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Abstract : In the analysis of hyperbolic boundary value problems, the con-
struction of Kreiss’ symmetrizers relies on a suitable block structure decom-
position of the symbol of the system. In this paper, we show that this block
structure condition is satisfied by all symmetrizable hyperbolic systems of con-
stant multiplicity.

In [2], H.O.Kreiss proved a maximal L2 energy estimate for the solutions
of mixed boundary-initial value problems for strictly hyperbolic systems and
boundary conditions which satisfy the uniform Lopatinski condition (see also [8]
for systems with complex coefficients). The proof is based on the construction of
a symmetrizer. Thanks to the pseudodifferential calculus, the proof is reduced
to the construction of an algebraic symmetrizer for the symbol of the equation
(see e.g. [1]). The result extends to the case where the coefficients have finite
smoothness ([3]) and, using the paradifferential calculus of J.M.Bony-Y.Meyer,
to Lipschitzean coefficients ([7],[6]). Kreiss’ analysis is extended to a class of
characteristic boundary value problems in [5].

However, many interesting physical examples of hyperbolic systems are not
strictly hyperbolic. For instance, Euler’s equations of gas dynamics, Maxwell’s
equations or the equations of elasticity are not strictly hyperbolic. In the con-
struction of Kreiss’ symmetrizer, the strict hyperbolicity assumption is used at
only one place, to prove that the symbol of the system has a suitable block
decomposition near glancing modes (see Lemmas 2.5, 2.6 and 2.7 in [2]). In [5]
and [3], it is shown that this block structure condition is satisfied by several
nonstrictly hyperbolic systems such as the linearized shock front equations of
gas dynamics ([3]), Maxwell’s equations or the linearized shallow water equa-
tions ([5]). However, due to the lack of a simple criterion, one had to check the
condition for each system separately.

The aim of this paper is to prove that the block structure assumption is
satisfied for a large class of systems of physical interest which contains the
examples above : the class of symmetrizable hyperbolic systems of constant
multiplicity.

As a corollary, continuing the analysis as in [2], [1], [5] or [3], this implies
the local well posedness of boundary value problems for linear symmetric (or
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symmetrizable) hyperbolic systems of constant multiplicity which satisfy the
uniform Lopatinski condition. This result can be extended to nonlinear prob-
lems as in [4], [7], [6].

1 The block structure Assumption

Consider the symbol of a first order quasilinear system

L(a, τ, η, ξ) := τIN + ξA(a) + η1B1(a) + . . . + ηnBn(a) . (1.1)

Here, (ξ, η1, . . . ηn, τ)) are the space-time frequencies, dual to the space-time
variables (x, y1, . . . , yn, t). With applications to boundary value problems in
mind, the boundary is {x = 0}. The parameter a is (x, y, t, u), where u is the
placeholder of the solution and is considered as an independent set of variables.
The coefficients A and Bj are N×N matrices which are C∞ functions of a ∈ RM

and IN is the identity matrix of dimension N . For simplicity, we use the notation

ηB := η1B1 + . . . + ηnBn .

Definition 1.1. L is a symmetrizable hyperbolic system of constant multiplicity
if for all a ∈ U and (η, ξ) ∈ Rd\{0}, all the eigenvalues of ξA(a) + ηB(a) are
real and semi-simple and, locally, their multiplicity is independent of (a, η, ξ).

Recall that L is hyperbolic when all the eigenvalues of ξA(a) + η(a)B are
real. It is strictly hyperbolic when they are simple. The eigenvalues are real
and semi-simple, if and only if for all (a, η, ξ), there is a definite positive matrix
S(a, η, ξ) such that

S(a, η, ξ) (ξA(a) + ηB(a)) is hermitian symmetric (1.2)

In particular, this occurs for symmetric hyperbolic systems.
When L is hyperbolic with eigenvalues of constant multiplicity, there are

C∞ functions λj(a, η, ξ) and fixed integers αj such that

λ1 < λ2 < . . . , and det L(a, τ, η, ξ) =
∏(

τ + λj(a, η, ξ)
)αj (1.3)

If in addition, the eigenvalues are semi-simple then the eigenprojectors Πj(a, η, ξ)
are C∞ functions of (a, η, ξ) ∈ U × (Rn+1\{0}) and there is a C∞ symmetrizer
S(a, η, ξ) such that (1.2) holds. In this case the linear and nonlinear Cauchy
problems are well posed.

