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Abstract. We describe the first polynomial time chosen-plaintext to-
tal break of the NICE family of cryptosystems based on ideal arith-
metic in imaginary quadratic orders, introduced in the late 90’s by Hart-
mann, Paulus and Takagi [HPT99]. The singular interest of these en-
cryption schemes is their natural quadratic decryption time procedure
that consists essentially in applying Euclid’s algorithm. The only current
specific cryptanalysis of these schemes is Jaulmes and Joux’s chosen-
ciphertext attack to recover the secret key [JJ00]. Originally, Hartmann
et al. claimed that the security against a total break attack relies only on
the difficulty of factoring the public discriminant ∆q = −pq2, although
the public key was also composed of a specific element of the class group
of the order of discriminant ∆q, which is crucial to reach the quadratic
decryption complexity. In this article, we propose a drastic cryptanalysis
which factors ∆q (and hence recovers the secret key), only given this
element, in cubic time in the security parameter. As a result, performing
our cryptanalysis on a cryptographic example takes less than a second
on a standard PC.

Keywords: Polynomial time total break, quadratic decryption, NICE
cryptosystems, imaginary quadratic field-based cryptography

1 Introduction

We propose an original and radical cryptanalysis of a large class of schemes
designed within imaginary quadratic fields, based on the NICE cryptosystem
(cf. [HPT99,PT99,PT00]) which recovers the secret key from the sole public key.
These systems have been intensively developed and studied in the late 90’s, since
they offer a very efficient secret operation (decryption or signature), compared
to cryptosystems based on traditional number theory. The one-wayness of these

? This work was done while this author was with the GREYC - ENSICAEN.



schemes rely on the difficulty of the Smallest Kernel-Equivalent Problem (SKEP)
and their security against a total break was believed to rely on the difficulty of
the factorisation of numbers of the form pqr. The first and only cryptanalysis of
the NICE encryption scheme, proposed by Jaulmes and Joux’s at Eurocrypt’00
[JJ00], recovers the secret key with an access to a decryption oracle3. In the
setting of the NICE cryptosystems, the public key contains a discriminant ∆q =
−pq2 and the representation of a reduced ideal h whose class belongs to the
kernel of the surjection from the class group of the quadratic order of (public)
discriminant ∆q = −pq2 to the class group of the maximal order of (secret)
discriminant ∆K = −p. We will show that with this knowledge of h we can
actually factor the public discriminant in cubic time in the security parameter.

1.1 Imaginary Quadratic Field-based Cryptography

The first use of class groups of imaginary quadratic fields allowed to achieve a
Diffie-Hellman key exchange. This paper by Buchmann and Williams [BW88]
was the first of several attempts to design imaginary quadratic field-based cryp-
tosystems. Key exchange was also discussed by McCurley in [McC89]. Ten years
after, a new encryption scheme appeared in the literature, in the work of Hühnlein,
Jacobson, Paulus and Takagi [HJPT98]. The goal of this paper was also to im-
prove the efficiency of the seminal cryptosystems. In fact, the key point of these
Elgamal-like encryption schemes is the switching between the class group of
the maximal order and the class group of a non-maximal order, which can be
done with quadratic complexity (as already mentioned). Unfortunately, Hühnlein
et al.’s scheme, although using this efficient switching, did not benefit from a
quadratic time decryption since the decryption of this scheme really needed a
final exponentiation (like in Elgamal).

Soon after, quadratic decryption time was eventually reached with a new
encryption scheme, called NICE, for New Ideal Coset Encryption, described in
[HPT99,PT99,PT00]. In [HPT99], it is shown that the decryption time of NICE
is comparably as fast as the encryption time of RSA with public exponent e =
216 + 1 and an even better implementation is described by Hühnlein in [Huh00].
The key idea of NICE is not to mask the message by a power of the public key
(which leads to a cubic decryption like in Elgamal), but by an element which
belongs to the kernel of the map which switches between the class group of a
non-maximal order to the maximal order. This hiding element is added to the
public key and naturally disappears from the ciphertext when applying the map.

As the semantic security of NICE holds only under a chosen-plaintext at-
tack, Buchmann, Sakurai and Takagi patched the scheme by adapting clas-
sical techniques to obtain a chosen-ciphertext security in the random oracle
model [BST02]. This enhanced scheme, based on REACT [OP01] is called NICE-
X, and of course resists Jaulmes and Joux’s attack [JJ00]. Hühnlein, Meyer and
Takagi also built in [HMT99] Rabin and RSA analogues based on non-maximal
imaginary quadratic orders, but the only advantages over the original systems

3 This attack can actually be deflected by adding a suitable padding.
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is their seemingly natural immunity against low exponent attacks and some
chosen-ciphertext attacks.

The design of signature schemes has also been addressed in [HM00, Huh01]
with an adaptation of Schnorr signatures (cf. [Sch00]). Again an element of the
kernel of the switching between two class groups is published: this element is
crucial for the efficiency of the signature generation. An undeniable signature
scheme has been designed in [BPT04], and again, the public element of the
kernel is needed for the design of an efficient scheme.

