decryption algorithm applied to (u, e)
with secret key hk recovers m; and that an invalid ciphertext is indistinguishable of a valid
one under the hardness of the subset membership problem.

Homomorphic properties over invalid ciphertexts. It is easy to verify that homomorphic op-
erations hold even if a ciphertext is invalid, whether this be between two invalid ciphertexts
of between a valid and invalid ciphertext. This is true since the homomorphic properties we
required of the PHF hold over the whole group X (and not only in L).

3.4 ECDSA friendly Projective Hash Families

We here formalise new properties for PHFs which contribute to the clarity of our security
proofs.

(Υ,F)-Decomposability. We introduce the notion of a decomposable PHF, this property
states that the domain X of hash is the direct product of the language L and some cyclic
subgroup of X. Since – given the projection key – one can publicly compute hash values
over elements in L, decomposability allows us to have a clear separation between the part

10

of a given hash value which is predictable (whose pre-image is in L), and the part which
appears random. Though the definition is new, many well known PHFs arising from groups
satisfy this property (e.g. the original DDH and DCR based PHFs of [CS02]).

Definition 4. Let SM := (X,L,W,R) be a subgroup membership problem, and consider
the associated projective hash family PHF, such that the co-domain Π of hash is a finite
Abelian group which contains a cyclic subgroup F. We say that PHF is (Υ,F)-decomposable
if there exists Υ ∈X s.t.:

– X is the direct product of L and 〈Υ 〉;
– ∀hk ∈ Khk, hashhk(Υ) ∈ F.

Remark 2. In this work F is a cyclic subgroup of Π, generated by f and of prime order q, and
the PHFs we consider are homomorphic and key homomorphic. For hk←↩ Dhk, if hashhk(Υ) =
1 smoothness does not hold, hence we assume this is not the case. Throughout the rest of
the paper, we denote Ψ the considered generator of Khk, which satisfies hashΨ (Υ) = f .
Consequently, for any hk←↩ Dhk, where hk = c ·Ψ (for some c ∈ Z), and for any y = Υ b (for
some b ∈ Z), one has hashhk(y) = f bc.

The Double Encoding Problem. To ensure security of our protocol, we need a notion which
deals with information leaked by the actual fact an interactive signing protocol concludes
successfully or aborts. Indeed, in the overall protocol, P1 sends an encryption c1 of its secret
share x1, along with the elliptic curve point Q1 := x1P to P2. Then P2 sends another
ciphertext c2 (which should be homomorphically computed from c1) back to P1. If the
protocol stopped here, the HPS’s smoothness would suffice to prove the security of the
protocol, since the encrypted value is perfectly masked. However P1 uses the value decrypted
from c2 to compute the overall signature. The fact that the protocol concludes successfully
or aborts may leak one bit of information to a malicious P2. We must thus ensure that a
corrupted P2 can not devise malformed ciphertexts allowing it to distinguish real and ideal
executions, by causing an execution to conclude successfully in one case, while it would abort
in the other. To this end, we require that – given a one way function (OWF) evaluated in
x ∈ Z/qZ (in our protocol this is the elliptic curve point Q := xP) – no polynomial time
adversary can produce two invalid encryptions of x.

Though the following assumption may seem quite ad-hoc, in the following paragraph we
motivate that intuitively it seems a least as hard as inverting the one way function.

Definition 5 (Double encoding assumption). Consider a security parameter λ ∈ N,
and a λ-bit prime q. Further consider a collection of one way functions sampled via. an
efficient algorithm GenOW , such that for h ←↩ GenOW (1λ, q), h has input space Z/qZ (and
arbitrary output space). Let GenSM be a subset membership problem generator such that the
resulting projective hash family PHF is (Υ,F)-decomposable, for F of prime order q. The
double encoding (DE) problem is δDE(λ)-hard for (GenSM, GenOW) if, given (X,L,W,R)←↩
GenSM(1λ, q), h ← GenOW (1λ, q), and y := h(x) for a randomly sampled x ∈ Z/qZ, no
algorithm A running in time polynomial in λ can output two invalid encryptions of x, with
probability greater than δDE(λ). More precisely,

δDE(λ) > Pr
[
u1, u2, u2u

−1
1 ∈X \L and hp = projkg(hk) :

SM ←↩ GenSM(1λ, q), h←↩ GenOW (1λ, q), x
$←− Z/qZ, y ← h(x),

(hp, (u1, hashhk(u1)fx), (u2, hashhk(u2)fx))←A(h,SM, y)
]
.

The DE assumption holds if for any λ-bit prime q, δDE is negligible in λ.

11

On the hardness of the double encoding problem. If the HPS and the OWF arise from
independent structures, it seems unlikely that one could solve the DE problem without
breaking the one wayness of h, and subsequently computing two invalid encodings of x.
Even if their structures are the same, it is unclear how one could do this. Of course if
the OWF were the mapping of x to fx, the DE problem would be easy. However in our
applications we specifically require that computing x from fx be easy, and consequently
this mapping is not one way. We back the intuition that this problem is hard by considering
two PHF instantiations which are relevant for our purposes. One from the DCR assumption
(cf. [CS02]) and the other from class group cryptography (cf. Section 4). Let us first recall
the definition of a subgroup decomposition problem.

Definition 6. Consider a finite abelian group G, and subgroups G1 and G2 such that G is
the direct product of G1 and G2. An algorithm A solves the subgroup decomposition (SD)
problem in (G,G1, G2) if, given input x←↩ G, A outputs y ∈ G1, z ∈ G2 such that x = yz.

In PHFs arising from DCR (cf. [CS02]) and HSM (cf. Section 4), one has Khk = Z, and for
a hashing key hk ←↩ Dhk, and x in the finite abelian group X, one has hashhk(x) = xhk.
This implies that the output space of the hashing algorithm is Π := X = L × 〈Υ 〉, and in
fact Υ = f and 〈Υ 〉 = F. Furthermore computing x from fx can be done efficiently. Clearly
these PHFs are homomorphic and key homomorphic.

Note that though for the HSM based PHF, the order of f is a prime q, for the DCR
based PHF, the order of f is an RSA integer N . This implies that when building two-party
ECDSA from DCR, the order q of the one way function’s input space and the order N of
f are different, where N � q. Hence we modify slightly the assumption, so that A must
output (hp, (u1, hashhk(u1)fx), (u2, hashhk(u2)fx)), with x ∈ Z and 0 ≤ x ≤ q − 1 (this
suffices to instantiate our generic construction of Section 3.6).

In the following lemma we demonstrate that for both these PHFs, one can reduce the
problem of inverting the OWF to the hardness of solving the SD problem in (X,L,F), and
the hardness of solving the DE problem.

Lemma 1. Consider PHFs arising from DCR (cf. [CS02]) and HSM (cf. Section 4). Further
consider a one way function h. Suppose there exists a PPT algorithm B1 solving the DE
problem with non negligible probability; and a PPT algorithm B2 solving the SD problem with
non negligible probability; then one can build a PPT algorithm breaking the one wayness of
h with non negligible probability.

Proof. Consider h←↩ GenOW (1λ, q), an adversary A attempting to invert h, and algorithms

B1 and B2 as described in the lemma. A gets as input a value y := h(x) for x
$←− Z/qZ.

A runs SM = (X,L,W,R)← GenSM(1λ, q), and sends (h,SM, y) to B1. With significant
probability B1 outputs (hp, (u1, u

hk
1 f

x), (u2, u
hk
2 f

x)) where u1, u2, u2u
−1
1 ∈X \L and hp =

projkg(hk). There exist unique values z1, z2 ∈ L and b1, b2 ∈ Z/qZ for HSM (resp. b1, b2 ∈
Z/NZ for DCR) such that u1 = z1f

b1 and u2 = z2f
b2 . Let us denote e1 := uhk1 f

x =
zhk1 f

b1hk+x and e2 := zhk2 f
b2hk+x. A calls upon B2 four times, with inputs u1, u2, e1 and

e2 respectively (these inputs can be re-randomized, but for simplicity we omit this level of
detail), to obtain z1, z2 ∈ L; f b1 , f b2 ∈ F; zhk1 , z

hk
2 ∈ L; and f b1hk+x, f b2hk+x. Now A can

efficiently compute (b1 mod q), (b2 mod q), (b1hk + x mod q) and (b2hk + x mod q) in the
HSM case; and (b1 mod N), (b2 mod N), (b1hk + x mod N) and (b2hk + x mod N) in the
DCR case. Since u2u

−1
1 ∈ X\L, b1 6= b2 mod q for HSM, while for DCR b1 6= b2 mod N ,

and so there exists a unique solution for (x mod q) which A can efficiently compute from
the aforementioned equations, thereby breaking the one wayness of h. �

12

Note that for the DCR based PHF there exists a trapdoor which renders the SD problem
easy, which can be efficiently computed when generating the subset membership problem
instance. Thus if the HPS arises from DCR, the DE problem is at least as hard as inverting
the one way function.

For our HPS from the HSM assumption (resulting from class group cryptography) in
Section 4.2, best known algorithms for solving the SD problem are sub-exponential, whereas
for computing discrete logarithms in elliptic curves (which is the OWF we will consider in
our construction) there currently exist only exponential algorithms. Consequently for this
application the DE problem must have an exponential complexity.

ECDSA-friendly HPS. We here define the notion of an ECDSA-friendly HPS, essentially
it is a HPS which meets all of the aforementioned properties, and which suffices to ensure
simulation based security in the protocol of Subsection 3.6.

Definition 7 ((Υ,F, δs, δL, δDE)-ECDSA-friendly HPS). Let X, Π and F be groups
such that F is a cyclic subgroup of Π of prime order q, generated by f , and such that
there exists an efficient isomorphism from (Z/qZ,+) to (F, ·), mapping m ∈ Z/qZ to
fm, whose inverse logf is also efficiently computable. Let expG be the function which to
x ∈ Z/qZ maps the elliptic curve point xP . An (Υ,F, δs, δL, δDE)-ECDSA-friendly hash
proof system is a hash proof system which associates to a δL−hard subset membership prob-
lem a homomorphically extended projective hash family PHF := ({hashhk}hk∈Khk

,Khk,X,
L, Π,Khp,K

′
hp, projkg) which is (Υ,F)-decomposable, δs-smooth over X on F, and such

that the DE problem is δDE-hard for (PHF, expG).

3.5 Zero-Knowledge Proofs

Proofs of knowledge. We use the Fzk, Fcom-zk hybrid model. Ideal ZK functionalities are used
for the following relations, were the parameters of the elliptic curve (G, P, q) are implicit
public inputs:

1. RDL := {(Q,w)|Q = wP}, proves the knowledge of the discrete log of an elliptic curve
point.

2. RHPS−DL := {(hp, (c1, c2), Q1); (x1, w)|(c1, c2) = Enc((u,w); (hp, x1))∧(c1, w) ∈ R∧Q1 =
x1P}, proves the knowledge of the randomness used for encryption, and of the value
x1 which is both encrypted in the ciphertext (c1, c2) and the discrete log of the elliptic
curve point Q1.

The functionalities FRDL

zk , FRDL

com-zk can be instantiated using Schnorr proofs [Sch91]. For
the RHPS−DL proof, Lindell in [Lin17] uses a proof of language membership as opposed
to a proof of knowledge. Though his technique is quite generic, it cannot be used in our
setting. Indeed, his approach requires that the ciphertext be valid, which means that the
element c must be decryptable. As Lindell uses Paillier’s encryption scheme, any element of
(Z/N2Z)× is a valid ciphertext. This is not the case for a HPS-based encryption scheme,
since it incorporates redundancy so that any pair in X ×Π is not a valid ciphertext.

For our instantiations, we will introduce specific and efficient proofs. Note that in any
case, we needn’t prove that x1 ∈ Z/qZ since both the message space of our encryption
scheme and the elliptic curve group G are of order q.

