
A Tighter Proof for CCA Secure
Inner Product Functional Encryption:

Genericity Meets Efficiency

Guilhem Castagnos1, Fabien Laguillaumie2, and Ida Tucker3

1 Université de Bordeaux, CNRS, INRIA, IMB, UMR 5251, F-33400 Talence, France.
2 LIRMM, Université de Montpellier, CNRS, France.

3 IMDEA Software Institute, Madrid, Spain.

Abstract. Inner product functional encryption (IPFE) is a primitive
which produces, from a master secret key, decryption keys skk associated
to vectors k over some specified base ring. Decrypting an encryption of
vectorm with skk only reveals 〈k,m〉. Benhamouda et al. [BBL17] pro-
vided a generic construction for CCA-secure IPFE from projective hash
functions (PHFs), unfortunately their security reduction suffers an expo-
nential loss. Their only instantiation capable of decrypting inner products
of large sizes, which relies on the decisional composite residuosity (DCR)
assumption, is impractical due to the large size of ciphertexts, decryption
keys, and the prohibitive speed of the scheme. Our core contribution is a
new approach to proving CCA security. Our constructions maintain the
genericity of [BBL17], while our security proof relaxes the requirements
on the underlying PHFs and gains in reduction tightness. We instan-
tiate these constructions from the DCR assumption, an assumption in
class groups (HSMCL) and the decision Diffie Hellman (DDH) assump-
tion. Our CCA-secure constructions from DCR and HSMCL are the first
such schemes to efficiently decrypt inner products of large size, improving
by multiple orders of magnitude upon the work of [BBL17]. A single-core
C implementation of these schemes shows that, for a 112 bit security, and
100−dimensional vectors, their DCR-based scheme takes 1h20min to en-
crypt, and over 5min to decrypt, whereas our slowest scheme takes 5.2s
to encrypt and 0.5s to decrypt. Similarly a ciphertext for their scheme is
of 283MB; those of our HSMCL-based scheme are of 30kB.

Keywords: Public key cryptography; Functional encryption for inner
products; Cryptography based on class groups of an imaginary quadratic
field; Security proofs; Projective hash functions.

1 Introduction

Traditional public key encryption (PKE) provides an all-or-nothing access to
data: given an encryption ofm, a receiver either decrypts, and recovers the entire
message m, or learns nothing about m. However many real life applications call
for a more subtle disclosure of information, according to receivers’ privileges.

Functional encryption (FE) [SW05, BSW11, O’N10] is a refinement of PKE,
providing control over how much of the encrypted data each user can recover.
Specifically, it allows for a receiver to recover a function f(m) of the encrypted
messagem, without revealing anything else aboutm. The primitive derives func-
tional decryption keys skfi – for specific functionalities fi – from a master secret
key msk. A single ciphertext c encrypting m is made available, from which a user
possessing skfi can recover fi(m) = Dec(skfi , c).

Security. Two main security definitions exist for FE: indistinguishability-based
and a stronger simulation-based security. The former is the model adopted
throughout this paper, while we keep the latter for future work. Indistinguisha-
bility asks that no polynomial time adversary A can distinguish the encryptions
of plaintexts m0 and m1 of its’ choice. Granting different degrees of power to
A defines various levels of security [BSW11, O’N10]. Adaptive security against
chosen plaintext attacks (ind-fe-cpa) requires indistinguishability holds when A

is given keys skf for functions f of its’ choice, satisfying f(m0) = f(m1) (other-
wise one can trivially distinguish both ciphertexts). The weaker selective security
model requires A commits to m0 and m1 before seeing the public key, or being
granted functional keys. In both these models, the adversary is passive: it at-
tempts to obtain confidential information but follows the protocol. This ensures
that a user, who is granted specific functional keys, learns no more information
than that these keys are intended to reveal. It does not however capture ad-
versaries which coerce honest users to run the decryption protocol (with keys
unknown to A) on potentially malformed ciphertexts. To deal with such active
adversaries, which deviate from the protocol, one needs security against chosen
ciphertext attacks (ind-fe-cca-security) [NP15, BBL17]. Here A can request the
decryption of any ciphertext (except the challenge ciphertext) with decryption
key skf for any functionality f (even if f(m0) 6= f(m1)).

Inner Product Functional Encryption. Much effort has gone into build-
ing efficient FE schemes for restricted classes of functions to develop our un-
derstanding of FE, and to benefit practical applications. One such primitive is
inner-product functional encryption (IPFE). Among other applications, it allows
for statistical analysis and polynomial evaluation over encrypted data [KSW08];
for the construction of bounded collusion FE schemes for all circuits [ALS16];
and for that of trace-and-revoke systems [ABP+17]. In short, IPFE is defined
as follows: plaintexts are vectors m ∈ R`, where R is a commutative ring; and
functional decryption keys skk, derived from vectors k ∈ R`, allow to recover
the inner product 〈m,k〉 ∈ R but reveal nothing else about m.

This line of research was initiated by Abdalla et al. in [ABDP15] by pro-
viding the first selectively secure IPFE schemes relying on standard assump-
tions. Though of great theoretical interest, such schemes are not sufficiently se-
cure for practical applications. Subsequent work improved security: in the public
key setting, the first ind-fe-cpa-secure schemes were put forth by Agrawal et al.

2

[ALS16] under the learning with errors (LWE), decision Diffie Hellman (DDH)
and decision composite residuosity (DCR) assumptions. The ensuing schemes of
Castagnos et al. [CLT18] improved efficiency in particular using the HSMCL as-
sumption, a class group variant of DCR. Independently, many concurrent works
have aimed at increasing the expressiveness of IPFE, rather than security e.g.,
[DOT18, ABG19, CDG+18, DPP20]. The aforementioned schemes are secure
against chosen plaintext attacks, this is the minimum security required of any
public key cryptosystem.

Generic solutions from projective hash functions. Zhang et al. [ZMY17]
and then independently, and more formally Benhamouda et al. [BBL17] pro-
vided generic constructions from projective hash functions with homomorphic
properties to both ind-fe-cpa and ind-fe-cca-secure IPFE schemes, which they
instantiate from DCR and DDH-like assumptions.

Projective hash functions (PHF) were introduced by Cramer and Shoup in
[CS02] to build efficient chosen ciphertext (ind-cca) secure PKE from a range of
cryptographic assumptions. Their ciphertexts have three components: a random
word x in some NP language, the message masked by a hash of x for a (smooth)
PHF, which ensures confidentiality, and a second hash of x for a (universal2)
PHF, which ensures ciphertext integrity as it is used to reject corrupted ci-
phertexts. The evaluation of the hash function in x can be computed either by
someone knowing a witness for x together with the public key (called projection
key), or without the witness if one knows the secret key (called hashing key).

Benhamouda et al. proceed similarly: to build ind-fe-cpa-secure IPFE for
vectors of length `, each message coordinate is masked with a different hash
value of the same word x. If the PHF is homomorphic, a linear combination
of the hashing keys enables decryption of the same linear combination of the
coordinates, which is the inner product of the message and the coefficients of
the linear combination. To reach ind-fe-cca security, they add ` hash values of x
for ` independent universal2 PHFs. Regrettably, their security proof suffers an
exponential loss in a term of the security reduction, which induces a prohibitive
blow up of key and ciphertext sizes. A natural question hence arises:

Can ind-fe-cca-secure IPFE be efficient?

Our contributions & techniques. This paper brings a positive answer to
the above by providing a security proof for generic ind-fe-cca-secure IPFE using
PHFs, whose reduction quality hugely improves upon previous work. The tight-
ness of the proof is remarkable, since it was not clear how to overcome the loss
(proportional to the size of the message space) present in pre-existing security re-
ductions. The fact our result sacrifices neither efficiency nor genericity indicates
that PHFs are the right abstraction for the construction of IPFE schemes.

Technique. In [BBL17]’s security proof the challenger C guesses the difference
between challenge messages at the onset of the security experiment; C then

3

constructs a hashing key which depends on this difference, and which allows to
answer all the adversary A’s queries without leaking information on the chal-
lenge bit. If C’s guess turns out to be wrong, it aborts (hence the security loss).
To avoid this loss we adopt a starkly different proof technique, which brings
together and extends ideas apparent in [ALS16] to build ind-fe-cpa schemes. We
demonstrate that – conditioned on A’s view and its choice of challenge messages
– the challenge bit remains statistically hidden. Conditional probabilities allow
us to carry out the analysis a posteriori, while ensuring security against adver-
saries which are adaptive w.r.t. key queries, decryption queries, and the choice
of challenge messages. Hence our proof is independent of the chosen challenge
messages and avoids the exponential loss inherent to the [BBL17] methodology.

New properties for PHFs. For each considered assumption, [ALS16] provide a
specific proof, all of which follow a similar structure: they carefully evaluate the
maximum information leaked to the adversary by the public key, decryption key
queries and by the challenge ciphertext, and show that given this information,
the part of the hashing key masking the challenge bit follows a distribution close
to uniform. This technique resembles that used in [CS02] where the definition of
smoothness allows to do exactly this, only in the context of PKE. Inspired by the
above, we introduce the notion of vector smoothness for PHFs, which extends
smoothness to the IPFE setting. This extension is not straight forward: to be
generic we must capture vector spaces over Z/qZ and lattices; and finding the
exact definition (to e.g. finely upper bound the minimum for proofs using lat-
tices) is technically challenging. From vector smooth PHFs we then generically
build ind-fe-cpa-secure IPFE. When instantiated from DDH,DCR and HSMCL,
our ind-fe-cpa-secure construction yields the schemes of [ALS16] and [CLT18].
These are the most efficient ind-fe-cpa-secure IPFE schemes to date. We thus pro-
vide a unified view of these schemes, retrieving them from a generic approach
by extracting the essence of their multiple proofs.

The tightness of our ind-fe-cca security reduction relies on the decryption
oracle rejecting exactly the decryption queries leaking more information than
in an ind-fe-cpa attack. Identifying these queries and ensuring that only these
be rejected is an important contribution of this article. At a high level, these
decryption queries satisfy two criteria: A cannot request the decryption key skk,
and the first component x of the ciphertext is not in the language. To ensure they
are rejected, we modify the ind-fe-cpa scheme as follows: upon encryption of a
message vector of length `, one also computes ` evaluations of another PHF over
x, using independently sampled hashing keys. The resulting ciphertext contains
x, the masked message components, and all the aforementioned evaluations. Be-
fore decrypting the masked message values, the decryption algorithm checks that
a combination (which depends on k associated to skk) of the hash evaluations
in the ciphertext yield the expected value. For this check to ensure ciphertext
integrity, we define a new property for PHFs: vector universality. Vector univer-
sality ensures that conditioned on all the information chosen by and given to A,
one cannot predict a linear combination of ` evaluations of the PHF (needed to
compute a ciphertext that is not rejected) over an x not in the language (see

4

the discussion prior Definition 17 for a more detailed intuition). Hence adding
vector universal PHFs to our ind-fe-cpa scheme yields an ind-fe-cca scheme. We
emphasize that this new property is crucial to the quality of our security reduc-
tion. We also believe that it can inspire properties for projective hash functions
allowing for the construction of other advanced cryptographic primitives with
high-quality security reductions.

Though our constructions are similar, the properties we require of our PHFs
are notably different to those of [BBL17]. An involved comparison shows that
the properties we require are implied by those required in [BBL17] (cf. Appx. E).

Efficiency, instantiations and C implementation Table 1 gives a simplified com-
parison of the costs of our work compared to previous schemes for the instanti-
ations that we will consider, based on DDH, DCR and HSMCL. In this table, a is
the dimension of the hash key space (a = 2 for DDH, a = 1 for DCR and HSMCL).
Our work shows that the cost of ind-fe-cca compared to ind-fe-cpa-security can be
analogous to that of ind-cca security for PKE using the Cramer Shoup technique:
with a factor 2 or 3 on sizes.

ind-fe-cca ind-fe-cpa

[BBL17] This work [ALS16, BBL17, CLT18]

msk elts. a`(1 + 2ν) 3a` a`
mpk elts. `(1 + 2ν) 3` `
Decryption key elts. a(1 + 2ν) 3a a
Ciphertext elts. a+ `(1 + ν) a+ 2` a+ `

Table 1: Simplified summary of generic improvements

With [BBL17]’s proof technique of guessing the difference between challenge
messages, a term related to the cardinality of the message space appears in the
security reduction. To compensate this factor, they need to repeat ν times in
parallel their ` universal2 PHFs impacting the costs as shown in Table 1. In prac-
tice, ν is small (say 7) for DDH as the message space size is extremely restricted
by a discrete logarithm computation during decryption. A large message space,
provided by instantiations from DCR and HSMCL is more suited for more precise
inner products computations. For the DCR scheme of [BBL17], the parameter ν
grows (at least) linearly in ` and blows up for concrete instantiation (say 5000).
Our proof technique, independent of the challenge messages chosen by the adver-
sary, allows to remove this term in the security reduction. Consequently, we get
a huge efficiency improvement corresponding to setting ν = 1. The improvement
is similar regarding computational complexity.

In the main body of the paper we detail the DDH case as it provides a frame-
work with which most readers are familiar. We also present the HSMCL case,

5

using the PHF of [CCL+19], inspired by [CLT18]. We only detail the DCR in-
stantiation in Appx. D, as it resembles that from HSMCL, only with less technical
subtleties.

We implemented in C our ind-fe-cca-secure schemes from HSMCL and DCR;
and the DCR based scheme of [BBL17]. In accordance with Table 1, our im-
provements are staggering. Both our schemes are multiple orders of magnitude
more efficient than those of [BBL17] (in terms of speed and size of elements).
Our DCR scheme is slightly faster than the HSMCL one, but less compact. Pre-
cisely for a security level of 112 bits, and vectors of length 100, our DCR (resp.
HSMCL) ciphertexts are of 103kB (resp. 30kB), and decryption keys of 1.5kB
(resp. 0.3kB), as opposed to 283MB and 13.4MB respectively for Benhamouda
et al.’s DCR based scheme. In terms of timings, encryption and decryption take
us respectively 1.6s (resp. 5.2s) and 0.08s (resp. 0.5s), as opposed to 1h20min
and 5.43min.

Road map Sec. 2 provides basic notations; defines the assumptions underly-
ing our running examples; defines the IPFE primitive and considered security
model; and provides crucial definitions and notations related to PHFs. Sec. 3
defines new properties for PHFs allowing to build correct and secure IPFE.
Sec. 4 and 5 present generic ind-fe-cpa and ind-fe-cca-secure constructions for
IPFE from PHFs. Sec. 6 compares efficiency of our schemes compared to those
of [BBL17]. Finally Sec. 7 concludes and raises ideas for future work.

2 Preliminaries

After providing basic terminology and notations in Section 2.1, we give the
syntax and definitions for some basic cryptographic primitives, used in our con-
structions. Next, in Sections 2.4 and 2.5, we recall the CL framework and DDH
assumption on which rely our running examples. Section 2.6 states standard
definitions and properties for inner product functional encryption, and finally,
Section 2.7 provides formal definitions for projective hash functions, and sets up
the running examples.

2.1 Basic terminology and notations

We denote sets by upper-case letters, matrices by bold upper-case letters, and
vectors by bold lower-case letters s.t. for a ∈ A`, a = (a1, . . . , a`). For an
element g of a group G, 〈g〉 is the subgroup of G generated by g. For an integer
x, |x| denotes its’ size and [x] is the set of integers {1, . . . , x}. The inner product
of x and y is denoted 〈x,y〉; their coordinate-wise product is denoted x � y.
If f : A 7→ B is a function defined over A with co-domain B, and a ∈ A`,
then f(a) := (f(a1), . . . , f(a`)) ∈ B`. Given a ring R, and a positive integer
a, consider vectors x1, . . . ,xa ∈ R`, we define inner products between X =
(x1, . . . ,xa) ∈ (R`)a and y ∈ R` as <X,y>a := (〈x1,y〉, . . . , 〈xa,y〉) ∈ Ra. If

6

R is either Z or Z/qZ for some prime q, we denotem⊥ the subset of R` defined
as m⊥ := {k ∈ R` | 〈m,k〉 = 0 ∈ R}.

For any c ∈ R`, real σ > 0, and `-dimensional lattice Λ, DΛ,σ,c denotes the
usual discrete Gaussian distribution of support Λ, standard deviation parameter
σ and center c. If c = 0, we shorten the notation to DΛ,σ. Background on
lattices is provided in Appx. A. For a distribution D, we write d ←↩ D to refer
to d being sampled from D; in our proofs we overload this notation to refer
to a random variable d following the probability distribution D. We denote by
U(B) the uniform distribution over the finite set B, and sometimes overload
the notation as b ←↩ B to say b ←↩ U(B). We say that a set (or a group) E
is efficiently recognisable if its elements are uniquely encoded as bit strings of
length bounded by poly(λ) (λ is the security parameter), and there exists an
algorithm that determines, in time poly(λ), if a bit string is a valid encoding
of an element of E. A PTA refers to an algorithm running in polynomial time
(w.r.t. the length of its inputs); a PPTA (resp DPTA) a probabilistic (resp.
deterministic) PTA.

2.2 One time signatures

Definition 1 (Digital signature). A signature scheme is a triple of PPT al-
gorithms (Setup,Sign,Verif) s.t. (1) on input 1λ, Setup outputs a signing key sk
and a verification key vk; and (2) ∀(sk, vk)← Setup(1λ), and ∀m ∈ {0, 1}∗,

Pr[Verif(vk,m,Sign(sk,m)) = 1] = 1.

Definition 2 (ε-unforgeable one time signature). Consider a digital sig-
nature scheme OTS := (Setup,Sign,Verif) and ε > 0. OTS is an ε-strongly un-
forgeable one time signature (OTS) if for every PPT adversary A given ac-
cess to a signing oracle O that answers to at most one query, and for any
(sk, vk) ← Setup(1λ), the probability that A(vk) outputs (m,σ) – such that σ
was not output by O on input m – and Verif(vk,m, σ) = 1 is upper bound by ε.

2.3 Families of collision resistant hash functions

Definition 3 (ε-collision resistant hash function). Let H be a family of
compressing functions H := {h : {0, 1}n 7→ {0, 1}m} for integers m < n, for
which it is easy to compute h(x) for any h ∈ H and x ∈ {0, 1}n. We say that
H is a family of ε-collision resistant hash functions (ε-CRHF), for some ε > 0,
if for any h ∈ H, no PPT algorithm can find x1 6= x2 such that h(x1) = h(x1)
with probability greater than ε.

2.4 An instantiation of the CL framework

Castagnos and Laguillaumie introduced the framework of a group with an easy
discrete logarithm (DL) subgroup in [CL15] (enhanced in [CLT18] and [CCL+19]),
and gave a concrete instantiation from class groups of quadratic fields. We refer

7

to this framework as the CL framework. This is the basis of our running exam-
ple 1. For background on class groups in cryptography see [BH01] and [CL15,
Appx. B].

We briefly sketch the instantiation given in [CCL+19, Sec. 4.1] and the result-
ing group generator GenGroup that we use in this paper. The interested reader
can refer to [CL15, CCL+19] for details.