1.2 Related Work on Security Issues of Quadratic Field-based
Cryptography

All the NICE schemes share the same public information: a discriminant of the
form ∆q = −pq2 and the representation of a reduced ideal h whose class belongs
to the kernel of the surjection from the class group of the quadratic order of
(public) discriminant ∆q = −pq2 to the class group of the maximal order of
(secret) discriminant ∆K = −p. Of course, a factorisation of the discriminant
obviously totally breaks the scheme. Therefore, the security parameters are set
such that the factorisation of numbers of the form pqr is difficult. This particular
factorisation has been addressed by Boneh, Durfee and Howgrave-Graham in
[BDH99], but for small r (such as 2), their method is not better than Lenstra’s
ECM method [Len87] or the Number Field Sieve [LL93]. In [BST02], the authors
also mention the Quadratic Order Discrete Logarithm Problem (QODLP). The
fastest algorithm to solve the QODLP is the Hafner-McCurley algorithm [HM89],
but its running time has a worse subexponential complexity than the fastest
factoring algorithm. In [PT00], Paulus and Takagi argue that “the knowledge of
h does not substantially help to factor ∆q using currently known fast algorithms”.
They also mention the possibility to find a power of the class [h] of order 2, but
computing the order of the class [h] in the class group of the order of discriminant
∆q is essentially equivalent to factor this discriminant. The problem of factoring
the discriminant ∆q given [h] is called the Kernel Problem in [BPT04] and again
is assumed to be “intractable”.

Up to now, the sole specific cryptanalysis of this family of encryption schemes
is the chosen-ciphertext nice cryptanalysis from [JJ00]. This attack uses the fact
that the decryption fails (i.e., does not recover the plain message) if the norm of
the ideal representing the message is greater than

√
|∆K |/3, so that the decoded

message will expectedly be one step from being reduced. The relation between
two pairs original message/decoded message leads to a Diophantine equation of
the form k = XY for a known “random” integer k of the size of the secret primes.
The authors suggest to factor this integer to find out X and Y and then factor
∆q. This attack is feasible for the parameters proposed in [HPT99], but can be
defeated by enlarging the key size by a factor of 3. No complexity analysis is
given for this attack, and the scheme can also be repaired by adding redundancy
to the message as suggested in [JJ00] and [BST02]. Note that, contrary to ours,
Jaulmes and Joux’s attack also applies to [HJPT98].
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1.3 Our contributions

We propose the first definitive cryptanalysis of cryptosystems based on NICE,
which have been resisting for almost 10 years. All these schemes contain in
the public key the representation of the reduced ideal h whose class belongs
to the kernel of the surjection from the class group of the quadratic order of
discriminant ∆q = −pq2 to the class group of the maximal order of discriminant
∆K = −p. The key point of our attack is the fact that this ideal h is indeed
always equivalent to a non-reduced ideal of norm q2, as we will show in Theorem
2. The core of our attack then consists of lifting the class of h in the class group of
the order of discriminant ∆qr

2, where r is chosen to make the ideals of norm q2

reduced. This operation will reveal an ideal of norm q2 and thus the factorisation
of ∆q, leading to a total break of the scheme.

Note that the public ideal h is crucial in the design of NICE: Random powers
of this element are used to hide the message. As it is in the kernel of a surjective
map, this randomness can be removed from the ciphertext and the message
recovered by applying this map which leads to a decryption algorithm with
quadratic complexity (the computation is done with Euclid’s algorithm).

The attack described in this paper thus uses this extra piece of information
given in the public key to factor the public discriminant. Therefore, this setting
is insecure in order to build a cryptosystem with quadratic decryption time.
Note that such a scheme with quadratic decryption is a very rare object in group
theory based cryptography. Although some schemes built from lattices or coding
theory problems have this property, to our knowledge, very few schemes built
from the integer factorisation or the discrete logarithm problems have it (e. g.,
variants of Okamoto-Uchiyama and Paillier’s cryptosystems, cf. [CNP99,Pai99]).

As a matter of fact, the encryption schemes built on NICE from [HPT99,
PT99,PT00, BST02,Huh00], the signature schemes [Huh01, HM00] and the un-
deniable signature scheme [BPT04] totally succumb to our attack.

The rest of the paper is organised as follows: The next section gives a back-
ground on orders of imaginary quadratic fields to understand the NICE cryptosys-
tem, and then Section 3 is the core of the paper. We describe the cryptanalysis
by first discussing the (im-)possibility of reversing the reduction process applied
on the reduced ideal h in Subsection 3.1. Then, in Subsection 3.2, we describe
our attack (Algorithm 3) whose correctness is then proved with Theorem 3 and
Corollary 1. Finally, we illustrate the attack with an example.

2 Background

The next subsection widely follows the description from [Cox99].

2.1 Computations in Quadratic Orders.

A quadratic field K is a subfield of the field of complex numbers C which has
degree 2 over Q. Such a field can be uniquely written as Q(

√
n) where n is a
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square-free integer, different from 1 and 0. Its (fundamental) discriminant ∆K

is defined as n if n ≡ 1 (mod 4) and 4n otherwise. We will then consider K in
terms of its discriminant : K = Q(

√
∆K) with ∆K ≡ 0, 1 (mod 4). An order O

in K is a subset of K such that O is a subring of K containing 1 and O is a
free Z-module of rank 2. The ring O∆K of integers4 in K is the maximal order
of K in the sense that it contains all the other orders of K. It can be written as
Z + 1

2 (∆K +
√
∆K)Z. If we set f = [O∆K : O] the finite index of any order O

in O∆K , then O = Z + f 1
2 (∆K +

√
∆K)Z = Z + fO∆K . The integer f is called

the conductor of O. The discriminant of O is then ∆f = f2∆K . We will then
use the notation O∆f for such an order.

