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Abstract. We present a new probabilistic cryptosystem working in quadratic fields quo-
tients. Computation in such objects can be done efficiently with Lucas sequences which help
to design a fast system. The security of the scheme is based on the LUC problem and its
semantic security on a new decisional problem. This system appears to be an alternative to
schemes based on the RSA primitive and has a full computational cost smaller than the El
Gamal EC cryptosystem.
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1 Introduction

In 2001, Catalano, Gennaro et al. have proposed an efficient probabilistic cryptosys-
tem (cf. [3]) whose security has been proved equivalent to the security of the RSA
cryptosystem (cf. [4]). This scheme, which works in the ring Z/n2Z where n is an
RSA integer, is a fast variant of the homomorphic scheme designed by Paillier ([13])
in 1999. The Catalano et al. scheme has then been adapted in the group of points of
an elliptic curve by Galindo, Mart́ın et al. in 2003 ([8]) with the help of the KMOV
primitive (cf. [10]). However, the points of the elliptic curve considered have coordi-
nates in the ring Z/n2Z, where n is an RSA integer and the security of this system
is based on the difficulty of factoring n. For discrete logarithm based schemes, the
use of elliptic curves helps to reduce the size of the base field. As a consequence,
the schemes are still competitive even if the operations in the group of points of
an elliptic curve have an heavy cost. In the Galindo et al. scheme the base ring is
huge so the system is much slower than the original one. Moreover, its decryption
cost prevents this system to be used in practice. However, with this system, the
authors have proposed an alternative to the use of the RSA function in probabilistic
encryption and the encryption phase of their system is faster than the El Gamal EC
scheme.

In this paper, we expose another alternative to the use of the RSA function much
faster than the Galindo et al. scheme. The key idea is to adapt the Catalano et al.
scheme in a group simpler than the elliptic curve over Z/n2Z used by Galindo et
al.: the group of finite points of a conic over Z/n2Z. In fact, this kind of group can
be view as a group of norm 1 quadratic integers modulo n2.

Quotients of quadratic fields have been quite famous in primality proving (Lucas
pseudoprimes, see [1]) and factoring (the p + 1 method of Williams, cf. [16]). In
cryptography, these groups have not been largely used. Only two systems have been
proposed by Smith, Lennon and Skinner in 1994: the LUC cryptosystem (see [14])
and a signature scheme (see [15]). All these papers use the mysterious language of



Lucas sequences. In Section 2 we define a group, denoted (O∆/aO∆)∧, of norm 1
quadratic integers modulo an integer a. Then, in Section 3, we show how Lucas
sequences help to compute exponentiation in the group (O∆/aO∆)∧. Thanks to this
conceptualisation, we can prove easily, in Section 4, some interesting properties of
the LUC function used in the systems of Smith. Moreover, its similarity with the
RSA function becomes obvious.

We briefly recall the Catalano et al. cryptosystem in Section 5, then, in the next
section, we show how to adapt this scheme with the LUC function, to design a
new probabilistic system. The complexity of the new cryptosystem is analysed in
Section 7 and its security is discussed in Section 8. Finally, in Section 9 we compare
the efficiency of the new system with other probabilistic algorithms to show its
competitiveness.

2 Notations and definitions

In all this paper, a positive integer n will be an RSA integer if n is the product of
two distinct odd primes p and q (for the security of our cryptographic application,
we will also later require that p and q are large enough, such that the factorisation
of n is infeasible in reasonable time, see Section 8 for more details).

If A is a ring, A× will denote the multiplicative group of the invertible elements
of A. Given an integer ∆ which is not a square, O∆ will be the ring of integers of
Q(
√

∆). Let a be an integer prime to ∆; as O∆/aO∆ is a free module of rank two
over Z/aZ, we can define the norm application, denoted NO∆/aO∆

(resp. the trace
application, denoted TrO∆/aO∆

) from O∆/aO∆ to Z/aZ, by assigning to every α in
O∆/aO∆ the determinant (resp. the trace) of the endomorphism of (Z/aZ)-module
β 7→ αβ.