13

3.6 Two-Party ECDSA Signing Protocol with Simulation-Based Security

We here provide our generic construction for two-party ECDSA signing from hash proof
systems (Figure 5), along with a proof that the protocol is secure in the Ideal/Real paradigm
(Theorem 1). To this end, we must argue the indistinguishability of an adversary’s view –
corrupting either party P1 or P2 – in real and simulated executions. In Cramer-Shoup
like encryption schemes (resulting from HPSs as described in Subsection 3.3), the chosen
plaintext attack indistinguishability of ciphertexts allows for the challenger in the security
game to sample the secret hashing key hk, and compute the resulting projection key hp.
Thus hk is known to the challenger. Indeed here, in order to prove indistinguishability,
the challenger first replaces the random masking element u ∈ L in the original encryption
scheme with an element sampled outside the language u′ ∈ X\L. Note that in order to
perform this change the challenger must know the secret hashing key. The hardness of the
subset membership problem ensures this goes unnoticed to any polynomial time adversary.
Then the smoothness of the projective hash family allows one to replace the plaintext value
by some random element from the plaintext space, thus guaranteeing the indistinguishability
of the resulting encryption scheme. We insist on this point since in Lindell’s protocol [Lin17],
many issues arise from the use of Paillier’s cryptosystem, for which the indistinguishability
of ciphertexts no longer holds if the challenger knows the secret key. In particular this implies
that in Lindell’s game based proof, instead of letting the simulator use the Paillier secret
key to decrypt the incoming ciphertext (and check the corrupted party P2 did not send a
different ciphertext c than that prescribed by the protocol), the simulator guesses when the
adversary may have cheated by simulating an abort with a probability depending on the
number of issued signatures. This results in a proof of security which is not tight.

Moreover, though this technique suffices for a game-based definition, it does not for
simulation-based security definitions. Thus, in order to be able to prove their protocol secure
using simulation, they use a rather non-standard and interactive assumption, called Paillier-
EC assumption and recalled in Appendix IV. Thanks to the framework we have chosen to
adopt, we are able to avoid such an interactive assumption. Moreover, should one write a
game based proof for our construction, the security loss present in [Lin17] would not appear.

Finally we note that the correctness of our protocol follows from the correctness of the
underlying public key encryption scheme and from the fact the hash function is linearly
homomorphic for any public key in the efficiently recognisable space K ′hp.

Theorem 1. Assume HPS is a (Υ,F, δs, δL, δDE)-ECDSA-friendly HPS; and that no poly-
nomial time algorithm can compute discrete logarithms in G with probability greater than
δDL; then the protocol of Figure 5 securely computes FECDSA in the (Fzk,Fcom-zk)-hybrid
model in the presence of a malicious static adversary (under the ideal/real definition). In-
deed there exists a simulator for the scheme such that no polynomial time adversary – having
corrupted either P1 or P2 – can distinguish a real execution of the protocol from a simulated
one with probability greater than 2δL + δDE + 2δDL + 1/q + δs.

Proof. In this proof, the simulator S only has access to an ideal functionality FECDSA for
computing ECDSA signatures, so all it learns in the ideal world is the public key Q which
it gets as output of the KeyGen phase from FECDSA and signatures (r, s) for messages m
of its choice as output of the Sign phase. However in the real world, the adversary, having
either corrupted P1 or P2 will also see all the interactions with the non corrupted party
which lead to the computation of a signature. Thus S must be able to simulate A’s view of
these interactions, while only knowing the expected output. To this end S must set up with

14

P1 IKeyGen(G, P, q) P2

x1
$←− Z/qZ

Q1 ← x1P
(com-prove,1,Q1,x1)−−−−−−−−−−−−→ F

RDL
com-zk

(proof-receipt,1)−−−−−−−−−→
x2

$←− Z/qZ
P1 aborts if
(proof, 2, Q2)
not received.

(proof,2,Q2)←−−−−−−− F
RDL
zk

(prove,2,Q2,x2)←−−−−−−−−− Q2 ← x2P

(decom-proof,1)−−−−−−−−−→ F
RDL
com-zk

(decom-proof,1,Q1)−−−−−−−−−−−→
hk←↩ Dhk

hp← projkg(hk)
Sample (u,w) ∈ R

ckey ← Enc((u,w); (hp, x1))
(prove,3,(hp,ckey,Q1),(x1,w))
−−−−−−−−−−−−−−−−−→ F

RHPS−DL

zk

(proof,3,(hp,ckey,Q1))−−−−−−−−−−−−−→

P2 aborts unless
(decom-proof, 1, Q1),

(proof, 3, (hp, ckey, Q1))
received and hp ∈ K′hp.

Q← x1Q2 Q← x2Q1

P1 ISign(m, sid) P2

k1
$←− Z/qZ

R1 ← k1P
(com-prove,sid||1,R1,k1)−−−−−−−−−−−−−−−→ F

RDL
com-zk

(proof-receipt,sid||1)−−−−−−−−−−−−→ k2
$←− Z/qZ

R2 ← k2P
P1 aborts if

(proof, sid||2, R2)
not received.

(proof,sid||2,R2)←−−−−−−−−−− F
RDL
zk

(prove,sid||2,R2,k2)←−−−−−−−−−−−−

(decom-proof,sid||1)−−−−−−−−−−−−→ F
RDL
com-zk

(decom-proof,sid||1,R1)−−−−−−−−−−−−−−→
P2 aborts if

(decom-proof, sid||1, R1)
not received.

m′ ← H(m)
R = (rx, ry)← k1R2 R = (rx, ry)← k2R1

r ← rx mod q r ← rx mod q
c1 ← Enc(hp, k−1

2 ·m′)
c2 ← EvalScal(hp, ckey, k

−1
2 rx2)

α← Dec(hk, c3)
c3←−−−−−−−−−−−− c3 ← EvalSum(hp, c1, c2)

ŝ← α · k−1
1

s← min(ŝ, q − ŝ)
If not Verif(Q,m, (r, s))

P1 aborts
else Return (r, s)

Fig. 5: Two-Party ECDSA Key Generation and Signing Protocols from HPSs

15

A the same public key Q that it received from FECDSA, in order to be able to subsequently
simulate interactively signing messages with A, using the output of FECDSA from the Sign
phase.

S simulates P2 – Corrupted P1: We first show that if an adversary A1 corrupts P1, one
can construct a simulator S s.t. the output distribution of S is indistinguishable from A1’s
view in an interaction with an honest party P2. The main difference here with the proof of
[Lin17] arises from the fact we no longer use a ZKP from which S can extract the encryption
scheme’s secret key. Instead, S extracts the randomness used for encryption and the plaintext
x1 from the ZKPoK for RHPS−DL, which allows it to recompute the ciphertext and verify it
obtains the expected value ckey. Moreover since the message space of our encryption scheme
is Z/qZ, if A1 does not cheat in the proofs (which is guaranteed by the (Fzk,Fcom-zk)-hybrid
model), the obtained distributions are identical in the ideal and real executions (as opposed
to statistically close as in [Lin17]).
Key Generation Phase

1. Given input KeyGen(G, P, q), the simulator S sends KeyGen(G, P, q) to the ideal func-
tionality FECDSA and receives back a public key Q.

2. S invokes A1 on input IKeyGen(G, P, q) and receives the commitment to a proof of
knowledge of x1 such that Q1 = x1P denoted (com-prove, 1, Q1, x1) as A1 intends to
send to FRDL

com-zk, such that S can extract x1 and Q1.
3. Using the extracted value x1, S verifies that Q1 = x1P . If so, it computes Q2 ← x−1

1 Q
(using the value Q received from FECDSA); otherwise S samples a random Q2 from G.

4. S sends (proof, 2, Q2) to A1 as if sent by FRDL

zk thereby S simulating a proof of knowledge
of x2 s.t. Q2 = x2P .

5. S receives (decom− proof, 1) as A1 intends to send to FRDL

com-zk and simulates P2 aborting
if Q1 6= x1P . S also receives (prove, 3, (hp, ckey, Q1), (x1, w)) as A1 intends to send to

F
RHPS−DL

zk .
6. S computes u from w such that (u,w) ∈ R, and using the extracted value x1 verifies

that ckey = Enc((u,w); (hp, x1)), and simulates P2 aborting if not.
7. S sends continue to FECDSA for P2 to receive output, and stores (x1, Q, ckey).

When taking Fzk and Fcom−zk as ideal functionalities, the only difference between the
real execution as ran by an honest P2, and the ideal execution simulated by S is that in the

former Q2 ← x2P where x2
$←− Z/qZ, whereas in the latter Q2 ← x−1

1 Q, where Q is the
public key returned by the ideal functionality FECDSA. However since FECDSA samples Q
uniformly at random from G, the distribution of Q2 in both cases is identical.
Signing Phase

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to FECDSA and receives back
a signature (r, s).

2. S computes the elliptic curve point R = (r, ry) using the ECDSA verification algorithm.
3. S invokes A1 with input ISign(sid,m) and simulates the first three interactions such

that A1 computes R. The strategy is similar to that used to compute Q, in brief, it
proceeds as follows:

(a) S receives (com-prove, sid||1, R1, k1) from A1.
(b) If R1 = k1P then S sets R2 ← k−1

1 R; otherwise it chooses R2 at random. S sends
(proof, sid||2, R2) to A1.

16

(c) S receives (decom-proof, sid||1) from A1. If R1 6= k1P then S simulates P2 aborting
and instructs the trusted party computing FECDSA to abort.

4. S computes c3 ← Encpk(k1 · s mod q), where s was received from FECDSA, and sends
c3 to A1.

As with the computation of Q2 in the key generation phase, R2 is distributed identically
in the real and ideal executions since R is randomly generated by FECDSA. The zero-
knowledge proofs and verifications are also identically distributed in the Fzk, Fcom-zk-hybrid
model. Thus, the only difference between a real execution and the simulation is the way
that c3 is computed. In the simulation it is an encryption of k1 · s = k1 · k−1(m′ + r · x) =
k−1

2 · (m′ + r · x) mod q, whereas in a real execution c3 is computed from ckey, using the
homomorphic properties of the encryption scheme. However, notice that as long as there
exist (u,w) such that ckey = Enc((u,w); (hp, x1)) where Q = x1P – which is guaranteed by

the ideal functionality F
RHPS−DL

zk – and as long as the homomorphic operations hold – which
is guaranteed for any hp in the efficiently verifiable ensemble K ′hp (cf. Subsection 3.2) – the

c3 obtained in the real scenario is also an encryption of s′ = k−1
2 · (m′ + r · x) mod q. Thus

c3 is distributed identically in both cases.
This implies that the view of a corrupted P1 is identical in the real and ideal executions

of the protocol (in the Fzk, Fcom-zk-hybrid model), i.e., the simulator perfectly simulates the
real environment, which completes the proof of this simulation case.

S simulates P1 – Corrupted P2: We now suppose an adversary A2 corrupts P2 and describe
the simulated execution of the protocol. We demonstrate via a sequence of games – where
the first game is a real execution and the last game is a simulated execution – that both
executions are indistinguishable. This proof methodology differs considerably to that of
[Lin17] since the main differences between a real and simulated execution are due to the
ciphertext ckey, so the indistinguishability of both executions reduces to the hardness of the
hash proof system, the smoothness of the underlying projective hash family, and the hardness
of the double encoding problem. We first describe an ideal execution of the protocol:
Key Generation Phase

1. Given input KeyGen(G, P, q), the simulator S sends KeyGen(G, P, q) to the functionality
FECDSA and receives back Q.

2. S invokes A2 upon input IKeyGen(G, P, q) and sends (proof-receipt, 1) as A2 expects to
receive from FRDL

com-zk.