Now we discuss the ideals of an order O∆ of discriminant ∆. If a is a nonzero
ideal of O∆, its norm is defined as N(a) = |O∆/a|. An ideal a is said to be
proper if {β ∈ K : βa ⊂ a} = O∆. This definition can be extended to fractional
ideals, which are of the form αa where α ∈ K× and a is an ideal of O∆. If
we denote by I(O∆) the set of proper fractional ideals of O∆ and its subgroup
P (O∆) consisting of principal ideals, the ideal class group of O∆ is defined as
C(O∆) = I(O∆)/P (O∆). Its cardinality is the class number of O∆ denoted as
h(O∆).

Every ideal a of O∆ can be written as

a = m

(
aZ +

−b+
√
∆

2
Z

)

with m ∈ Z, a ∈ N and b ∈ Z such that b2 ≡ ∆ (mod 4a). In the sequel, we
will only consider primitive ideals, which are those with m = 1. This expression
is unique if −a < b ≤ a and we will now denote a primitive ideal by (a, b). The
norm of such an ideal is then a.

This notation represents also the positive definite binary quadratic form
ax2 + bxy + cy2 with b2 − 4ac = ∆. Theorem 7.7 from [Cox99] shows that,
up to equivalence relations, it is essentially equivalent to work with ideals and
positive definite quadratic forms. An ideal (a, b) of O∆ is said to be reduced if
the corresponding quadratic form is reduced, which means that |b| ≤ a ≤ c and
b ≥ 0 if one of the inequalities is not strict. Note that in every class of O∆-ideals
there exists exactly one reduced ideal. From the theory of quadratic forms, we
can efficiently compute a reduced equivalent ideal. The algorithm, which is due
to Gauss, is described in [Coh00, Algorithm 5.4.2 p. 243] and is called Red in
the rest of the paper. In general, instead of working with classes, we will work
with reduced ideals. The product of ideals is also efficiently computable with the
composition of quadratic forms algorithm, see [Coh00, Algorithm 5.4.7 p. 243].
These two algorithms have quadratic complexity. A crucial fact for our purpose
is described in Lemma 5.3.4 from [Coh00]: If an ideal a = (a, b) is reduced, then
a ≤

√
∆/3 and conversely, if a <

√
∆/4 and −a < b ≤ a, then a is reduced.

Let
(
a
b

)
be the Kronecker symbol of a and b. The formula for the class number

is given by the following theorem.

4 i.e., the set of all α ∈ K which are roots of a monic polynomial in Z[X]
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Theorem 1 ([Cox99, Theorem 7.24]). Let O∆f be the order of conductor f
in an imaginary quadratic field K (i. e., ∆f = f2∆K). Then

h(O∆f ) =
h(O∆K )f

[O×∆K : O×∆f ]

∏
p|f

(
1−

(
∆K

p

)
1
p

)
.

Given an order O∆f of conductor f , a nonzero O∆f -ideal a is said to be prime
to f if a + fO∆f = O∆f (it is equivalent to say that its norm N(a) is prime to
f – see Lemma 7.18 from [Cox99]). We denote by I(O∆f , f) the subgroup of
I(O∆f ) generated by ideals prime to f . P (O∆f , f) is the subgroup generated by
the principal ideals αO∆f where α ∈ O∆f has a norm prime to f . Note that in
every ideal class, there exists an ideal prime to f (cf. [Cox99, Corollary 7.17]).
To establish Theorem 1, Cox has studied the links between the class group of
the maximal order of an imaginary quadratic field and the class groups of any of
its orders. The following propositions throw a light on such fundamental links.

Proposition 1 ([Cox99, Proposition 7.19]). The inclusion I(O∆f , f) ⊂
I(O∆f ) induces an isomorphism

I(O∆f , f)/P (O∆f , f) ' I(O∆f )/P (O∆f ) = C(O∆f ).

Proposition 2 ([Cox99, Proposition 7.20]). Let O∆f be an order of con-
ductor f in an imaginary quadratic field K.

i. If A is an O∆K -ideal prime to f , then A ∩ O∆f is an O∆f -ideal prime to f
of the same norm.

ii. If a is an O∆f -ideal prime to f , then aO∆K is an O∆K -ideal prime to f of
the same norm.

iii. The map ϕf : I(O∆f , f) −→ I(O∆K , f) such that a 7→ aO∆K is an isomor-
phism.

Consequently, the map ϕf from Proposition 2 induces a surjection

ϕ̄f : C(O∆f ) C(O∆K )

that can be computed as follows: given a class [a] ∈ C(O∆f ), one finds b ∈ [a]
such that b ∈ I(O∆f , f) (see standard techniques [HJPT98, Algorithm 1]) and
ϕ̄f ([a]) = [ϕf (b)] = [bO∆K ]. The next two algorithms compute ϕf and its inverse
(cf. [PT00]).

Input: A = (A,B) ∈ I(O∆K , f)
Output: A ∩ O∆f = (a, b) ∈ I(O∆f , f)
1. a← A
2. b← Bf modc 2a (|b| < a) [centered euclidean division]
3. Return (a, b)

Algorithm 1: Algorithm to compute ϕ−1
f

6



Input: a = (a, b) ∈ I(O∆f , f), ∆f

Output: aO∆K = (A,B) ∈ I(O∆K , f)
1. A← a
2. δ ← ∆f mod 2
3. Compute u and v ∈ Z such that 1 = uf + aδv [extended Euclidean

algorithm]
4. B ← bu+ aδv modc 2a (|B| < a) [centered euclidean division]
5. Return (A,B)

Algorithm 2: Algorithm to compute ϕf

Takagi and Paulus showed, in Section 4.2 from [PT00], that in the NICE
setting the computation of this homomorphism ϕf cannot be done without the
knowledge of the prime secret conductor.