If NO∆
(resp. TrO∆

) is the usual norm (resp. trace) in O∆ over Z then we have
the following relations:

∀α ∈ O∆, NO∆/aO∆
(Π(α)) ≡ NO∆

(α) (mod a),

∀α ∈ O∆, TrO∆/aO∆
(Π(α)) ≡ TrO∆

(α) (mod a),

in which Π denotes the canonical map O∆ → O∆/aO∆. Considering these relations,
we will denote simply the norm and trace applications respectively N and Tr.

As the norm is an homomorphism from the group (O∆/aO∆)× to (Z/aZ)×,
the set of norm 1 elements of (O∆/aO∆)× is a multiplicative group, which will be
denoted (O∆/aO∆)∧. One can also define this group as the set of finite points of the
conic of affine equation:

X2 −∆Y 2 = 1,

over Z/aZ. This is a consequence of the following fact: if α ∈ (O∆/aO∆), there exists
a pair (x, y) of elements of Z/aZ such that α = x + y

√
∆ and N(α) = x2 −∆y2.

If p is an odd prime and x an integer such that p - x, we denote by
(

x
p

)
the

Legendre symbol defined by
(

x
p

)
= 1 (resp.

(
x
p

)
= −1) if x is a quadratic residue

modulo p (resp. is a quadratic nonresidue modulo p). The order ϕ∆(a) of (O∆/aO∆)∧

is given by the following proposition:
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Proposition 1. Let ∆ be a non-square integer

– Let p be an odd prime such that p - ∆, for all integer r ≥ 1, the order of the

group (O∆/prO∆)∧ is ϕ∆(pr) := pr−1
(
p−

(
∆
p

))
.

– Let a be an odd integer, a > 2, with prime decomposition a = pr1
1 · · · prl

l where
the primes p1, p2, . . . , pl are all distinct. If gcd(∆, a) = 1, we have the following
isomorphism:

(O∆/aO∆)∧ →̃ (O∆/pr1
1 O∆)∧ × . . .× (O∆/prl

l O∆)∧ .

As a consequence, the order of (O∆/aO∆)∧ is ϕ∆(a) :=
∏l

i=1 ϕ∆(pri
i ).

3 Lucas sequences

3.1 Definition and computation

Let P and Q be two integers such that P 2 − 4Q is a non-square. Lucas sequences
are given by two second-order linear recurrence relations: ∀k > 1,

Uk+1(P, Q) = PUk(P, Q)−QUk−1(P, Q), U1(P, Q) = 1, U0(P, Q) = 0,

Vk+1(P, Q) = PVk(P, Q)−QVk−1(P, Q), V1(P, Q) = P, V0(P, Q) = 2.

There are several algorithms that allow to compute Lucas sequences (see [9], for
example). These algorithms are analogous to the “square and multiply” algorithm
for common exponentiation. For our purpose, we will only need to compute terms
of the sequence (Vn(P, 1))n∈N. We recall the corresponding algorithm:

Algorithm 1 (Computation of Vk(P, 1))

Input: P ∈ Z such that P 2 − 4 is a non-square and k > 0 with binary expansion
k = 2s

∑m−1
i=0 ki2

m−1−i and k0 = km−1 = 1.
Initialisation: Vl := 2, Vh := P.
For i = 0, . . . ,m− 2, do

If ki = 0,
then, Vh := VlVh − P, Vl := V 2

l − 2,
else, Vl := VlVh − P, Vh := V 2

h − 2.
End If

End For
Vl := VlVh − P.
For i = 1, . . . , s, do

Vl := V 2
l − 2.

End For
Output: Vl which equals Vk(P, 1).

For our cryptographic application, we will compute Vk(P, 1) modulo an integer
a. This will take m multiplications and (m − 1) + s squares in Z/aZ. Note that
Algorithm 1 is faster than the general algorithm that computes Vk(P, Q) with Q 6= 1.
If k is odd (it will be the case in our application) then only the first loop of the
algorithm is executed. In this case, the number and the nature of operations are
both independent of the bits of k, this algorithm is thus immune to Simple Power
Analysis attacks.
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3.2 Lucas sequences and exponentiation in O∆/aO∆

Lucas sequences have been used to design the LUC cryptosystem (see [14]) and a
digital signature scheme (see [15]). These schemes have been well studied (see [2,
11]). Except in [2], all these papers are exclusively formulated in obfuscated terms of
relations verified by Lucas sequences. However it is possible to avoid the systematic
use of these relations, by exploiting the link between Lucas sequences and generic
exponentiation in O∆/aO∆.