3. S receives (prove, 2, Q2, x2) as A2 intends to send to FRDL

zk .
4. Using the extracted value x2, S verifies that Q2 is a non zero point on the curve and

that Q2 = x2P . If so it computes Q1 ← (x2)−1Q and sends (decom-proof, 1, Q1) to A2

as it expects to receive from FRDL

com-zk. If not it simulates P1 aborting and halts.

5. S samples hk ←↩ Dhk and computes hp ← projkg(hk). It also samples x̃1
$←− Z/qZ and

(u,w) ∈ R and computes ckey ← Enc((u,w); (hp, x̃1)).

6. S sends (proof, 3, (hp, ckey, Q1)) to A2, as A2 expects to receive from F
RHPS−DL

zk .
7. S sends continue to FECDSA for P1 to receive output, and stores Q.

Signing Phase

1. Upon input Sign(sid,m), simulator S sends Sign(sid,m) to FECDSA and receives back
a signature (r, s).

2. S computes the point R = (r, ry) using the ECDSA verification algorithm.

17

3. S invokes A2 with input ISign(sid,m) and sends (proof-receipt, sid||1) as A2 expects to
receive from FRDL

com-zk.

4. S receives (prove, sid||2, R2, k2) as A2 intends to send to FRDL

zk .
5. Using the extracted value k2, S verifies that R2 is a non zero point and that R2 = k2P .

If so it computes R1 ← k−1
2 R and sends (decom-proof, sid||1, R1) to A2 as it expects

to receive from FRDL

com-zk. If not it simulates P1 aborting and instructs the trusted party
computing FECDSA to abort.

6. S receives c3 = (u3, e3) from A2, which it can decrypt using hk, i.e.

α← logf
(
e3 · hashhk(u3)−1

)
.

If α = k−1
2 · (m′+ r ·x2 · x̃1) mod q then S sends continue to the trusted party FECDSA,

s.t. the honest party P1 receives output. Otherwise it instructs FECDSA to abort.

We now describe the sequence of games. Game0 is the real execution of the protocol
from P1’s view, and we finish in Game6 which is the ideal simulation described above. In the
following intermediary games, only the differences in the steps performed by S are depicted.

Let us now demonstrate that each game step is indistinguishable from the view of A2.

Game0 Game1
Q← x1x2P Q← x1x2P

...
...

hk←↩ Dhk hk←↩ Dhk

hp← projkg(hk) hp← projkg(hk)
Sample (u,w) ∈ R

ckey ← Enc(hp, x1) ckey ← (u, hashhk(u) · fx1)
Send ckey to A2 Send ckey to A2

...
...

R← k1k2P , r ← rx mod q R← k1k2P , r ← rx mod q
...

...
Receive c3 = (u3, e3) from A2 Receive c3 = (u3, e3) from A2

Let α← logf
(
e3 · hashhk(u3)−1) Let α← logf

(
e3 · hashhk(u3)−1)

s← α · k−1
1 s← α · k−1

1

If not Verif(Q,m, (r, s)) then abort If not Verif(Q,m, (r, s)) then abort
else Return (r, s) else Return (r, s)

Intuitively, in Game1 the simulator uses the secret hashing key hk instead of the public
projection key hp to compute ckey. Though the values are computed differently, they are
distributed identically, and are perfectly indistinguishable. Next in Game2 we replace the
first element of the ciphertext (in Game1 this is u ∈ L) with an element u ∈ X\L. By the
hardness of the subset membership problem Game1 and Game2 are indistinguishable. Next in
Game3 we switch to the ideal world, soQ and R are received from FECDSA. The value x1 such
thatQ = x1x2P is unknown to S simulating P1, and the value x̃1 encrypted in ckey is sampled
uniformly at random from Z/qZ, and is unrelated to Q. Proving indistinguishability between
Game2 and Game3 is the most involved analysis of all our game steps. The smoothness of

18

Game2 Game3
Q← x1x2P Q← FECDSA

Extract x2 from (prove, 2, Q2, x2)

x̃1
$←− Z/qZ

...
...

hk←↩ Dhk hk←↩ Dhk

hp← projkg(hk) hp← projkg(hk)

u
$←−X\L u

$←−X\L
ckey ← (u, hashhk(u) · fx1) ckey ← (u, hashhk(u) · f x̃1)

Send ckey to A2 Send ckey to A2

...
...

R← k1k2P , (r, s)← FECDSA
r ← rx mod q r ← rx mod q

Extr. k2 from (prove, sid||2, R2, k2)
...

...
Receive c3 = (u3, e3) from A2 Receive c3 = (u3, e3) from A2

...
...

Let α← logf
(
e3 · hashhk(u3)−1) Let α← logf

(
e3 · hashhk(u3)−1)

s← α · k−1
1 (1) If α 6= k−1

2 (m′ + rx̃1x2) then
If not Verif(Q,m, (r, s)) then abort (2) If (αk2)P 6= mP + rQ abort

else Return (r, s) else Return (r, s)

Game4 Game5 Game6
Q← FECDSA Q← FECDSA Q← FECDSA

Extract x2 from (prove, 2, Q2, x2) Extract x2 from (prove, 2, Q2, x2) Extract x2 from (prove, 2, Q2, x2)

x̃1
$←− Z/qZ x̃1

$←− Z/qZ x̃1
$←− Z/qZ

...
...

...
hk←↩ Dhk hk←↩ Dhk hk←↩ Dhk

hp← projkg(hk) hp← projkg(hk) hp← projkg(hk)

u
$←−X\L Sample (u,w) ∈ R

ckey ← (u, hashhk(u) · f x̃1) ckey ← (u, hashhk(u) · f x̃1) ckey ← Enc(hp, x̃1)
Send ckey to A2 Send ckey to A2 Send ckey to A2

...
...

...
(r, s)← FECDSA (r, s)← FECDSA (r, s)← FECDSA
r ← rx mod q r ← rx mod q r ← rx mod q

Extr. k2 from (prove, sid||2, R2, k2) Extr. k2 from (prove, sid||2, R2, k2) Extr. k2 from (prove, sid||2, R2, k2)
...

...
...

Receive c3 = (u3, e3) from A2 Receive c3 = (u3, e3) from A2 Receive c3 = (u3, e3) from A2

...
...

...

Let α← logf
(
e3 · hashhk(u3)−1) Let α← logf

(
e3 · hashhk(u3)−1) Let α← logf

(
e3 · hashhk(u3)−1)

If α 6= k−1
2 (m′ + rx̃1x2) If α 6= k−1

2 (m′ + rx̃1x2) If α 6= k−1
2 (m′ + rx̃1x2)

then abort then abort then abort
Check (2) removed

19

the PHF ensures that the ciphertext ckey follows identical distributions in both games from
A2’s view; however difficulties arise due to the check performed by S on α after decrypting
c3. Indeed if A2 produces a ciphertext c3 which passes the check in one game, but not in the
other, clearly A2 can distinguish both games. To deal with this, in Game3 we introduce an
additional check (2). Check (2) is performed using the elliptic curve point Q, and compares
α to k−1

2 (m′+rx1x2). On the other hand check (1) is performed using the randomly sampled
x̃1, and compares α to k−1

2 (m′+ rx̃1x2). This extra check allows us to ensure that if A2 can
cause one game to abort, while the other does not, it has either broken the double encoding
challenge, or fixes the value of x̃1. Since from the smoothness of the PHF, x̃1 follows a
distribution δs-close to U(Z/qZ) from A2’s view, this cannot occur with probability greater
than 1/q + δs. So Game2 and Game3 are indistinguishable. In Game4 we remove check (2),
and demonstrate that if A2 could distinguish both games, one could use A2 to break the
discrete logarithm problem in G.

Next we use the hardness of the subset membership problem again to hop from Game4
to Game5, such that in the latter the first element of the ciphertext is once again in L; and
finally Game5 and Game6 are identical from an adversary’s point of view since we simply
use the public evaluation function of the hash function instead of the private one.

We denote Ei the event an algorithm interacting with S in Gamei outputs 1. Thus by
demonstrating that |Pr[E0]−Pr[E6]| is negligible, we demonstrate that, from A2’s view, the
real and ideal executions are indistinguishable.

Game0 to Game1. The only difference here is the way ckey is computed, namely we use the
secret hashing key hk instead of the public projection key hp and the witness w to compute
ckey. Though the values are computed differently, they are identical from A2’s point of view:

|Pr[E1]− Pr[E0]| = 0.

Game1 to Game2. Suppose that an algorithm D is able to distinguish, with non negligi-
ble advantage, between the distribution generated in Game1 from that generated in Game2.
Then we can devise Ŝ that uses D to break the hard subset membership assumption, i.e.,
distinguish random elements of L from those of X\L. The input of Ŝ is a hard subset
membership challenge x∗ which is either an element in L or an element of X\L. Precisely

Ŝ works as S would in Game1, interacting with D instead of A2, the only difference being
that instead of sampling (u,w) ∈ R it sets u := x∗ and computes ckey := (u, hashhk(u) · fx1).

When D returns a bit b (relative to Gameb+1), Ŝ returns the same bit, where 0 represents
the case x∗ ∈ L and 1 represents the case x∗ ∈X\L.
Analysis – Case x∗ ∈ L: There exists w ∈W such that (x∗, w) ∈ R and projhashhp(x

∗, w) =
hashhk(x

∗). So ckey = (u, e) is an encryption of x1 as computed in Game1.
Case x∗ ∈X\L: The ciphertext is (x∗, hashhk(x

∗)fx1), which is exactly the distribution ob-

tained in Game2. So the advantage of Ŝ in breaking the hard subset membership assumption
is at least that of D in distinguishing both games. Thus:

|Pr[E2]− Pr[E1]| 6 δL.

Game2 to Game3. In Game3 the points Q = x1x2P and R come from the functionality
FECDSA, while in Game2 they are computed as in the real protocol. As a result, the value
x̃1 encrypted in ckey is unrelated to x1.

Let us denote ckey := (u, e), where e = hashhk(u)f x̃1 , the invalid ciphertext which the
simulator sends to A2 in Game3. Using the fact PHF is decomposable, and since u ∈X\L,

20

we can write u = zy, for unique z ∈ L and y ∈ 〈Υ 〉. Recall that Ψ is a generator for Khk

such that that hashΨ (Υ) = f (cf. Remark 2). We denote b ∈ Z/qZ the unique value such
that hashΨ (y) = f b. Note that since u /∈ L, it holds that b 6= 0 mod q. Now to demonstrate
that Game2 and Game3 are indistinguishable from A2’s view, we start by considering a fixed
hk′ ∈ Khk satisfying the following equations:{

projkg(hk′) = hp = projkg(hk),

hashhk′(y)fx1 = hashhk(y)f x̃1 .

Note that the smoothness of PHF over X on F ensures that such a hk′ exists (it is not
necessarily unique). We now see that in Game3, ckey is an invalid encryption of both x1 and
of x̃1, for respective hashing keys hk′ and hk, but for the same projection key hp, indeed:

ckey = (u, hashhk(u)f x̃1) = (u, projhashhp(z, w)hashhk(y)f x̃1)

= (u, projhashhp(z, w)hashhk′(y)fx1) = (u, hashhk′(u)fx1).

Let us denote γ and γ′ ∈ Z the values such that hk = γ · Ψ and hk′ = γ′ · Ψ , such that
hashhk(Υ) = fγ and hashhk′(Υ) = fγ

′
. Now since hashΨ (y) = f b, it holds that

bγ + x̃1 = bγ′ + x1 mod q ⇔ γ′ − γ = b−1(x̃1 − x1) mod q. (1)

The adversary A2 receives the ECDSA public key Q, the public projection key hp =
projkg(hk), and ckey from S (at this point its view is identical to its’ view in Game2). Then
A2 computes c3 = (u3, e3), which it sends to S. The difference between Game2 and Game3
appears now in how S attempts to decrypt c3. In Game2 it would have used hk′, whereas in
Game3 it uses hk.