We now assume that the boundary is not characteristic, i.e. that

∀a ∈ U , det A(a) 6= 0 . (1.4)

The case of characteristic boundaries is discussed in section 3. In the study of
boundary value problems, one introduces complex values of τ and ξ, and the
matrices

M(a, τ, η, γ) := A(a)−1((τ − iγ)IN + ηB(a)
)
. (1.5)
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We denote by z = (a, τ, η, γ) the variables in U × Rn+2. Σ denotes the set of
(τ, η, γ) ∈ Rn+2 such that τ2 + |η|2 + γ2 = 1 and γ ≥ 0 and Σ0 is the subset of
(τ, η, γ) ∈ Σ such that γ = 0.

Definition 1.2 (The block structure condition). For all z ∈ U × Σ, there
is a neighbourhood O of z in U × Rn+2 and there are matrices T (z), C∞ on O
such that T (z)−1M(z)T (z) has the following block diagonal structure

T (z)−1M(z)T (z) =




Q1(z) · · · 0
...

. . .
...

0 · · · Qp(z)


 (1.6)

where the blocks Qp are νp × νp matrices which satisfy one of the following
conditions :

i) ImQp(z) := 1
2i (Qp − Q∗

p) is definite positive,
ii) ImQp(z) is definite negative,
iii) νp = 1, Qp(z) is real when when γ = 0, and ∂γQp(z) 6= 0,
iv) νp > 1, Qp(z) has real coefficients when γ = 0, there is ζp ∈ R such that

Qp(z) =




ζp 1 0

0 ζp
. . . 0

. . . . . . 1
· · · ζp




, (1.7)

and the lower left hand corner of ∂γQp(z) does not vanish.

In [2], O.Kreiss proved that the block structure condition is satisfied for
strictly hyperbolic systems L. The main goal of this paper is to prove the
following result.

Theorem 1.3. Suppose that L is a symmetrizable hyperbolic system of constant
multiplicity such that the boundary matrix A is not characteristic. Then the
block structure condition is satisfied.

This result can be extended to characteristic boundaries (see §3) and to
higher order systems (see §4 below). All these results follow from a general
statement, which we now explain.

Suppose that M(z)is a N ×N matrix, defined and C∞ for z in a neighbour-
hood O of z ∈ U × Σ. Introduce the notation ∆(z, ξ) := det(ξIN + M(z)).

Assumption 1.4. i) When γ 6= 0, then ∆(z, ξ) 6= 0 for all ξ ∈ R.
ii) When z ∈ U ×Σ0, for all ξ ∈ R such that ∆(z, ξ) = 0, there are a positive

integer α and C∞ functions λ(a, η, ξ) and e(z, ξ) ], defined on neighbourhoods
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of (a, η, ξ) in U × Rd−1 × C and (z, ξ) in O × C respectively, holomorphic in ξ
and such that

∆(z, ξ) = e(z, ξ)
(
τ − iγ + λ(a, η, ξ)

)α (1.8)

Moreover, λ is real when ξ is real and e(z, ξ) 6= 0.
In addition, there is a C∞ matrix valued function Π(a, η, ξ) on a neighbor-

hood of (a, η, ξ), holomorphic in ξ, such that Π is a projector of rank α and

ker(M(z) + ξId) = Π(a, η, ξ)CN when τ − iγ + λ(a, η, ξ) = 0 (1.9)

When M is the matrix defined in (1.5), condition i) holds if and only if L
hyperbolic. If z ∈ Σ0 and ξ satisfy ∆(z, ξ) = 0, then (η, ξ) 6= 0 since (τ , η) 6= 0.
Thus, by (1.3) there is a unique eigenvalue λj such that τ + λj(a, η, ξ) = 0.
If L is a symmetrizable hyperbolic system of constant multiplicity, λj and the
eigenprojector Πj extend to a complex neighbourhood of ξ where (1.8) (1.9) are
satisfied. Therefore, Theorem 1.3 follows from the next result.

Theorem 1.5. Suppose that the matrix M(z) satisfies Assumption 1.4. Then
M satisfies the the block structure condition on a neighbourhood of z.