The following effective lemma was used in [Cox99] to prove the formula
of Theorem 1 by computing the order of ker ϕ̄f and by Hühnlein, for exam-
ple in [Huh00, Huh01] to efficiently compute in ker ϕ̄f . It also proves the cor-
rectness of our attack. Indeed with a well-known system of representatives of
(O∆K/fO∆K )× / (Z/fZ)×, we will derive a suitable system of representatives
for ker ϕ̄f , which is essential for the proofs of Theorem 2 and Lemma 2.

Lemma 1. Let ∆K be a fundamental negative discriminant, different from −3
and −4, and f a conductor. Then there exists an effective isomorphism

ψf : (O∆K/fO∆K )× / (Z/fZ)× ker ϕ̄f .
∼

We will denote by φ∆K (f) := f
∏
p|f

(
1−

(
∆K
p

)
1
p

)
the order of ker ϕ̄f .

Proof. The proof follows the line of the proof of [Cox99, Proposition 7.22 and
Theorem 7.24]. ut

Remark 1. To effectively map a class from (O∆K/fO∆K )× / (Z/fZ)× to ker ϕ̄f ,
one takes a representative α ∈ O∆K , α := x + y ∆K+

√
∆K

2 where x, y ∈ Z and
gcd(N(α), f) = 1 (to ensure that α is invertible modulo fO∆K ), and computes

ψf
(
[α]
)

=
[
ϕ−1
f (αO∆K )

]
,

which is in ker ϕ̄f . In this computation, the representation of αO∆K can be
obtained with [BTW95, Proposition 2.9] and the evaluation of ϕ−1

f with Algo-
rithm 1.

Conversely, given a class of ker ϕ̄f usually represented by its reduced ideal,
one finds a representative ideal h ∈ I(O∆f , f) (with [HJPT98, Algorithm 1]) and
computes α ∈ O∆K such that αO∆K = ϕf (h) (ϕf is evaluated with Algorithm 2
and α can be found with [HJW03, Algorithm 1]). Eventually, ψ−1

f ([h]) = [α] ∈
(O∆K/fO∆K )× / (Z/fZ)×.
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2.2 The NICE family

We will now describe in Fig. 1 the original NICE cryptosystem as it is presented
in [PT00]. For our purpose, it is only important to concentrate on the key gen-
eration which outputs an element [h] of ker ϕ̄q as a part of the public key. Other
encryption schemes which share this key generation can be found in [HPT99,
PT00, BST02, Huh00, PT99], and signature schemes in [Huh01, HM00, BPT04].
As already mentioned, all these cryptosystems succumb to our attack.

KeyGen(1λ):

– Let p be a λ-bit prime such that p ≡ 3 (mod 4) and let q be a prime such
that q >

p
p/3.

– Set 
∆K = −p
∆q = ∆Kq

2 = −pq2

– Let k and l be the bit lengths of b
p
|∆K |/4c and q −

“
∆K
q

”
respectively.

– Let [h] be an element of ker ϕ̄q, where h is a reduced O∆q - ideal.

The public key pk consists of the quadruple (∆q, h, k, l), and the secret key sk
consists of the pair (p, q).

Encrypt(1λ, pk,m):

– A message m is embedded into a reduced O∆q -ideal m with log2(N(m)) < k.
– Pick randomly r ∈ [[1, 2l−1]] and compute c = Red(m× hr).

Decrypt(1λ, sk, c): Compute ϕ−1
q (Red(ϕq(c))) = m.

Fig. 1. Description of NICE

Underlying Algorithmic Assumptions The security against a total break
(resp. of the one-wayness) of the NICE cryptosystem is proved to rely on the
hardness of the following problems:

Definition 1 (Kernel Problem [BPT04]). Let λ be an integer, p and q be
two λ-bit primes with p ≡ 3 (mod 4). Fix a non-fundamental discriminant ∆q =
−pq2. Given an element [h] of ker ϕ̄q, factor the discriminant ∆q.

Definition 2 (Smallest Kernel-Equivalent Problem [BST02,BPT04]
(SKEP)). Let λ be an integer, p and q be two λ-bit primes with p ≡ 3 (mod 4).
Fix a non-fundamental discriminant ∆q = −pq2. Given an element [h] of ker ϕ̄q
and an element [m] ∈ C(O∆q ), compute the ideal with the smallest norm in the
equivalence class, modulo the subgroup generated by [h], of [m].

It is clear that an algorithm which solves the Kernel Problem also solves the
Smallest Kernel-Equivalent Problem. The insecurity of the Kernel Problem will
be discussed in the next section.
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3 The Cryptanalysis

3.1 Intuition

In the NICE setting, ∆K = −p, ∆q = ∆Kq
2 where p and q are two large

primes, and the schemes are totally broken if one can recover p and q from
∆q. (Un-)fortunately, another piece of information is given in the public key: an
ideal h whose class belongs to the kernel of ϕ̄q, the surjection from C(O∆q ) to
C(O∆K ). In [PT00] (for example), the authors suppose that no ideal whose class
is in ker ϕ̄q leaks a factor of the public discriminant ∆q, except if this element
has order 2, but then a subexponential computation is required to find it.