Notation. We denote α the random variable obtained by decrypting c3 (received in Game3)
with decryption key hk; we denote α′ the random variable obtained by decrypting c3 (re-
ceived in Game3) with decryption key hk′; we introduce a hypothetical Game3

′, which is
exactly as Game3, only one decrypts c3 (received in Game3) with decryption key hk′, thus
obtaining α′, and check (1) of Game3 is replaced by ‘If α 6= k−1

2 (m′ + rx1x2)’. Since both
tests of Game3

′ are redundant, we only keep check (2).

Observation. The view of A2 in Game2 and in Game3
′ is identical. We demonstrate that

the probability A2’s view differs when S uses α in Game3 from when it uses α′ in Game3
′ is

negligible. This allows us to conclude that A2 cannot distinguish Game2 and Game3 except
with negligible probability.

Let us consider the ciphertext c3 = (u3, e3) ∈X×Π sent by A2. By the decomposability
of PHF we know there exist unique z3 ∈ L, y3 ∈ 〈Υ 〉 such that u3 = z3y3. Moreover there
exists a unique b3 ∈ Z/qZ such that hashΨ (y3) = f b3 . By the homomorphic properties
of PHF the decryption algorithm applied to c3 with decryption key hk (resp. hk′) returns
⊥ if e3 · hashhk(u3)−1 = e3 · hashhk(z3)−1 · hashhk(y3)−1 /∈ F (resp. e3 · hashhk′(u3)−1 =
e3 · hashhk′(z3)−1 · hashhk′(y3)−1 /∈ F). However since z3 ∈ L, and projkg(hk′) = projkg(hk),
by correctness of PHF it holds that hashhk′(z3) = hashhk(z3); while hashhk′(y3) = fγ

′·b3 and
hashhk(y3) = fγ·b3 live in F. Consequently the decryption algorithm applied to c3 with
decryption key hk returns ⊥ if and only if it does so with decryption key hk′ (i.e. α =⊥
if and only if α′ =⊥). In this case Game3 is identical to Game3

′ from A2’s view (S aborts
in both cases). We hereafter assume decryption does not fail, which allows us to adopt

21

the following notation: e3 = hashhk(z3)fh3 = hashhk′(z3)fh3 with h3 ∈ Z/qZ. We thus have:

α := logf (e3 · hashhk(u3)−1),

= h3 − b3 · γ mod q

and α′ := logf (e3 · hashhk′(u3)−1),

= h3 − b3 · γ′ mod q
such that, injecting Equation (1), one gets:

α− α′ = b3(γ′ − γ) = b3b
−1(x̃1 − x1) mod q.

We now consider four cases:

1. (α = α′ mod q). This case occurs if b3 = 0 mod q, i.e. u3 ∈ L and so u3 is a valid
ciphertext; or if x̃1 = x1 mod q. If this occurs Game2 and Game3 are identical from A2’s
view. Note that this is the only case where all checks pass for both α and α′.

2. (α 6= α′ mod q) but (α−α′ = k−1
2 rx2(x̃1−x1) mod q). This occurs if b3 = k−1

2 rx2b mod
q, i.e. A2 performed homomorphic operations on ckey, and the difference between α and
α′ is that expected by the simulator. This results in identical views from A2’s perspective
since α causes check (1) to pass if and only if α′ causes check (2) to pass:

α = k−1
2 (m′+rx̃1x2)⇔ α′+k−1

2 rx2(x̃1−x1) = k−1
2 (m′+rx̃1x2)⇔ α′ = k−1

2 (m′+rx2x1).

3. (α 6= α′ mod q) and (α−α′ 6= k−1
2 rx2(x̃1−x1) mod q). We here consider three sub-cases:

(a) Either both tests fail for α and test (2) fails for α′; i.e. α 6= k−1
2 (m′ + rx̃1x2) mod

q; and α, α′ 6= k−1
2 (m′ + rx1x2) mod q. This results in identical views from A2’s

perspective.
(b) Either the check on α′ passes. This means that:

α′ = k−1
2 (m′ + rx1x2) mod q.

Since α − α′ 6= k−1
2 rx2(x̃1 − x1) mod q necessarily check (1) on α fails; and since

α 6= α′ mod q necessarily check (2) on α fails. Consequently if this sub-case occurs,
A2’s view differs. We demonstrate that if the DE problem is hard, this case occurs
with negligible probability.
Suppose that an algorithm B is able to cause this case to occur with non negligible
probability p. Then we can devise an algorithm Ŝ which uses B to break the DE as-
sumption for (PHF, expG). Algorithm Ŝ gets as input a DE challenge point Q = xP
and the description SM of a subset membership problem, and must output hp,
(u1, hashhk′(u1)fx) and (u2, hashhk′(u2)fx) where hp = projkg(hk′); u1, u2 ∈ X\L;

u1 6= u2; and u1/u2 ∈ X\L. Precisely Ŝ works as S would in Game3, interacting
with B instead of A2, the only difference being that instead of using the ECDSA
public key it receives from FECDSA, Ŝ uses the DE challenge Q. When B sends
c3 to Ŝ, Ŝ computes c1 := EvalScal(hp,EvalSum(hp, c3,−k−1

2 m′), k2r
−1). Finally Ŝ

computes the component-wise product c2 := ckey� (1, fx2) and outputs hp, c1, c2 to
its’ own DE challenger.
Analysis. Let us denote x2, k2 the values Ŝ extracts from its interactions with
B. We further denote x1 := x x−1

2 (which is unknown to Ŝ). Ŝ samples hk ←↩
Dhk, and computes hp ← projkg(hk). It then samples x̃1

$←− Z/qZ and computes
ckey := (u, hashhk(u)f x̃1) which can be interpreted as (u, hashhk′(u)fx1). Let us de-
note (u2, e2) the components of c2 = ckey � (1, fx2) such that c2 = (u2, e2) =
(u, hashhk′(u) · fx), where u2 ∈X\L by construction.

22

When Ŝ receives c3 from B, with probability p, using decryption key hk′, c3 decrypts
to α′ = k−1

2 (m′ + rx1x2) mod q. S does not know hk′, but using the homomorphic
properties of the PKE, S computes c1 := (u1, e1) = (u1, hashhk′(u1)fx). Since we
ruled out the case 1. (where α = α′ mod q), necessarily u1 ∈ X\L. And since we
ruled out the case 2. (where α− α′ = k−1

2 rx2(x̃1 − x1) mod q), necessarily u1/u2 ∈
X\L. Thus with probability p, Ŝ breaks the DE assumption, and consequently
p 6 δDE, which concludes that this case occurs with probability 6 δDE.

(c) Else one of the checks on α passes.
i. If (α = k−1

2 (m′ + rx1x2) mod q), then since (α 6= α′ mod q) necessarily check
(2) on α′ fails. However if this occurs, since S has extracted k2, x2 from the zero
knowledge proofs, it can compute x1 from α, thereby breaking the DL problem
in G. This occurs with probability 6 δDL.

ii. If α = k−1
2 (m′ + rx̃1x2) mod q, then since α − α′ 6= k−1

2 rx2(x̃1 − x1) mod q
necessarily check (2) on α′ fails. Let us prove that information theoretically, this
can not happen with probability greater than 1/q+δs. For clarity, we first recall
the expression of ckey received by A2:

ckey = (zy, projhashhp(z)hashhk(y)f x̃1) = (zy, projhashhp(z)f
(x̃1+bγ))

where z ∈ L, y ∈ 〈Υ 〉, and b ∈ (Z/qZ)∗ are unique, and hashΨ (y) = f b. We
also recall the expression of c3, sent by A2 to S. Since c3 decrypts to α with
decryption key hk, we can write:

c3 = (z3y3, projhashhp(z3)fα+b3γ)

where z3 ∈ L, y3 ∈ 〈Υ 〉, and b3 ∈ (Z/qZ)∗ are unique, and hashΨ (y3) = f b3 . Let
us denote π0 := x̃1 + bγ mod q, and π1 := α+ b3γ mod q. For this case to occur,
it must hold that α = k−1

2 (m′ + rx̃1x2) mod q, so

π1 = k−1
2 (m′ + rx̃1x2) + b3γ mod q

⇔ x̃1 = (k2π1 −m′ − k2b3γ)(x2r)
−1 mod q

Substituting γ for b−1(π0 − x̃1) yields:

x̃1 = (k2π1 −m′ − k2b3b
−1(π0 − x̃1))(x2r)

−1 mod q

⇔ x̃1(1− k2b3(bx2r)
−1) = (k2π1 −m′ − k2b3b

−1π0)(x2r)
−1 mod q

As we dealt with b3 = k−1
2 rx2b mod q in case 2, here b3 6= k−1

2 rx2b mod q, and
1− k2b3(bx2r)

−1 is invertible mod q so we can write:

x̃1 = (k2π1 −m′ − k2b3b
−1π0)(x2r)

−1(1− k2b3(bx2r)
−1)−1 mod q, (2)

where π0, b are fixed by ckey; π1, b3 are fixed by c3; and m′, r, k2, x2 are also fixed
from A2’s view. So given A2’s view and A2’s output c3, all the terms on the
right hand side of equation (2) are fixed. However, given Q, hp and ckey (which
is all the information A2 gets prior to outputting c3), the δs-smoothness of the
projective hash family ensures that x̃1 follows a distribution δs-close to U(Z/qZ).
For the current case to occur, equation (2) must hold, thus from being given a
view where x̃1 follows a distribution δs-close to U(Z/qZ), A2 has succeeded in
fixing this random variable to be the exact value sampled by S. This occurs with
probability 6 1/q + δs.

23

Combining the above, we get that Game2 and Game3 differ from A2’s view if and only if we
are in case 3. (b) or 3. (c), which occur with probability 6 1/q + δs + δDE + δDL. Thus:

|Pr[E3]− Pr[E2]| 6 1/q + δs + δDE + δDL.

Game3 to Game4. In Game4 check (2) is removed. Both games differ if and only if check
(1) fails in both of them, while check (2) passes. If this happens S has decrypted c3 to the
value α = k−1

2 (m′+rx1x2) mod q. Since S has extracted k2, x2 from the simulated proofs of
knowledge, r from the ECDSA signature it received and knows m′, it can compute x1 from
α, thereby computing the discrete logarithm of point Q. Thus distinguishing these games
reduces to the hardness of breaking the DL problem in G. We conclude that:

|Pr[E4]− Pr[E3]| 6 δDL.

Game4 to Game5. The change here is exactly that between Game1 and Game2, thus both
games are indistinguishable under the hardness of the subset membership problem and:

|Pr[E5]− Pr[E4]| 6 δL.

Game5 to Game6. The change here is exactly that between Game0 and Game1, thus both
games are perfectly indistinguishable, even for an unbounded adversary, thus:

|Pr[E6]− Pr[E5]| = 0.

Real/Ideal executions. Putting together the above probabilities, we get that:

|Pr[E6]− Pr[E0]| 6 2δL + δDE + 2δDL + 1/q + δs,

and so, assuming the hardness of the subset membership problem, the smoothness of PHF,
and the hardness of the DE problem for PHF, it holds that the real and ideal executions
are computationally indistinguishable from A2’s view, which concludes the proof of the
theorem. ut

4 Instantiation in Class Groups of an Imaginary Quadratic Field

In this section, we give an instantiation of a hash proof system with the required properties
in order to apply the generic construction of the previous section. For that we will use
a linearly homomorphic encryption scheme modulo a prime number, denoted CL in the
following, introduced in [CL15] using a group with an easy Dlog subgroup, with a concrete
instantiation using class groups of quadratic fields. In order to define a HPS, we use the
recent results of [CLT18] that enhance the CL framework by introducing a hard subgroup
membership assumption (HSM). We first give the definition of this assumption in the context
of a group with an easy Dlog subgroup, then the instantiation with class groups, and then
define a HPS from HSM and prove that it has the required properties to instantiate the
generic construction in Section 3.