2 Proof of Theorem 1.5

Let µ
k

be an eigenvalue of M := M(z). We denote by βk its algebraic multi-
plicity and by Kk the associated generalized eigenspace. There are r > 0 and
a neighbourhood O of z such that for all z ∈ O, the matrix M(z) has exactly
βk eigenvalues counted with their multiplicities, in {|µ − µ

k
| < r/2} and no

eigenvalue in the annulus {r/2 ≤ |µ − µ
k
| < 2r}. The sum of the generalized

eigenspaces associated to these eigenvalues is an invariant space of dimension
βk, which we denote by Kk(z). The spectral projector on Kk(z) is

Pk(z) =
1

2iπ

∫

|µ−µ
k
|=r

(
M(z) − µId

)−1
dµ .

It is a C∞ function of z ∈ O. Let Mk(z) denote the restriction of M(z) to
Kk(z). Shrinking O if necessary, this construction can be performed for all the
eigenvalues µk, k ∈ {1, . . . , k}. The block structure condition is satisfied, if and
only if there are bases of Kk(z), which are C∞ functions of z, such that for
all k, the matrix of Mk(z) in the corresponding basis of Kk(z) has the block
diagonal form (1.6), where the blocks Qp satisfy one of the condition listed in
Definition 1.2.

Consider a block Mk. There are two different cases, according as µ
k

is real
or not.

Lemma 2.1. Suppose that Imµ
k

6= 0. Then there is a C∞ basis of K(z) such
that the matrix of Mk(z) in this basis has an imaginary part ImMk which is
either definite positive or definite negative.
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Proof. (see [2]) One can assume that Mk(z) has a Jordan form. Changing the
basis (e1, . . . , eβk) of Kk(z) to (e1, εe2, . . . , εβk−1eβk ), we obtain that

Mk(z) = µ
k

Iβk +




0 c1 0 · · ·

0
. . . . . . 0

... · · · 0 cβk−1
0 . . . 0




where cl ∈ {0, ε}. If ε is small, ImMk(z) is positive definite [resp. negative
definite] at z = z when Imµ

k
> 0 [resp. Imµ

k
< 0]. By continuity, this

property remains satisfied for z close to z.

Consider next a block Mk with µ
k

∈ R. Note that Assumption 1.4, implies
that necessarily γ = 0.

Proposition 2.2. Suppose that γ = 0. Consider a real eigenvalue µ
k

of M(z).
Then there is a C∞ basis of Kk(z) such that the matrix of Mk(z) has the block
structure (1.6) where the blocks Qp(z) satisfy either the condition iii) or the
condition iv) of Definition 1.2.

Introduce the notation ξ = −µ
k
. Then, ∆(z, ξ) = 0, and (1.8) (1.9) hold.

In the strictly hyperbolic case, i.e. when λ is a simple eigenvalue and α = 1 in
(1.8), Mk contains one block Qp. In the general case, there are α blocks, and
the main difficulty is to prove that Mk has a smooth decomposition (1.6).

First we study the structure of the characteristic polynomial of Mk(z).

Lemma 2.3. There is a neighbourhood O of z and there is a monic polynomial
in ξ, D(z, ξ), with C∞ coefficients in z ∈ O such that for all z ∈ O,

∆k(z, ξ) := det
(
ξIKk(z) + Mk(z)

)
=

(
D(z, ξ)

)α (2.1)

In particular, βk = να where ν is the degree of D. The coefficients of D are
real when γ = 0 and

∂D

∂γ
(z, ξ) 6= 0 , (2.2)

Furthermore, the set O∗ of points z ∈ O such that D(z, ·) has only simple roots
is dense in O.

Proof. In (2.1), IKk(z) denotes the indentity operator on Kk(z). One has

det(M(z) + ξId) = ∆k(z, ξ) e1(z, ξ) ,

where e1 is the determinant of the restriction of M(z) to the range of IN −Pk(z).
Thus e1(z, ξ) 6= 0. With (1.8), this implies that, shrinking the neighbourhoods
if necessary, there is an open disc V centered at ξ such that for (z, ξ) ∈ O × V

∆k(z, ξ) =
(
τ − iγ + λ(a, η, ξ)

)α
e2(z, ξ) (2.3)
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where e2(z, ξ) is C∞ in z, holomorphic in ξ and does not vanish on O × V .
Moreover, for all z ∈ O, all the roots of ∆k(z, ·) belong to V .