While investigating this assumption, we experimentally found non-reduced
ideals of the form (q2, kq), with k odd and |k| < q whose classes belong to the
kernel of ϕ̄q, and which obviously give the factorisation of ∆q. By using the
effective isomorphism of Lemma 1, we actually prove in the next theorem that
one can build a representative set of this kernel with ideals of norm q2.

Theorem 2. Let ∆K be a fundamental negative discriminant, different from
−3 and −4 and q an odd prime conductor. There exists an ideal of norm q2 in
each nontrivial class of ker ϕ̄q.

Proof. Let us recall the effective isomorphism from Lemma 1:

ψq: (O∆K/qO∆K )× / (Z/qZ)× ker ϕ̄q.
∼

We are going to build a set of representatives of (O∆K/qO∆K )× / (Z/qZ)×

and apply ψq (which can be computed according to Remark 1) to obtain ideals
of norm q2 which are a set of representatives of ker ϕ̄q.

Let us set αk = k + ∆K+
√
∆K

2 with k ∈ {0, . . . , q − 1}. Clearly N(αk) =(
k + ∆K

2

)2 − ∆K
4 = k2 +∆Kk+ ∆K(∆K−1)

4 . Consider the following set of repre-
sentatives of (O∆K/qO∆K )× / (Z/qZ)×:{

1
}
∪
{
αk with k ∈ {0, . . . , q − 1}, N(αk) 6≡ 0 (mod q)

}
,

indeed, it is easy to check that all the αk belong to different classes and that
they are in sufficient number: If

(
∆K
q

)
equals 1 (resp. equals 0, resp. equals −1)

then the order of the quotient (O∆K/qO∆K )× / (Z/qZ)× is 1 + (q − 2) (resp.
1 + (q − 1), resp. 1 + (q + 1)). We are now going to compute the image of this
set by ψq in ker ϕ̄q.

Following the proof of [BTW95, Proposition 2.9], we detail here the compu-
tation of Ak = αkO∆K . The representation of Ak is (ak, bk), with ak = N(αk).
Let us now find bk. The representation of O∆K is

(
1, ∆K+

√
∆K

2

)
. A simple cal-

culation gives

αkO∆K = αkZ +
(
k∆K

2
+
∆K(∆K + 1)

4
+ (k +∆K)

√
∆K

2

)
Z

9



which must be equal to mk

(
akZ + −bk+

√
∆K

2 Z
)

. As mentioned in the proof

of [BTW95, Proposition 2.9], mk is the smallest positive coefficient of
√
∆K/2

in Ak: in our case mk = gcd(1, k +∆K) and therefore mk = 1.
Since αk ∈ αkO∆K , there exists µk and νk such that αk = akµk+−bk+

√
∆K

2 νk.
By identification in the basis (1,

√
∆K), νk = 1 and by a multiplication by 2, we

obtain 2k+∆K = 2akµk − bk. As the value of bk is defined modulo 2ak, we can
take

bk = −2k −∆K .

We now need to compute ϕ−1
q (Ak). From Algorithm 1, it is equal to (ak, bkq

mod 2ak). Eventually, in every nontrivial class of ker ϕ̄q, there exists an ideal
(ak, bkq). This ideal corresponds to the quadratic form akx

2 + bkqxy+ cky
2 with

ck =
q2
(
(2k +∆K)2 −∆K

)
4(k2 +∆Kk) +∆K(∆K − 1)

= q2,

which is then equivalent to the form q2x2 − bkqxy + aky
2 corresponding to the

ideal (q2,−bkq) whose norm is q2. ut

A first attempt: inverting the reduction process. From this theorem,
the reduced ideal h published in the NICE cryptosystems is equivalent to an
ideal of norm q2. A first attack is thus to try to do a brute force ascent of the
reduction algorithm, i. e., the Gauss algorithm, from h. To “invert” a step of
this algorithm (see Algorithms 1.3.14 and 5.4.2 of [Coh00]), one has to consider
all the possible quotients of the Euclidean division. The number of possible
quotients is heuristically low (say ten), and the complexity of the attack grows
exponentially with the number of reduction steps. If this number is very low,
the attack will be feasible. In particular, if q <

√
p/4, all ideals of the form

(q2, kq) are already reduced, so the norm of h is q2 and the schemes are insecure.
If the parameters for NICE are chosen as proposed in [PT00] (i. e.,

√
p/3 < q)

the number of reduction steps can still be too low. In the given implementation
and later papers (e. g., [BST02]), p and q are actually chosen of same size λ,
the security parameter. Let us analyse more generally the numbers of reduction
steps needed to reduce ideals of the form (q2, kq) in C(O∆q ).

If we translate the problem in terms of quadratic forms, the quadratic form
q2x2 + kqxy+ c(k)2y2, with c(k) := 1

4 (k2 + p), can be represented by the matrix(
q2 kq/2
kq/2 c(k)

)
,

which defines (up to an isometry) two vectors u and v of C such that |u|2 = q2,
|v|2 = c(k) and 〈u, v〉 = kq/2, where 〈·, ·〉 denotes the usual scalar product in C.
If we consider the complex number z = v

u (we suppose here that u is larger than
v, i. e., q2 > 1

4 (k2 + p)), then

z =
〈u, v〉
|u|2

+ i
det(u, v)
|u|2

=
kq

2q2
+ i

√
|∆q|
q2

=
k

2q
+ i

√
p

q
·
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The mean number of iteration Ah of the Gauss algorithm when the complex
number z belongs to the strip {|=(z)| ≤ 1/h} is heuristically

Ah ∼
1
2

log h

 1
log(1 +

√
2)
− 1

log
(

π2

6 log φ

)
 ,

where φ is the golden ratio.
Inside this horizontal strip, the complex numbers z for which the number of

iterations is of order Ω(logL) are those for which their real part <(z) is close to
a rational number whose continued fraction expansion is of order Ω(logL).