24

4.1 A Hard Subgroup Membership Assumption

To start with, we explicitly define the generator GenGroup used in the framework of a group
with an easy Dlog subgroup introduced in [CL15] and enhanced in [CLT18], with small
modifications as discussed below.

Definition 8. Let GenGroup be a pair of algorithms (Gen,Solve). The Gen algorithm is a
group generator which takes as inputs a parameter λ and a prime q and outputs a tuple
(s̃, g, f, gq, Ĝ, G, F,G

q). The set (Ĝ, ·) is a finite abelian group of order q · ŝ where the bitsize
of ŝ is a function of λ and gcd(q, ŝ) = 1. The algorithm Gen only outputs an upper bound
s̃ of ŝ. It is also required that one can efficiently recognise valid encodings of elements in
Ĝ. The set (F, ·) is the unique cyclic subgroup of Ĝ of order q, generated by f . The set

(G, ·) is a cyclic subgroup of Ĝ of order q · s where s divides ŝ. By construction F ⊂ G,
and, denoting Gq := {xq, x ∈ G} the subgroup of order s of G, it holds that G = Gq × F .
The algorithm Gen outputs f , gq and g := f · gq which are respective generators of F , Gq

and G. Moreover, the Dlog problem is easy in F , which means that the Solve algorithm is a
deterministic polynomial time algorithm that solves the discrete logarithm problem in F :

Pr
[
x = x? : (s̃, g, f, gq, Ĝ, G, F,G

q)← Gen(1λ, q), x
$←− Z/qZ, X ← fx,

x? ← Solve(q, s̃, g, f, gq, Ĝ, G, F,G
q, X)

]
= 1.

Remark 3. In this definition, there are a few modifications compared to the definition of
[CLT18]. Namely we take as input the prime q instead of having Gen generating it, and we

output the group Ĝ from which the group G with an easy Dlog subgroup F is produced. In
practice, with the concrete instantiation with class groups, this is a just a matter of rewriting:
the prime q was generated independently of the rest of the output in [CL15,CLT18] so it

can be an input of the algorithm, and the group Ĝ would be the class group which was
implicitly defined by its discriminant. We note that it is easy to recognise valid encodings
of Ĝ while it will be not so for elements of G ⊂ Ĝ. This is an important difference with
Paillier’s encryption, and one of the reason why Lindell’s LPDL proof does not work in our
setting.

We recall here the definition of a hard subgroup membership (HSM) problem within a
group with an easy Dlog subgroup as defined in [CLT18]. HSM is closely related to Paillier’s
DCR assumption. Such hard subgroup membership problems are based on a long line of
assumptions on the hardness of distinguishing powers in groups. In short, DCR and HSM
are essentially the same assumption but in different groups, hence there is no direct reduction
between them. We emphasise that this assumption is well understood both in general, and
for the specific case of class groups of quadratic fields, which we will use to instantiate
GenGroup. It was first used by [CLT18] within class groups, this being said, cryptography
based on class groups is now well established, and is seeing renewed interest as it allows
versatile and efficient solutions such as encryption switching protocols [CIL17], inner product
functional encryption [CLT18] or verifiable delay functions [BBBF18,Wes19].

In Def. 8, one has G = F × Gq. The assumption is that it is hard to distinguish the
elements of Gq in G.

Definition 9 (HSM assumption). We say that GenGroup is the generator of a HSM group
with easy Dlog subgroup F if it holds that the HSM problem is hard even with access to the
Solve algorithm. Let D (resp. Dq) be a distribution over the integers such that the distribution

25

{gx, x←↩ D} (resp. {gxq , x←↩ Dq}) is at distance less than 2−λ from the uniform distribution
in G (resp. in Gq). Let A be an adversary for the HSM problem, its advantage is defined
as:

AdvHSMA (λ) =

∣∣∣∣2 · Pr
[
b = b? : (s̃, g, f, gq, Ĝ, G, F,G

q)← Gen(1λ, q),

x←↩ D, x′ ←↩ Dq, b
$←− {0, 1}, Z0 ← gx, Z1 ← gx

′

q ,

b? ←A(q, s̃, g, f, gq, Ĝ, G, F,G
q, Zb,Solve(.))

]
− 1

∣∣∣∣
The HSM problem is said to be hard in G if for all probabilistic polynomial time attacker
A, AdvHSMA (λ) is negligible.

Class groups Our instantiation makes use of class groups of orders of imaginary quadratic
fields. We refer the interested reader to [BH01] for background on this algebraic object and
its early use in cryptography. We here briefly sketch an instantiation of algorithm GenGroup
in Definition 8, following [CL15, Fig. 2]. The formal description is given in Fig. 6 below
and concrete details can be found in [CL15]. Let q be a prime. We construct a fundamental
discriminant ∆K := −q · q̃ where q̃ is a prime such that q · q̃ ≡ −1 mod 4 and (q/q̃) = −1.
We then consider the non-maximal order of discriminant ∆q := q2 ·∆K and its class group

Ĝ := Cl(∆q) whose order is h(∆q) = q · h(∆K) where h(∆K) is the class number, i.e., the
order of Cl(∆K), the class group of fundamental discriminant ∆k. This number is known to
satisfy the following inequality (see [Coh00, p. 295] for instance): h(∆K) < 1

π log |∆K |
√
|∆K |

which is the bound we take for s̃ (a slightly better bound can be computed from the analytic
class number formula).

Elements of Ĝ are classes of ideals of the order of discriminant ∆q. Such classes can be
represented by a unique reduced ideal. Moreover, ideals can be represented using the so-
called two elements representation which correspond to their basis as a lattice of dimension
two. Informally, classes can be uniquely represented by two integers (a, b), a, b <

√
|∆q| and

one can efficiently verify that this indeed defines an element of Ĝ (by checking if b2 ≡ ∆q mod
4a). The arithmetic in class groups (which corresponds to reduction and composition of
quadratic forms) is very efficient: the algorithms have a quasi linear time complexity using
fast arithmetic (see [Coh00]).

Following [CL15, Fig. 2], we build a generator gq of a cyclic subgroup of q−th powers of

Ĝ, and denote Gq := 〈gq〉. Then we build a generator f for the subgroup F of order q, and
then set g := f · gq as a generator of a cyclic subgroup G of Cl(∆q) of order q · s, where s
is unknown. Computing discrete logarithms is easy in F thanks to the following facts. We
denote the surjection ϕ̄q : Cl(∆q) −→ Cl(∆K). From [CL09, Lemma 1], its kernel is cyclic
of order q and is generated by f represented by (q2, q). Moreover, if 1 6 m 6 q − 1 then,
once reduced, fm is of the form (q2, L(m)q) where L(m) is the odd integer in [−q, q] such
that L(m) ≡ 1/m mod q, which gives the efficient algorithm to compute discrete logarithms
in 〈f〉.

Note that following [CL15] the bit size of q must have at least λ bits, where λ is the se-
curity parameter, which is the case for ECDSA: q will be the order of the elliptic curve. The
size η(λ) of ∆K is chosen to resist the best practical attacks, which consists in computing
discrete logarithms in Cl(∆K) (or equivalently the class number h(∆K)). An index-calculus

26

Gen(1λ, q)

1. Let µ be the bit size of q. Pick q̃ a random η(λ)−µ bits prime such
that qq̃ ≡ −1 mod 4 and (q/q̃) = −1.

2. ∆K ← −qq̃, ∆q ← q2∆K and Ĝ← Cl(∆q)
3. f ← [(q2, q)] in Cl(∆q) and F := 〈f〉
4. s̃← d 1

π
log |∆K |

√
|∆K |e

5. Let r be a small prime, with r 6= q and
(
∆K
r

)
= 1, set r an ideal

lying above r.
6. Set gq ← [ϕ−1

q (r2)]q in C(∆q) and Gq ← 〈gq〉
7. Set g ← gp · f and G← 〈g〉
8. Return (s̃, g, f, gq, Ĝ, G, F,G

q)

Fig. 6: Group generator Gen

method to solve the Dlog problem in a class group of imaginary quadratic field of dis-
criminant ∆K was proposed in [Jac00]. It is conjectured in [BJS10] that a state of the art
implementation of this algorithm has complexity O(L|∆K |[1/2, o(1)]), which allows to use
asymptotically shorter keys compared to protocols using classical problems that are solved
in subexponential complexity O(L[1/3, o(1)]) (see Section 5 for concrete sizes for η).

4.2 A Smooth Homomorphic Hash Proof System from HSM

We set X := G and L := Gq then X ∩ L = Gq and the HSM assumption states that
it is hard to distinguish random elements of G from those of Gq. This clearly implies the
hardness of the subset membership problem, i.e., it is hard to distinguish random elements
of G\Gq from those of Gq.

Let D be a distribution over the integers such that the distribution {gw, w ←↩ D} is at
distance δD ≤ 2−λ of the uniform distribution in G.

Associated projective hash family. Let PHF be the projective hash family associated to the
above subset membership problem, the description of which specifies:

– A hash key space K := Z.
– A keyed hash function, with input and output domain G, s.t., for hk ←↩ D, and for
x ∈ G, hashhk(x) := xhk.

– An auxiliary function projkg : K 7→ Gq such that for hk ∈ K, projkg(hk) :=
hashhk(gq) = ghkq . Notice that for a hash key hk, and for x ∈ Gq, the knowledge of
projkg(hk) completely determines the value hashhk(x).

– An efficient public evaluation function, such that, for x ∈ Gq with witness w such that
x = gwq one can efficiently compute hashhk(x) = projkg(hk)w = xhk knowing only the
value of the auxiliary function projkg(hk) (but not hk).

Lemma 2 (Smoothness). The projective hash family PHF is δs-smooth over G in F , with

δs 6 2δD, i.e., for any x ∈ G\Gq, π ← fγ ∈ F ⊂ G where γ
$←− Z/qZ and k ←↩ D, the

distributions D1 := {x, gkq , π · xk} and D2 := {x, gkq , xk} are less than 2δD-close.

27

Proof. For x ∈ G\Gq, there exist a ∈ Z/sZ and b ∈ (Z/qZ)∗ such that x = gaq f
b. Thus

we can write D1 = {gaq f b, gkq , ga·kq f b·k+γ} and D2 = {gaq f b, gkq , ga·kq f b·k}. It remains to study
the statistical distance of the third coordinates of the two distributions, given the two first
coordinates, i.e, if (a mod s), (b mod q), and (k mod s) are fixed. This is the statistical
between X := b · k+ γ and Y := b · k in Z/qZ. Since γ is uniform in Z/qZ, X is the uniform
distribution. As D is by definition at statistical distance δD from the uniform distribution
modulo q · s, and gcd(q, s) = 1, one can prove (cf. Lemma 1 in Appendix II) that even
knowing (k mod s), the distribution of (k mod q) is at distance less than 2δD from the
uniform distribution over Z/qZ. As a result, the distance between X and Y is bounded by
2δD , which concludes the proof. ut

Linearly homomorphic. For all hk ∈ Z, and u1, u2 ∈ G, hashhk(u1) · hashhk(u2) = uhk1 · uhk2 =
(u1 · u2)hk = hashhk(u1 · u2). Thus hashhk is a homomorphism for each hk.

Key homomorphic. The hash key space (Z,+) is an Abelian group, (G, ·) is a multiplicative
finite Abelian group; and ∀x ∈ G and ∀hk0, hk1 ∈ Z, it holds that hash(hk0, x)·hash(hk1, x) =
xhk0 · xhk1 = xhk0+hk1 = hash(hk0 + hk1, x).

(f, F)-Decomposability. The group G is the direct product of Gq and F = 〈f〉. Moreover
∀hk ∈ Z, hashhk(f) = fhk ∈ F . Thus we set Υ := f , such that PHF is (f, F)-decomposable.