Given a prime p consider another random prime q, the fundamental dis-
criminant ∆K = −pq and the associated class group C(∆K). By choosing q
s.t. pq ≡ −1 (mod 4) and (p/q) = −1, we have that the 2−Sylow subgroup of
C(∆K) has order 2. The size of q is chosen s.t. computing the class number
h(∆K) takes time 2λ. We then consider the class group C(∆p) of discriminant
∆p = p2∆K , and denote (Ĝ, ·) the finite abelian subgroup of squares of C(∆p),
which corresponds to the odd part. Elements of Ĝ are efficiently recognisable
(cf. [Lag80]). One can exhibit a cyclic subgroup F of Ĝ of order p generated by
f ∈ Ĝ where f is represented by an ideal of norm p2. There exists a DPTA for
the DL problem in F (cf. [CL15, Prop. C–1]).

Let ŝ := h(∆K)/2, and denote n̂ := h(∆p)/2 the order of Ĝ; one can show
that n̂ := ŝp. For our applications |p| > λ, where λ is the security parameter.
So p is prime to h(∆K) (and hence ŝ) with overwhelming probability. We define
Ĝp as the subgroup of all p-th powers in Ĝ; one can show that Ĝ ' Ĝp×F , and
that Ĝp is of order ŝ. The exponent of a finite Abelian group is the least common
multiple of the orders of its elements. We denote by $ the group exponent of
Ĝp. As such, $ and p are co-prime, and the order of any x ∈ Ĝp divides $.

Then we build deterministically a p−th power of Ĝ by lifting the class of an
ideal of discriminant ∆K above the smallest splitting prime. In the following,
we denote this deterministic generator by gp. One can compute an upper bound
s̃ for the order s of gp, using an upper bound of h(∆K). For this, one can use
the fact that h(∆K) < 1

π log |∆K |
√
|∆K |, or obtain a slightly better bound from

the analytic class number formula. We let g := gpf and denote G the subgroup
generated by g of order n := ps. Since p and s are co-prime (s divides $), one
can write G ' Gp × F where Gp = 〈gp〉.

Notation We denote GenGroup the PPTA that on input a security parameter
λ and a prime p, outputs (s̃, f, gp, Ĝ, F) defined as above. We denote Solve the
DPTA that solves the DL problem in F . This pair of algorithms is an instance
of the framework of a group with an easy DL subgroup (cf. [CCL+19, Def. 4]).

Hard subgroup membership assumption We recall the definition of the HSMCL

assumption, which states it is hard to distinguish elements ofGp inG. It is closely
related to Paillier’s DCR assumption: they are essentially the same assumption
in different groups. HSMCL was first used by [CLT18] within class groups. This
will be the basis of running example 1 throughout Sec. 2.7 and 3.

Definition 4 (HSMCL). For (s̃, f, gp, Ĝ, F) ← GenGroup(1λ, p), and g := gpf ,
we denote D (resp. Dp) a distribution over the integers s.t. the distribution
{gx, x←↩ D} (resp. {gxp , x←↩ Dp}) is at distance less than 2−λ from the uniform

8

distribution in G := 〈g〉 (resp. in Gp := 〈gp〉). The HSMCL problem is hard for
GenGroup if for all PPT algorithm A,

AdvHSMCL

A (λ) :=

∣∣∣∣2 · Pr[b = b? | (s̃, f, gp, Ĝ, F)← GenGroup(1λ, p),

x←↩ D, x′ ←↩ Dp, b←↩ {0, 1}, Z0 ← gx, Z1 ← gx
′

p ,

b? ←A(p, s̃, f, gp, Ĝ, F, Zb,Solve(.))
]
− 1

∣∣∣∣ = negl(λ).

Remark 1. To construct ind-cca-secure schemes, we will need to work with recog-
nisable groups (Ĝ instead of G), so we sample exponents from D̂ and D̂p,
such that {x mod n̂;x ←↩ D̂} and {x mod ŝ;x ←↩ D̂} are statistically close to
U(Z/n̂Z) and U(Z/ŝZ) respectively. In practice since the upper bound s̃ output
by GenGroup is an upper bound for ŝ, we can set D̂ := D (resp. D̂p := Dp). We
instantiate D̂ = DZ,σ (resp. D̂p = DZ,σ′) as folded gaussians provide shorter
keys than folded uniforms. Choosing σ =

√
λ · s̃ · p (resp. σ′ =

√
λ · s̃) ensures

the aforementioned statistical distances are less than 2−λ [CLT18, Lemma 4].

2.5 The DDH assumption

This will be the basis of running example 2 throughout Sections 2.7 and 3.

Definition 5. Let GenDDH(1
λ) be a generator outputting the description of a

cyclic group (G, ·), of prime order q and generated by g. The Decision Diffie-
Hellman (DDH) problem is hard for GenDDH if for all PPT algorithm A,

AdvDDH
A (λ) :=

∣∣∣∣2 · Pr[b = b? | (G, g, q)← GenDDH(1
λ), α, β, γ ←↩ U(Z/qZ),

b←↩ {0, 1}, Z0 ← gαβ , Z1 ← gγ , b? ←A(G, g, q, gα, gβ , Zb)
]
− 1

∣∣∣∣ = negl(λ).

2.6 Inner product functional encryption

Inner product functional encryption is a special case of functional encryption,
as first formalised in [BSW11].

Definition 6 (Inner product functional encryption). Let ` be a positive
integer. Consider a ring R ∈ {Rλ}λ∈N, a key space K and a message space
M; where K and M are efficiently recognisable subsets of R`. An inner product
functional encryption scheme over R, for vectors of length `, key space K and
message space M is a tuple (Setup,KeyDer,Enc,Dec) of algorithms where:
– Setup on input a security parameter 1λ, outputs a master public key mpk and

a master secret key msk;
– KeyDer on input msk and a key k ∈ K, outputs a decryption key skk;
– Enc on input mpk and a message m ∈M, outputs a ciphertext c;

9

– Dec on input mpk, a key skk and a ciphertext c, outputs v ∈ R ∪ {⊥}, where
⊥ is a special error symbol.

Correctness requires that for all (mpk,msk) ← Setup(1λ), all keys k ∈ K and
all messages m ∈ M, if skk ← KeyDer(msk,k) and c ← Enc(mpk,m), then for
v ← Dec(mpk, skk, c) it holds that v = 〈k,m〉 ∈ R whenever v 6=⊥.

Security. Intuitively, given a ciphertext encrypting m, the only information
obtained from decryption key skk should be the evaluation 〈k,m〉. We consider
an extension of the existing game-based definition of FE [BSW11] which deals
with active adversaries, by allowing them to perform decryption queries for
ciphertexts of their choice. The following definition is that of adaptive security,
meaning that A has access to the systems’ public parameters, and can perform
a series of decryption and key derivation queries before choosing m0 and m1.

The experiment Expind-fe-ccaIPFE,A . Let IPFE := (Setup,KeyDer,Enc,Dec) be an
IPFE scheme over ring R, a key space K ⊆ R` and a message space M ⊆ R`.
For λ ∈ N, Expind-fe-ccaIPFE,A (λ) denotes the random variable defined via the following
experiment, involving a PPT adversary A and a challenger C:

1. Setup: C samples (mpk,msk)← Setup(1λ) and β ←↩ {0, 1}.
2. Pre-challenge: A on input (1λ,mpk) adaptively issues queries:

– (key,k) where k ∈ K. Upon receiving query (key,k), C computes skk ←
KeyDer(msk,k); and sends skk to A.

– (decrypt, c,k) where k ∈ K and c is a ciphertext. Upon receiving query
(decrypt, c,k), C computes skk ← KeyDer(msk,k); res ← Dec(mpk, skk, c);
and sends res to A.

3. Challenge: A outputs m0,m1 ∈M, then C computes c∗ ← Enc(mpk,mβ)
and sends c∗ to A.

4. Post-challenge: A adaptively issues queries as in the pre-challenge phase.
5. Output: A outputs β′. Expind-fe-ccaIPFE,A (λ) outputs 1 if and only if β = β′.

Valid adversaries. As standard in FE, we rule out adversaries that can easily
distinguish between the challenge messages m0 and m1 using their queries.
Specifically, an adversary is valid if all key queries (key,k) satisfy 〈k,m0〉 =
〈k,m1〉, and all decryption queries (decrypt, c,k) satisfy c 6= c∗.

Having defined the experiment Expind-fe-ccaIPFE,A and valid adversaries, we can now
define adaptive security against chosen ciphertext attacks for IPFE schemes.

Definition 7. An IPFE scheme IPFE := (Setup,KeyDer,Enc,Dec) over ring R,
key space K ⊆ R` and message space M ⊆ R` is adaptively secure against
chosen ciphertext attacks (ind-fe-cca) if for any PPT valid adversary A,

Advind-fe-ccaIPFE,A (λ) :=
∣∣∣Pr[Expind-fe-ccaIPFE,A (λ) = 1

]
− 1

2

∣∣∣ = negl(λ).

The definition of adaptive security against chosen plaintext attacks (ind-fe-cpa-
security) is similar, only A cannot perform decryption queries.

10

Remark 2. This definition of ind-fe-cca-security is equivalent the one stated in
[BBL17]. The work of Zhang et al. [ZMY17] does not provide a formal definition
for ind-cca-security. This being said, their model is more restrictive as they bound
the number of key derivation queries allowed by the adversary.

2.7 Projective hash functions

Using the formalism of Cramer and Shoup [CS02], we define projective hash
functions. The definitions we provide are for a general class of group-theoretic
language membership problems; they are a slight adaptation of the definitions of
[CS02], since we consider the more general case where the considered groups may
not be efficiently recognisable, thus allowing for a wider range of instantiations.
To build PHFs one starts with an instance of a subgroup membership problem.

Definition 8. A generator for a δL-hard subgroup membership problem (SMP)
is a PPT algorithm GenSM which on input 1λ returns the description of a sub-
group membership problem SM := (X̂,X, L̂,W,R), where:
- X̂ is an efficiently recognisable finite Abelian group;
- X ⊆ X̂ is a subgroup of X̂ (which may not be recognisable);
- L̂ ⊂ X̂ is a subgroup of X̂, and L := X ∩ L̂;
- R ⊂ X ×W is a binary relation. For x ∈ L and w ∈ W, w is a witness for
x if (x,w) ∈ R. The relation R is efficiently samplable: one samples a random
x ∈ L along with a witness w ∈ W for x, this implicitly defines a way to
sample random elements of L. We denote this sampling (x,w)← R;

- It is hard to distinguish random elements of L from those of X. Precisely δL
is the maximal advantage of any PPT adversary in solving this problem.

If X̂ = X then L̂ = L, and we simply denote SM := (X,L,W,R).

Remark 3. In this definition ‘random’ and ‘samplable’ mean for a distribution
that is to be defined when instantiating the subgroup membership problem.

Example 1 – HSMCL . Consider (s̃, f, gp, Ĝ, F) ← GenGroup(1λ, p), and g :=

gpf . Let X̂ := Ĝ, X := G = 〈g〉 and L̂ := Ĝp. Then L := X ∩ L̂ = Gp = 〈gp〉.
A witness for x ∈ L is w ∈ Z satisfying x = gwp ; we denote RCL := {(x,w) ∈
(Gp × Z) | x = gwp }. Thus SMCL = (Ĝ,G, Ĝp,Z,RCL). Witnesses are sampled
from Dp, a distribution on Z which induces a distribution δ-close to uniform on
Gp (cf. Remark 1). Sampling in G is done by sampling w ←↩ Dp, u ←↩ Z/pZ,
and outputting gwp fu, this induces a distribution δ-close to uniform on G. Recall
that the HSMCL assumption states it is hard to distinguish elements of Gp in G.
So if the HSMCL problem is hard, SMCL is δCL-hard where δCL = negl(λ).

Example 2 – DDH . Consider (G, g, q) ← GenDDH(1
λ), and g0, g1 two gen-

erators of G. Here G is assumed efficiently recognisable, so we can set X̂ =
X := G × G, and L̂ = L is the subgroup of X generated by (g0, g1). A wit-
ness for (x0, x1) ∈ L is w ∈ Z/qZ satisfying (x0, x1) = (gw0 , g

w
1); we denote

RDDH := {((x0, x1), w) ∈ L × Z/qZ | (x0, x1) = (gw0 , g
w
1)}. Thus SMDDH :=

11

(G × G, 〈(g0, g1)〉,Z/qZ,RDDH). One samples elements of L by sampling a wit-
ness w ←↩ U(Z/qZ), and outputting (gw0 , g

w
1). Sampling on G × G is done by

sampling r, r′ ←↩ U(Z/qZ), and outputting4 (gr0, g
r
1) � (1, gr

′

1). The hardness of
SMDDH is implied by that of DDH for GenDDH: if the DDH problem is hard,
SMDDH is δDDH-hard where δDDH = negl(λ).

We can now define projective hash functions.

Definition 9. Let SM := (X̂,X, L̂,W,R) be a subgroup membership prob-
lem. A projective hash function (PHF) for SM is a tuple of algorithms H :=

(hashkg, p̂rojkg, projkg, hash, ̂projhash, projhash), where:
- hashkg is a PPTA which on input the description of SM, outputs a hashing
key hk in some set Khk;

- p̂rojkg is a deterministic algorithm which on input hk ∈ Khk outputs a projec-
tion key ĥp. The image of Khk through p̂rojkg is denoted Kĥp;

- projkg is a DPTA which on input hk ∈ Khk outputs a public projection key hp,
such that for hk ∈ Khk, hp is a fixed deterministic function of the output of
p̂rojkg(hk). The image of Khk through projkg is denoted Khp;

- hash is a DPTA which on input hk ∈ Khk, x ∈ X̂ outputs the hash value
hash(hk, x). The image of X̂ through hash is a finite Abelian group called the
set of hash values and is denoted Π;

- ̂projhash is a deterministic algorithm which on input ĥp ∈ Kĥp and x ∈ L̂,

outputs the hash value ̂projhash(ĥp, x) in Π;
- projhash is a DPTA which on input hp ∈ Khp, x ∈ L and the corresponding
witness w ∈W, outputs the hash value projhash(hp, x, w) in Π.

One says H is correct if for any x ∈ L̂, any hk ∈ Khk, ĥp ← p̂rojkg(hk), it
holds that ̂projhash(ĥp, x) = hash(hk, x); and if for any (x,w) ∈ R, and hp ←
projkg(hk), it holds that projhash(hp, x, w) = ̂projhash(ĥp, x).

If X̂ = X, then p̂rojkg = projkg and ̂projhash = projhash, and we simply
denote H := (hashkg, projkg, hash, projhash).

Remark 4. Algorithms p̂rojkg and ̂projhash of Def. 9 will only be used to prove
security of our constructions, so as to quantify the maximum information an
adversary can learn. As such these algorithms needn’t be efficiently computable,
and one does not need a witness to evaluate ̂projhash.

Linearly homomorphic PHF. If PHFs satisfy some homomorphic properties,
they allow for the construction of advanced cryptographic primitives. In particu-
lar we will need the following two definitions for correctness of our constructions.

Definition 10 ([HO09]). Recall that Π is the set of hash values, and that
(X̂, ·) and (Π, ·) are Abelian groups. A PHF H is homomorphic if for all hk ∈
Khk, hash(hk, ·) is a group homomorphism from X̂ to Π.
4 This choice, which may seem convoluted when one could output (gr0 , g

r′
1), is for

consistency with the notion of decomposability introduced in Section 3.2.

12

Remark 5. If H is correct and homomorphic, for all ĥp ∈ Kĥp, hp ∈ Khp, the

functions ̂projhash(ĥp, ·) and projhash(hp, ·, ·) are group homomorphisms from
respectively L̂ and L to Π.

Definition 11 ([BBL17]). A PHF is key homomorphic if (Khk,+) and (Π, ·)
are Abelian groups; and ∀x ∈ X̂, hash(·, x) is a group homomorphism from Khk

to Π.

Example 1 – HSMCL . We define the PHF HCL from SMCL as follows. The
hash key space is Khk := Z. Algorithm hashkg samples hk←↩ D̂ s.t. (hk mod n̂)
follows a distribution δ-close to U(Z/n̂Z) (cf. Remark 1, or [CLT18, Lemma 4]
for details on the choice of D̂). The co-domain of function hash is Π := Ĝ, and:

hash : Z× Ĝ → Ĝ.

(hk, x) 7→ xhk

Recall that $ denotes the group exponent of Ĝp. Functions p̂rojkg and projkg,
which output values in Kĥp := Z/$Z and Khp := Gp are defined as:

p̂rojkg : Z → Z/$Z
hk 7→ hk mod $

and projkg : Z → Gp.
hk 7→ ghkp

As ∀hk ∈ Z, projkg(hk) = g
p̂rojkg(hk)
p , projkg is a deterministic function of p̂rojkg.

For ĥp ∈ Z/$Z, x̂ ∈ Ĝp we define ̂projhash(ĥp, x̂) := x̂ĥp. For hp ∈ Khp, (x,w) ∈
RCL, projhash(hp, x, w) outputs hpw. Clearly HCL is correct, homomorphic and
key homomorphic.

Example 2 – DDH. We define the PHF HDDH from SMDDH as follows. The hash
key space is Khk := (Z/qZ)2. The hashkg algorithm samples hk←↩ U((Z/qZ)2).
The hash function has co-domain Π := G; and maps hk := (κ0, κ1) ∈ (Z/qZ)2

and (x0, x1) ∈ G2 to xκ0
0 xκ1

1 . Algorithm projkg outputs keys in Khp := G, and
maps (κ0, κ1) to gκ0

0 gκ1
1 . For hp := gκ0

0 gκ1
1 ∈ G, and ((x0, x1), w) ∈ RDDH,

projhash(hp, (x0, x1), w) outputs hpw. It is clear that HDDH is correct, homo-
morphic and key homomorphic.

Extended projective hash functions. We also use extended projective hash
functions (EPHF) [CS02]. These are defined as PHFs, only the hashing and
projective hashing algorithms take an additional input from a finite set E.

Definition 12. Let SM := (X̂,X, L̂,W,R) be a subgroup membership prob-
lem SM and an efficiently recognisable finite set E. An extended projective
hash function for SM is a tuple eH := (ehashkg, êprojkg, eprojkg, ehash, ̂eprojhash,
eprojhash), where:
- ehashkg is a PPTA which on input the description of SM, outputs a hashing
key ehk in some set Kehk;

- êprojkg is a deterministic algorithm which on input ehk ∈ Kehk outputs a
projection key êhp. The image of Kehk through êprojkg is denoted K

êhp
;

13

- eprojkg is a DPTA which on input ehk ∈ Kehk outputs a public projection key
ehp, such that for ehk ∈ Kehk, ehp is a fixed deterministic function of the
output of êprojkg(ehk). The image of Kehk through eprojkg is denoted Kehp.

- ehash is a DPTA which on input ehk ∈ Kehk, (x, e) ∈ X̂×E outputs the hash
value ehash(hk, x, e). The image of X̂ × E through ehash is called the set of
hash values and is denoted Σ;

- ̂eprojhash is a deterministic algorithm which on input êhp ∈ K
êhp

, x ∈ L̂, and

e ∈ E outputs the hash value ̂eprojhash(êhp, x, e) in Σ;
- eprojhash is a DPTA which on input ehp ∈ Kehp, x ∈ L, the corresponding
witness w ∈W and e ∈ E, outputs the hash value projhash(hp, x, w, e) in Σ.

Correctness holds if for any ehk ← ehashkg(SM), êhp ← êprojkg(ehk) it holds
that ∀(x, e) ∈ L̂ × E, ̂eprojhash(êhp, x, e) = ehash(ehk, x, e). And for ehp ←
eprojkg(ehk), it holds that ∀(x, e) ∈ L × E and w ∈ W, s.t. (x,w) ∈ R,
eprojhash(ehp, x, w, e) = ̂eprojhash(êhp, x, e).