Let ∆ := P 2 − 4Q be a non-square integer like in 3.1. It is well-known that
Lucas sequences allow to compute exponentiation in the ring O∆: we denote by

α the element P+
√

∆
2

of O∆. This element is one of the roots of the polynomial
X2 − PX + Q of Z[X]. We then have

∀r ∈ N, αr =
Vr(P, Q) + Ur(P, Q)

√
∆

2
,

in the ring O∆.
One can generalized this result to compute powers of elements of the ringO∆ with

arbitrary non-square ∆. For our purpose, we state this generalised result modulo
aO∆, where a is an odd integer prime to ∆:

Lemma 2. Let ∆ be a non-square integer and a an odd integer prime to ∆. Let
α be an element of O∆ and x, y two integers such that α ≡ x + y

√
∆ (mod aO∆).

∀r ∈ N, we have

αr ≡ Vr(2x, N(α))

2
+ yUr(2x, N(α))

√
∆ (mod aO∆),

Tr(αr) ≡ Vr(2x, N(α)) (mod aO∆).

Proof. Let P = 2x and Q = N(α) = x2 −∆y2. The integer ∆ is a non-square, and
so is P 2 − 4Q. The result is trivial for r = 0 and r = 1. For all integers r ≥ 1, it is
straightforward to see that

αr+1 = Pαr −Qαr−1.

The lemma follows by induction using this equality combined with the linear recur-
rence relations verified by Lucas sequences. ut

In the following, we will only deal with elements α of (O∆/aO∆)∧. As for all
integers P , V (P, N(α)) ≡ V (P, 1) (mod a), and the same relation holds for the
sequence U , the second parameter of the Lucas sequences used until the end of this
paper will equal 1. We will therefore note Vn(P ) (resp. Un(P )) for Vn(P, 1) (resp.
Un(P, 1)).

4 The LUC function

Let n be an RSA integer. The encryption function of the LUC public key system (cf.
[14]) is an adaptation of the RSA function in the group (O∆/nO∆)∧ with a speed
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improvement. For a parameter e, this function does not compute a full exponentia-
tion α 7→ αe in (O∆/nO∆)∧ but assign to an x ∈ Z/nZ, the trace of the element αe

with α ∈ (O∆/nO∆)∧ chosen such that x = Tr(α) (this idea is very similar to XTR,
cf. [12]). According to Lemma 2, this computation can be done with the single Lucas
sequence V .

In this section, we recall some properties of the LUC function, discuss its security
and compare it to the security of the RSA primitive.

Definition 3. Let n = pq be an RSA integer and let Λn be the set:

Λn :=
{
x ∈ N, x < n, gcd(x2 − 4, n) = 1

}
,

and let e be an integer prime to (p2 − 1)(q2 − 1), we define the LUCe function:

LUCe :

{
Λn → Λn

x 7→ Ve(x) mod n

We next state a property of the LUC encryption function:

Lemma 4. With the notations of the previous definition, LUCe is a permutation of
the set Λn.

Proof. We first prove that LUCe is well defined. Let x be an element of Λn and ∆
a non-square integer such that ∆ ≡ x2 − 4 (mod n). We have gcd(∆, n) = 1. Let

α ∈ O∆ such that α ≡ x+
√

∆
2

(mod nO∆). Modulo n, α is a norm 1 element and
satisfies the relation LUCe(x) ≡ Ve(x) ≡ Tr(αe) (mod n). As N(αe) ≡ 1 (mod n)

and αe ≡ Ve(x)+Ue(x)
√

∆
2

(mod nO∆) (cf. Lemma 2), we have 4N(αe) ≡ Ve(x)2 −
Ue(x)2∆ ≡ 4 (mod n). So Ve(x) ∈ Λn if and only if Ue(x) is prime to n.

The order of (O∆/nO∆)∧ is

ϕ∆(n) =

(
p−

(
∆

p

)) (
q −

(
∆

q

))
,

so e is prime to ϕ∆(n) and the homomorphism α 7→ αe is an automorphism of
the group (O∆/nO∆)∧. The inverse map is α 7→ αd where d is an integer such that
d ≡ e−1 (mod ϕ∆(n)), in fact, e is the public exponent in LUC and d the private
one. By Lemma 2, we have the following relation:

αed = (αe)d ≡ Vd(Ve(x)) + Ue(x)Ud(Ve(x))
√

∆

2
(mod nO∆).