Then, since our complex number z is of the form z = k
2q +i

√
p

q , the number of
iterations of the Gauss Algorithm on the input z will be (with a high probability)
of orderΩ(log qp−

1
2 ) provided that the height of the continued fraction expansion

of the rational number k/q is of order Ω(log q) (which is always the case, with
a high probability). See [VV07] for a precise analysis of Gauss algorithm. If
we set q = pα these theoretical results give a behaviour in Ω

((
α − 1

2

)
log p

)
,

and therefore if we set α = 1 as suggested in [BST02], we have a number of
steps proportional to log p/2 = λ/2 so the going up is infeasible. Note that our
experiments confirm this complexity. Therefore we have to establish another
strategy to recover these non-reduced ideal of norm q2.

3.2 An Algorithm to Solve the Kernel Problem

Description. In this subsection, we describe an algorithm which totally breaks
the NICE family of cryptosystems by solving the Kernel Problem in polynomial
time in the security parameter. More precisely, given ∆q = −pq2 where p and
q are two λ-bit primes and h a reduced ideal whose class is in the kernel of the
surjection from C(O∆q ) to C(O∆K ), this algorithm outputs p and q in cubic
time. The next subsection is dedicated to the analysis of the correctness and the
complexity of this algorithm. The main result is given in Corollary 1.

The strategy of the attack, detailed in the next algorithm, is as follows. First,
in an initialisation phase (steps 1–3), we generate a power r of a small odd prime.
This integer r is chosen large enough to make the ideals of norm q2 reduced
in C(O∆qr2). Then, the core of the algorithm consists in lifting [h′] (where h′

is equivalent to h and prime to r) in this class group. In step 5, we compute
g = h′ ∩ O∆qr2 , which is an O∆qr2-ideal, with Algorithm 1 (this algorithm still
works between two non-maximal orders).

Then, in step 6, we compute the reduced element f of the class of g raised to
the power φ∆K (r). In the next subsection, we will prove that this lift (steps 5 and
6) maps almost all the elements of ker ϕ̄q, including [h], to elements of ker ϕ̄qr
whose reduced ideal has norm q2. As a consequence, the ideal f computed in step
6 has norm q2 and eventually step 7 extracts p and q.

11



Input: λ ∈ Z, ∆q = −pq2 ∈ Z, h = (a, b) ∈ I(O∆q , q) with [h] ∈ ker ϕ̄q of
order > 6

Output: p, q

Initialisation:
1. Set r′ = 3
2. Set δr′ = dλ+3

2
log 2
log r′ e and r = r′ δr′

3. If the order of [h] divides φ∆K (r) then set r′ to the next prime and
goto 2.

4. Find h′ ∈ [h] such that h′ ∈ I(O∆q , r′) [HJPT98, Algorithm 1]

Core Algorithm:

5. Compute g = h′ ∩ O∆qr2 [Algorithm 1]
6. Compute f = Red(gφ∆K (r))
7. Return p = ∆q/N(f), q =

√
N(f)

Algorithm 3: Solving the Kernel Problem

Remark 2. We omit elements of small order in the input of our algorithm, be-
cause they are useless for the NICE cryptosystems. As we will see in the proof
of Corollary 1, this restriction ensures that the incrementation of step 3 will be
done at most once. For completeness, if the order of [h] is 3, only few iterations
will be done to obtain a suitable r such that the order of [h] does not divide
φ∆K (r) = r′ δr′−1

(
r′ −

(
∆K
r′

))
, and for an order of 5, r′ = 3 suits. Note also

that elements of order 2 (4 and 6) leads to ambiguous ideals which give the
factorisation of the discriminant (see [Sch82]).

Correctness. Again, the proof of correctness of Algorithm 3 will be done by
using the effective isomorphisms between ker ϕ̄q and (O∆K/qO∆K )× / (Z/qZ)×

and between ker ϕ̄qr and (O∆K/qrO∆K )× / (Z/qrZ)×. The integer r is an odd
integer prime to q and ∆K such that r > 2q/

√
|∆K |, i. e., such that ideals of

norm q2 are reduced in C(O∆qr2).
First in Lemma 2, we prove that nontrivial elements of a certain subgroup

of the quotient (O∆K/qrO∆K )× / (Z/qrZ)× map to classes of ker ϕ̄qr whose re-
duced element has norm q2. Actually, this subgroup contains the image of a
particular lift of (O∆K/qO∆K )× / (Z/qZ)× following the Chinese remainder the-
orem: A class [α] modulo q is lifted to a class [β] modulo qr such that [β] ≡ 1
(mod r) and [β] ≡ [α]φ∆K (r) (mod q).