Remark 6. The definitions of homomorphism and key homomorphism can be
adapted to EPHFs in a straightforward way and must hold for any e ∈ E.

For our running examples and for our constructions of Sections 4 and 5, we
use the generic construction of [CS02, Sec. 7.2] to build an EPHF from a PHF H
and a CRHF Γ . The CRHF is required in order to attain the vector universality
property defined in Def. 17: it ensures that one cannot compute a hash value
ehash(hk, x, e) from ehash(hk, x∗, e∗) if (x, e) 6= (x∗, e∗). Their generic construc-
tion is provided in Appendix B. If the underlying PHF is key homomorphic then
the resulting EPHF is so5; and using the notations of Def. 9 and 12, one obtains
Σ = Π, Kehk = K2

hk, Kehp = K2
hp et K

êhp
= K2

ĥp
.

Example 1 – HSMCL . Here E := Ĝ and Γ : Ĝ2 7→ {0, . . . , p − 1} is sampled
from a family of CRHF. The EPHF eHCL has hash key space Kehk := Z2; set of
projection keys K

êhp
:= (Z/$Z)2; set of public projection keys Kehp := G2; set

of hash values Σ := Ĝ; and is defined from HCL as:
- ehashkg: sample hk0 ←↩ D̂; hk1 ←↩ D̂; and output ehk := (hk0, hk1)
- ehash(hk0, hk1, x, e): let γ ← Γ (x, e) and output xhk0+γhk1

- êprojkg(ehk): let êhp := (ĥp0, ĥp1) = (hk0 mod $, hk1 mod $); output êhp.
- eprojkg(ehk): let hp0 := ghk0p ; hp1 := ghk1p ; output ehp := (hp0, hp1)

- ̂eprojhash((ĥp0, ĥp1), x̂, e), where x̂ ∈ Ĝp: let γ ← Γ (x̂, e); output x̂ĥp0 · (x̂ĥp1)γ
- eprojhash((hp0, hp1), x, w, e): let γ ← Γ (x, e); output (hp0 · hp

γ
1)
w.

The EPHF eHCL is key homomorphic.

Example 2 – DDH. Here E := G and Γ : G3 7→ {0, . . . , q− 1} is sampled from
a family of CRHF. The EPHF eHDDH is defined from HDDH as:
- ehashkg: sample κ0, κ1, κ2, κ3 ←↩ U(Z/qZ), and output ehk := (κ0, κ1, κ2, κ3)
s.t. Kehk := (Z/qZ)4.

5 This is not the case for homomorphism.

14

- ehash(ehk, (x0, x1), e): let γ ← Γ (x0, x1, e); output hash((κ0, κ1), (x0, x1)) ·
hash((κ2, κ3), (x0, x1))

γ = xκ0+γκ2

0 xκ1+γκ3

1 s.t. Σ := G.
- eprojkg(ehk): let hp0 := gκ0

0 gκ1
1 ; hp1 := gκ2

0 gκ3
1 ; output ehp := (hp0, hp1); s.t.

Kehp := G2.
- eprojhash(hp0, hp1, (x0, x1), w, e) where x = gw0 and x1 = gw1 : compute γ ←
Γ (x0, x1, e); output (hp0 · hp

γ
1)
w = xκ0+γκ2

0 xκ1+γκ3

1 .
The EPHF eHDDH is key homomorphic.

3 Building IPFE from PHFs

For correctness of our constructions, we first introduce compatibility proper-
ties for the underlying PHFs. For security we define two new properties: vector
smoothness and vector universality. If the PHF used for confidentiality is vec-
tor smooth, one can build ind-fe-cpa-secure IPFE schemes. To attain ind-fe-cca-
security, the PHF used to ensure ciphertext integrity must be vector universal.

3.1 Compatibility properties

To build IPFE from a PHF, one needs the PHF to be compatible with the ring
in which inner products are computed; one also needs to impose restrictions on
the message space M and the space K from which decryption keys are derived.

Definition 13 (ipfe-compatibility). Let R be a ring, either Z or Z/qZ for
some prime q. Let SM be a subgroup membership problem, and consider the
associated PHF H. One says H is (R, a, f,ℵ, `,M,K)-ipfe-compatible if:
- the hash key space is Khk := Ra for some positive integer a;
- H is key homomorphic, where the (additive) group operation associated to Khk

is the addition of R performed point-wise;
- the co-domain Π of hash is a finite abelian group which contains a cyclic
subgroup F , generated by f , of order ℵ;

- if R = Z/qZ then F = Π is of prime order ℵ = q;
- M and K are efficiently recognisable subsets of R`, for a positive integer `;
- there exists an efficient algorithm logf which, for allm ∈M, k ∈ K, computes
logf (f

〈m,k〉) = 〈m,k〉 ∈ R.

Remark 7. An EPHF built from a (R, a, f,ℵ, `,M,K)-ipfe-compatible PHF via
the generic construction of [CS02, Section 7] is (R, 2a, f,ℵ, `,M,K)-ipfe-compatible.

Remark 8. In our examples and instantiations (cf. Appx. D), we set M = K to
simplify presentation. One can choose different subsets of R` to fit applications.

Notation For a message space M, we denote:
∆M := {x0 − x1 | x0 6= x1 ∈M}.

15

Example 1 – HSMCL . Here R := Z and a := 1 since Khk := Z. The co-domain
of hash is Ĝ which is a finite Abelian group, and F is a cyclic subgroup of Ĝ
of prime order ℵ := p, generated by f . We set M = K = {x ∈ Z` : ||x||∞ <√

p
2`}. For m ∈ M, k ∈ K, since ||m||∞ and ||k||∞ <

√
p
2` , it holds that

−p/2 < 〈m,k〉 < p/2. Algorithm logf first uses the Solve algorithm of Sec. 2.4
to compute sol← Solve(f 〈m,k〉), then if sol > p/2, it returns (sol− p), otherwise
it returns sol. With this implementation logf (f

〈m,k〉) = 〈m,k〉 in Z.

Example 2 – DDH . Here R := Z/qZ and a := 2 since Khk := (Z/qZ)2. The
co-domain of hash is the cyclic group G = 〈g〉 of prime order q. Thus we set
f := g, which generates F := G and ℵ := q. This implies that the algorithm
logf is the discrete logarithm in G. Note that in a DDH group the DL problem is
hard by assumption, so logf is only efficient for small input values. Thus M and
K are subsets of (Z/qZ)` s.t. ∀m ∈ M, k ∈ K, logg(g〈m,k〉) = 〈m,k〉 ∈ Z/qZ
is computable in time poly(λ).

3.2 Decomposability

We introduce the notion of a decomposable PHF, this property allows us to have
a clear separation between the part of a given hash value which is predictable
(whose pre-image is in L̂), and the part which appears random. Though the def-
inition is new, many well known PHFs arising from groups satisfy this property
(e.g. the original DDH and DCR based PHFs of [CS02]).

Definition 14. Let SM := (X̂,X, L̂,W,R) be an SMP, and H the associated
PHF. We say that H is (Υ̂ , Υ, F)-decomposable if the co-domain Π of hash is a
finite Abelian group containing a cyclic subgroup F , and there exist Υ̂ ∈ X̂ and
Υ ∈X s.t.:
- X ' L × 〈Υ 〉, and X̂ ' L̂ × 〈Υ̂ 〉;
- ∀hk ∈ Khk, hash(hk, Υ) ∈ F , hash(hk, Υ̂) ∈ F .
If X̂ = X or Υ̂ = Υ , we simply say H is (Υ, F)-decomposable.

Remark 9. If H is decomposable, we sample X\L by sampling (x̃, w̃)← R, υ ←↩
Z/ℵZ, υ 6= 0, and outputting x := Υ υx̃. We denote this sampling x←↩X\L.

Remark 10. An EPHF built from a (Υ̂ , Υ, F)-decomposable PHF using the generic
construction of [CS02, Sec. 7.2] is also (Υ̂ , Υ, F)-decomposable.

Example 1 – HSMCL . By definition Ĝ ' Ĝp × F and G ' Gp × F , where
F = 〈f〉. Moreover ∀hk ∈ Z, hash(hk, f) = fhk ∈ F , and for (hk0, hk1) ∈
Z2, ehash((hk0, hk1), f, e) = fhk0+ehk1 ∈ F . Thus we set Υ̂ := Υ := f , s.t. HCL

and eHCL are (f, F)-decomposable.

Example 2 – DDH . The group G is cyclic, so we take F := G, and Υ :=
(1, g1). It holds that G2 ' 〈(1, g1)〉 × 〈(g0, g1)〉; clearly for all hk ∈ (Z/qZ)2,
hash(hk, (1, g1)) ∈ G. Thus HDDH and eHDDH are ((1, g1), G)-decomposable.

16

3.3 Associated matrix

We here define the notion of a matrix Bm associated to a vector m. In our
upcoming constructions, m will be the difference between the two challenge
message vectors. As such, valid adversaries can request decryption keys associ-
ated to vectors k ∈ K satisfying k ∈ m⊥. The matrix Bm is constructed in
such a way that any such k can be written as a linear combination of the top
`−1 rows of Bm. Conversely, any k /∈m⊥ – for which a decryption key trivially
reveals which of the challenge messages was encrypted – has some contribution
from the last row of Bm. Our protocols’ secret values, when projected onto this
last row, must conserve sufficient entropy for security to hold. Defining the exact
properties required of this matrix for all our proofs to go through is an essen-
tial point to attaining genericity. Capturing these properties in the following
definition significantly improves readability of our theorems and proofs thereof.

Definition 15. Let R be either the ring Z or Z/qZ for some prime q; ` ∈ N;
and m ∈ R`. We say Bm ∈ R`×` is a matrix associated to m if, denot-
ing (b1, . . . , b`) the rows of Bm it holds that: (1) Bm is invertible mod ℵ; (2)
(b1, . . . , b`−1) form a basis of m⊥; (3) b` /∈m⊥ and if R = Z then b` =m.

Lemma 1 states conditions to efficiently build Bm. A detailed proof, which
follows immediately from proofs in [ALS16, CLT18], is provided in Appx. C.

Lemma 1. Let R be either the ring Z or Z/qZ for a prime q; ` and a be
positive integers; and H be an (R, a, f,ℵ, `,M,K)-ipfe-compatible projective hash
function, where ℵ is either prime or hard to factor. From any m ∈ ∆M one can
efficiently and deterministically construct a matrix Bm ∈ R`×` associated tom.

Notation As Lemma 1 buildsBm deterministically fromm, one can build – from
a random variableM taking values in ∆M – the matrix of random variables BM .
We will use this notation in our definitions and proofs. We denote bM1 , . . . , bM`
the rows of BM .

3.4 Confidentiality

The notion of smoothness, defined in [CS02], ensures confidentiality given a PKE
scheme’s public parameters. In the context of IPFE, one must also deal with key
derivation queries performed by the adversary A. Here the master secret key
msk is a vector of ` hash keys of which A can request linear combinations. The
first property we introduce – vector smoothness – ensures confidentiality given
this extra leakage of information. Precisely, vector smoothness ensures that given
the projection of msk on a hyperplane H, its projection onto a line orthogonal to
H remains uniformly distributed. This latter projection masks the challenge bit
in our constructions. This new property captures the techniques used to build
ind-fe-cpa-secure IPFE schemes in [ALS16] from DDH and DCR, and later in
[CLT18] from class group based assumptions. Hence the proofs of Lemmas 3
and 4 resemble the security proofs of [CLT18, Thm. 7] and [ALS16, Thm. 1].

17

Definition 16 (δvs-vector smooth over X on F). Let R be a ring, either
Z or Z/qZ for some prime q. Let ` and a be positive integers. Let SM :=

(X̂,X, L̂,W,R) be an SMP and H the associated PHF which we assume to
be (R, a, f,ℵ, `,M,K)-ipfe-compatible. For i ∈ [`], let hki ← hashkg(SM), and
hk := (hk1, . . . , hk`). Consider a random variable M taking values in ∆M and
the associated matrix BM ∈ R`×`. Let X ←↩ X\L, and Y ←↩ U(F). Then H
is δvs(`)-vector smooth over X on F if the following tuples of random variables
are δvs(`)-close:{

M,X, {p̂rojkg(hki)}i∈[`], {<hk, bMj >a}j∈[`−1], hash(<hk, bM` >a, X) · Y
}

and
{
M,X, {p̂rojkg(hki)}i∈[`], {<hk, bMj >a}j∈[`−1], hash(<hk, bM` >a, X)

}
.

Lemma 2 is a convenient reformulation of vector smoothness for PHFs which
have homomorphic properties and are decomposable.

Lemma 2. Assume H is further homomorphic, key homomorphic and (Υ̂ , Υ, F)-
decomposable. Since X ∈ X\L, there exist unique (XL,W) ∈ R and XΥ ∈ 〈Υ 〉
s.t. X = XL ·XΥ . Then H is δvs-vector smooth over X on F if and only if the
following tuples of random variables are δvs-close:{

M,X, {p̂rojkg(hki)}i∈[`], {<hk, bMi >a}i∈[`−1], Y
}

and{
M,X, {p̂rojkg(hki)}i∈[`], {<hk, bMi >a}i∈[`−1], hash(<hk, bM` >a, XΥ)

}
.

Proof. For fixed m ∈ ∆M, (x,w) ∈ R, y ∈ 〈Υ 〉, ĥpi ∈ Kĥp (which in turn fixes
hpi ∈ Khp) for i ∈ [`], and vj ∈ Ra for j ∈ [`− 1], the first three coordinates of
the considered tuples fix M = m; XL = x; XΥ = y; ĥpi = p̂rojkg(hki); hpi :=
projkg(hki); and <hk, bMj >a = vj . Hence they fix the value of hash(hki, XL) =
projhash(hpi, x, w) for i ∈ [`].

Let us denote Bm the matrix associated tom built as per Lemma 1, and its
rows bm1 , . . . , bm` . Since M = m, it holds that BM = Bm. Now using the key
homomorphism of H we see that hash(<hk, bM` >a, XL) = hash(<hk, bm` >a, x).
Furthermore, from the homomorphism of H it holds that hash(<hk, bM` >a, X) =
hash(<hk, bm` >a, x) · hash(<hk, bM` >a, XΥ). It is now clear that the statistical
distance between the two tuples of random variables in Lemma 2 is equal to the
statistical distance between those of Definition 16.

Example 1 – HSMCL . Lemma 3 is inspired by [CLT18, Thm. 7] and states
sufficient conditions for HCL to be vector smooth.

Lemma 3. If the hashkg algorithm of HCL samples hashing keys from the Gaus-
sian distribution DZ,σ for σ > s̃p3/2

√
| log2(δvs)|, then HCL is δvs-vector-smooth

over G on F .

Proof. Recall that R = Z and for some ` ∈ N, M = K = {x ∈ Z` : ||x||∞ <√
p
2`}. For i ∈ [`], let hki denote independent random variables following the

distribution DZ,σ; let hk := (hk1, . . . , hk`) ∈ Z`. Consider a random variable M
taking values in ∆M and the associated matrix BM ∈ Z`×`.

18

For X ←↩ G\Gp, there exist unique α ∈ Z/sZ and β ∈ (Z/pZ)∗ s.t. X =
gαp f

β . As noted in Lemma 2, for γ ←↩ U(Z/pZ), we need to evaluate the statis-
tical distance between:

U =
{
M, gαp f

β , {p̂rojkg(hki)}i∈[`], {〈hk, bMj 〉}j∈[`−1], fγ
}

and V =
{
M, gαp f

β , {p̂rojkg(hki)}i∈[`], {〈hk, bMj 〉}j∈[`−1], fβ〈hk,b
M
` 〉
}
.

Considerm ∈ ∆M, α0 ∈ Z/sZ, β0 ∈ Z/pZ, ĥp ∈ (Z/$Z)`, and v ∈ Z`−1. It
suffices to study the distance between the random variables Y := β〈hk, bM` 〉 mod
p and γ conditioned on the conjunction of the following events: M =m; α mod

s = α0 mod s; β mod p = β0 mod p; hk mod $ = ĥp mod $ and for j ∈ [`− 1],
〈hk, bMj 〉 = vj .

In the following, we evaluate the distribution followed by hk in Z, conditioned
on these events. Let hk0 denote an arbitrary vector satisfying the same equations
as hk, i.e. for j ∈ [`− 1], 〈hk0, bmj 〉 = vj in Z, and hk0 mod $ = ĥp mod $. We
define Λ := {t ∈ Z` | 〈t, bmj 〉 = 0 for j ∈ [`− 1]; t = 0 mod $} ⊂ Z`. Since hk is
sampled from DZ`,σ, given the fixed information, hk is of the form hk0+T where
T is a random variable with values in Λ, and which follows the same probability
distribution as hk− hk0 but taken over Λ, i.e. ∀t ∈ Λ:

Pr[T = t] =
DZ`,σ,−hk0(t)

DZ`,σ,−hk0(Λ)
=

ρσ,−hk0(t)

ρσ,−hk0(Z
`)
× ρσ,−hk0(Z

`)

ρσ,−hk0(Λ)
= DΛ,σ,−hk0(t).

So the conditional distribution followed by hk is hk0 +DΛ,σ,−hk0 .

Now denoting d 6= 0 the gcd of the coefficients of bm` , and b̃ = 1/d ·bm` ∈ Z`,
it holds that for 1 6 j 6 ` − 1, bmj ∈ b̃⊥. We consider the 1-dimensional
lattice Λ′ := {t ∈ Z`|〈t, bmi 〉 = 0 for i ∈ [` − 1]} which contains b̃Z. In fact as
gcd(b̃1, . . . , b̃`) = 1, one has Λ′ = b̃Z (there exists y ∈ Z` s.t. Λ′ = y · Z, and
b̃ = αy, so α must divide gcd(b̃1, . . . , b̃`) = 1). Moreover Λ = Λ′ ∩ $ · Z` =
(b̃ · Z ∩$ · Z`) = $ · b̃ · Z, since ∀µ ∈ Z, in order for $ to divide each µb̃i, $
must divide µ · gcd(b̃1, . . . , b̃`) = µ. We now consider the distribution of 〈hk, b̃〉,
and reduce it mod p, so as to prove that the random variable Ỹ := 〈hk, b̃〉 mod p
follows a distribution close to U(Z/pZ). Let us denote Λ0 := $ · ||b̃||22 · Z. It
follows from Lemma 10 that the distribution followed by 〈hk, b̃〉 is:

〈hk0, b̃〉+DΛ0,||b̃||2·σ,−c where c := 〈hk0, b̃〉 in Z.

In order to prove that the above distribution, taken mod p, is statistically close
to U(Z/pZ), we consider the distribution obtained by reducing the distribution
DΛ0,||b̃||2·σ,−c over Λ0 modulo the sub-lattice Λ′0 := pΛ0. Since $ and p are
co-prime, it holds that Λ0/Λ

′
0 ' Z/pZ, so demonstrating that 〈hk, b̃〉 mod p

follows a distribution statistically close to U(Λ0/Λ
′
0) will allow us to conclude.

From Lemma 11 it follows that to achieve the required smoothing parameter
ηε(Λ

′
0) one must impose a lower bound on the standard deviation σ: we need

||b̃||2 · σ > ηε(Λ
′
0). From [MR07] we know that, for 0 < ε < 1/2, and setting

δvs := 2ε, we have:
ηε(Λ

′
0) 6 (ln(2(1 + 1/ε))π−1)1/2 · λ1(Λ′0) < (2−1| log2(δvs)|)1/2 · λ1(Λ′0).