Since we also have αed ≡ α (mod nO∆), we must have Ue(x)Ud(Ve(x)) ≡ 1
(mod n) and Vd(Ve(x)) ≡ x (mod n). From the first equality, we deduce that Ue(x)
is prime to n and from the second equality, we deduce that LUCd ◦LUCe = IdΛn .
Since e and d play a symmetric role, LUCe is indeed a permutation of Λn (in fact
LUCe is the encryption function of LUC and LUCd the decryption one). ut

Corollary 5 (of Lemma 4). With the notations of the previous definition, the
function LUCe is a permutation of the set

Λ′
n :=

{
x ∈ N, 0 < x < n, gcd(x2 − 4, n) = 1, gcd(x, n) = 1

}
.
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Proof. It is sufficient to show that LUCe is a self map of {x, gcd(x, n) 6= 1}. Modulo
p we must prove that LUCe(0) ≡ 0 (mod p). Thanks to the choice of e, e is odd and
Ve(0) ≡ Tr((

√
∆/2)e) ≡ 0 (mod p), with ∆ ≡ −4 (mod p). ut

In the end of this section we briefly discuss the relation between the problems of
inverting the LUC function and the RSA function. Let’s first fix the notations with
a definition.

Definition 6. Let n = pq be an RSA integer and e an integer prime to (p−1)(q−1),
we define the RSAe function:

RSAe :

{
(Z/nZ)× → (Z/nZ)×

x 7→ xe

It is well known that the RSA function is a permutation of (Z/nZ)×. The RSA and
LUC function can be inverted by anyone who knows the inverse of e modulo the
order of the group considered. In the two cases, this is equivalent to the knowledge of
the factorisation of n. In [2, Section 5], the relation between the problem of inverting
RSAe and LUCe is studied. It is said that for any c ∈ (Z/nZ)×, one can compute
(RSAe)

−1(c) if he knows (LUCe)
−1(c+ c−1), but, as noticed by the authors, this fact

does not imply that LUC is stronger than RSA.
One can also interpret these problems as the problem of finding a root of a

polynomial over Z/nZ. For RSA, we have to find a root of Xe − c and for LUC,
we have to find a root of Ve(X) − c. One can prove by induction that Ve(X) is a
polynomial of degree e. More precisely, we have in Z[X]:

Ve(X) =

be/2c∑
k=0

(−1)k e(e− k − 1)!

k!(e− 2k)!
Xe−2k = Xe − eXe−2 +

e(e− 3)

2
Xe−4 + . . .

Hence, to solve the two problems, one has to find a root of a polynomial of the same
degree e. A result of Coppersmith gives the roots smaller than n1/d of a polynomial
of degree d over Z/nZ in polynomial time (cf. [5]). This result seems to indicate
that the complexity of the problem of finding a root of a polynomial P over Z/nZ
is related to the degree of P . From this point of view, it makes sense to believe that
RSA and LUC with same parameter e achieve the same level of security.

5 The Catalano, Gennaro et al. cryptosystem

In 2001, Catalano, Gennaro et al. have introduced in [3] a probabilistic cryptosystem.
Their scheme is apparently very similar to the Paillier’s cryptosystem (see [13]). In
fact, the Catalano’s system can also be view as a probabilistic version of RSA. Let’s
briefly describe this system.

As usual n = pq is an RSA integer. Let e be an integer prime to ϕ(n) = (p −
1)(q − 1). The pair (n, e) is the public key. We denote by Rn the set

Rn = {x ∈ N, 0 < x < n, gcd(x, n) = 1} .
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The cipher function used in [3] is

Ee :

{
Z/nZ×Rn → (Z/n2Z)×

(m, r) 7→ (1 + mn)re

where m is the plaintext and r a random element. Note that, in practice, as the
factorisation of n is not known by the one who uses the encryption function, r is
taken randomly in {1, . . . , n− 1} and as n must be hard to factor, r ∈ Rn with high
probability.

It is straightforward to show that this function is bijective: one uses the facts that
c := (1 + mn)re ≡ re (mod n) and that the random integers r are distinct modulo
n. Then, as the RSA function is a permutation of Rn, there is a unique r such that
Ee(m, r) = c. The uniqueness of m follows easily from the fact that re ∈ (Z/n2Z)×.