Since ∆k is a polynomial in ξ, (2.3) implies that ξ is a root of finite order of
τ + λ(a, η, ξ) = 0. Thus there is ν ≥ 1 such that

∂lλj

∂ξl
(a, η, ξ) = 0 for l = 1, . . . , ν − 1 and

∂νλj

∂ξν
(a, η, ξ) 6= 0 (2.4)

We are in position to apply Weierstrass preparation theorem. There is a monic
polynomial of degree ν in ξ, D(z, ξ), with C∞ coefficients in z, and there is
a nonvanishing function e3(z, ξ) defined for (z, ξ) in a neighbourhood of (z, ξ),
holomorphic in ξ, C∞ in z and such that

τ − iγ + λj(a, η, ξ) = e3(z, ξ)D(z, ξ) , D(z, ξ) = (ξ − ξ)ν . (2.5)

The usual version of Weierstrass preparation theorem also assumes analyticity
in the parameters. Since the coefficients are only C∞, and the Malgrange prepa-
ration theorem only provides (2.5) for real ξ, we include a short proof based on
the known explicit expressions of D and e3. Let f(z, ξ) denote the left hand
side of (2.5). There are r > 0 and a neighbourhood O of z such that for all
z ∈ O, there is a unique decomposition

f(z, ξ) = p(z, ξ) eh(z,ξ)

where p is a polynomial of degree ν with ν roots in the disc {|ξ − ξ| < r/2} and
h is holomorphic in {|ξ −ξ| < 2r} such that h(z, ξ) = 0. For |ξ − ξ| < r, one has

∂ξh(z, ξ) =
1

2iπ

∫

|w−ξ|=r

∂ξf(z,w)
f(z, w)

dw

w − ξ
.

This shows that ∂ξh and therefore h and p = fe−h are C∞ in z. Factoring out
the coefficient of ξν implies (2.5).

The Schwarz reflection principle implies that λ(a, η, ξ) = λ(a, η, ξ). Thus
the explicit formula above shows that when γ = 0, D has real coefficients.

Combining (2.3) and (2.5) implies that ∆k = Dαe4 on a neighbourhood
O × V of (z, ξ) where e4 does not vanish. Moreover, shrinking O if necessary,
all the roots of the polynomials ∆k(z, ·) and D(z, ·) belong to V . Thus e4(z, ·)
is constant and, since both polynomials D(z, ·) and ∆k(z, ·) are monic, (2.1)
follows.

The property (2.2) immediately follows from (2.5). Shrinking the neigh-
bourhoods, one can assume that ∂γD does not vanish on O × V. Suppose that
z1 = (a1, τ1, η1, γ1) ∈ O and D(z1, ·) has a root of multiplicity ν1 at ξ1. Since
∂γD does not vanish, for z = (a1, τ1, η1, γ1 + s) ∈ O, one has

D(z, ξ) = c1(ξ − ξ1)ν1 + O(ξ − ξ1)ν1+1 + c2s + O(s2)

with c1 6= 0 and c2 6= 0. Thus, for s small enough, the multiple root splits into
simple roots. This proves that O∗ is dense in O.
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Corollary 2.4. Suppose that ξ is a simple root of τ +λ(a, η, ·) = 0. Then, there
is a C∞ function µk(z) on a neighbourhood of z such that Mk(z) = µkIKk(z).
Moreover, µk is real when γ = 0 and ∂γµk(z) 6= 0. In particular Mk has the form
(1.6), with one dimensional blocks Qp equal to µk(z). They satisfy condition iii)
of Definition 1.2.

Proof. When ν = 1, there is a C∞ function µk(z) such that D(z, ξ) = ξ +µk(z).
Thus, (1.8) implies that −µk(z) is an eigenvalue of constant multiplicity α of
M(z). Moreover, (1.9) and (2.5) imply that

(
M(z) − µk(z)

)
Π(a, η, −µk(z)) = 0 .

Since the rank of Π is equal to α, µk(z) is a semi-simple eigenvalue of M(z).
The properties of µk follow from Lemma 2.1

It remains to study the most difficult case, when the degree ν of D is larger
than one. In the strictly hyperbolic case, this means that ξ is a multiple root of
∆(z, ξ) = 0, which means that (z, ξ) is a “glancing” mode.

We now assume that ν > 1. First, we study the structure of Mk(z).

Lemma 2.5. The operators P l = (∂l
ξΠ)(a, η, ξ) satisfy

(M − µ
k
)P 0 = 0 and (M − µ

k
)P l = −lP l−1 for l = 1, . . . ν − 1 (2.7)

Moreover, the generalized eigenspace of M associated to µ
k

is the direct sum

Kk =
ν−1⊕

l=0

P lE0 , E0 := P 0CN .