19

Since λ1(Λ′0) = p·$·||b̃||22 < p·ŝ·||b̃||22, we require σ > p·ŝ·||b̃||2
√
2−1| log2(δ1/p)|.

Moreover, as ||b̃||2 <
√
2p (due to the norm bounds on vectors in M, one has

||b̃||∞ < 2
√
p/(2`)), choosing σ > ŝ · p3/2

√
| log2(δ1/p)| suffices to ensure that

the distribution of 〈hk, b̃〉 mod p is δ1/p-close to the uniform distribution over
Λ0/Λ

′
0 ' Z/pZ. We denote δvs := δ1/p.

Finally Y = β · 〈hk, bm` 〉 mod p = β · d · 〈hk, b̃〉 mod p where 〈hk, b̃〉 mod p
is δvs-close to U(Z/pZ), β 6= 0 mod p and d 6= 0 mod p. This implies that Y
also follows a distribution δvs-close to U(Z/pZ). Thus the statistical distance
between the last coordinates of U and V, given the first four, is at most δvs,
which concludes the proof.

Example 2 – DDH . Lemma 4 is inspired by [ALS16, Thm. 1] and states suffi-
cient conditions for HDDH to be vector smooth.

Lemma 4. The HDDH projective hash function is 0-vector smooth over G on G.

Proof. Recall that R = Z/qZ, a = 2 and M = K = Z/qZ. For i ∈ [`], let hki :=
(κ0,i, κ1,i) denote independent random variables sampled from U((Z/qZ)2); let
κ0 := (κ0,1, . . . , κ0,`), κ1 := (κ1,1, . . . , κ1,`), and hk := (hk1, . . . , hk`). Con-
sider a random variable M taking values in ∆M and the associated matrix
BM . For X ←↩ X\L, there exist unique α ∈ Z/qZ and β ∈ (Z/qZ)∗ s.t.
X = (g0, g1)

α � (1, g1)
β . As noted in Lemma 2, for γ ←↩ U(Z/qZ), we need

to evaluate the distance between:

U =
{
M, (gα0 , g

α+β
1), {gκ0,i

0 g
κ1,i

1 }i∈[`], {〈κ0, b
M
j 〉, 〈κ1, b

M
j 〉}j∈[`−1], g

γ
1

}
, and

V =
{
M, (gα0 , g

α+β
1), {gκ0,i

0 g
κ1,i

1 }i∈[`], {〈κ0, b
M
j 〉, 〈κ1, b

M
j 〉}j∈[`−1], g

β〈κ1,b
M
` 〉

1

}
.

Considerm ∈ ∆M, α0, β0 ∈ Z/qZ, h ∈ (Z/qZ)`, v0,v1 ∈ (Z/qZ)`−1, and let
us denote a := logg0(g1). It suffices to study the distance between the random
variables Y := β〈κ1, b

M
` 〉 mod q and γ conditioned on the conjunction of the

following events: M =m; (α mod q, β mod q) = (α0 mod q, β0 mod q); κ0 + a ·
κ1 mod q = h mod q; and for j ∈ [`− 1], 〈κ0, b

M
j 〉 = v0,j , 〈κ1, b

M
j 〉 = v1,j .

Let (κ∗0,κ∗1) denote an arbitrary pair of vectors satisfying the same equations
as (κ0,κ1), i.e. those fixed by the events above. Then κ∗0 + aκ∗1 = h mod q;
〈κ∗0, bmj 〉 = v0,j and 〈κ∗1, bmj 〉 = v1,j for j ∈ [`− 1]. Since for i ∈ [`−1], bmi ∈m⊥,
given the fixed information, the joint distribution of vectors (κ0,κ1) ∈ (Z/qZ)2

is:
{(κ∗0 − a · µ ·m mod q,κ∗1 + µ ·m mod q) | µ←↩ U(Z/qZ)}.

The conditional distribution of β〈κ1, b
M
` 〉 is thus: {β(〈κ∗1, bm` 〉+µ〈m, bm` 〉) mod

q | µ ←↩ U(Z/qZ)} which is exactly U(Z/qZ) since by construction bm` /∈ m⊥,
so 〈m, bm` 〉 6= 0 mod q, and β ∈ (Z/qZ)∗. Thus U = V and HDDH is 0-vector-
smooth.

20

3.5 Integrity

The high level idea to ensure ind-fe-cca-security is to have the decryption algo-
rithm reject any ciphertext whose decryption could leak more information than
that revealed in an ind-fe-cpa attack. These harmful ciphertexts, dubbed invalid
ciphertexts, are exactly those whose first component lives in X̂\L̂. Hence, de-
noting this first ciphertext component x, one needs to ensure the decryption
algorithm never decrypts a ciphertext with x /∈ L̂. To this end, upon encryption
of a message vector of length `, one computes ` evaluations of an extended pro-
jective hash function ehash over x, using independently sampled hashing keys
ehk1, . . . , ehk`. The resulting ciphertext contains x, the masked message compo-
nents, and all the evaluations of ehash.
In our ind-fe-cca-secure IPFE schemes a decryption key for k ∈ K contains the
linear combination skk :=

∑`
i=1 kiehki. Using the key homomorphic property of

the EPHF, a ciphertext will only be decrypted if ehash(skk, x) yields the expected
combination of the received ciphertext components. Now if the ciphertext is in-
valid, i.e. if x /∈ L̂, it must be infeasible for an adversary to compute a ciphertext
which will not be rejected, even given all the auxiliary information it gets from
the scheme’s public values and from its key derivation queries. We thus introduce
a new property for EPHFs: vector universality, which ensures that conditioned
on the publicly available information (i.e. êprojkg(ehk)); the adaptively chosen
difference between challenge messages m; the evaluation of ehash given by the
challenge ciphertext; and all the information available on ehk from key deriva-
tion queries (i.e. the evaluations of <ehk, b>2a for any b ∈m⊥), no adversary
can predict an extended hash value π over an element x /∈ L̂ which would au-
thorise decryption. Hence vector universality ensures ciphertext integrity in our
upcoming constructions. The definition of vector universality, and proofs that
our running examples possess it (Lemmas 5 and 6) are key to our achievements
regarding IPFE schemes secure against active adversaries.

Definition 17 (δvu-vector universal). Let R be a ring, either Z or Z/qZ for
some prime q; ` and a be positive integers; SM := (X̂,X, L̂,W, R) an SMP;
and eH the associated EPHF which we assume to be (R, 2a, f,ℵ, `,M,K)-ipfe-
compatible. For i ∈ [`], let ehki ← ehashkg(SM), and ehk := (ehk1, . . . , ehk`).
Consider a random variable M taking values in ∆M and the associated matrix
BM ∈ R`×`. We say eH is δvu(`)-vector universal if for any êhp ∈ (K

êhp
)`; any

m ∈ ∆M; any k ∈ K s.t. k /∈m⊥; any (x∗, e∗) ∈ X̂×E, (x, e) ∈ X̂\L̂×E, s.t.
(x, e) 6= (x∗, e∗), and for any (v1, . . . ,v`−1) ∈ (Kehk)

`−1; π∗ ∈ Π` and π ∈ Π it
holds that:

Pr
[
ehash(<ehk,k>2a, x, e) = π

∣∣ êprojkg(ehk) = êhp ∧M =m ∧
ehash(ehk, x∗, e∗) = π∗ ∧ (<ehk, bMj >2a = vj for j ∈ [`− 1])

]
6 δvu(`).

Example 1 – HSMCL . Recall that for the HSMCL based EPHF, denoted eHCL,
the inner product ring is R = Z andKehk = Z2. In Lemma 5 we provide sufficient
conditions for eHCL to be vector universal.

21

Lemma 5. If algorithm ehashkg of eHCL samples hashing keys from DZ,σ for
σ >

√
| log2(δ)|s̃p3/2, and Γ : Ĝ2 7→ {0, . . . , p − 1} is sampled from a family

of δΓ -collision resistant hash functions, then eHCL is δvu-vector universal, where
δvu = 1/p+ δΓ + δ.

Proof. For i ∈ [`], β ∈ {0, 1}, let hkβ,i be independent random variables following
distributionDZ,σ; let hkβ := (hkβ,1, . . . , hkβ,`) ∈ Z`. LetM be a random variable
taking values in ∆M and BM ∈ R`×` be the associated matrix. The lemma
holds if for any êhp ∈ (Z/$Z)2`; any m ∈ ∆M; any k ∈ K s.t. k /∈ m⊥;
any (x∗, e∗) ∈ Ĝ2, (x, e) ∈ Ĝ\Ĝp × Ĝ, s.t. (x, e) 6= (x∗, e∗); any vβ,j ∈ Z for
β ∈ {0, 1} and j ∈ [`−1]; any π∗ ∈ Ĝ`; any π ∈ Ĝ; and denoting γ∗ ← Γ (x∗, e∗)
and γ ← Γ (x, e) it holds that:

Pr
[
x〈hk0+γhk1,k〉 = π | êprojkg(hk0,hk1) = êhp ∧M =m ∧
(x∗)hk0+γ

∗hk1 = π∗ ∧ 〈hkβ , bMj 〉 = vβ,j for j ∈ [`− 1], β ∈ {0, 1}
]
6 δvu.

We consider the information on vector ehk fixed by the following events:
1. E1 is the event “ êprojkg(hk0,hk1) = êhp”. Denoting êhp = (êhp0, êhp1) ∈

(Z/$Z)2`, given E1 it holds that:
hk0 mod $ = êhp0 mod $ and hk1 mod $ = êhp1 mod $.

2. E2 is the event “M = m”. Denoting Bm the matrix associated to m, built
as per Lemma 1, it holds that BM = Bm. Let bm1 , . . . , bm` denote the rows
of Bm. From Def. 15 it hold that bm` =m since R = Z.

3. E3 is the event “(x∗)hk0+γ
∗hk1 = π∗”. Since Ĝ is of order n̂, we upper bound

the information provided by E3 (hence upper bounding any probability con-
ditioned on E3) by considering a vector h ∈ (Z/n̂Z)` and conditioning on
the event “hk0+γ∗hk1 mod n̂ = h mod n̂”. The conditional joint distribution
of (hk0 mod n̂,hk1 mod n̂) is thus:

{(h− γ∗hk1 mod n̂,hk1 mod n̂) | hk1 ←↩ DZ`,σ}. (1)

4. E4 is the event “〈hkβ , bMj 〉 = vβ,j in Z for j ∈ [`− 1], β ∈ {0, 1}”.
We first evaluate the distribution followed by hk1 conditioned on these events.
Let hk∗1 ∈ Z` denote an arbitrary vector satisfying the same equations as hk1,
i.e. for j ∈ [` − 1], 〈hk∗1, bmj 〉 = v1,j and hk∗1 mod $ = êhp1 mod $. We define
Λ := {t ∈ Z` | 〈t, bmj 〉 = 0 for j ∈ [`−1]; t = 0 mod $} ⊂ Z`, so that, as in proof
of Lemma 3, the conditional distribution followed by hk1 is {hk∗1 +DΛ,σ,−hk∗1}.

Denoting d 6= 0 the gcd of the coefficients of bm` and b̃ = 1/d·bm` ∈ Z`, it holds
that for j ∈ [`− 1], bmj ∈ b̃⊥. Now consider the 1-dimensional lattice Λ′ := {t ∈
Z`|〈t, bmj 〉 = 0 for j ∈ [`− 1]} which contains b̃Z. In fact as gcd(b̃1, . . . , b̃`) = 1,
one has Λ′ = b̃Z (indeed there exists y ∈ Z` s.t. Λ′ = y · Z, and b̃ = αy, so
α must divide gcd(b̃1, . . . , b̃`) = 1). Moreover Λ = Λ′ ∩ $ · Z` = (b̃ · Z ∩ $ ·
Z`) = $ · b̃ · Z, since ∀µ ∈ Z, in order for $ to divide each µb̃i, $ must divide
µ · gcd(b̃1, . . . , b̃`) = µ. We now consider the distribution of 〈hk1, b̃〉, and then
reduce it mod p, so as to prove that the random variable Ỹ := 〈hk1, b̃〉 mod p
follows a distribution close to U(Z/pZ). Let us denote Λ0 := $ · ||b̃||22 · Z. It

22

follows from Lemma 10 that the distribution followed by 〈hk1, b̃〉 is 〈hk∗1, b̃〉 +
DΛ0,||b̃||2·σ,−c where c = 〈hk∗1, b̃〉 in Z. As in proof of Lemma 3, we reduce the
distribution DΛ0,||b̃||2·σ,−c over Λ0 modulo Λ′0 := pΛ0. Since σ >

√
| log2(δ)| · s̃ ·

p3/2 it holds that 〈hk1, b̃〉 mod p is δ-close to the uniform distribution over Λ0/Λ
′
0;

and since $ and p are co-prime, Λ0/Λ
′
0 ' Z/pZ. Using (1), the distribution of

〈hk0 + γhk1, b̃〉 mod p is thus:
{〈h, b̃〉+ (γ − γ∗)(〈hk∗1, b̃〉+ ν) mod p| ν ←↩ (DΛ0,||b̃||2σ,−c mod Λ′0)} (2)

Since (DΛ0,||b̃||2σ,−c mod Λ′0) is δ-close toU(Z/pZ), and h is given, if γ 6= γ∗ mod

p then distribution (2) is δ-close to U(Z/pZ).
We now estimate the conditional probability that x〈hk0+γhk1,k〉 = π. Since

x ∈ Ĝ\Ĝp, there exist unique x0 ∈ Ĝp, υ ∈ (Z/pZ)∗ satisfying x = x0f
υ.

Thus x〈hk0+γhk1,k〉 = x
〈hk0+γhk1,k〉
0 fυ〈hk0+γhk1,k〉. From the knowledge of x, k

and E1 the value of x〈hk0+γhk1,k〉0 = x
〈êhp0+γêhp1,k〉
0 is fixed. Moreover since υ is

information theoretically theoretically fixed by x, and f is of prime order p, it
suffices to bound the probability 〈hk0+γhk1,k〉 mod p takes a given fixed value.
Now since the matrix Bm is invertible mod p, k mod p can be uniquely expressed
as a linear combination of the rows of Bm. We denote this decomposition:

k =
∑
i∈[`]

αib
m
i mod p with α` ∈ (Z/pZ)∗ and αi ∈ Z/pZ for i ∈ [`− 1].

From k, E2 and E4, for i ∈ [`−1] the values 〈hk0+γhk1, αibmi 〉 are fixed. And so
we need only consider the probability α`〈hk0+γhk1, bm` 〉 = d ·α`〈hk0+γhk1, b̃〉
takes a fixed value modulo p. But from (2) we know that, if γ 6= γ∗ mod p then
〈hk0+γhk1, b̃〉 mod p follows a distribution δ-close to U(Z/pZ). Note that, since
γ∗ = Γ (x∗, e∗) and γ = Γ (x, e), the event γ = γ∗ mod p occurs with probability
6 δΓ . We conclude that the conditional probability 〈hk0+γhk1, b̃〉 takes a given
value mod p is 6 1/p+ δ + δΓ , which concludes the proof.

Example 2 – DDH. Recall that for eHDDH the inner product ring is R = Z/qZ
and Kehk = (Z/qZ)4. In Lemma 6 we provide sufficient conditions for HDDH to
be vector universal.

Lemma 6. If Γ : G3 7→ {0, . . . , q − 1} is sampled from a family of δΓ -collision
resistant hash functions, then eHDDH is δvu-vector universal, for δvu = 1/q+ δΓ .

Proof. For i ∈ [`] let ehki := (κ0,i, κ1,i, κ2,i, κ3,i) denote independent random
variables following the distribution U((Z/qZ)4); let ehk := (ehk1, . . . , ehk`) and
κµ := (κµ,1, . . . , κµ,`) ∈ (Z/qZ)` for µ ∈ {0, 1, 2, 3}. Consider a random variable
M taking values in ∆M and the associated matrix BM ∈ Z/qZ`×`.

Lemma 6 holds if for any ehp ∈ G2`; anym ∈ ∆M; any k ∈ K s.t. k /∈m⊥;
any ((x∗0, x

∗
1), e

∗) ∈ G2×G, ((x0, x1), e) ∈ (G2\〈(g0, g1)〉)×G, s.t. ((x0, x1), e) 6=
((x∗0, x

∗
1), e

∗); any vµ,j ∈ Z/qZ for µ ∈ {0, 1, 2, 3} and j ∈ [`− 1]; any π∗i ∈ G for
i ∈ [`]; and for any π ∈ G, denoting γ∗ ← Γ ((x∗0, x

∗
1), e

∗) and γ ← Γ ((x0, x1), e),

23

it holds that:

Pr[x
〈κ0+γκ2,k〉
0 x

〈κ1+γκ3,k〉
1 = π

∣∣(x∗0)κ0,i+γ
∗κ2,i(x∗1)

κ1,i+γ
∗κ3,i = π∗i for i ∈ [`]

∧ 〈κµ, bMj 〉 = vµ,j for j ∈ [`− 1], µ ∈ {0, . . . , 3}
∧ (gκ0

0 gκ1
1 , gκ2

0 gκ3
1) = ehp ∧M =m] 6 δvu.

Let a := logg0(g1), α
∗ := logx∗0 (x

∗
1), and α := logx0

(x1). Since (x0, x1) /∈
〈(g0, g1)〉 we have α 6= a mod q. We consider the information on ehk fixed by the
following events:

1. E1 is the event “(x∗0)κ0,i+γ
∗κ2,i(x∗1)

κ1,i+γ
∗κ3,i = π∗i for i ∈ [`]”. Equivalently,

for a vector h ∈ (Z/qZ)`, E1 is the event “(κ0+γ
∗κ2)+α

∗(κ1+γ
∗κ3) mod

q = h′′.
2. E2 is the event “(gκ0

0 gκ1
1 , gκ2

0 gκ3
1) = ehp”. Equivalently, for some s0 and s1

in (Z/qZ)`, E2 is the event “κ0 + aκ1 mod q = s0 mod q and κ2 + aκ3 mod
q = s1 mod q”. Observe that if α∗ = a mod q then E1 provides no more
information than E2 alone. We hereafter assume α∗ 6= a mod q. Conditioned
on E1 and E2, the joint distribution of (κ0,κ1, κ2,κ3) is thus:

{(s0 − a((α∗ − a)−1(h− s0 − γ∗s1)− γ∗µ),
(α∗ − a)−1(h− s0 − γ∗s1)− γ∗µ, s1 − aµ,µ) | µ ∈ (Z/qZ)`}. (3)

3. E3 is the event “〈κµ, bMj 〉 = vµ,j for j ∈ [`− 1], µ ∈ {0, 1, 2, 3}”.
4. E4 is the event “M = m”. Denoting Bm the matrix associated to m built

as per Lemma 1, it holds that BM = Bm. Let bm1 , . . . , bm` denote the rows
of Bm.