Let d be an integer such that ed ≡ 1 (mod ϕ(n)). This integer is the secret key.
To decrypt c ∈ (Z/n2Z)×, one has to reduce c modulo n, make an RSA decryption
to recover r and then compute c/re (mod n2) to recover (1 + mn) and finally m.
Although it’s not clearly mentioned in [3], one can use the Chinese Remainder
Theorem to speed up the decryption phase.

It is obvious that if one can invert the RSA function, one can also invert the
function Ee. In [4], the authors prove that to invert the RSA function is polynomially
equivalent to the inversion of the Ee function. It is also proved that the system is
semantically secure if and only if given an arbitrary element c ∈ (Z/n2Z)×, it is
difficult to say if there exists an element r ∈ Rn such that c ≡ re (mod n2) (see [3,
theorem 3.1]).

Note that the system is not homomorphic contrary to the Paillier’s cryptosystem
because the map r 7→ re from (Z/nZ)× to (Z/n2Z)× is not an homomorphism, unless
n divide e, and e has to be chosen small enough in order to increase the cryptosystem
efficiency.

6 The new cryptosystem

The Catalano et al. cryptosystem described in Section 5 has been adapted in the
group of points of an elliptic curve over Z/n2Z by Galindo, Mart́ın et al. in [8]. Algo-
rithm 1 makes exponentiation in the group (O∆/n2O∆)

∧
faster than in elliptic curve

and Section 4 gives an efficient trapdoor permutation. With all these elements, it be-
comes natural to adapt the Catalano et al. cryptosystem in the group (O∆/n2O∆)

∧
.

We use the LUCe function (cf. Definition 3) to generate the random elements. As
these elements must be invertible and distinct modulo n, we use the set Λ′

n defined
in Corollary 5.

Definition 7. Let n = pq an RSA integer. Let e be an integer prime to (p2−1)(q2−
1). Let define the set Ωn:

Ωn :=
{
x ∈ N, 0 < x < n2, gcd(x2 − 4, n) = 1, gcd(x, n) = 1

}
The encryption function is:

E ′e :

{
Z/nZ× Λ′

n → Ωn

(m, r) 7→ (1 + n)mVe(r) mod n2

7



Theorem 8. With the notations of the previous definition, the function E ′e is well-
defined and bijective.

Proof. First we prove that E ′e is well-defined. Let (m, r) be an element of Z/nZ×Λ′
n,

we want to show that c := E ′e(m, r) ∈ Ωn. We have (c mod n) = LUCe(r). Since
r ∈ Λ′

n, by Corollary 5, (c mod n) is also an element of Λ′
n, hence E ′e is well-defined.

Now, we prove that E ′e is bijective. As the sets Z/nZ×Λ′
n and Ωn have the same

numbers of elements, n(p−3)(q−3), it is sufficient to prove that E ′e is into. Suppose
that there exist two pairs (mi, ri)i=1,2 of Z/nZ×Λ′

n such that E ′e(m1, r1) = E ′e(m2, r2).
By taking this equality modulo n, we found that LUCe(r1) = LUCe(r2). As LUCe is
a permutation of Λ′

n , we must have r1 = r2. As we have chosen the set Λ′
n in order

to have Ve(r1) prime to n, we can conclude that m1 equals m2. ut

We now give the encryption algorithm, the public key is (n, e) with the notation
of Definition 7.

Algorithm 2 (Encryption)

Input: (n, e) the public key, m ∈ Z/nZ the plaintext.
Randomization : Take r randomly in {1, . . . , n− 1} \ {2, n− 2}.
Output: c := (1 + mn)Ve(r) mod n2 the ciphertext.

Note that if n is hard to factor, we will have r ∈ Λ′
n with probability close to 1.

We now describe the decryption algorithm using the Chinese Remainder Theorem.
The private exponents are given by the vector

d := (d(p,−1), d(p,1), d(q,−1), d(q,1)),

where d(p,i) ≡ e−1 (mod p − i) for i = ±1, and the same notations holds with the
prime q.

Algorithm 3 (Decryption)

Input: (p, q, d) the private key, c the ciphertext.
Precomputation:

invq := p−1 mod q, invp := q−1 mod p.
preCRT := p−1 mod q.