Then, in Theorem 3, we prove that the lift computed in steps 4 and 6 of
Algorithm 3 corresponds to the lift previously mentioned on the quotients of
O∆K . As a result, this lift evaluated on an element of ker ϕ̄q either gives the
trivial class or a class corresponding to the nontrivial elements of the subgroup
of Lemma 2, i. e., a class whose reduced element has norm q2.
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Finally, in Corollary 1, we prove that Algorithm 3 is polynomial and correct,
i. e., that the choice of r done in the initialisation of the algorithm ensures that
the lift will produce a nontrivial class and hence an ideal of norm q2.

Lemma 2. Let ∆K be a fundamental negative discriminant, different from −3
and −4 and q an odd prime conductor and r be an odd integer prime to q and ∆K

such that r > 2q/
√
|∆K |. The isomorphism ψqr of Lemma 1 maps the nontrivial

elements of the kernel of this natural surjection

π : (O∆K/qrO∆K )× / (Z/qrZ)× (O∆K/rO∆K )× / (Z/rZ)×

to classes of ker ϕ̄qr ⊂ C(O∆Kq2r2), whose reduced element has norm q2.

Proof. This proof is similar to the proof of Theorem 2, but relative to r (more
precisely, specialising r = 1 in this lemma yields Theorem 2). Let us set αk = k+

r∆K+
√
∆K

2 where k ∈ Z takes φ∆K (q) values s.t.

k 6≡ 0 (mod r),
k ≡ 0, . . . , q − 1 (mod q),
k2 6≡ r2∆K (mod q).

and denote S = {1}∪{αk}k. For each k, the norm N(αk) is equal to
(
k + r∆K2

)2−
∆K

r2

4 .
Since r is prime to q, the Chinese remainder theorem gives the isomorphism

between (O∆K/qrO∆K )× / (Z/qrZ)× and(
(O∆K/qO∆K )× / (Z/qZ)×

)
×
(

(O∆K/rO∆K )× / (Z/rZ)×
)
.

As all the elements of S map to the neutral element in (O∆K/rO∆K )× / (Z/rZ)×

and gives all the elements of (O∆K/qO∆K )× / (Z/qZ)×, S is actually a set of
representatives of kerπ.

Let us now compute Ak = αkO∆K . Its representation is (ak, bk), with ak =
N(αk) and then

αkO∆K = αkZ +
(
k + r

∆K +
√
∆K

2

)(
∆K +

√
∆K

2

)
Z,

which must be equal to mk

(
akZ + −bk+

√
∆K

2 Z
)

. The integer mk is then equal
to gcd(r, r∆K + k) which is equal to 1 since gcd(k, r) = 1.

As αk ∈ αkO∆K , there exists µk and νk such that αk = akµk + −bk+
√
∆K

2 νk.
By identification in the basis (1,

√
∆K), νk = r and by multiplying by 2, we

obtain 2k + r∆K = 2akµk − rbk and again we can take

bk =
−2k
r
−∆K .

Then ϕ−1
qr (Ak) is equal to (ak, Bk) where Bk = bkqr. This ideal corresponds to

the quadratic form akx
2 +Bkxy + cky

2 with

ck =
B2
k − q2r2∆K

4ak
= q2,
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which is then equivalent to the form q2x2−Bkxy+aky2 corresponding to the ideal
(q2,−Bk) = (q2,−Bk modc 2q2), where the subscript c designates the centered
euclidean division. Finally, this ideal is reduced because | − Bk modc 2q2| <
q2 <

√
∆Kq2r2/4 . ut

Theorem 3. Let ∆K be a fundamental negative discriminant, different from
−3 and −4 and q be an odd prime conductor. Let r be an odd integer, prime
to both q and ∆K such that r > 2q/

√
|∆K |. Given a class of ker ϕ̄q and h a

representative in I(O∆q , qr) , then the class

[h ∩ O∆qr2 ]φ∆K (r)

is trivial if the order of [h] divides φ∆K (r) and has a reduced element of norm
q2 otherwise.

Proof. Let h ∈ I(O∆q , q) be a representative of a class of ker ϕ̄q. Let α ∈ O∆K
such that hO∆K = αO∆K . Let us remark first that h ∩ O∆qr2 , which is an
O∆qr2 -ideal, is equal to αO∆K ∩ O∆qr2 . Therefore [h ∩ O∆qr2 ] is in ker ϕ̄qr.
By the isomorphisms of Lemma 1, [h] ∈ ker ϕ̄q corresponds to

(
[α] (mod q)

)
∈

(O∆K/qO∆K )× / (Z/qZ)× and [h∩O∆qr2 ] corresponds to
(
[α] (mod qr)

)
in the

quotient (O∆K/qrO∆K )× / (Z/qrZ)×.
Once again, we are going to use properties of quotients of O∆K to obtain

some information on the kernel of ϕ̄q and ϕ̄qr. Let

s : (O∆K/qO∆K )× / (Z/qZ)× −→ (O∆K/qrO∆K )× / (Z/qrZ)×

[α] 7−→ [α]φ∆K (r)
.

The map s is a well-defined morphism. Indeed, if α and β are two elements
of O∆K such that [α] = [β] in (O∆K/qO∆K )× / (Z/qZ)×, then, in the Chinese
remainder isomorphism (describing the quotient (O∆K/qrO∆K )× / (Z/qrZ)×),
[α]φ∆K (r) maps to ([α]φ∆K (r) (mod q), [1] (mod r)). On the other hand, the ele-
ment [β]φ∆K (r) maps to ([β]φ∆K (r) (mod q), [1] (mod r)) and therefore s([α]) =
s([β]). Note that the kernel of s is the subgroup of φ∆K (r)-th roots of unity of
(O∆K/qO∆K )× / (Z/qZ)×.