We first evaluate the distribution followed by (〈κ0,k〉, 〈κ1,k〉, 〈κ2,k〉, 〈κ3,k〉)
conditioned on the conjunction of E1, E2, E3, E4. Let (κ∗0,κ∗1,κ∗2,κ∗3) denote an
arbitrary quadruple of vectors satisfying the same equations as (κ0,κ1,κ2,κ3),
i.e. those fixed by E1, E2, E3, E4. Then

κ∗0 = (s0 − a((α∗ − a)−1(h− s0 − γ∗s1)− γ∗κ∗3) mod q
κ∗1 = (α∗ − a)−1(h− s0 − γ∗s1)− γ∗κ∗3 mod q
κ∗2 = s1 − aκ∗3 mod q
〈κ∗µ, bmj 〉 = vµ,j for j ∈ [`− 1], µ ∈ {0, 1, 2, 3}

Since for i ∈ [`− 1], all vectors bmi are in m⊥ the joint conditional distribution
of vectors (κ0,κ1,κ2,κ3) is:
{(κ∗0 + γ∗ · a · µ ·m,κ∗1 − γ∗ · µ ·m,κ∗2 − a · µ ·m,κ∗3 + µ ·m) | µ ∈ Z/qZ}. (4)
The conditional distribution of 〈κ3,k〉 is thus: {〈κ∗3,k〉 + µ〈m,k〉 | µ ∈ Z/qZ}
which is exactly U(Z/qZ) since by definition k /∈m⊥, so 〈m,k〉 6= 0 mod q.

We now consider the probability p that event E0 :=“x〈κ0+γκ2,k〉
0 x

〈κ1+γκ3,k〉
1 =

π” occurs, i.e. that the random variable X1 := 〈κ0+ακ1+γ(κ2+ακ3),k〉 mod q

24

takes a fixed value mod q. From Eq. (3) we have:
X1 = 〈s0 − a((α∗ − a)−1(h− s0 − γ∗s1)− γ∗κ3)

+ α((α∗ − a)−1(h− s0 − γ∗s1)− γ∗κ3) + γ((s1 − aκ3) + ακ3),k〉
= 〈s0 + γs1 + (α− a)(α∗ − a)−1(h− s0 − γ∗s1),k〉
+ (a− α)(γ∗ − γ)〈κ3,k〉.

Where a 6= α∗ mod q and (〈s0+γs1+(α∗−a)−1(α−a)(h−s0−γ∗s1),k〉 mod q)
is fixed by E1, E2, E3, E4 and the value of k. Thus if γ 6= γ∗ mod q then X1

follows the uniform distribution modulo q and so the conditional probability E0

occurs is 1/q. Now since γ∗ = Γ ((x∗0, x
∗
1), e

∗) and γ = Γ ((x0, x1), e), the event
“γ = γ∗ mod q” occurs with probability6 δΓ . We can conclude that p 6 1/p+δΓ ,
and denoting δvu := 1/p+ δΓ , it holds that HDDH is δvu-vector-universal.

3.6 Inner product safe projective hash function

The notions of active and passive inner product safe PHFs summarise the prop-
erties required to build ind-fe-cca and ind-fe-cpa secure IPFE schemes.

Definition 18 (pip-safe). Let R be a ring, either Z or Z/qZ for some prime
q; `, a ∈ N; SM := (X̂,X, L̂,W,R) an SMP; H the associated PHF which
we assume to be (R, a, f, ℵ, `,M,K)-ipfe-compatible; and let F := 〈f〉. Then H

is (R, a, f,ℵ, `,M, K, Υ̂ , Υ, δL, δvs)-passive inner product safe (pip-safe) if: (1)
the order ℵ of F is prime or hard to factor; (2) H is (Υ̂ , Υ, F)-decomposable,
where Υ̂ ∈ X̂, Υ ∈X; (3) H is homomorphic; (4) SM is δL-hard; and (5) H is
δvs-vector smooth over X on F .

Definition 19 (aip-safe). Let R be a ring, either Z or Z/qZ for some prime
q; `, a ∈ N; SM := (X̂,X, L̂,W,R) an SMP; H the associated PHF which
we assume to be (R, a, f, ℵ, `,M,K)-ipfe-compatible; eH the resulting EPHF
(as per the generic construction of [CS02], cf. Appx. B). The pair (H, eH) is
(R, a, f,ℵ, `,M, K, Υ̂ , Υ, δL, δvs, δvu)-active inner product safe (aip-safe) if H is
(R, a, f,ℵ, `,M, K, Υ̂ , Υ, δL, δvs)-pip-safe and eH is δvu-vector universal.

4 IPFE from PHFs secure against passive adversaries

Let R be either the ring Z or Z/qZ for some prime q; GenSM be a subgroup
membership problem generator outputting the description of an SMP, SM :=

(X̂,X, L̂,W,R). Let ` and a be positive integers; M ⊆ R` be the plaintext
space; and K ⊆ R` be the space from which keys are derived. Building upon a
pip-safe projective hash family H, the scheme recovers 〈m,k〉 ∈ R for m ∈ M,
k ∈ K. The resulting ind-fe-cpa-secure IPFE scheme is depicted in Fig. 1.
Correctness. As Khk = Ra one has hk ∈ (R`)a, so <hk,k>a ∈ Ra. Next, as H is
key homomorphic,

∏
i∈[`] c

ki
i =

∏
i∈[`](hash(hki, c0)f

mi)ki = f 〈k,m〉hash(skk, c0)

25

Setup(1λ, 1`):
1. SM ← GenSM(1λ)
2. For 1 6 i 6 ` :
3. Sample hki ← hashkg(SM)
4. hpi ← projkg(hki)
5. Return mpk := hp; msk := hk

Enc(mpk,m):
1. If m /∈M return ⊥
2. Sample (c0, w)← R
3. For 1 6 i 6 ` :
4. ci ← projhash(hpi, c0, w) ·fmi
5. Return ct := (c0, c)

KeyDer(msk,k):
1. If k /∈ K return ⊥
2. skk ← <hk,k>a

3. Return (skk,k)

Dec(mpk, (skk,k), ct):
1. If ct /∈ X̂ ×Π` then return ⊥
2. Parse (c0, c) = ct
3. M ← (

∏
i∈[`] c

ki
i) · hash(skk, c0)−1

4. If M /∈ F then return ⊥
5. Return sol← logf (M)

Fig. 1: IPFE that is ind-fe-cpa-secure from projective hash functions

so
∏
i∈[`] c

ki
i · hash(skk, c0)−1 = f 〈k,m〉 ∈ F. Since H is (R, a, f,ℵ, `,M,K)-ipfe-

compatible, logf (f
〈k,m〉) = 〈k,m〉 ∈ R. Consequently, for any mpk,msk ←

Setup(1λ, 1`), k ∈ K, and m ∈ M it holds that Dec(mpk, KeyDer(msk,k),Enc
(mpk,m)) outputs 〈k,m〉 ∈ R.

Remark 11. If instantiated from DDH or HSMCL, the IPFE of Fig. 1 yields
schemes of [ALS16] and [CLT18]. Moreover, as detailed in Appx. E.3, though
the construction is identical to the ind-fe-cpa-secure construction of [BBL17], we
significantly lower the bound on the adversary’s advantage (when δvs 6= 0).

Theorem 1. Let R be a ring, either Z or Z/qZ for some prime q; `, a ∈ N;
SM := (X̂,X, L̂,W,R) an instance of a δL-hard subgroup membership problem;
and H the associated projective hash function. Suppose that H is (R, a, f,ℵ, `,M,K, Υ̂ , Υ, δL, δvs)-
pip-safe then the IPFE scheme IPFE depicted in Fig. 1 is ind-fe-cpa-secure, and
Advind-fe-cpaIPFE,A (λ) 6 δL + δvs.

Proof. We proceed via a sequence of games. Game 0 is the original ind-fe-cpa
experiment. Game 2 is the final game, in which A’s advantage is negligible. Let
Si denote the event “The output of Game i is 1”.
Game 0. This is Expind-fe-cpaIPFE,A (λ), so Advind-fe-cpaIPFE,A (λ) = |Pr[S0]− 1/2| .
Game 1. C computes ct using the hash keys instead of the projection keys and the
witness. Though computed differently, the values of the ciphertext components
remain unchanged, as is A’s success probability, hence

Pr[S0] = Pr[S1]. (5)
Game 2. Here C samples c0 at random from X\L instead of L. Both games are
indistinguishable under the δL-hardness of SM, so

|Pr[S1]− Pr[S2]| 6 δL. (6)
Let us now bound the probability S2 occurs. Observe that when A submits its’
guess β′ for β all the information it can use for its guess comes from (1) the
public key mpk; (2) the challenge ciphertext ct; and (3) key derivation queries.

26

1. Sample (mpk,msk) := (hp, hk)← Setup(1λ, 1`) and β ←↩ {0, 1}
2. Send mpk to A and answer pre-challenge phase key derivation queries
3. Receive m0, m1 from A

4. Sample (x0, w)← R and let c0 := x0

5. Sample υ ←↩ (Z/ℵZ)∗ and overwrite c0 ← x0 · Υ υ ∈X\L
6. For 1 6 i 6 ` :
7. ci := hash(hki, c0) · fmβ,i

8. Let ct := (c0, c)
9. Send ct to A and answer post-challenge phase key derivation queries

10. Receive β′ from A. If (β = β′) return 1, else return 0.

Framed text highlights the evolution from Game 0 to Game 1.

Double framed text is only executed in Game 2.

Fig. 2: Security games for proof of Theorem 1.

Intuition. Following [ALS16]’s proof methodology, we first delimit the informa-
tion leaked by ct by only considering the dimension in which both potential
challenge ciphertexts differ. To this end we project this information onto the
subspace generated by m0 −m1. We then consider the distribution of the pro-
jection of hk on the subspace generated bym0−m1, conditionally on A’s view
(given the information fixed by key derivation queries and the public projection
keys). Since A cannot query decryption keys for vectors k s.t. 〈m0−m1,k〉 6= 0,
the δvs-vector-smoothness of H ensures that projecting hk onto the subspace gen-
erated by m0 −m1 induces a distribution {hash(〈hk,m0 −m1〉, υ) | υ ∈ 〈Υ 〉}
which is δvs-close to U(F), and thus mβ is statistically hidden in c.
Details. First consider the challenge ciphertext; the decomposability and homo-
morphic properties of H allow to write its coordinates as: c0 = x0 · Υ υ ∈ X\L,
where v ∈ (Z/ℵZ)∗, and ci = fmβ,i · hash(hki, x0) · hash(hki, Υ υ) ∈ Π for i ∈ [`].
Since this decomposition of c0 is unique (by Def. 14), and since x0 ∈ L, informa-
tion theoretically, for i ∈ [`] the value hash(hki, x0) is fixed by the values hpi and
c0. We denote yi := fmβ,i · hash(hki, Υ υ) ∈ F for i ∈ [`]. Any information fixed
on β by ci is thus contained in yi, and it suffices to consider the information on
the bit β which is leaked by y := (y1, . . . , y`) ∈ F `.

Let Bm ∈ R`×` denote the matrix associated to m := m1 −m0 built as
per Lemma 1, whose rows we denote (b1, . . . , b`). Since Bm is invertible modℵ,
y ∈ F `, and ord(F) = ℵ, all the information contained in y is contained in the
vector (

∏
i∈[`] y

b1,i
i , . . . ,

∏
i∈[`] y

b`,i
i). It thus suffices to consider the information

on β given by:
∏
i∈[`] y

bj,i
i = f 〈mβ ,bj〉hash(<hk, bj>a, Υ

υ) for j ∈ [`]. For j ∈
[`− 1] we have bj ∈m⊥, so the value of f 〈mβ ,bj〉 · hash(<hk, bj>a, Υ

υ) provides
no information on β. Let us now consider that contained in:

f 〈mβ ,b`〉 · hash(<hk, b`>a, Υ
υ) (7)

To this end we evaluate the distribution of hash(<hk, b`>a, Υ
υ), and so we

need to consider the information leaked on hk via key derivation queries. First
observe that any key derivation query k ∈ K must belong to m⊥, and so is a

27

linear combination of vectors (b1, . . . , b`−1). We can thus apply the δvs(`)-vector-
smoothness over X on F of H, s.t. givenm, c0, hp and <hk, bj>a for j ∈ [`−1],
the distribution of hash(<hk, b`>a, Υ

υ) is δvs-close to U(F), and statistically
hides f 〈mβ ,b`〉 in Eq. (7), thereby hiding the bit β, and so: |Pr[S2]− 1/2| 6 δvs
Combined with equations (5) and (6) we have: Advind-fe-cpaA 6 δL + δvs, this
concludes the proof that the IPFE scheme of Fig. 1 is ind-fe-cpa-secure.

5 IPFE from PHFs secure against active adversaries

Let R be either the ring Z or Z/qZ for some prime q; GenSM be a subgroup
membership problem generator outputting the description of an SMP, SM :=

(X̂,X, L̂,W,R); ` and a be positive integers; M ⊆ R` be the plaintext space;
K ⊆ R` be the space from which keys are derived; (H, eH) a pair of (R, a, f,ℵ, `,M,K, Υ̂ , Υ,
δL, δvs, δvu)-aip-safe PHFs; H a family of CRHF such that h ←↩ H maps {0, 1}∗
to the efficiently recognisable set E; and OTS := (Setup,Sign,Verif) a strongly
unforgeable OTS scheme. The resulting ind-fe-cca-secure FE scheme, depicted
in Fig. 3, recovers 〈m,k〉 ∈ R for m ∈M, k ∈ K. Instantiations from HSMCL,
DDH and DCR are detailed in Appx. D.

Note that the auxiliary input space E of eH is the output of a CRHF. This
ensures that adversaries – given a ciphertext computed from some e ∈ E and
c0 ∈X – cannot compute a different ciphertext for the same e and c0. Indeed if
it could do so, it needn’t compute the hash values ci for i ∈ [`], since once could
reuse those from the given ciphertext, and thereby break ciphertext integrity.

Setup(1λ, 1`):
1. Sample SM ← GenSM(1λ)
2. Sample h ←↩ H
3. For 1 6 i 6 ` :
4. Sample hki ← hashkg(SM)
5. hpi ← projkg(hki)
6. Sample ehki ← ehashkg(SM)
7. ehpi ← eprojkg(ehki)
8. Return mpk := (hp, ehp, h) and

msk := (hk, ehk)

Enc(mpk,m):
1. If m /∈M return ⊥
2. (skOTS, vk)← OTS.Setup(1λ)
3. e← h(vk)
4. Sample (c0, w)← R
5. For 1 6 i 6 ` :
6. ci ← projhash(hpi, c0, w) · fmi
7. ci ← eprojhash(ehpi, c0, w, e)
8. Set ct := (c0, c, c)
9. σ ← OTS.Sign(skOTS, ct)

10. Return (ct, vk, σ)

KeyDer(msk,k):
1. If k /∈ K return ⊥
2. skk ← <hk,k>a

3. skk ← <ehk,k>2a

4. Return (skk, skk,k)

Dec(mpk, (skk, skk,k), (ct, vk, σ)):
1. If ct /∈ X̂ ×Π2` then return ⊥
2. If OTS.Verif(vk, ct, σ) = 0
3. Then return ⊥
4. e← h(vk)
5. Parse (c0, c, c) = ct
6. If ehash(skk, c0, e) 6=

∏
i∈[`] c

ki
i

7. Then return ⊥
8. M ← (

∏
i∈[`] c

ki
i)hash(skk, c0)

−1

9. If M /∈ F then return ⊥
10. Return sol = logf (M)

Fig. 3: IPFE that is ind-fe-cca-secure from projective hash functions

28

Correctness As Khk = Ra and Kehk = R2a, one has hk ∈ (Ra)`, and ehk ∈
(R2a)`, so <hk,k>a ∈ Ra and <ehk,k>2a ∈ R2a. Next, by correctness of
OTS, ciphertexts output by Enc pass the check on line 2 of Dec. Moreover by
the correctness and key homomorphism of eH:

ehash(skk, c0, e) =
∏
i∈[`]

eprojhash(ehpi, c0, w, e)
ki =

∏
i∈[`]

ckii .

Now correctness follows from that of the ind-fe-cca construction of Section 4.

Theorem 2. Let R be a ring, either Z or Z/qZ for some prime q; `, a ∈ N;
SM := (X̂,X, L̂,W, R) be an instance of a δL-hard SMP; H be the associ-
ated PHF; eH be the resulting EPHF6; H be a family of εh-collision resistant
hash functions; and OTS := (Setup,Sign,Verif) be an εOTS-strongly unforgeable
one time signature scheme. If the pair (H, eH) is (R, a, f,ℵ, `,M,K, Υ̂ , Υ, δL,
δvs, δvu)-aip-safe then, denoting qdec an upper bound on the number of decryp-
tion queries made by the adversary A for ind-fe-cca security, the IPFE scheme
IPFE depicted in Fig. 3 is ind-fe-cca-secure. Precisely: Advind-fe-ccaIPFE,A (λ) 6 δL +

qdec(
ℵ

ℵ−qdec+1 · δvu + εh + εOTS) + δvs.

Remark 12. Before proving Thm. 2, we briefly compare to the results of [BBL17].
For details see Appx. E; for comparisons of concrete instantiations see Sec-
tion 6. They bound the adversary’s advantage7 by δbbl = δL + |∆M|(δvs +
δvu) + qdec|∆M|(εh + εOTS), where |∆M| 6 (4(ℵ2`)

1/2)`. In our work, as qdec 6
poly(λ), whereas ℵ is exponential in λ, this advantage is upper bounded by
δus = δL + (δvs + qdecδvu) + qdec(εh + εOTS).

The term |∆M| appears in [BBL17] because their reduction – from the
ind-fe-cca security of the IPFE to the security properties of the underlying PHFs
– only succeeds if, at the onset of the security experiment, the challenger guesses
the difference between the challenge messages which will be chosen by the adver-
sary. Recall that a (challenge) message has ` coordinates, each of infinite norm

upper bounded by
√
ℵ
2` , (though, as is the case in the DDH example, one may

choose a smaller bound for efficiency reasons). Hence the number of possible
choices for the challenger provides the aforementioned upper bound for ∆M.

Since |∆M| grows exponentially with `, and polynomially with ℵ (which itself
is exponential in λ), they require stronger properties from the underlying PHFs
to compensate for the factor |∆M|.

Let us consider, as an example, an instantiation from DCR attaining 128 bits
of security with ` = 100. Here ℵ is of 2048 bits, and allowing the adversary to
make qdec = 220 queries, one gets |∆M| = 2102200, and δbbl = δL + 2102200(δvs +
δvu)+2102220(εh+εOTS), whereas in this work δus = δL+(δvs+220δvu)+220(εh+
εOTS). We note that even if hashing keys are sampled uniformly, which implies
δvs = 0, our security proof significantly reduces A’s advantage, which allows us
to use smaller keys, and significantly gain in efficiency.
6 As per the generic construction of [CS02], cf. Appx. B
7 To simplify the comparison, we neglect a factor qdec in their favour.

29

To prove Thm 2, we first define valid and invalid decryption queries: valid and
rejected decryption queries reveal negligibly more information on the hash keys
than what an adversary A could gain from projection keys and key derivation
queries (cf. Lemmas 7, 8). On the other hand the probability an invalid query
was not rejected, thereby potentially leaking relevant information, is negligible
(cf. Lemma 9). The analysis of this probability is conditioned on A’s view, and
performed a posteriori, i.e. when A guesses the challenge bit. Hence the notions
of valid and invalid decryption queries can depend on the challenge messages
(even though A may request decryption queries before choosing m0 and m1).

Notation Consider a decryption query (decrypt, (ct, vk, σ),k) performed by A,
where ct = (c0, c, c), and k ∈ K. After the post-challenge phase of Expind-fe-ccaIPFE,A

(cf. Section 2.6), one can categorise the query. It is said to be valid if either (1)
c0 ∈ L̂, or (2) 〈k,m0〉 = 〈k,m1〉 where m0, m1 are the challenge messages.
Any decryption query which is not valid is said to be invalid.