For l ∈ {p, q}, do

i :=
(

c2−4
l

)
,

rl := Vd(l,i)
(c) mod l.

End For
r := rp + p(rq − rp)preCRT mod pq.
For l ∈ {p, q}, do

tmp := c/Ve(r) mod l2,
tmp := (tmp− 1)/l,
mp :≡ tmp× invl mod l.

End For
Output: m :≡ mp + p(mq −mp)preCRT (mod pq) the plaintext corresponding to c.

8



Proof. We prove that Algorithm 3 outputs a valid plaintext m given a ciphertext
c. The first part of the algorithm recover the random number r ∈ Λ′

n such that
c = E ′e(m, r). Let ∆ be a non-square integer such that ∆ ≡ r2 − 4 (mod n2) and

α ∈ O∆ such that α ≡ r+
√

∆
2

(mod n2). We have N(α) ≡ 1 (mod n2) and Ve(r) ≡
Tr(αe) (mod n2). According to Lemma 2, we have 4N(αe) ≡ Ve(r)

2 −∆Ue(r)
2 ≡ 4

(mod n2), where the last congruence holds because N(αe) ≡ 1 (mod n2). We thus
have

∆ ≡ Ve(r)
2 − 4

Ue(r)2
(mod n2).

In this equation, Ue(r) is invertible because if r ∈ Λn, by definition, ∆ is prime to n
and by Lemma 4, gcd(Ve(r)

2 − 4, n) = 1.
As a consequence of this relation,(

∆

p

)
=

(
Ve(r)

2 − 4

p

)
=

(
c2 − 4

p

)
.

With the value of this last Legendre symbol, Algorithm 3 selects the inverse dp of e
modulo ϕ∆(p) and recover rp := Vdp(c) mod p = Vdp(Ve(r)) mod p = r mod p. The
algorithm then retrieves rq := r mod q. To recover m mod p from c mod p2, we need
to know r mod p2. From rp and rq we recover r mod n with the help of the Chinese
Remainder Theorem: r := rp+p(rq−rp)preCRT mod pq. As r has been chosen smaller
than n, we actually recover the value of r in Z, and the values of r modulo p2 and q2

follow. We have c/Ve(r) ≡ (1 + (mq)p) (mod p2). We can thus compute mq mod p
and then m mod p. The same is done modulo q and the value of m modulo n is
retrieved by an other application of the Chinese Remainder Theorem. ut

7 Complexity of the new cryptosystem

In this section, we give the complexity of the encryption and decryption algorithms
exposed in Section 6.

7.1 Notations and definitions

For simplicity, in all the following we will not distinguish the cost of modular squares
and the cost of general modular multiplications of distinct elements. We will also
neglect the cost of modular addition and modular subtraction.

In order to compare the efficiency of the new system with the previous ones,
we express the complexity of encryption and decryption algorithms in terms of
operations modulo n. For this purpose, we have to estimate the cost of operations
modulo n2.

We will use the following notations: let l be a non-negative integer, we note |l|
the number of bits of l. We will also denote by Ml (resp. Il) the computational cost
of a multiplication (resp. the cost of an inversion) modulo l.

Let x and y be two elements of Z/n2Z given in radix n representation: x =
x0 + x1n and y = y0 + y1n where the xi and yi are integers smaller than n. The
product xy can be done in radix n representation as follows: First compute the
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representation of the product z := x0y0. We denote it z = z0 + z1n. The product xy
is then given by

xy = z0 + (z1 + x0y1 + x1y0)n.

With this method, we show that Ml2 is smaller than 3Ml. The same method leads
to the estimation: Il2 < (3Ml + Il). Moreover, Il is generally considered to be 10Ml

(by the use of Lehmer’s method). So Il2 < 13Ml.

7.2 Encryption algorithm

With all these estimations, the cost of the computation of Ve(r) mod n2 by Algo-
rithm 2 is 3(2 |e| − 1)Mn. The multiplication (1 + mn)Ve(r) mod n2 needs only one
multiplication modulo n so the total cost of Algorithm 2 is

(6 |e| − 2)Mn.