Proof. By (2.4), λ(a, η, ξ) + τ = O(ξ − ξ)ν . Introduce the notation z(ξ) =
(a, τ, η, γ) with τ − iγ = −λ(a, η, ξ). By (1.9), one has

(M + ξIN )Π(a, η, ξ) = M(z) − M(z(ξ)) = O(|τ − τ | + |γ|) = O((ξ − ξ)ν)

and (2.7) follows. Introduce E0 := P 0CN and for l = 1, . . . , ν − 1, El := P lE0.
Then (2.7) implies that

(M − µ
k
)E0 = 0 , (M − µ

k
)El = El−1 (2.8)

By definition, dim E0 = rankΠ = α and dim El ≤ dim E0. On the other hand,
(2.8) implies that for l ≥ 1, dim El ≥ dim El−1. Therefore

∀l ∈ {0, . . . , ν − 1} , dim El = α (2.9)

Consider (u0, . . . , uν−1) ∈ Eν
0 . Suppose that

∑
P lul = 0 . Applying (M−µ

k
)ν−1

to this equation, implies that 0 = (M − µ
k
)ν−1P ν−1uν−1 = P 0uν−1 = uν−1.

Inductively, one shows that all the ul vanish. This proves that the sum E :=
E0 ⊕ . . . ⊕ Eν−1 is direct. In particular, dim E = να = βk.

By (2.8), (M − µ
k
)νE = 0, thus E is contained in the generalized eigenspace

Kk, which is also of dimension βk. Therefore E = Kk.
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Let (e0,1, . . . , e0,α) be a basis of E0. For l = 1, . . . , ν − 1, and p = 1, . . . , α,
introduce

el,p =
(−1)l

l!
P l e0,p . (2.10)

Then the {el,p} form a basis of Kk. We denote by Fp the space generated by
(e0,p, . . . , eν−1,p). Thus

Kk = F1 ⊕ . . . ⊕ Fα . (2.11)

In this block decomposition of the generalized eigenspace, (2.7) implies that the
matrix of Mk in the bases above has the following diagonal block structure

Mk =




Q · · · 0
...

. . .
...

0 . . . Q


 (2.12)

where Q is the ν × ν matrix (1.7) with ζp = µ
k
.

Our goal is to extend the splitting (2.11) when z is close to z, so that the
Fp(z) are invariant by M(z) and depend smoothly on z. Recall that Π(a, η, ξ) is
defined for ξ in a complex disc {|ξ − ξ| < 2r}. Shrinking O if necessary, we can
assume that for all z ∈ O, the ν complex roots of D(z, ·) satisfy |ξp − ξ| ≤ r/2.
Therefore, we can define for z ∈ O and l ∈ {0, . . . , ν − 1},

Pl(z) :=
l!(ν − l − 1)!

2iπν!

∫

|ξ−ξ|=r

Π(a, η, ξ)
∂l+1

ξ D(z, ξ)
D(z, ξ)

dξ . (2.13)

They are C∞ functions on O. Since D(z, ξ) = (ξ−ξ)ν , Cauchy’s formula implies
that

Pl(z) = (∂l
ξΠ)(a, η, ξ) = P l . (2.14)

Moreover, when z ∈ O∗, the roots (ξ1, . . . , ξν) of D(z, ·) are simple and

Pl(z) =
ν∑

m=1

cl(z, ξm) Π(a, η, ξm) (2.15)

where

cl(z, ξm) =
l!(ν − l − 1)!

ν!
∂l+1

ξ D(z, ξm)
∂ξD(z, ξm)

∈ C .

Recall that {e0,p}1≤p≤α is a basis of E0. For l ∈ {0, . . . , ν − 1} and p ∈
{1, . . . , α}, consider

el,p(z) :=
(−1)l

l!
Pl(z)e0,p (2.16)

and Fp(z) the linear space spanned by (e0,p(z), . . . , eν−1,p(z)).

Lemma 2.6. Shrinking O if necessary, for z ∈ O, the vectors {el,p(z)} are
linearly independent. Their span F1(z)⊕ . . .⊕Fα(z) is equal to the space Kk(z).
Moreover, for all p, Fp(z) is invariant by M(z) and the matrix of M(z)|Fp(z) in
the basis {el,p(z)}0≤l≤ν−1 is independent of p.

8



Proof. (2.14) implies that el,p(z) = el,p. Therefore, for z close to z, the vectors
el,p(z) are linearly independent.