Proof of Thm 2. We proceed via a sequence of games. Game 0 is experiment
Expind-fe-ccaIPFE,A . In Game 2, with overwhelming probability all the information re-
vealed by decryption queries is contained in that revealed by public keys, the
challenge ciphertext and key derivation queries. We then conclude as in the
ind-fe-cpa setting. The evolution of these games is highlighted in Fig. 4, Game
0 is not depicted, as it follows immediately from the security definition. Let Si
denote the event “The output of Game i is 1”.

1. Sample β ←↩ {0, 1} and (mpk,msk)← Setup(1λ, 1`)
2. Send mpk to A and answer pre-challenge phase queries
3. Receive m0, m1 from A

4. Sample (skOTS, vk)←↩ OTS.Setup(1λ) and let e← h(vk)
5. Sample (x0, w)← R and let c0 := x0

6. Sample υ ←↩ (Z/ℵZ)∗ and overwrite c0 ← x0 · Υ υ ∈X\L
7. For 1 6 i 6 ` :
8. ci := hash(hki, c0) · fmβ,i and ci := ehash(ehki, c0, e)

9. Let ct := (c0, c, c) and compute σ ← OTS.Sign(skOTS, ct)
10. Send (ct, vk, σ) to A and answer post-challenge phase queries
11. Receive β′ from A. If (β = β′) return 1, else return 0.

Framed text highlights the evolution from Game 0 to Game 1.

Double framed text is only executed in Game 2.

Fig. 4: Evolution of security games for proof of Theorem 2.

Game 0. The original ind-fe-cca game, so Advind-fe-ccaIPFE,A (λ) = |Pr[S0]− 1/2| .
Game 1. C computes ct using the hash keys instead of the projection keys and
the witness. A’s view remains unchanged: Pr[S0] = Pr[S1].
Game 2. Here C samples c0 at random from X\L instead of L. Both games are
indistinguishable under the δL-hardness of SM, and then |Pr[S1]−Pr[S2]| 6 δL.

30

Let us now bound the probability S2 occurs. When A submits β′, all A’s
queries are valid or invalid, as the post-challenge phase is over. Since A has
finished collecting information, one can analyse A’s probability of guessing β
conditioned on this information; which comes from: (1) the public key mpk; (2)
the challenge ciphertext ct; (3) key derivation queries; (4) decryption queries.
Intuition. We first upper bound the probability any invalid decryption query
was not rejected. Then, assuming all invalid queries were rejected, we demon-
strate that all decryption queries (either valid or rejected) provide no further
information to A than that revealed by projection keys and key derivation
queries. We can then reduce the ind-fe-cca-security of the protocol of Fig. 3
to the ind-fe-cpa-security of the protocol of Fig. 1, only where mpk also contains
ĥp := p̂rojkg(hk).
Bounding the information revealed by decryption queries. We denote the event
an invalid decryption query was not rejected by Bad; and the complement event
by Bad. We further denote by qdec an upper bound on the number of decryption
queries performed by A. From Lemma 9, we have: Pr[Bad] 6 qdec(

ℵ
ℵ−qdec+1δvu+

εh + εOTS).
It holds that Pr[S2] = Pr[S2∧Bad]+Pr[S2∧Bad] 6 Pr[Bad]+Pr[S2∧Bad].

We hereafter bound Pr[S2 ∧Bad]. We thus assume that Bad does not occur.

Claim. |Pr[S2 ∧Bad]− 1/2| 6 δvs.

Proof of claim. From Lemmas 7 and 8, decryption queries which do not cause
Bad to occur provide no further information to A on hk than what it can obtain
from ĥp := p̂rojkg(hk) and key derivation requests. Moreover, the key hk used to
mask the bit β is sampled independently from ehk which has no influence on A’s
view of hk. So to analyse A’s view of β, it suffices to consider the distribution of
hk from A’s view, and given this distribution the information revealed by (c0, c)
on β (we can ignore c for this analysis). It thus suffices to prove the ind-fe-cpa
security of a reduced version of the scheme, identical to that of Fig. 1, only where
mpk also contains ĥp := p̂rojkg(hk) (at a high level, we have proven ciphertext
integrity; we now prove the ciphertext ensures confidentiality).

The only difference between proving the ind-fe-cpa-security of the reduced
scheme and that of Fig. 1 is that A is granted the projection keys in ĥp. This
information is only used when using the δvs-vector smoothness of H, which by
definition holds even given ĥp. Hence |Pr[S2 ∧Bad]− 1/2| 6 δvs; and the claim
holds.

From the above claim, it holds that if Bad does not occur, the bit β is statisti-
cally hidden from A. Combining previous equations concludes proof of Thm 2:
Advind-fe-ccaA 6 δL + qdec(

ℵ
ℵ−qdec+1 · δvu + εh + εOTS) + δvs.

Lemmas 7, 8, 9 for the scheme of Fig. 3 hold for all games in proof of Thm. 2.

Lemma 7. It holds that – in all security games of proof of Thm. 2 – valid
decryption queries performed by A provide no further information on hk or ehk

31

than what can be deduced from the value of the projection keys ĥp := p̂rojkg(hk),
êhp := êprojkg(ehk), and key derivation queries.

Proof. The lemma holds for all security games of proof of Thm. 2 since the
projection keys ĥp and êhp (which fix the value of the scheme’s public keys
hp = projkg(hk) and ehp = eprojkg(ehk)), and the information A can learn
from key derivation requests do not change throughout the games. Consider a
query (decrypt, (ct, vk, σ),k), where ct = (c0, c, c), and k ∈ K. Since the query
is valid one of the following cases apply:
Case (1): c0 ∈ L̂. The Dec algorithm uses ehk on line 6 to compute ehash(<ehk,
k>2a, c0, e), where e = h(vk), and hk on line 8, to compute hash(<hk,k>a, c0).
By correctness of the PHFs, and by the key homomorphism the projective hash
functions it holds that:

hash(<hk,k>a, c0) = ̂projhash(<̂hp,k>a, c0)

and
ehash(<ehk,k>2a, c0, e) = ̂eprojhash(<̂ehp,k>2a, c0, e).

The above values are fixed by k, c0, ĥp and êhp. So information theoretically,
no more information is fixed on hk or ehk.
Case (2): 〈k,m0〉 = 〈k,m1〉 in R, s.t. A can query a key derived from k and
run the decryption algorithm itself.

Lemma 8. In all security games of proof of Thm. 2, decryption queries (decrypt,
(ct, vk, σ),k) which are rejected provide no information on hk.

Proof. Let ct = (c0, c, c) where c0 ∈ X̂, and c, c ∈ Π`. Since Lemma 7 en-
sures valid decryption queries do not leak information, it suffices to consider
invalid decryption queries. If the rejection is due to the OTS verification algo-
rithm, A learns nothing on ehk or hk. Now suppose the rejection is due to
ehash(skk, c0, e) 6=

∏
i∈[`] c

ki
i . Each such rejected decryption request – informa-

tion theoretically – provides A with an inequality on ehk, however hk is sampled
independently from ehk, consequently ehk has no influence on A’s view of hk.
Thus this rejection does not leak any information on hk.

Lemma 9 bounds the probability invalid decryption queries are not rejected.

Lemma 9. Assume OTS is an εOTS-strongly unforgeable one time signature
scheme and H is a family of εh-CRHF. Bad denotes the event that, by the
end of the post-challenge phase, A has performed an invalid query of the form
(decrypt, (ct′, vk′, σ′), k′) to which C does not answer ⊥. Denoting qdec an upper
bound on the number of decryption queries performed by A it holds that:

Pr[Bad] 6 qdec(
ℵ

ℵ − qdec + 1
· δvu + εh + εOTS).

Proof. First observe the probability Bad occurs is the conditional probability A

produces an invalid ciphertext which does not cause the decryption algorithm to

32

return ⊥, given A’s view. Furthermore, only the challenge ciphertext ct differs
between games 0, 1 and 2. In games 0 and 1, since it is computed from c0 ∈ L,
it leaks no further information on the hashing keys than that revealed by the
public projection keys. We thus bound the probability Bad occurs in game 2,
since this is the scenario where A has the most information on the hashing keys.

The proof proceeds in two steps. (1) We first use the vector universality of
eH to bound the probability the event Bad occurs for qdec = 1, i.e. the proba-
bility that A’s first invalid decryption query is not rejected by the decryption
oracle. (2) Next we take into account the information leaked by the rejection of
such decryption queries. This allows us to bound the probability the event Bad
occurs after qdec decryption queries, for qdec > 1.
Since hk is sampled independently from ehk, and has no influence on the lat-
ters’ value, it suffices to consider the distribution of ehk from A’s view, and in
this proof, we ignore that of hk. Moreover the value of the public key ehp :=

eprojkg(ehk) is fixed by that of projection keys êhp := êprojkg(ehk). We consider
A’s success probability given êhp, which is at least that given ehp.
Let M ∈ ∆M be a random variable (A’s possible choices for m0 −m1); and
BM ∈ R`×` be the associated matrix. The current analysis is performed à pos-
teriori, which implies m0 and m1 are fixed, so denoting m := (m1 −m0) ∈ R`

we condition A’s success probability on M =m.
Step 1. Before its first invalid decryption query, A has access to:

1. the vector ehp, whose value is fixed by that of êhp;
2. the challenge ciphertext, which fixes c0 ∈ X\L, e = h(vk) ∈ E; and the

evaluation ci = ehash(ehki, c0, e) for i ∈ [`];
3. key derivation queries. Any query k ∈ K is a linear combination of the top

rows b1, . . . , b`−1 of Bm. Thus, for fixed vj ∈ R2a, j ∈ [`−1], the information
leaked via key derivation queries on ehk is upper bounded by the information
given by equalities: <ehk, bj>2a = vj .

4. valid decryption queries, which reveal no more information than the value
êhp and key derivation queries (cf. Lemma 7);

Now consider query (decrypt, (ct′, vk′, σ′),k′), where (c′0, c
′, c′) := ct′ and e′ :=

h(vk′). Assume this is A’s first invalid decryption query. As such it satisfies (1)
c′0 ∈ X̂\L̂ and (2) k′ /∈ m⊥. Now if we let π :=

∏
i∈[`](c

′
i)
k′i we can apply the

δvu-vector-universality of eH, which ensures that as long as (c0, e) 6= (c′0, e
′), the

probability (conditioned on A’s view) that this first invalid decryption query
satisfies Dec(mpk,KeyDer (msk,k′), (ct′, vk′, σ′)) 6= ⊥ is upper bounded by δvu.

Let us now bound the probability that (c0, e) = (c′0, e
′). SinceA cannot query

the challenge ciphertext to the decryption oracle, it must hold that (ct′, vk′, σ′) 6=
(ct, vk, σ). We consider three cases: (1) vk′ = vk and (e = e′ mod ℵ) but
(ct, σ) 6= (ct′, σ′). In this case, either OTS.Verif(vk, ct′, σ′) = 0 and the ora-
cle rejects, or OTS.Verif(vk, ct′, σ′) = 1, s.t. A has forged a signature for ct′
with verification key vk, thus breaking the unforgeability of OTS. This occurs
with probability 6 εOTS; (2) vk′ 6= vk but (e = e′ mod ℵ). In this case we have
found a collision for h. This occurs with probability 6 εh; (3) vk′ 6= vk and e 6= e′

33

mod ℵ, in which case (c0, e) 6= (c′0, e
′), and as proved above, A has probability

6 δvu that the oracle does not reject.
Thus the probability this first invalid decryption query (decrypt, (ct′, vk′, σ′),

k′) is not rejected is upper bounded by δvu+εh+εOTS. It now remains to consider
the information revealed by each rejected invalid decryption query.

Step 2: Rejected invalid decryption queries Consider an invalid query (decrypt,

(ct′, vk′, σ′),k′) which is rejected. Let (c′0, c
′, c′) := ct′ and π′ :=

∏
i∈[`] c

′k′i
i . If

the rejection is due to the OTS verification algorithm, A learns nothing about
ehk. Now suppose the rejection is due to ehash(<ehk,k′>2a, c

′
0, e
′) 6= π′. Since

c′0 /∈ L̂, and eH is (Υ̂ , Υ, F)-decomposable, there exist unique x′ ∈ L̂ and y′ ∈ 〈Υ̂ 〉
such that c′0 = x′ · y′. Let us parse (hk0,hk1) := ehk, where hk0,hk1 ∈ Khk. By
the homomorphic properties of H, and the generic construction for eH from H
we can write:

ehash(<ehk,k′>2a, c
′
0, e
′) = hash(<hk0,k

′>a, x
′)hash(<hk0,k

′>a, y
′)

·
(
hash(<hk1,k

′>a, x
′)hash(<hk1,k

′>a, y
′)
)Γ (c′0,e

′)

where information theoretically, the value of hash(<hk0,k′>a, x
′) · hash(<hk1,

k′>a, x
′))Γ (c′0,e

′) is already fixed by the projection keys and c′0. Consequently,
the information revealed by the rejection of this query amounts to ruling out
one possible value for hash(<hk0,k′>a, y

′) · (hash(<hk1,k′>a, y
′))Γ (c′0,e

′) ∈ F ,
and thereby a proportion 1/ℵ of the possible values for <ehk,k′>2a mod ℵ.

Thus the probability that A’s ith invalid query is not answered by ⊥ is upper
bounded by (ℵ

ℵ−(i+1) ·δvu+ εh+ εOTS). This allows us to conclude that, after qdec
decryption queries, the probability the event Bad occurs is upper bounded by:

Pr[Bad] 6 qdec(
ℵ

ℵ − qdec + 1
· δvu + εh + εOTS).

6 Efficiency

Instantiation from DDH.We instantiate our generic construction with HDDH of
running example 2. The detailed scheme can be found in Appx D, Figure 6. The
drawback of all IPFE constructions based on DDH is the necessary limitation
on the size of the message and key spaces, to compute efficiently the discrete
logarithm of g〈m,k〉 during decryption. Concretely, in our implementation we
allow ourselves to spend less than one second on that operation, which imposes
that this DL value, 〈m,k〉, must be less than 34 bits. In particular, in dimension
` = 100,m and k must have less than 14 bits per coordinates, which may be not
sufficient for many applications. In this case, one should consider instantiations
from HSMCL or DCR, where this limitation disappears and decryption takes less
than a second, as we shall see. Nevertheless, our instantiation improves over the
DDH scheme of [BBL17] as indicated by Table 1 in the introduction. Thanks to
our proof strategy, independent of the choice of the plaintext by the adversary,

34

we improve a term qdecq
−ν |∆M| by qdec(q−qdec+1)−1 in the security reduction.

As a result, our construction only requires one instance of the EPHF eHDDH

while [BBL17] needs ν of them, where ν > 1/2 + log2(qdec|∆M|)/(2λ). Taking,
qdec = 220 and using the restricted message space mentioned above, this gives
ν = 8 (resp. ν = 7) for λ = 112 (resp. λ = 128).

We will see that for an instantiation based on DCR, where the message space
is less restricted, our gains are of higher orders of magnitude.
Instantiations from DCR and HSMCL. We consider an instantiation of our
generic construction with eHCL of running example 1 (cf. Appx. D, Figure 5
for the detailed scheme). We also consider an instantiation based on DCR: the
details on the constructions of the PHFs based on DCR are not given in the main
body of the paper as they are similar to that from HSMCL, and again we refer
the interested reader to Appx. D for details. In both constructions, we can take
large message spaces compared to the DDH instantiation. As a result, our proof
strategy now leads to huge gains on the instantiation of [BBL17] based on DCR.
Again, in Theorem 35, they have a term of the form qdec2

−ν |∆M| in the security
reduction and set ν > λ + log2(2qdec|∆M|) (in practice ν > 5000). As shown
in Table 1, in the introduction, this deeply impacts the performance of Setup,
Enc and key sizes: the number of components of the mpk and msk are linear in
` in our work, but quadratic in [BBL17]. Besides, each component of their msk
is sampled with a uniform distribution bounded by ≈ B`+1N2 where B is s.t.
||m||∞ ≤ B and N is the RSA modulus used for DCR. As a result, for large
B, the size of each component increases rapidly with ` compared to our work,
where each component is sampled from a Gausssian discrete distribution DZ,σ

where σ ≈ BN2
√
` (cf. Remark 13).

C implementation and comparison. To fairly compare our instantiations
with the ones of [BBL17], we have implemented in C all the schemes on DDH,
DCR and HSMCL. All our programs use the Pari C library [PAR20], for arithmetic
in elliptic curves, class groups and Z/NZ, and the DGS library [AW18] for
Discrete Gaussian sampling. To provide a fair comparison, for all the groups, we
used the basic exponentiation function without further optimisations. Moreover,
our implementation does not use parallelism: timings were performed on a single
core of an Intel(R) Core(TM) i7-7700 @ 3.60GHz. We omit the cost due to the
OTS scheme and CRHF (they appear in all schemes with equal cost).

We summarize our running tests in Tab. 2 for DDH and Tab. 3 for DCR and
HSMCL. For a security level of λ = 112 (resp. 128), we use the NIST P−224
elliptic curve (resp. NIST P−256 curve) for DDH, a 2048 (resp. 3072) bits RSA
modulus for DCR and a 1348 (resp. 1827) bits fundamental discriminant for
HSMCL as suggested in [CCL+19]. We use a dimension of ` = 100 for all schemes.

For the schemes on DDH, we use the bound suggested above: ||m||∞, ||k||∞ ≤
B := 214. Using the Baby-step Giant-step method to compute the final discrete
logarithm during decryption, with a 5.6MB table to store the baby steps, our
implementation performs this operation in less than a second. Overall, with our
implementation compared to [BBL17], we gain a factor 5 on keys sizes, costs

35

of key generation and encryption; and a factor 4 on the size of the ciphertexts
(cf Tab. 2).

λ = 112, ` = 100 λ = 128, ` = 100

This work [BBL17] This work [BBL17]

DDH DDH DDH DDH

ν − 8 − 7

group elt. 225b 225b 257b 257b
mpk 8.4kB 42.2kB 9.6kB 48.2kB
msk 16.8kB 84kB 19.2kB 96kB
(skk, skk) 168B 840B 192B 960B
ciphertext 5.7kB 22.5kB 6.5kB 25.7kB

Setup 276ms 1562ms 302ms 1455ms
Enc 141ms 781ms 149ms 738ms
Dec 668ms 740ms 740ms 776ms

Table 2: Our IPFE from DDH vs. the DDH scheme of [BBL17]

As usual with elliptic curve cryptography, the schemes are compact, while
exponentiation is an order of magnitude faster than in factoring based solutions.
However, these advantages weigh little against the small size of the message
space, and the prohibitive cost of decryption. Conversely, for HSMCL and DCR,
one can use larger message spaces. For all schemes based on these assumptions,
we use the same message bound, B =

√
2λ−2/` (maximum for HSMCL) to allow

for a fair comparison. In practice, this is large enough to perform computations
with double or quadruple precision. Timings for Setup do not measure the time
to generate the global parameters (N and quadratic discriminant, in practice
the latter has cheaper generating cost).

As expected, compared to DDH implementations, decryption is efficient,
thanks to a subgroup with an easy DL. Our DCR and HSMCL instantiations
yield very efficient schemes and scale well, as they are linear in `. As usual with
class groups, the HSMCL instantiation has smaller ciphertexts and keys than the
DCR one, while having larger timings but of the same order of magnitude. Note
that at the 192 security level, the HSMCL instantiation becomes faster for Setup
and Enc. To reduce further the size of class groups elements, we use the elegant
compression technique recently introduced in [DGS20]. As discussed above, our
schemes dramatically improve the DCR instantiation of [BBL17], in all aspects,
by several orders of magnitude.