7.3 Decryption algorithm

Firstly, the Algorithm 3 computes two Legendre symbols in Z/pZ and Z/qZ. These
computations takes O(log2 p) time. Then the computation of r mod p takes at most
(2 |p|−1)Mp. With the estimation |p| = |n| /2 and Mp = Mn/3, the total cost of the
first step (computation of r mod p and r mod q) is

2

3
(|n| − 1) Mn.

Then, the computation of r by the Chinese Remainder Theorem takes only Mn. In
the second phase of the algorithm, the computation of Ve(r) mod p2 takes 2(|e| −
1)Mp2 . With the estimation Mp2 = Mn, we find that retrieving m mod p and m mod
q takes (

4 |e|+ 50

3

)
Mn.

After adding the final use of Chinese Remainder Theorem, we find that the total
cost of Algorithm 2 is (

2

3
|n|+ 4 |e|+ 18

)
Mn.

8 Security of the new cryptosystem

In this section, we discuss the security and the semantic security of the cryptosystem
exposed in Section 6.

The security of the new cryptosystem relies on the difficulty of inverting the E ′e
function, more precisely, on the difficulty of the following problem:

Problem 9. Let n be an RSA integer and e an integer prime to (p2−1)(q2−1), let c
be an element of the set Ωn (cf. Definition 7) find m ∈ Z/nZ such that there exists
r ∈ Λ′

n (cf. Corollary 5) such that

c = (1 + mn)Ve(r) mod n2.

10



One can solve this problem if he knows how to invert the LUC function with
the same parameters n and e. We refer to the end of Section 4 to find a discussion
about the difficulty of this problem compared to the inversion of the RSA function.
Equivalence between the two problems is not known where as the one-wayness of the
Catalano et al. scheme is proved equivalent to the one-wayness of the RSA scheme.
Factoring n is believed to be the more efficient way to invert the LUC function and
we think that it is also the only way to invert the E ′e function. As a consequence, the
prime factors p and q have to be chosen large enough to prevent n to be factorised,
i. e., p and q must have at least 512 bits.

Concerning the semantic security of the new cryptosystem we have the following
theorem:

Theorem 10. The semantic security of the new cryptosystem relies on the difficulty
of the following decisional problem: Let n be an RSA integer and e an integer prime
to (p2− 1)(q2− 1), given an element c of the set Ωn, find if there exists r ∈ Λ′

n such
that c = (Ve(r) mod n2).

One can make a proof of this theorem with a straightforward adaptation of the
proof of [3, theorem 3.1], concerning the semantic security of the Catalano et al.
scheme. The only known way to solve the decisional problem exposed in Theorem
10 is to solve its computational version i. e., given c ∈ Ωn, to find an r ∈ Λ′

n such
that c = (Ve(r) mod n2). As shown in the end of Section 4, this problem requires to
find a root smaller than n of a polynomial of degree e over Z/n2Z. Coppersmith’s
result (cf. [5]) fails to provide a polynomial time solution for all e > 2.

9 Comparison of the new cryptosystem with the previous
one

In this section, we compare the complexity of our system with other probabilistic
schemes working in finite groups of modular integers in order to use the cost of
modular operations as an accurate method of comparison. For all the cryptosystems,
the computational cost is estimated with the method used in Section 7. We also used
the notations introduced in that section. The unity of complexity is Mn, i. e., the cost
of a multiplication modulo n. We always use Chinese remaindering for decryption.
We first compare the new system with the other variants of Catalano et al. scheme.

System Catalano et al. Galindo et al. New scheme El Gamal EC

Group Z/n2Z E/(Z/n2Z) Z/n2Z E/(Fp)