Resulting encryption scheme. A direct application of Subsection 3.3 using the above HPS
results in the encryption scheme called HSM-CL in [CLT18], which is linearly homomorphic
modulo q and ind − cpa under the HSM assumption. We describe this scheme in Fig. 7
for completeness. Note that here the secret key x (and the randomness r) is drawn with
a distribution Dq such that {gxq , x ←↩ Dq} is at distance less than 2−λ from the uniform

distribution in Gq, this does not change the view of the attacker. Let S := 2λ−2 · s̃. In
practice, we will use for Dq the uniform distribution on {0, . . . , S}.

Algorithm KeyGen(1λ, q)

1. (s̃, g, f, gq, Ĝ, G, F,G
q)← Gen(1λ, q)

2. Pick x←↩ Dq and h← gxq
3. Set pk ← (s̃, gq, f, p, h)
4. Set sk ← x
5. Return (pk, sk)

Algorithm Enc(pk,m)

1. Pick r ←↩ Dq

2. Return (grq , f
mhr)

Algorithm Dec(sk, (c1, c2))

1. Compute M ← c2/c
x
1

2. Return Solve(M)

Fig. 7: Description of the HSM-CL encryption scheme

The double encoding problem. In this context, the DE problem is δDE-hard for the one way
function expG : x 7→ xP if for any PPT A, it holds that:

δDE > Pr


u1, u2 ∈ G \Gq, ppG := (G, P, q)
u2 · u−1

1 ∈ G \Gq ppG := (s̃, f, gq, G, F)← Gen(1λ, q)

and hp = ghkq x
$←− Z/qZ, Q := x · P

(hp, (u1, u
hk
1 · fx), (u2, u

hk
2 · fx))←A(ppG, ppG, Q)

 .

28

On the hardness of the DE problem for the HSM-CL encryption scheme. As explained in
Lemma 1, breaking the DE problem in sub-exponential time would give a sub-exponential
algorithm to compute discrete logarithms in elliptic curves (for which there exist only ex-
ponential algorithms).

4.3 A zero-knowledge proof for RCL−DL

We describe here the ZKPoK for RHPS−DL used for our instantiation with the encryption
scheme of Fig. 7 and denote it RCL−DL. It relies on the Schnorr-like GPS (statistically)
zero-knowledge identification scheme [GPS06] that we turn into a zero-knowledge proof of
knowledge of the randomness used for encryption and of the discrete logarithm of an element
on an elliptic curve, using a binary challenge. This proof is partly performed in a group of
unknown order.

We denote ckey := (c1, c2). If ckey is a valid encryption of x1 under public key pk it holds
that ckey = (grq , f

x1pkr) for some r ∈ {0, . . . , S}. The protocol RCL−DL provides a ZKPoK
for the following relation:

RCL−DL := {(pk, (c1, c2), Q1); (x1, r) | c1 = grq ∧ c2 = fx1pkr ∧Q1 = x1G}.

Input : (r, x1) and (pk, c1, c2, Q, P) Input : (pk, c1, c2, Q, P)

Repeat ` times

r1
$←− [0, A[; r2

$←− Z/qZ

t1 ← pkr1fr2 ; t2 ← r2P ; t3 ← gr1q
t1, t2, t3−−−−−−−−−−−→

k←−−−−−−−−−−− k
$←− {0, 1}

u1 ← r1 + kr in Z

u2 ← r2 + kx1 mod q
u1, u2−−−−−−−−−−−→ Check u1 ∈ [0, A+ S[

t1 · ck2 = pku1 · fu2

t2 + [k]Q = [u2]P

t3 · ck1 = gu1
q

Fig. 8: The zero-knowledge proof of knowledge RCL−DL

The following theorem, whose proof is given in Appendix III, states the security of the
zero-knowledge proof of knowledge RCL−DL.

Theorem 2. The protocol described in Figure 8 is a statistical zero-knowledge proof of
knowledge with soundness 2−`, as long as ` is polynomial and `S/A is negligible, where A is
a positive integer.

4.4 Two-Party Distributed ECDSA Protocol from HSM

The protocol results from a direct application of Subsection 3.6 using the HPS defined in
Subsection 4.2, an the RCL−DL proof of the previous subsection. Therefore we defer the
detailed protocol to Appendix V, and simply state the following theorem.

29

Theorem 3. Assuming GenGroup is the generator of a HSM group with easy Dlog subgroup
F , then the protocol of Appendix V securely computes FECDSA in the (Fzk,Fcom−zk)-hybrid
model in the presence of a malicious static adversary (under the ideal/real definition).

5 Implementation and Efficiency Comparisons

In this section we compare an implementation of our protocol with Lindell’s protocol
of [Lin17]. For fair comparison, we implement both protocols with the Pari C Library
([PAR18]), as this library handles arithmetic in class groups, Z/nZ and elliptic curves. In
particular, in this library, exponentiations in Z/nZ and in class groups both use the same
sliding window method. The running times are measured on a single core of an Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz (even if key generation can easily be parallelized). We
do not implement commitments (this does not bias the comparison as they appear with
equal weight in both schemes), and we only measure computation time and do not include
communication (again this is fair as communication is similar).

As in [Lin17], we ran our implementation on the standard NIST curves P-256, P-384 and
P-521, corresponding to levels of security 128, 192 and 256. For the encryption scheme, we
start with a 112 bit security, as in [Lin17], but also study the case where its level of security
matches the security of the elliptic curves.

Again as in [Lin17], we fixed the number of rounds in zero knowledge proofs to reach
a statistical soundness error of 2−40. For the distributions we also set the parameters to
get statistical error of 2−40. The zero knowledge proofs for RDL are implemented with the
Schnorr protocol.

In the following, we review the theoretical complexity and experimental results of both
schemes, before comparing them. In terms of theoretical complexity, exponentiations in the
encryption schemes dominate the computation as elliptic curve operations are much cheaper.
Thus, we only count these exponentiations; we will see this results in an accurate prediction
of experimental timings.

5.1 Lindell’s Protocol with Paillier’s Encryption Scheme

The key generation uses on average 360 Paillier exponentiations (of the form rN mod N2)
but not all of them are full exponentiations. The signing phase uses only 2 Paillier exponen-
tiations.

The timings corresponds to the mean of several experiments (30 to 1000 depending on the
security level). The timings are quite stable other than the generation of the RSA modulus
in the key generation. We use standard RSA integers (i.e., not strong prime factors) as this
would be too slow for high security levels. For example, for 256 bits security (15360 bits
modulus), the generation of the modulus takes 95 seconds (mean of 30 experiments) with a
standard deviation of 56s. For the rest of the protocol the experimental timings are roughly
equal to the number of exponentiations multiplied by the cost of one exponentiation.

The results are summarized in Fig. 9a. Timings are given in milliseconds and sizes in bits.
The columns corresponds to the elliptic curve used for ECDSA, the security parameter in
bits for the encryption scheme, the corresponding modulus bit size, the timings of one Paillier
exponentiation, of the key generation and of the signing phase and the total communication
in bits for two phases. Modulus sizes are set according to the NIST recommendations.

Note that for the first line, we use a 2048 bits modulus as in [Lin17] and we obtain a
similar experimental result.

30

Curve Sec. Param. Modulus Expo. (ms) Keygen (ms) Signing (ms) Keygen (b) Signing (b)

P-256 112 2048 7 2 133 20 881 901 5 636

P-256 128 3072 22 6 340 49 1 317 101 7 684

P-384 192 7680 214 65 986 437 3 280 429 17 668

P-521 256 15360 1196 429 965 2 415 6 549 402 33 832

(a) Lindell’s Protocol with Paillier

Curve Sec. Param. Discriminant Expo. (ms) Keygen (ms) Signing (ms) Keygen (b) Signing (b)

P-256 112 1348 32 5 521 101 178 668 4 748

P-256 128 1827 55 9 350 170 227 526 5 706

P-384 192 3598 212 35 491 649 427 112 10 272

P-521 256 5971 623 103 095 1 888 688 498 16 078

(b) Our Protocol with HSM-CL

Fig. 9: Experimental results (timings in ms, sizes in bits)

5.2 Our Protocol with HSM-CL Encryption Scheme

The key generation uses a total of 160 class group exponentiations (of the form grq in the
class group of discriminant ∆q = −q3 · q̃). This corresponds to the 40 rounds of the RCL−DL

zero-knowledge proof of knowledge of Fig. 8. Note that exponentiations in 〈f〉 are almost
free as seen in Subsection 4.1. Signing uses 3 class group exponentiations (one encryption
and one decryption).

We use the same number of experiments as for Lindell’s protocol. Here timings are very
stable. Indeed during key generation, we only compute the public key h ← gxq with one
exponentiation, as the output of Gen (mainly the discriminant ∆q of the class group and
the generator gq) is a common public parameter that only depends on the cardinality q of
the elliptic curve. As a result this can be considered as an input of the protocol, as the same
group can be used by all users. Moreover, doing this does not change the global result of the
comparison with Lindell’s protocol: the running time of Gen is dominated by the generation
of q̃, a prime of size much smaller than the factor of the RSA modulus. So even if we add
this running time in the Keygen column, this does not affect the results of our comparisons
for any of the considered security levels.

The results are summarized in Fig. 9b. Timings are given in milliseconds and sizes in
bits. The columns correspond to the elliptic curve used for ECDSA, the security parameter
in bits for the encryption scheme, the corresponding fundamental discriminant ∆K = −q · q̃
bit size, the timings of one class group exponentiation, of the key generation and of the
signing phase and the total communication in bits for two phases. The discriminant sizes
are chosen according to [BJS10].

5.3 Comparison

Figure 9 shows that Lindell’s protocol is faster for both key generation and signing for
standard security levels for the encryption scheme (112 and 128 bits of security) while our
solution remains of the same order of magnitude. However for high security levels, our

31

solution becomes faster (in terms of key generation from a 192-bits security level and for
both key generation and signing from a 256-bits security level).

In terms of communications, our solution outperforms the scheme of Lindell at all level
of security by a factor 5 to 10 for Keygen. For Signing, we gain 15% for basic security to
a factor 2 at 256-bits security level. In terms of rounds, our protocol uses 126 rounds for
Keygen and Lindell’s protocol uses 175 rounds, so we get a 28% gain. Both protocol use 7
rounds for Signing.

This situation can be explained by the following facts. Firstly we use less than half the
number of exponentiations in the key generation as we do not need a range proof: our message
space is Z/qZ as the CL encryption scheme is homomorphic modulo a prime. Secondly, with
class groups of quadratic fields we can use lower parameters than with Z/nZ (as shown in
the introduction, the best algorithm against the discrete logarithm problem in class groups
has complexity O(L[1/2, o(1)]) compared to an O(L[1/3, o(1)]) for factoring). However, the
group law is more complex in class groups. By comparing the Expo. time columns in the
tables, we see that exponentiations in class groups are cheaper from the 192 bits level. So
even if we use half as many exponentiations, the key generation for our solution only takes
less time from that level (while being of the same order of magnitude below this level). For
signing, we increase the cost by one exponentiation due to the Elgamal structure of the
CL encryption scheme. However, one can note that we can pre process this encryption by

computing (gτq , h
τ) in an offline phase and computing c1 ← (gτq , h

τfk
−1
2 m′) which results in

only one multiplication in the online phase (cf. Appendix V). As a result we will have only
one exponentiation in the online signing for the decryption operation. The same holds for
Lindell’s protocol with Paillier. Using that both protocols take the same time for signing at
the 192 bits level.

Increasing the number of rounds to obtain a 2−60 soundness error. This impacts only
KeyGen, where the [Lin17] scheme and ours both use 40 iterations of ZK proofs to achieve a
2−40 soundness error. Lindell’s protocol performs 9 exponentiations per iteration while ours
performs 4. All timings will thus be multiplied by 3/2 to achieve a 2−60 soundness error, and
indeed this is what we observe in practice. Complexity is linear in the number of iterations
and the ratio between our timings and those of [Lin17] remains constant.