Let us define the morphism ŝ between ker ϕ̄q and ker ϕ̄qr such that the fol-
lowing diagram commutes:

ker ϕ̄q ker ϕ̄qr

(O∆K/qO∆K )× / (Z/qZ)× (O∆K/qrO∆K )× / (Z/qrZ)×

ŝ

oψqr

s

ψq o 	
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Now, we prove that ŝ([h]) = [h ∩ O∆qr2 ]φ∆K (r). Indeed, ŝ([h]) = ŝ ◦ ψq([α]
(mod q)) and by commutativity of the diagram

ŝ ◦ ψq([α] (mod q)) = ψqr ◦ s([α] (mod q))
= ψqr

((
[α] (mod q)

)φ∆K (r)
)

= ψqr

((
[α] (mod qr)

)φ∆K (r)
)

= ψqr

(
[α] (mod qr)

)φ∆K (r)

= [h ∩ O∆qr2 ]φ∆K (r).

By construction, ker ŝ is the subgroup of φ∆K (r)-th roots of unity of ker ϕ̄q
and therefore, if the order of [h] divides φ∆K (r), then ŝ([h]) = [O∆qr2 ]. Otherwise,
as the image of s is a subset of the kernel of the surjection π of Lemma 2, the
reduced ideal of the class ŝ([h]) has norm q2. ut

Corollary 1. Algorithm 3 solves the Kernel Problem and totally breaks the NICE
family of cryptosystems in cubic time in the security parameter.

Proof. The correctness of Algorithm 3 follows from the previous theorem: All the
assumptions are verified. In particular, r > 2q/

√
|∆K | and h′ is a representative

of [h] in I(O∆q , qr): The ideal h′ is chosen prime to r′ and will be also prime
to q, otherwise the factorisation of ∆q is already recovered. Now, [f] is trivial if
the order of [h] divides φ∆K (r) = r′ δr′−1

(
r′ −

(
∆K
r′

))
. As we suppose that the

order of [h] is greater than 6 (see Remark. 2), at most one iteration of step 3
will be done, otherwise the order of [h] divides both φ∆K (3δ3) and φ∆K (5δ5),
which is impossible (since their gcd is 2, 4 or 6, according to the value of the
Kronecker symbols). Eventually, f has norm q2 and therefore Algorithm 3 outputs
a nontrivial factorisation of ∆q.

The cost of the initialisation phase is essentially cubic in the security parame-
ter. The core of the algorithm consists in applying Algorithm 1 whose complexity
is quadratic in λ, and an exponentiation whose complexity is cubic. ut

Corollary 1 implies that all the schemes for which a public element of the ker-
nel of ϕ̄q is needed are broken in polynomial time. This includes the NICE encryp-
tion scheme and its variants, notably the enhanced IND-CCA2 version (cf. [PT99,
HPT99,PT00,Huh00,BST02]), the derived signature scheme (cf. [HM00,Huh01])
and the undeniable signature scheme (cf. [BPT04]). Note that this result does
not affect the security of the adaptation of seminal cryptosystems in imaginary
quadratic fields, i. e., the Diffie-Hellman key exchange of [BW88,McC89], the Ra-
bin and RSA analogues of [HMT99] and the adaptation of Elgamal of [HJPT98].
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Example. We apply our cryptanalysis on the example of the NICE encryption
scheme mentioned in [JJ00], described as follows:

∆q = −100113361940284675007391903708261917456537242594667
4915149340539464219927955168182167600836407521987097
2619973270184386441185324964453536572880202249818566
5592983708546453282107912775914256762913490132215200
22224671621236001656120923

a = 57022687708942583181685884381175588713007831807699951
95092715895755173700399141486895731384747

b = 33612360405827547849585862980179491106487317456059301
64666819569606755029773074415823039847007

The public key consists in ∆q and h = (a, b).

The ideal h = (a, b) is equivalent to the ideal h′ = (a′, b′) with norm prime to
3 with b′ = −b and a′ = (b2 −∆q)/4a:

a′ = 43891898980317792308326285455049173482378605867
42403785190862097985269408138288879224220052968
10150815323915182343893632698778887397967669

b′ = −3361236040582754784958586298017949110648731745
605930164666819569606755029773074415823039847007

We used the following power of 3:

r = 383 = 3990838394187339929534246675572349035227

Then, in 20ms, we have computed the lift of (a′, b′) of norm q2:

f = ( 536312317197703883982960999928233845099174632823
695735108942457748870561203659790025346332338302
277214655139356149715939077126809522499818706407
36401120729,
50726115195894796350644539158073328654518399170
010324260439808053865626730478159167292645232706
489579615441563764090965623987919889655079184915
879970067243)

The experiments have been done on a standard laptop running Linux with
PARI/GP.
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4 Conclusion

We totally break a large class of cryptosystems based on imaginary quadratic
field arithmetic, whose main interest was the quadratic complexity of the secret
operation. This polynomial time attack shows that SKEP and the kernel prob-
lem are not suited to build cryptosystems and lessen the number of public-key
cryptosystems with quadratic decryption time. The adaptation of NICE recently
proposed in [JSW08] in the very different setting of real quadratic fields, seems
to resist to our attack.
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analysis of the complexity of our first attack, and last not but least Andreas
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