Plaintext size |n| |n| |n| 2 |p|

Ciphertext size 2 |n| 3 |n| 2 |n| 4 |p|

Encryption 9
2
|e|+ 1 36 |e|+ 3 6 |e| − 2 40 |p|+ 13

Decryption |n|
2

+ 3 |e|+ 19 20
3
|n|+ 36 |e|+ 24 2

3
|n|+ 4 |e|+ 18 20 |p|+ 13

11



In order to fairly compare these results, we must select key sizes that provide
the same level of security. The first three systems use an RSA integer n and a public
key exponent e. Since the security of all these systems is based on the difficulty of
factoring n, we have to use the same modulus size. We will take |n| = 1024. The
public exponent e must have the same size in the Catalano et al. scheme and in the
new system. In the Galindo et al., one can use an exponent of size twice smaller
(see [8, Section 4.2] for details). A 16 bits public exponent e is taken for the new
cryptosystem (due to Algorithm 1 a special exponent with a low Hamming weight
will not speed up the computation), the special exponent 216+1 (resp. 24+1) is taken
for the Catalano et al. scheme (resp. for the Galindo et al. scheme) and the form of
the exponent is taken in consideration to determine the number of multiplications
necessary for exponentiation. For El Gamal EC, the difficulty of discrete logarithm
in elliptic curves makes a prime of 192 bits sufficient to achieve a level of security
as strong as an 1024 bits RSA modulus (In the FIPS publication which describe
signature standards [6], the recommended size for prime base fields is at least 192
bits for ECDSA, and in the change notice enclosed to this document, the modulus
size for RSA is required to be at least 1024 bits). We summarize the computational
costs and keys sizes of these cryptosystems with these key length values in the
following table:

System Catalano Galindo El Gamal EC New scheme

Plaintext 1024 1024 384 1024

Ciphertext 2048 3072 384 2048

Encryption 52 125 225 94

Decryption 565 6952 113 765

Public key 1040 1032 1344 1040

Private key 1040 1032 768 1040

The use of the Lucas function add a low computational cost compared to the
original system of Catalano et al.. To compare more precisely our scheme with the
El Gamal EC scheme, we give the computational cost per bit in Mn/bit:

System El Gamal EC New scheme

Encryption 0.586 0.092

Decryption 0.294 0.747

Encryption + Decryption 0.889 0.839

The new system has an encryption computational cost drastically smaller than
the one of the El Gamal scheme. The decryption is not very expensive compared to
that system, and is very reasonable compared to the Galindo et al. cryptosystem.
Moreover, a full encryption and decryption phase is faster in the new cryptosystem.
As a result, if one wants to use a probabilistic scheme whose security is not based
on the RSA function the new cryptosystem has to be taken in serious consideration.
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10 Further developments

The group of quadratic integers of norm 1 modulo an RSA integer is a tool to
construct a lot of interesting cryptosystems. One could construct a probabilistic
cryptosystem which work entirely in the group (O∆/n2O∆)

∧
by adapting the Cata-

lano et al. cryptosystem using two key elements: the group automorphism γ 7→ γe

with e prime to the order of (O∆/n2O∆)
∧

and the nth root of unity 1 + n
√

∆ where
∆ is determined in order to have γ of norm 1. This solution gives a less efficient
cryptosystem. Indeed, to compute the exponentiation γe, one has to compute both
Lucas sequences Ve and Ue with suitable parameters. However this adaptation is still
faster than the elliptic curve variant of Galindo et al..

The new cryptosystem proposed in Section 6 and the variant of the previous
paragraph are not homomorphic. However, an homomorphic cryptosystem could
be built in (O∆/n2O∆)

∧
by adapting Paillier’s ideas (cf. [13]). The ciphertext c

corresponding to a plaintext m ∈ Z/nZ is an element of (O∆/n2O∆)
∧

with c = (1+
n
√

∆)mρ where ρ is a random nth power. The tricky part is to find a way to generate
ρ in order to design an homomorphic system (the discriminant ∆ must be fixed in
order to have all the ciphertext in the same group). One solution is to publish a nth

power β of high order and to generate random ρ by computing βr where r is random.
A second solution is to use the map (α/α)n from (O∆/nO∆)× to (O∆/n2O∆)

∧
that

generates all the nth power of (O∆/n2O∆)
∧

(If the factorisation of n is unknown,
one can generate easily a random element of (O∆/nO∆)×, but it is difficult to build
directly an element of norm 1). Both solutions give a cryptosystem slower than the
one proposed in Section 6 as we have to compute both Lucas sequences Vn and Un.
However this cryptosystem is four times faster than the adaptation of the Paillier
cryptosystem proposed by Galbraith (see [7]) in the group of points of an elliptic
curve over the ring Z/n2Z.

11 Conclusion

We have shown how to use the LUC function to design a competitive probabilistic
scheme. Although this function and its underlying structure have not often been
used in cryptography, they provide a competitive alternative to the RSA function.
Moreover, the security of this function is believed at least as strong as the security
of the RSA function.
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