6 Instantiation of our Generic Construction Using DCR

As stated at the end of the introduction, we can instantiate the generic construction of
Section 3 with the hash proof system built upon Paillier’s decision composite residuosity
assumption (DCR).

This yields the Elgamal Paillier encryption scheme of [CS03] that closely resembles the
HSM-CL encryption scheme. However, the message space is Z/nZ as in Lindell’s protocol,
so in addition to the RHPS−DL proof, P1 has to prove that x1 is an element of Zq with a
range proof. For the same reason, one must slightly adapt the double encoding problem, s.t.
given input challenge the elliptic curve point Q := xP , no adversary can output two invalid
encryptions of x ∈ Z, with x < q (otherwise the assumption does not rule out an adversary
which outputs invalid encryptions of x, x′ ∈ Z where x 6= x′ mod N but x = x′ mod q).
Moreover, this encryption scheme uses two exponentiations instead of one for Paillier. This
being said a gain arrises from the fact that following the techniques of [CS03] one can make
a sound proof for RHPS−DL in a single round by relying on the strong RSA assumption. This

32

means that one should use safe primes that can be very costly to generate at high security
level. However, for 112 and 128 bits of security this should give a competitive solution
compared to Lindell’s with a simulation based security relying on the hardness of classical
problems, the DCR and the strong RSA assumptions.

7 Conclusion

Inspired by Lindell’s scheme, we have provided the first generic construction for two-party
ECDSA signing from hash proof systems which are homomorphic modulo a prime num-
ber. Theoretically, our construction allows for a simulation-based proof of security that is
both tight and requires no interactive assumptions, due to the structure of the underlying
semantically secure homomorphic encryption schemes. Practically, we provide a detailed
instantiation, and C implementation, from class groups of imaginary quadratic fields using
the CL framework. This yields a better performance than Lindell’s Paillier-based scheme
for high levels of security, and same order of magnitude for standard levels. Our solution
becomes faster than Lindell’s from 192-bits of security upwards. Improvements could come
from advances in ideal arithmetic in imaginary quadratic fields (see [IJS10] for instance).
Recent proposals of verifiable delay functions based on class groups should also motivate
research in this area (for example the Chia Network [Chi] has opened a competition for
this).

Moreover, the bottleneck of our instantiation is the use of binary challenges in a zero
knowledge proof of knowledge, used during key generation, in order to cope with the fact
we are working in a cyclic subgroup of a group of unknown order and that we can not
check that elements belong to the subgroup. There have been many proposals to deal with
generalized Schnorr proofs in groups of unknown order (see for instance the framework
of [CKY09] using safeguard groups, or [TW12]). For the case of subgroups of (Z/nZ)×,
efficient solutions for this type of proofs enlarge the challenge space, and rely on variants
of the strong RSA assumption. For class groups, there have been informal proposals (see
[DF02] for instance). However, computing square roots or finding elements of order 2 can be
done efficiently in class groups knowing the factorization of the discriminant (which is public
in our case). Moreover, as suggested in [BBF18], there may be other approaches to find low
order elements in class groups. Advances in our understanding of class groups would lead
to substantial efficiency improvements in several areas of cryptography.

Last but not least, our work focuses on the two party case. We believe that the ideas of
our generic construction will lead to improvements in the general case of threshold ECDSA
signatures. We leave this for future work.

Acknowledgements: The authors would like to thank Benoit Libert for fruitful discussions.
We also thank Rosario Gennaro and Steven Goldfeder for questions that eventually led us
to find a problem in the original proof. This work was supported by the Universita’ degli
Studi di Catania,“Piano della Ricerca 2016/2018 Linea di intervento 2”, and the French
ANR ALAMBIC project (ANR-16-CE39-0006).

References

BBBF18. D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In
CRYPTO 2018, Part I, LNCS 10991, pages 757–788. Springer, Heidelberg, August 2018.

33

BBF18. D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions. Cryptology
ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/712.

BBL17. F. Benhamouda, F. Bourse, and H. Lipmaa. CCA-secure inner-product functional encryp-
tion from projective hash functions. In PKC 2017, Part II, LNCS 10175, pages 36–66.
Springer, Heidelberg, March 2017.

BH01. J. Buchmann and S. Hamdy. A survey on IQ cryptography. In Public Key Cryptography
and Computational Number Theory, pages 1–15. De Gruyter Proceedings in Mathematics,
2001.

BH03. M. L. Bauer and S. Hamdy. On class group computations using the number field sieve.
In ASIACRYPT 2003, LNCS 2894, pages 311–325. Springer, Heidelberg, November / De-
cember 2003.

BJS10. J.-F. Biasse, M. J. Jacobson, and A. K. Silvester. Security estimates for quadratic field
based cryptosystems. In ACISP 10, LNCS 6168, pages 233–247. Springer, Heidelberg, July
2010.

Boy86. C. Boyd. Digital multisignature. Cryptography and Coding, pages 241–246, 1986.
CCL+19. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Two-party

ECDSA from hash proof systems and efficient instantiations. In CRYPTO 2019, Part III,
LNCS 11694, pages 191–221. Springer, Heidelberg, August 2019.

CH89. R. A. Croft and S. P. Harris. Public-key cryptography and reusable shared secret. Cryp-
tography and Coding, pages 189–201, 1989.

Chi. Chia. https://www.chia.net/.
CIL17. G. Castagnos, L. Imbert, and F. Laguillaumie. Encryption switching protocols revisited:

Switching modulo p. In CRYPTO 2017, Part I, LNCS 10401, pages 255–287. Springer,
Heidelberg, August 2017.

CKY09. J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized Schnorr proofs.
In EUROCRYPT 2009, LNCS 5479, pages 425–442. Springer, Heidelberg, April 2009.

CL09. G. Castagnos and F. Laguillaumie. On the security of cryptosystems with quadratic
decryption: The nicest cryptanalysis. In EUROCRYPT 2009, LNCS 5479, pages 260–277.
Springer, Heidelberg, April 2009.

CL15. G. Castagnos and F. Laguillaumie. Linearly homomorphic encryption from DDH. In
CT-RSA 2015, LNCS 9048, pages 487–505. Springer, Heidelberg, April 2015.

CLT18. G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted inner
product functional encryption modulo p. In ASIACRYPT 2018, Part II, LNCS 11273,
pages 733–764. Springer, Heidelberg, December 2018.

Coh00. H. Cohen. A course in computational algebraic number theory. Springer-Verlag, 2000.
CS98. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against

adaptive chosen ciphertext attack. In CRYPTO’98, LNCS 1462, pages 13–25. Springer,
Heidelberg, August 1998.

CS02. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In EUROCRYPT 2002, LNCS 2332, pages 45–
64. Springer, Heidelberg, April / May 2002.

CS03. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In CRYPTO 2003, LNCS 2729, pages 126–144. Springer, Heidelberg, August
2003.

Des88. Y. Desmedt. Society and group oriented cryptography: A new concept. In CRYPTO’87,
LNCS 293, pages 120–127. Springer, Heidelberg, August 1988.

DF90. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO’89, LNCS 435, pages
307–315. Springer, Heidelberg, August 1990.

DF02. I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme based on
groups with hidden order. In ASIACRYPT 2002, LNCS 2501, pages 125–142. Springer,
Heidelberg, December 2002.

DKLs18. J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold ECDSA from
ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy, pages 980–997.
IEEE Computer Society Press, May 2018.

34

https://eprint.iacr.org/2018/712

DKLs19. J. Doerner, Y. Kondi, E. Lee, and a. shelat. Threshold ECDSA from ECDSA assumptions:
The multiparty case. In 2019 IEEE Symposium on Security and Privacy, pages 1051–1066.
IEEE Computer Society Press, May 2019.

GG18. R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup.
In ACM CCS 2018, pages 1179–1194. ACM Press, October 2018.

GGN16. R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In ACNS 16, LNCS 9696, pages 156–174.
Springer, Heidelberg, June 2016.

GJKR96. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures.
In EUROCRYPT’96, LNCS 1070, pages 354–371. Springer, Heidelberg, May 1996.

GMR89. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, 1989.

Gol01. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,
Cambridge, UK, 2001.

GPS06. M. Girault, G. Poupard, and J. Stern. On the fly authentication and signature schemes
based on groups of unknown order. Journal of Cryptology, 19(4):463–487, October 2006.

HL10. C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and Construc-
tions. Springer-Verlag, 1st edition, 2010.

HO09. B. Hemenway and R. Ostrovsky. Lossy trapdoor functions from smooth homomorphic hash
proof systems. Electronic Colloquium on Computational Complexity (ECCC), 16:127, 01
2009.

IJS10. L. Imbert, M. J. Jacobson Jr., and A. Schmidt. Fast ideal cubing in imaginary quadratic
number and function fields. Advances in Mathematics of Communications, 4(2):237–260,
2010.

Jac00. M. J. Jacobson Jr. Computing discrete logarithms in quadratic orders. Journal of Cryp-
tology, 13(4):473–492, September 2000.

Lin16. Y. Lindell. How to simulate it - A tutorial on the simulation proof technique. Cryptology
ePrint Archive, Report 2016/046, 2016. http://eprint.iacr.org/2016/046.

Lin17. Y. Lindell. Fast secure two-party ECDSA signing. In CRYPTO 2017, Part II, LNCS
10402, pages 613–644. Springer, Heidelberg, August 2017.

LN18. Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In ACM CCS 2018, pages 1837–
1854. ACM Press, October 2018.

MR04. P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signatures. Int. J. Inf.
Sec., 2(3-4):218–239, 2004.

PAR18. PARI Group, Univ. Bordeaux. PARI/GP version 2.11.1, 2018. available from http:
//pari.math.u-bordeaux.fr/.

Sch91. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991.

Sep. Sepior. http://www.sepior.com.
Ser. I. D. P. Services. https://security.intuit.com/.
SG98. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext

attack. In EUROCRYPT’98, LNCS 1403, pages 1–16. Springer, Heidelberg, May / June
1998.

Sho00. V. Shoup. Practical threshold signatures. In EUROCRYPT 2000, LNCS 1807, pages
207–220. Springer, Heidelberg, May 2000.

TW12. B. Terelius and D. Wikström. Efficiency limitations of S-protocols for group homomor-
phisms revisited. In SCN 12, LNCS 7485, pages 461–476. Springer, Heidelberg, September
2012.

Unb. Unboundtech. https://www.unboundtech.com/.
Van92. S. Vanstone. Responses to nist’s proposal. Communications of the ACM, 35:50–52, July

1992. (communicated by John Anderson).
Wes19. B. Wesolowski. Efficient verifiable delay functions. In Advances in Cryptology – EURO-

CRYPT 2019, pages 379–407, Cham, 2019. Springer International Publishing.

35

http://eprint.iacr.org/2016/046
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://www.sepior.com
https://security.intuit.com/
https://www.unboundtech.com/

Auxiliary Supporting Material

I A brief definition of interactive zero-knowledge proofs

A zero-knowledge proof system (P, V) for a language L is an interactive protocol between
two probabilistic algorithms: a prover P and a polynomial-time verifier V . Informally P —
who detains a witness for a given statement — must convince V that the statement is true
without revealing anything other than the truth of this statement to V .

Specifically, if L is a language, x ∈ L is a true statement while x /∈ L is a false
statement; and 1 ← (P, V)(x) (resp. 0 ← (P, V)(x)) denotes the case when V interacting
with P accepts (resp. rejects) the proof, the following properties must hold:

– Completeness: for any x ∈ L:

Pr[1← (P, V)(x)] > 1/2

– Soundness: for any prover P ∗ and for any x /∈ L:

Pr[0← (P ∗, V)(x)] > 1/2

– Zero-knowledge: for every probabilistic polynomial time verifier V ∗, there exists a prob-
abilistic simulator Sim running in expected polynomial time such that for every x ∈ L,

(P, V ∗)(x) ≡ Sim(x).