36

λ = 112, ` = 100 λ = 128, ` = 100

This work [BBL17] This work [BBL17]

HSMCL DCR DCR HSMCL DCR DCR

ν − − 5 533 − − 6 349

group elt. 1 179b 4 096b 4 096b 1 563b 6 144b 6 144b
mpk 44.2kB 153kB 566MB 56.6kB 230kB 975MB
msk 31.6kB 155kB 1.3GB 41.5kB 233kB 2GB
(skk, skk) 0.3kB 1.5kB 13.4MB 0.4kB 2.3kB 19.9MB
ciphertext 30kB 103kB 283MB 39kB 154kB 488MB

Setup 9.7s 4.8s ≈ 11h 17.3s 14.2s ≈ 34h
Enc 5.2s 1.6s 1h20min 9.7s 4.9s 4h40min
Dec 0.5s 0.08s 5min43s 0.8s 0.19s 16min28s

Table 3: Our IPFE from HSMCL & DCR vs. the DCR scheme of [BBL17]

7 Conclusion and open problems

We provide the first ind-fe-cca-security proof for IPFE built from PHF for which
reduction tightness does not degrade with the size of the message space, and show
that the resulting schemes are practical, even for large inner product values.

The problem of building ind-fe-cca-secure FE computing inner products mod-
ulo a prime remains open. In previous ind-fe-cpa work [ALS16, CLT18], such con-
structions require a stateful key generation to prevent adversaries from learning a
combination of the master key components which is singular mod p but invertible
over Z (thus revealing msk). For ind-fe-cca security, KeyGen is also executed for
decryption queries. This results in various complications: should key derivation
queries and decryption queries maintain independent states? which decryption
queries result in a leakage of information (and should thereby be rejected)? Such
an extension is non-trivial, and deserves an independent study.

The next step to strengthen security is simulation based security. Agrawal et
al. showed in [ALMT20] that (variants of) the schemes in [ALS16] are adaptively
secure in the simulation based security model. One can extract from their proof
methodology new properties for PHFs which are sufficient for our constructions
to attain simulation based security against passive adversaries. We note however
that their proof technique does not go through for an instantiation from HSMCL,
since it requires computing a non zero multiple of the unknown order s of Gp.

Acknowledgements. This work was supported by the French ANR SAN-
GRIA project (ANR-21-CE39-0006). It has also received funding in part from
the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program under project PICOCRYPT (grant agree-
ment No. 101001283), by the Spanish Government under projects SCUM (ref.
RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-103816), and SECURI-

37

TAS (ref. RED2018-102321-T), and by the Madrid Regional Government under
project BLOQUES (ref. S2018/TCS-4339).

References

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional
encryption schemes for inner products. In PKC 2015, LNCS 9020, pages 733–
751. Springer, Heidelberg, March / April 2015.

ABG19. M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client
inner-product functional encryption. In ASIACRYPT 2019, Part III, LNCS
11923, pages 552–582. Springer, Heidelberg, December 2019.

ABP+17. S. Agrawal, S. Bhattacherjee, D. H. Phan, D. Stehlé, and S. Yamada. Effi-
cient public trace and revoke from standard assumptions: Extended abstract.
In ACM CCS 2017, pages 2277–2293. ACM Press, October / November 2017.

ALMT20. S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security
for inner product functional encryption. In PKC 2020, Part I, LNCS 12110,
pages 34–64. Springer, Heidelberg, May 2020.

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for
inner products, from standard assumptions. In CRYPTO 2016, Part III,
LNCS 9816, pages 333–362. Springer, Heidelberg, August 2016.

AW18. M. R. Albrecht and M. Walter. dgs, Discrete Gaussians over the Integers.
Available at https://bitbucket.org/malb/dgs, 2018.

BBL17. F. Benhamouda, F. Bourse, and H. Lipmaa. CCA-secure inner-product func-
tional encryption from projective hash functions. In PKC 2017, Part II, LNCS
10175, pages 36–66. Springer, Heidelberg, March 2017.

BH01. J. Buchmann and S. Hamdy. A survey on IQ cryptography. In Public Key
Cryptography and Computational Number Theory, pages 1–15. De Gruyter
Proceedings in Mathematics, 2001.

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and
challenges. In TCC 2011, LNCS 6597, pages 253–273. Springer, Heidelberg,
March 2011.

CCL+19. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker.
Two-party ECDSA from hash proof systems and efficient instantiations. In
CRYPTO 2019, Part III, LNCS 11694, pages 191–221. Springer, Heidelberg,
August 2019.

CDG+18. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval.
Decentralized multi-client functional encryption for inner product. In ASI-
ACRYPT 2018, Part II, LNCS 11273, pages 703–732. Springer, Heidelberg,
December 2018.

CL15. G. Castagnos and F. Laguillaumie. Linearly homomorphic encryption from
DDH. In CT-RSA 2015, LNCS 9048, pages 487–505. Springer, Heidelberg,
April 2015.

CLT18. G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unre-
stricted inner product functional encryption modulo p. In ASIACRYPT 2018,
Part II, LNCS 11273, pages 733–764. Springer, Heidelberg, December 2018.

CS02. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT 2002, LNCS
2332, pages 45–64. Springer, Heidelberg, April / May 2002.

38

https://bitbucket.org/malb/dgs

DGS20. S. Dobson, S. D. Galbraith, and B. Smith. Trustless groups of unknown order
with hyperelliptic curves. Cryptology ePrint Archive, Report 2020/196, 2020.
https://eprint.iacr.org/2020/196.

DOT18. P. Datta, T. Okamoto, and J. Tomida. Full-hiding (unbounded) multi-
input inner product functional encryption from the k-Linear assumption. In
PKC 2018, Part II, LNCS 10770, pages 245–277. Springer, Heidelberg, March
2018.

DPP20. X. T. Do, D. H. Phan, and D. Pointcheval. Traceable inner product func-
tional encryption. In CT-RSA 2020, LNCS 12006, pages 564–585. Springer,
Heidelberg, February 2020.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In 40th ACM STOC, pages 197–206.
ACM Press, May 2008.

HO09. B. Hemenway and R. Ostrovsky. Lossy trapdoor functions from smooth ho-
momorphic hash proof systems. In Electronic Colloquium on Computational
Complexity, Report, pages 09–127, 2009.

KSW08. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In EUROCRYPT 2008,
LNCS 4965, pages 146–162. Springer, Heidelberg, April 2008.

Lag80. J. Lagarias. Worst-case complexity bounds for algorithms in the theory of
integral quadratic forms. Journal of Algorithms, 1(2):142 – 186, 1980.

MR07. D. Micciancio and O. Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

NP15. M. Nandi and T. Pandit. Generic conversions from cpa to cca secure functional
encryption. Cryptology ePrint Archive, Report 2015/457, 2015. https://
eprint.iacr.org/2015/457.

O’N10. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556.

PAR20. PARI Group, Univ. Bordeaux. PARI/GP version 2.11.4, 2020. available
from http://pari.math.u-bordeaux.fr/.

SW05. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In EURO-
CRYPT 2005, LNCS 3494, pages 457–473. Springer, Heidelberg, May 2005.

ZMY17. S. Zhang, Y. Mu, and G. Yang. Achieving ind-cca security for functional
encryption for inner products. In Information Security and Cryptology, pages
119–139, Cham, 2017. Springer International Publishing.

39

https://eprint.iacr.org/2020/196
https://eprint.iacr.org/2015/457
https://eprint.iacr.org/2015/457
http://eprint.iacr.org/2010/556
http://pari.math.u-bordeaux.fr/

A Backgound on lattices.

We here recall some definitions and basic results about Gaussian distributions.
We use these in our security proofs to evaluate the distribution of an inner
product when one of the two vectors follows a Gaussian distribution. We also
recall an important result from [GPV08]. This explains the conditions for a
Gaussian distribution over a lattice which is reduced modulo a sublattice to be
close to a uniform distribution, another crucial point of our proofs.

Definition 20 (Gaussian Function). For any σ > 0 define the Gaussian
function on R` centred at c with parameter σ:

∀x ∈ R`, ρσ,c(x) = exp(−π||x− c||2/σ2).

If σ = 1 (resp. c = 0), then the subscript σ (resp. c) is omitted.

Definition 21 (Discrete Gaussians). For any c ∈ R`, real σ > 0, and `-
dimensional lattice Λ, define the discrete Gaussian distribution over Λ as:

∀x ∈ Λ, DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ),

where ρσ,c(Λ) =
∑
x∈Λ ρσ,c(x).

The following lemma allows to evaluate the distribution of the inner product
resulting from a constant vector x, and a vector with coordinates sampled from
a Gaussian distribution over the lattice x · Z. Proof of Lemma 10 can be found
in [CLT18, Aux. Material I].

Lemma 10. Let x ∈ R` with x 6= 0, c ∈ R`, σ ∈ R with σ > 0. Let V be a
random variable distributed according to Dx·Z,σ,c. Then the random variable S
defined as S = 〈x, V 〉 is distributed according to D||x||22·Z,σ·||x||2,〈c,x〉.

Lemma 11 ([GPV08]). Let Λ′0 ⊂ Λ0 ⊂ R` be two lattices with the same
dimension. Let ε ∈ (0, 1/2). Then for any c ∈ R` and any σ > ηε(Λ

′
0), the

distribution DΛ0,σ,c mod Λ′0 is within statistical distance 2ε from the uniform
distribution over Λ0/Λ

′
0. The value ηε(Λ′0) is the smoothing parameter of the

lattice Λ′0, as defined in [MR07].

B Generic construction for building extended projective
hash functions

Let SM := (X̂,X, L̂,W,R) be an SMP; let H := (hashkg, p̂rojkg, projkg, hash,
̂projhash, projhash) be the associated PHF; let p̃ be the smallest prime dividing
|X̂/L̂|; and let Γ : X̂×E 7→ {0, . . . , p̃−1} be sampled from a family of δΓ -crhf.
Cramer and Shoup, in [CS02, Sec. 7.2] provide a generic construction to build
an extended projective hash function eH from H and Γ as follows:

- ehashkg(SM): Run hk0 ←↩ hashkg(SM); hk1 ←↩ hashkg(SM).
Output ehk := (hk0, hk1), such that Kehk = K2

hk.

40

- ehash(ehk, x, e): Parse (hk0, hk1) = ehk; compute γ := Γ (x, e).
Output hash(hk0, x) · hash(hk1, x)γ , such that Σ = Π.

- êprojkg(ehk): Parse (hk0, hk1) = ehk, compute ĥp0 := p̂rojkg(hk0); ĥp1 :=

p̂rojkg(hk1). Output êhp := (ĥp0, ĥp1), such that K
êhp

= K2
ĥp
.

- eprojkg(ehk): Parse (hk0, hk1) = ehk, compute hp0 := projkg(hk0); hp1 :=
projkg(hk1). Output ehp := (hp0, hp1), such that Kehp = K2

hp.
- ̂eprojhash(êhp, x̂, e): Parse (ĥp0, ĥp1) = êhp. Compute γ := Γ (x̂, e). Output

̂projhash(ĥp0, x̂) · ̂projhash(ĥp1, x̂)γ .
- eprojhash(ehp, x, w, e): Parse (hp0, hp1) = ehp. Compute γ := Γ (x, e). Output
projhash(hp0, x, w) · projhash(hp1, x, w)γ .

C Proof of Lemma 1

Lemma 1. Let R be either the ring Z or Z/qZ for some prime q; ` and a be
positive integers; and consider an (R, a, f,ℵ, `,M,K)-ipfe-compatible projective
hash function H, where ℵ is either prime or hard to factor. From any m ∈
{x0 − x1 | x0 6= x1 ∈ M} one can efficiently and deterministically construct a
matrix Bm ∈ R`×` associated to m.

Proof. If R = Z/qZ then by Def. 13, q = ℵ is prime. Given m one deter-
ministically generates a Z/ℵZ-basis (b1, . . . , b`−1) ∈ (Z/ℵZ)(`−1)×` of m⊥. Let
b` ∈ (Z/ℵZ)` be a vector outside the subspace m⊥, also chosen in a determin-
istic manner. The resulting matrix B ∈ (Z/ℵZ)`×` whose rows are the vectors
b1, . . . , b` is invertible modulo ℵ.

If R = Z then first observe that by Def. 13, one has logf (f 〈x,y〉) = 〈x,y〉 for
any x ∈M, y ∈ K. Since f is of order ℵ, this implies that vectors in M (resp K)

are of bounded norm, i.e. M and K are subsets of {x ∈ Z` : ||x||∞ <
√
ℵ
2`}.

Now w.l.o.g., assume the n0 first coordinates of m ∈ Z` are zero (for some
n0), and all remaining entries are non-zero. The rows b1, . . . , b`−1 ∈ Z` of the
following matrix form a basis of m⊥:

Btop =

In0

−mn0+2 mn0+1

−mn0+3 mn0+2

.
−m` m`−1

 ∈ R(`−1)×`.

Letting b` :=m, the matrix B ∈ R`×` whose rows are the vectors (b1, . . . , b`) is
invertible mod ℵ. If ℵ is prime, from the norm bounds this is always true [CLT18].
If ℵ is composite, either B is invertible in Z/ℵZ otherwise its determinant reveals
a non trivial factor of ℵ [ALS16, CLT18].

D Instantiations of our ind-fe-cca-secure IPFE

Example 1 – HSMCL . Instantiating the IPFE of Fig. 3 with HCL yields the
IPFE scheme depicted in Fig. 5.

41

Setting the parameters We use the output (s̃, f, gp, Ĝ, F) of the GenGroup gener-
ator of Def. 4 and require that p is a µ bit prime, with µ > λ. The message and
key spaces are M = K = {x ∈ Z` : ||x||∞ <

√
p
2`}. The decryption algorithm

uses a centred modulus to recover 〈k,m〉 over Z.
To guarantee the scheme’s security we sample the coordinates of the secret

key from DZ,σ, i.e. discrete Gaussian entries of standard deviation σ > s̃p3/2
√
λ,

which yields δvs = 2−λ and δvu = 1/p + δΓ + 2−λ (cf. Lemmas 3 and 5). To
sample encryption randomness (i.e. witnesses for HCL), it suffices to use DZ,σ′ for
σ′ > s̃

√
λ, since {grp, r ←↩ DZ,σ′} is at distance less than 2−λ from the uniform

distribution in Gp (cf. Remark 1).
We also use two families of CRHF HĜ and H, such that h ←↩ HĜ(1

λ) maps
{0, 1}∗ to Ĝ; and Γ ←↩ H(1λ)maps Ĝ2 to {0, . . . , p−1}. Finally we use a strongly
unforgeable OTS scheme OTS := (OTS.Setup,OTS.Sign,OTS.Verif).

Corollary 1 (of Thm. 2). If the HSMCL problem is hard, the IPFE scheme
of Fig. 5 is ind-fe-cca-secure.

Setup(1λ, 1µ, 1`):
1. Sample a µ bit prime p
2. paramsCL ← GenGroup(1λ, p)
3. h ←↩ HĜ(1

λ); Γ ←↩ H(1λ)
4. For 1 6 i 6 ` :
5. Sample hki, ehk0,i, ehk1,i ←↩ DZ,σ

6. Let hpi ← ghkip

7. Let (ehp0,i, ehp1,i)← (g
ehk0,i
p , g

ehk1,i
p)

8. Return msk := (hk, ehk0, ehk1) and
mpk := (paramsCL, p, hp, ehp0, ehp1, h, Γ, params)

Enc(mpk,m)
1. If m /∈M, return ⊥
2. (vk, skOTS)← OTS.Setup(1λ);
3. e← h(vk)
4. Sample r ←↩ DZ,σ′ ; set c0 ← grp
5. γ ← Γ (c0, e)
6. For 1 6 i 6 ` :
7. ci ← fmihpri
8. ci ← (ehp0,iehp

γ
1,i)

r

9. Let ct := (c0, c, c);
10. σ ← OTS.Sign(skOTS, ct)
11. Return (ct, vk, σ)

KeyDer(msk,k)
1. If k /∈ K, return ⊥
2. skk ← 〈k, hk〉
3. sk0 ← 〈k, ehk0〉;
4. sk1 ← 〈k, ehk1〉
5. Return (skk, sk0, sk1,k)

Dec(mpk, (skk, sk0, sk1,k), (ct, vk, σ))

1. If ct /∈ Ĝ2`+1, return ⊥
2. If OTS.Verif(vk, ct, σ) = 0, return ⊥
3. e← h(vk); γ ← Γ (c0, e)

4. If csk0+γsk10 6=
∏
i∈[`] c

ki
i , return ⊥

5. M ← (
∏
i∈[`] c

ki
i) · (c−skk0)

6. If M /∈ F , return ⊥
7. sol← Solve(M)
8. If sol > p/2, return (sol− p)
9. Else return sol

Fig. 5: ind-fe-cca-secure IPFE from the HSMCL assumption.

Example 2 – DDH. Instantiating the IPFE of Fig. 3 with HDDH yields the IPFE
scheme depicted in Fig. 6.

42

Setting the parameters We use the output (G, g, q) of the GenDDH generator of
Def. 5, and consider generators g0, g1 ←↩ G. We also use two CRHF generators
HG and H, such that h ←↩ HG(1

λ) maps {0, 1}∗ to G; and Γ ←↩ H(1λ) maps
G3 to {0, . . . , q − 1}. Finally we use a strongly unforgeable one time signature
scheme OTS := (OTS.Setup,OTS.Sign,OTS.Verif).

The message and key spaces are subsets of (Z/qZ)`. The decryption algorithm
recovers 〈k,m〉 over Z/qZ if it is sufficiently small for the discrete logarithm of
g〈k,m〉 to be efficient. Hashing key coordinates are sampled from U(Z/qZ), as is
the encryption randomness.

Corollary 2 (of Thm. 2). If the DDH problem is hard, the IPFE scheme of
Fig. 6 is ind-fe-cca-secure.

Setup(1λ, 1`):
1. (G, g, q)← GenDDH(1

λ)
2. g0, g1 ←↩ G
3. h ←↩ HG(1

λ); Γ ←↩ H(1λ)
4. For 1 6 i 6 ` :
5. (κ0,i, κ1,i, κ2,i, κ3,i, κ4,i, κ5,i) ←↩

(Z/qZ)6

6. hpi ← g
κ0,i

0 g
κ1,i

1

7. ehp0,i ← g
κ2,i

0 g
κ3,i
1 , ehp1,i ← g

κ4,i
0 g

κ5,i

1

8. Return msk := (κ0,κ1,κ2,κ3,κ4,κ5)
mpk := (G, q, g, g0, g1,

hp, ehp0, ehp1, h, Γ, params)

KeyDer(msk,k)
1. If k /∈ K, return ⊥
2. (sk0, sk1)← (〈k,κ0〉, 〈k,κ1〉) ∈ Z/qZ
3. For 2 6 µ 6 5, let skµ ← 〈k,κµ〉 ∈ Z/qZ
4. skk := (sk0, sk1);
5. skk := (sk2, sk3, sk4, sk5)
6. Return (skk, skk,k)

Enc(mpk,m)
1. If m /∈M, return ⊥
2. (vk, skOTS)← OTS.Setup(1λ)
3. e← h(vk)
4. r ←↩ Z/qZ
5. Let c0 ← (gr0 , g

r
1)

6. γ ← Γ (x0, x1, e)
7. For 1 6 i 6 ` :
8. ci ← gmihpri
9. ci ← (ehp0,iehp

γ
1,i)

r

10. Let ct := (c0, c, c)
11. σ ← OTS.Sign(skOTS, ct)
12. Return (ct, vk, σ)

Dec(mpk, (skk, skk,k), (ct, vk, σ))
1. If ct /∈ G2`+2,
2. return ⊥
3. If OTS.Verif(vk, ct, σ) = 0,
4. return ⊥
5. e← h(vk); γ ← Γ (x0, x1, e)

6. If xsk2+γsk40 xsk3+γsk51 6=
∏
i∈[`] c

ki
i

7. Then return ⊥
8. M ← (

∏
i∈[`] c

ki
i) · (x−sk0

0 x−sk1
1)

9. Return logg(M)

Fig. 6: ind-fe-cca-secure IPFE scheme from the DDH assumption.

Example 3 – DCR. Let N = pq be a product of two safe primes p = 2p′+1 and
q = 2q′+1, where p′ and q′ are sufficiently large primes p′, q′ > 2l(λ). Here λ is the
security parameter and l is some polynomial (such that factoring is 2λ-hard).
a function of κ. Let N ′ = p′q′; the order of the group (Z/NZ)∗ of invertible
elements in Z/NZ is 4N ′. One can write (Z/N2Z)∗ ' GN ×GN ′×G2×T where

43

' denotes group isomorphism, × is the Cartesian product, Gi are cyclic groups
of order i, and T is the order-2 cyclic group generated by −1 mod N2.

We denote g a random generator of GN ′ ; g can be thought of as a random
2N -th residue. It further holds that (1 +N) is a generator for GN .

One can define a subset membership problem from the DCR assumption as
SMDCR := (X̂ ' GN ×GN ′ × T,X ' GN ×GN ′ , L̂ ' GN ′ × T,W = Z,RDCR),
where RDCR := {(x,w) ∈ (GN ′ × Z) | x = gw}.

The associated PHF, denoted HDCR very much resembles that from HSMCL,
only hashing keys are sampled uniformly from DZ`,σ, with discrete Gaussian
entries of standard deviation σ >

√
λN5/2.

Compatibility HDCR is (Z, 1, 1+N,N, `,M,K)-ipfe-compatible, where M = K ⊆
{x ∈ Z` : ||x||∞ <

√
N
2`}. We denote Mm the upper bound on the infinite norm

of message vectors (for simplicity we assume the same bound for vectors in K).

For correctness, Mm <
√

N
2` , however one may chose a smaller bound according

to one’s needs in order to improve the schemes efficiency (cf. Remark 13). The
projective hash family HDCR is also (1 +N,GN)-decomposable.

Security Lemma 12, whose proof follows from that of [ALS16, Thm. 5] states
sufficient conditions for HDCR to be vector smooth.

Lemma 12. If hashkg samples hk ←↩ DZ`,σ with discrete Gaussian entries of
standard deviation σ >

√
λN5/2 then HDCR is δvs-vector smooth over GN ×GN ′

on GN , with δvs = 2−λ.

Lemma 13, whose proof follows from that of Lemma 5, [ALS16, Thm. 5], and
[CS02, Thm. 3] states sufficient conditions for HDCR to be vector universal.

Lemma 13. Let spf(N) denote the smallest prime factor of N . If algorithm
ehashkg of eHDCR samples the vectors of hashing keys from DZ`,σ with discrete
Gaussian entries of standard deviation σ >

√
λN5/2, and Γ : Ĝ2 7→ {0, . . . , N −

1} is sampled from a family of δΓ -collision resistant hash functions, then eHDCR

is δvu-vector universal, where δvu = 1/spf(N) + δΓ + 2−λ.

We also use two families of CRHF HDCR and H, and a strongly unforgeable
OTS scheme OTS := (OTS.Setup,OTS.Sign,OTS.Verif).

Remark 13. As was the case for HCL, the choice of σ depends on the message
space. In particular, denoting B an upper bound for the infinite norm of message
vectors in M, it holds that for any m ∈ ∆M, ||m||2 ≤ 2B

√
`. One should then

set σ > 2BN2
√
`λ.

E Comparing our PHF properties to those of [BBL17]

44

Setup(1λ, 1`,Mm):
1. Sample l(λ)-bit safe primes p and q;

set N ← pq;
2. Sample u←↩ U(Z/N2Z);
3. Let g ← u2N ;
4. Let σ ←

√
λN5/2;

5. h ←↩ HDCR(1
λ); Γ ←↩ H(1λ)

6. For 1 6 i 6 ` :
7. Sample hki, ehk0,i, ehk1,i ←↩ DZ,σ

8. Let hpi ← ghki

9. Let (ehp0,i, ehp1,i)← (gehk0,i , gehk1,i)
10. Return msk := (hk, ehk0, ehk1) and

mpk := (N, g, hp, ehp0, ehp1, h, Γ,Mm)

Enc(mpk,m)
1. If m /∈M, return ⊥
2. (vk, skOTS)← OTS.Setup(1λ);
3. e← h(vk)
4. Sample r ←↩ {0, . . . , bN/4c};
5. Set c0 ← gr

6. γ ← Γ (c0, e)
7. For 1 6 i 6 ` :
8. ci ← (1 +N)mihpri
9. ci ← (ehp0,iehp

γ
1,i)

r

10. Let ct := (c0, c, c);
11. σ ← OTS.Sign(skOTS, ct)
12. Return (ct, vk, σ)

KeyDer(msk,k)
1. If k /∈ K, return ⊥
2. skk ← 〈k, hk〉
3. sk0 ← 〈k, ehk0〉;
4. sk1 ← 〈k, ehk1〉
5. Return (skk, sk0, sk1,k)

Dec(mpk, (skk, sk0, sk1,k), (ct, vk, σ))

1. If ct /∈ X̂2`+1,
2. return ⊥
3. If OTS.Verif(vk, ct, σ) = 0,
4. return ⊥
5. e← h(vk); γ ← Γ (c0, e)

6. If csk0+γsk10 6=
∏
i∈[`] c

ki
i , return ⊥

7. M ← (
∏
i∈[`] c

ki
i) · (c−skk0)

8. If M /∈ GN , return ⊥
9. sol← M−1

N
mod N

10. If sol > N/2, return (sol−N)
11. Else return sol

Fig. 7: ind-fe-cca-secure IPFE from the DCR assumption.

E.1 Chosen plaintext security

We here demonstrate that any PHF which can be used to instantiate the generic
construction of [BBL17] for IPFE secure against chosen plaintext attacks is key
homomorphic and vector-smooth.

We refer the reader to [BBL17] for definitions of strong diversity, translation
indistinguishability, and universal translation indistinguishability.

Lemma 14. Let R be a ring, either Z or Z/qZ for some prime q; ` > 0 an
integer; SM := (X,L,W,R) an SMP and H the associated PHF. Consider a
function hk⊥ : X\L 7→ Khk, an element f ∈ Π, and positive integers ℵ and
M . In [BBL17], to build ind-fe-cpa IPFE schemes, H must be key homomorphic,
(hk⊥,M, εti)-translation-indistinguishable, (hk⊥, f, ℵ)-strongly diverse, and one
sets M := (ℵ/`)1/2. If so, H is (` · εti)-vector-smooth over X on F := 〈f〉.

Lemma 14. Let H be a PHF as described in the lemma. For i ∈ [`], let hki be in-
dependent random variables following the distribution sampled by hashkg(SM),
let hk := (hk1, . . . , hk`) and hp ← projkg(hk). Consider a random variable m∗

45

taking values in ∆M. For somem ∈ ∆M, we condition our analysis on m∗ =m
(we assume, w.l.o.g. that the probability this even occurs is non zero). We de-
note Bm the matrix associated tom built as per Lemma 1, and denote its’ rows
(b1, . . . , b`). Let X ←↩ X\L, and Y ←↩ U(F). Then H is δvs(`)-vector-smooth
over X on F if U and V are δvs(`)-close, where:

U := {X, {projkg(hki)}i∈[`], {〈hk, bMi 〉}i∈[`−1], hash(〈hk, bM` 〉, X) · Y } and

V :=
{
X, {projkg(hki)}i∈[`], {〈hk, bMi 〉}i∈[`−1], hash(〈hk, bM` 〉, X)

}
.

We first use the (hk⊥,M, εti)-translation-indistinguishability of H, and re-
place each hki by hki + ai · hk⊥(X) for ai ←↩ {−M, . . . ,M} satisfying a = µm
for some µ ∈ R. By repeated sampling, it holds that V′ is `εti-close to V, where:

V′ := {X, {projkg(hki + ai · hk⊥(X))}i∈[`],
{〈hk+ a · hk⊥(X), bMi 〉}i∈[`−1], hash(〈hk+ a · hk⊥(X), bM` 〉, X)}.

By construction, bi ∈ m⊥ for i ∈ [` − 1], furthermore, by the homomorphic
properties of H it holds that:

V′ := {X, {projkg(hki + ai · hk⊥(X))}i∈[`], {〈hk, bi〉}i∈[`−1],
hash(〈hk, b`〉, X) · hash(hk⊥(X), X)〈a,b`〉}.

From the (hk⊥, f,ℵ)-strong diversity of H, we can now write:
V′ = {X,{projkg(hki)}i∈[`], {〈hk, bi〉}i∈[`−1], hash(〈hk, b`〉, X) · f 〈a,b`〉}.

As f is of order ℵ, M := (ℵ/`)1/2 s.t. a is sampled uniformly in {−(ℵ/`)1/2, . . . ,
(ℵ/`)1/2} subject on the condition a ∈ 〈m〉, and 〈m, b`〉 6= 0, the distribution
induced by f 〈a,b`〉 is the uniform distribution in the subgroup F = 〈f〉. Thus:

V′ = U = {X,hp, {〈hk, bi〉}i∈[`−1], hash(〈hk, b`〉, X) · Y |Y ←↩ U(F)}.

E.2 Chosen ciphertext security

We here demonstrate that any PHF which can be used to instantiate the generic
construction of [BBL17] for ind-fe-cca-secure IPFE is key homomorphic and
vector-universal. We refer the reader to [BBL17] for the definitions of 2-universa-
lity and universal translation indistinguishability.

Lemma 15. Let R be a ring, either Z or Z/qZ for some prime q; `, λ positive
integers; SM := (X,L,W,R) an SMP and eH the associated EPHF. Further
consider a function ehashkg′, which on input 1λ outputs a hashing key ehk in
some set K ′ehk ⊆ Kehk; an element f ∈ Π; εuti, ε2u > 0; positive integers ℵ,
M ; and a subset Σ of Z. In [BBL17], to build an ind-fe-cca IPFE scheme one
sets M := (ℵ/`)1/2; Σ := {1, . . . ,ℵ − 1}; and eH must be key-homomorphic,
projection-key-homomorphic, (ehashkg′, M, εuti)-universally-translation-indis-
tinguishable and it must hold that for any t ∈ Σ, the PHF (t · ehashkg′, eprojkg,
ehash, eprojhash) is ε2u-universal2, where the algorithm t · ehashkg′ runs ehashkg′
and multiplies the output by t. If all these properties hold then H is (2`·εuti+ε2u)-
vector-universal.

46

Proof. Consider an EPHF eH := (ehashkg, eprojkg, ehash, eprojhash) as in the
lemma statement. For i ∈ [`], let ehki be independent random variables following
the distribution sampled by ehashkg(SM), and denote ehk := (ehk1, . . . , ehk`).
Consider a random variable M taking values in ∆M, and the associated matrix
BM . The hash function eH is δvu(`)-vector-universal if for any ehp ∈ (K

êhp
)`;

anym ∈ ∆M; any k ∈ K s.t. k /∈m⊥; any (x∗, e∗) ∈ X̂×E, (x, e) ∈ X̂\L×E,
s.t. (x, e) 6= (x∗, e∗), and for any (v1, . . . ,v`−1) ∈ (Kehk)

`−1; (π∗1 , . . . , π∗`) ∈ Π`

and π ∈ Π it holds that:

Pr
[
ehash(〈ehk,k〉, x, e) = π

∣∣ (ehash(ehki, x∗, e∗) = π∗i for i ∈ [`])

∧eprojkg(ehk) = ehp∧(<ehk, bMj >2a = vj for j ∈ [`− 1])∧M =m
]
6 δvu(`).

Let us define the following events:

– E1 denote the event “ehash(ehki, x∗, e∗) = π∗i for i ∈ [`]”,
– E2 denote the event “eprojkg(ehk) = ehp”,
– E3 denote the event “<ehk, bMj >2a = vj for j ∈ [`− 1]”,
– E4 denote the event “M =m”.

We hereafter condition on E4 and denote (b1, . . . , b`) ∈ R`×` the rows of Bm.
Let X be a random variable following the same distribution as the variable
ehash(〈ehk,k〉, x, e) and denote E0 the event “X = π”.

We first use the (ehashkg′,M, εuti)-universal-translation-indistinguishability
of eH: sample ehk′ ←↩ ehashkg′(SM); ehk′′i ←↩ ehashkg(SM); and αi ←↩ {−M,
. . . ,M} for i ∈ [`], such that α ∈ 〈m〉. For Kehk′ ⊆ R2a, and α ∈ R` we denote
ehk′ ·α := (ehk′0 ·α, . . . , ehk

′
2a−1 ·α) ∈ (R`)2a.

1. Consider the random variable
X ′ := ehash(<ehk′′ + ehk′ ·α,k>2a, x, e).

By the key homomorphism of eH, and denoting t := 〈α,k〉 ∈ R, one gets:
X ′ = ehash(<ehk′′,k>2a, x, e) · ehash(t · ehk′, x, e).

Let E′0 denote the event “X ′ = π”.
2. Let E′1 denote the event “ehash(ehk′′i + αiehk

′, x∗, e∗) = π∗i for i ∈ [`]”. Or
equivalently ehash(ehk′′i , x

∗, e∗) · ehash(ehk′, x∗, e∗)αi = π∗i .
3. Let E′2 denote the event: “ehp = eprojkg(ehk′′ + ehk′ · α),” which by key

homomorphism of eH is exactly the event:
“ehp = eprojkg(ehk′′) · eprojkg(ehk′)α”.

4. Let E′3 denote the event:“<ehk′′+α·ehk′, bj>2a = vj for j ∈ [`− 1]”, which,
since α ∈ 〈m〉 and bi ∈m⊥ for i ∈ [`− 1], is exactly the event:

“<ehk′′, bj>2a = vj for j ∈ [`− 1]
′′
.

From the (ehashkg′,M, εuti)-universal-translation-indistinguishability of eH:
|Pr[E0 ∧ E1 ∧ E2 ∧ E3∧E4]− Pr[E′0 ∧ E′1 ∧ E′2 ∧ E′3∧E4]| 6 ` · εuti.

Let us now consider the probability Pr[E′0 ∧ E′1 ∧ E′2 ∧ E′3∧E4] 6 Pr[E′0|E′1 ∧
E′2 ∧ E′3∧E4]. We denote p = Pr[E′0|E′1 ∧ E′2 ∧ E′3∧E4]. We first observe that
event E′3 is independent of ehk′. So the only fixed information on ehk′ comes

47

from event E′2 which, at most, fixes the value of ehp′ := eprojkg(ehk′); and E′1
which fixes the value of µ∗ := ehash(ehk′, x∗, e∗). Now from the norm bounds
on k ∈ K and α, it holds that t = 〈α,k〉 ∈ {1, . . . ,ℵ − 1}, and so the PHF
(t · ehashkg′, eprojkg, ehash, eprojhash) is ε2u-universal2. Thus, for any π′ ∈ Π, it
holds that:

Pr[π′ =ehash(tehk′, x, e) ∧ µ∗ = ehash(ehk′, x∗, e∗) ∧ ehp′ = eprojkg(ehk′)]

≤ ε2u · Pr[µ∗ = ehash(ehk′, x∗, e∗) ∧ ehp′ = eprojkg(ehk′)].

Since ehk′′ and ehk′ are sampled independently, we have: Pr[E′0 ∧ E′1 ∧ E′2 ∧
E′3∧E4] 6 ε2u Pr[E

′
1 ∧ E′2 ∧ E′3∧E4]; we can thus conclude: Pr[E0|E1 ∧ E2 ∧

E3∧E4] 6 ε2u + 2` · εuti, and so eH is (ε2u + 2` · εuti)-vector universal.

E.3 Comparing tightness of security reductions

We here compare the quality of security reductions obtained in [BBL17] to ours.
Let ` and a be positive integers; R be a ring, either Z or Z/qZ for some

prime q; SM := (X,L,W,R) an SMP; H the associated (R, a, f,ℵ, `,M,K)-
ipfe-compatible PHF; and eH the resulting extended PHF eH, obtained via the
generic construction of [CS02] (detailed in Appendix B).

As explained Lemmas 14 and 15, in [BBL17], to build ind-fe-cpa-secure IPFE,
H must be translation indistinguishable (parametrised by εti), moreover to build
ind-fe-cca-secure IPFE, eH must be universal translation indistinguishable (para-
metrised by εuti) and a slight variant of H must be universal2 (parametrised by
ε2u). These properties imply δvs-vector smoothness for H and δvu-vector univer-
sality for eH where δvs = ` · εti, and δvu = 2` · εuti + ε2u.

Chosen plaintext attacks In [BBL17] the adversarial advantage is bound by:

AdvBBL17,fe-cpa
FE,A ≤ δL + ` · |∆M| · εti where |∆M| 6 (4 · (ℵ

2`
)1/2)`.

From our proof this advantage is upper bounded by:
Advfe-cpa

FE,A ≤ δL + ` · εti.
We thus gain a factor |∆M|. Note that for PHFs where hash keys are sampled
uniformly from Khk this term disappears since such PHF’s are 0-vector smooth.
In this case the quality of our security reduction and that of [BBL17] coincide.

Chosen ciphertext attacks In [BBL17] the adversarial advantage is bounded
above by:

AdvBBL17,fe-ccaFE,A 6 δL + `|∆M|(εti + 2εuti) + 2qdec|∆M|(ε2u + εh + εOTS).

From our security proof this advantage is upper bounded by:

Advus,fe-cca
FE,A 6 δL+ `(

qdecℵ
ℵ − qdec + 1

2εuti + εti) + qdec(
ℵ

ℵ − qdec + 1
ε2u + εh + εOTS).

For a message space of order ℵ of 128 bits, and allowing the adversary to make
qdec = 220 decryption queries this yields:

Advfe-cca
BBL17 6 δL + 266``1−`/2(εti + 2 · εuti) + 266`+21`−`/2(ε2u + εh + εOTS),

48

whereas in this work:
Advus,fe-cpa

FE,A < δL + ` · (221εuti + εti) + 220(ε2u + εh + εOTS).

Finally for vectors of length ` = 100:
Advfe-cca

BBL17 < δL + 26224(εti + 2εuti) + 26238(ε2u + εh + εOTS),

whereas in this work:
Advus < δL + 227(εti + 2εuti) + 220(ε2u + εh + εOTS).

We note that even if hashing keys are sampled uniformly, which sets εti =
εuti = 0, our security proof significantly reduces A’s advantage (we do not have
the |∆M| term), which allows us to use smaller keys, and significantly gain in
efficiency (cf. Section 6).

49

	A Tighter Proof for CCA Secure Inner Product Functional Encryption: Genericity Meets Efficiency