(P, V)(x) is a random variable representing the output of V at the end of an interaction
with P , then the zero-knowledge property holds if for any probabilistic polynomial time
V ∗, the output of V ∗ after an interaction with P is the same one of the simulator.

For a full explanation on this model see [Gol01] for interactive proofs and [GMR89] for
zero-knowledge.

II A technical Lemma on Distributions

Lemma 1. Let X be a discrete random variable at statistical distance ε from the uniform
distribution over Z/abZ for positive integers a and b such that gcd(a, b) = 1. And let Xa

(resp. Xb) be the random variable defined as Xa := X mod a (resp. Xb := X mod b).
Then the random variables Xa and Xb are less than ε close to the uniform distributions in
Z/aZ and Z/bZ respectively. Moreover, even knowing Xb, Xa remains at statistical distance
less than 2ε of the uniform distribution in Z/aZ (and vice versa).

Proof. Let C be an algorithm which takes as input a tuple (a, b, x) ∈ N2 × Z/abZ, which
can either be a sample of the distribution:

U := {a, b, x| gcd(a, b) = 1 ∧ x $←− Z/abZ}

or a sample of:
V := {a, b, x| gcd(a, b) = 1 ∧ x←↩ D},

where D is a distribution at statistical distance ε of the uniform distribution over Z/abZ,
and outputs a bit. Since distributions U and V are at statistical distance ε, for any such
algorithm C, it holds that:

|Pr[C(U)→ 1]− Pr[C(V)→ 1]| ≤ ε.

We further denote UA := {a, b, xb, xa|(a, b, x) ←↩ V; xb ← x mod b; xa
$←− Z/aZ} and

VA := {a, b, xb, xa |(a, b, x)←↩ V; xb ← x mod b; xa ← x mod a}.
Consider any algorithm A which takes as input a sample (a, b, xb, x

∗
a) of either UA or

VA, and outputs a bit β′. A’s goal is to tell whether x∗a is sampled uniformly at random
from Z/aZ or if x∗a ← x mod a. We demonstrate that if A has significant probability in
distinguishing both input types, then C can use A to distinguish distributions U and V.
We describe the steps of C below:

C(a, b, x) :

1. Set xb ← x mod b

2. Sample β∗
$←− {0, 1}

3. If β∗ = 0, then x∗a
$←− Z/aZ

4. Else if β∗ = 1, then x∗a ← x mod a
5. β′ ←A(a, b, xb, x

∗
a)

6. If β = β′ return 1
7. Else return 0.

If C gets as input an element of U whatever the value of β∗, x∗a follows the uniform
distribution modulo a and is independent of xb. So A’s success probability in outputting β′

equal to β∗ is 1/2.

Pr[A(a, b, xb, x
∗
a)→ β∗|(a, b, x)←↩ U] = 1/2

and so

Pr[C(U)→ 1] = 1/2

On the other hand if (a, b, x) ←↩ V, then C outputs 1 if A guesses the correct bit β∗

(when its inputs are either in UA or VA as expected).

Pr[C(V)→ 1] = Pr[A → β∗|(a, b, x)←↩ V]

And so

|Pr[C(U)→ 1]− Pr[C(V)→ 1]| = |Pr[A → β∗|(a, b, x)←↩ V]− 1/2|
= 1/2 · |Pr[A(UA)→ 1]− Pr[A(VA)→ 1]|.

Since distributions U and V are at statistical distance ε, it holds that |Pr[C(U) →
1]− Pr[C(V)→ 1]| ≤ ε, and so for any algorithm A as above:

|Pr[A(UA)→ 1]− Pr[A(VA)→ 1]| ≤ 2ε.

Thus the statistical distance between UA and VA is smaller than 2ε, which implies that
even given x mod b, the value of x mod a remains at negligible statistical distance 2ε of
the uniform distribution modulo a, which concludes the proof. ut

37

III Proof of Theorem 2

In this section, we prove the following theorem.

Theorem 1. The protocol described in Figure 8 is a statistical zero-knowledge proof of
knowledge with soundness 2−`, as long as ` is polynomial and `S/A is negligible.

Proof. We prove completeness, soundness and zero-knowledge. Completeness follows easily
by observing that when ((pk, (c1, c2), Q1); (x1, r)) ∈ RCL−DL, for any k ∈ {0, 1} the values
computed by an honest prover will indeed verify the four relations checked by the verifier.
For soundness, the protocol is in fact special sound. Indeed notice that for committed values
t1, t2, t3, if a prover P ∗ can answer correctly for two different values of k, he must be able
to answer to challenges 0 and 1 with u1, u2 and u′1, u

′
2, where u1 and u′1 are smaller than

A+S−1, such that u2P = u′2P−Q, pku1fu2c2 = pku
′
1fu

′
2 and gu1

q c1 = g
u′1
q . Let σ1 ← u′1−u1,

σ2 ← u′2 − u2 mod q; we obtain gσ1
q = c1, σ2P = Q and pkσ1fσ

′
2 = c2. Thus P ∗ can easily

compute x1 ← σ2 mod q and r ← σ1 in Z.
While this gives a soundness error of 1/2, the soundness is amplified to 2−` by repeating

the protocol sequentially ` times.
For zero-knowledge, we must exhibit a simulator S which, given the code of some verifier

V ∗, produces a transcript indistinguishable from that which would be produced between V ∗

and an honest prover P (proving the knowledge of a tuple in RCL−DL) without knowing the
witnesses (x1, r) for (pk, (c1, c2), Q1) in the relation RCL−DL.

The potentially malicious verifier may use an adaptive strategy to bias the choice of
the challenges to learn information about (r, x1). This implies that challenges may not be
randomly chosen, which must be taken into account in the security proof.

We describe an expected polynomial time simulation of the communication between a
prover P and a malicious verifier V ∗ for one round of the proof. Since the simulated round
may not be the first round, we assume V ∗ has already obtained data, denoted by hist, from
previous interactions with P . Then P sends the commitments t1, t2, t3 and V ∗ chooses –
possibly using hist and t1, t2, t3 – the challenge k(t1, t2, t3, hist).

Description of the simulator: Consider the simulator S which simulates a given round of
identification as follows:

1. S chooses random values k̄ ∈ {0, 1}, ū1 ∈ [S − 1, A− 1] and ū2 ∈ Z/qZ.
2. S computes t̄1 ← pkū1f ū2/ck̄2 ; t̄2 ← [ū2]P − [k̄]Q and t̄3 ← gū1

q /ck̄1 , and sends t̄1, t̄2 and
t̄3 to V ∗.

3. S receives k(t̄1, t̄2, t̄3, hist) from V ∗.
4. If k(t̄1, t̄2, t̄3, hist) 6= k̄ then return to step 1, else return (t̄1, t̄2, t̄3, k̄, ū1, ū2).

To demonstrate that the proof is indeed zero-knowledge, we need to justify that the
distribution output by the simulator is statistically close to that output in a real execution
of the protocol, and that the simulation runs in expected polynomial time.

Intuitively, sampling the randomness r from a large enough distribution – i.e. as long as
S << A – ensures that the distribution of t1, t2, t3 in a real execution is statistically close1

to that in a simulated execution.

1 The distributions cannot be distinguished by any algorithm, even using an infinite computational
power, but only accessing a polynomial number of triplets of both distributions

38

The analysis of the above statistical distance Σ between the distribution of tuples output
by the simulator and that of tuples output by a real execution of the protocol is quite tedeous
and similar to that of [GPS06]. We do not provide the details here but applying their analysis
to our setting allows us obtain the following bound:

Σ <
8S

A
.

Thus the real and simulated distributions are statistically indistinguishable if S/A is negli-
gible.

Running time of the Simulator: We now need to ensure that the simulator runs in ex-
pected polynomial time. To see this, notice that step 3 outputs a tuple (t̄1, t̄2, t̄3, k̄, ū1, ū2)
if k(t̄1, t̄2, t̄3, hist) = k̄ . Since k̄ is sampled at random from {0, 1}, the expected number of
iterations of the loop is 2. Therefore the complexity of the simulation of all ` rounds is O(`).

Thus if `S/A is negligible and ` is polynomial, the protocol is statistically zero-knowledge.
ut

IV Lindell’s new interactive assumption

In order to prove the security of his 2-party ECDSA, Lindell introduced in [Lin17] the
following ad hoc interactive assumption, called Paillier-EC assumption. It is defined via the
following random experiment.

Experiment ExpA(1λ)

(pk, sk)← Paillier.KeyGen(1λ)

(ω0, ω1)
$←− Z/qZ, Q← ω0P

b?
$←− {0, 1}, c? ← Paillier.Enc(1λ, pk, ωb?)

b←AOc? (·,·,·)(pk, c?, Q)
if b = b? then return 1
else return 0

where 1← Oc?(c′, α, β) if and only if Paillier.Dec(1λ, sk, c′) = α+ βωb? mod q and O stops
after the first time it returns 0.

The Paillier-EC assumption is hard if for every probabilistic polynomial-time adversary
A there exists a negligible function ν such that Pr[ExpA(1λ) = 1] ≤ 1

2 + ν(n).

39

V Two-Party ECDSA from HSM

P1 KeyGen(G, P, q, Ĝ, gq) P2

x1
$←− Z/qZ

Q1 ← x1P
(com-prove,1,Q1,x1)−−−−−−−−−−−−→ FRDL

zk−com
(proof-receipt,1)−−−−−−−−−→

x2
$←− Z/qZ

P1 aborts if
(proof, 2, Q2)
not received.

Q2 ← x1P

(proof,2,Q2)←−−−−−−− FRDL

zk

(prove,2,Q2,x2)←−−−−−−−−−
(decom-proof,1)−−−−−−−−−→ FRDL

zk−com
(decom-proof,1,Q1)−−−−−−−−−−−−→

x, ρ←↩ Dq

h← gxq

ckey = (ckey,1, ckey,2)
= (gρq , h

ρfx1)
(prove,3,(h,ckey,Q1),(x1,ρ)−−−−−−−−−−−−−−−−−→ LCL−DL

(proof,3,(h,ckey,Q1))−−−−−−−−−−−−−→
P2 aborts unless

(decom-proof, 1, Q1),
(proof, 3, (h, ckey, Q1))

received and h ∈ Ĝ.

Q← x1Q2 Q← x2Q1

P1 Sign(m, sid) P2

k1
$←− Z/qZ

R1 ← k1P
(com-prove,sid||1,R1,k1)−−−−−−−−−−−−−−−→ FRDL

zk−com
(proof-receipt,sid||1)−−−−−−−−−−−−→

k2
$←− Z/qZ

R2 ← k2P
P1 aborts if

(proof, sid||2, R2)
not received.

(proof,sid||2,R2)←−−−−−−−−−− FRDL

zk

(prove,sid||2,R2,k2)←−−−−−−−−−−−−

(decom-proof,sid||1)−−−−−−−−−−−−→ FRDL

zk−com
(decom-proof,sid||1,R1)−−−−−−−−−−−−−−→

P2 aborts if
(decom-proof, sid||1, R1)

not received.
m′ ← H(m)

R = (rx, ry)← k1R2 R = (rx, ry)← k2R1

r ← rx mod q r ← rx mod q
τ ←↩ Dq

c1 = (c1,1, c1,2)← (gτq , h
τfk

−1
2 m′)

c2 = (c2,1, c2,2)← (c
k−1
2 rx2

key,1 , c
k−1
2 rx2

key,2)

c3 = (c3,1, c3,2)← (c1,1c2,1, c1,2c2,2)
c3←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

α← Solve(c3,2/c
x
3,1)

ŝ← α · k−1
1

s← min(ŝ, q − ŝ)
If not Verif(Q,m, (r, s)) P1 aborts

Else Return (r, s)

40

	Two-Party ECDSA from Hash Proof Systems and Efficient Instantiations
	Auxiliary Supporting Material