Suppose that z ∈ O∗. Lemma 2.1 implies that M(z) has ν pairwise different
eigenvalues, (−ξ1, . . . , −ξν) such that D(z, ξm) = 0. By (2.5), they satisfy
τ − iγ + λ(a, η, ξm) = 0. Therefore (1.9) implies that the kernel Lm(z) of
M(z) + ξmIN is the range of Π(a, η, ξm) and

M(z)Π(a, η, ξm) = −ξmΠ(a, η, ξm) . (2.17)

In particular, the dimension of Lm(z) is α. Since the ξm are pairwise distinct
the spaces Lm(z) are in direct sum. Because, βk = να, this implies that the
eigenvalues −ξm of M(z) are semi-simple and that L1(z)⊕ . . .⊕Lν(z) = Kk(z).

For (z, ξ) close to (z, ξ), Π(a, η, ξ) is close to Π(a, η, ξ) and

ẽp(a, η, ξ) :=
(−1)l

l!
Π(a, η, ξ)e0,p , 1 ≤ p ≤ α

form a basis of Π(a, η, ξ)CN . In particular, {ẽp(a, η, ξm}1≤p≤α is a basis of
Lm(z). Since the Lm are in direct sum the {ẽp(a, η, ξm)}p,m are linearly inde-
pendent and form a basis of Kk(z). (2.15) implies that for all l and p,

el,p(z) =
ν∑

m=1

cl(z, ξm) ẽp(a, h, ξm) . (2.18)

Let F̃p(z) denote the space spanned by {ẽp(z, ξm)}1≤m≤ν . Then (2.18) implies
that Fp(z) ⊂ F̃p(z). Since they have the same dimension, they are equal and

F1(z) ⊕ . . . ⊕ Fα(z) = F̃1(z) ⊕ . . . ⊕ F̃α(z)
= L1(z) ⊕ . . . ⊕ Lν(z) = Kk(z) .

In addition, (2.17) implies that F̃p(z) and hence Fp(z) is invariant by M(z).
The matrix of M(z)|Fp(z) in the basis {ẽp(z, ξm)}1≤m≤ν is diagonal with en-
tries {−ξm} independent of p. Since the coefficients cl(z, ξm) in (2.18) are
also independent of p, it follows that the matrix of M(z)|Fp(z) in the basis
{el,p(z)}0≤l≤ν−1 is independent of p.

Because O∗ is dense in O and the el,p(z) are smooth and linearly independent
for z ∈ O , it remains true that for all z ∈ O, Fp(z) is invariant by M(z), Kk(z) =
F1(z) ⊕ . . . ⊕ Fα(z) and the matrix of M(z)|Fp(z) in the basis {el,p(z)}0≤l≤ν−1
is independent of p.

In the block decomposition Kk(z) = F1(z) ⊕ . . . ⊕ Fα(z), the lemma implies
that the matrix of Mk(z) has the following diagonal block structure

Mk(z) =




Q(z) · · · 0
...

. . .
...

0 . . . Q(z)


 (2.19)
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where Q(z) is a smooth ν × ν matrix. Moreover, Q(z) = Q is the matrix (1.7)
with ζp = µ

k
.

Knowing (2.19), the proof of Proposition 2.2 continues as in [8].

Lemma 2.7. Shrinking the neighbourhood O if necessary, there are bases in the
spaces Fp(z) which are C∞ in z ∈ O and such that (2.19) holds, Q(z) is real
when γ = 0 and the left lower hand corner entry of ∂γQ(z) does not vanish.

Proof. Lemma 2.1 and (2.19) imply that

(
D(z, ξ)

)α = ∆k(z, ξ) = det
(
Mk(z) + ξIβk

)
=

(
det

(
Q(z) + ξIν

))α

(2.20)

Therefore the monic polynomials of degree ν det
(
Q(z) + ξIν

)
and D(z, ξ) are

equal. Because Q(z) has the form (1.7), it is shown in [8] that for z sufficiently
close to z, there is a smooth transformation T (z) such that T (z) = Iν and

Q̃(z) := T (z)−1Q(z)T (z) = Q +




q1(z) 0 · · · 0
...

...
. . .

...
qν(z) 0 . . . 0


 .

Thus, (2.20) implies that

D(z, ξ) = det
(
Q̃(z) + ξIν

)
= (ξ − ξ)ν +

ν∑

l=1

(−1)lql(z) (ξ − ξ)ν−l (2.21)

Since D has real coefficients when γ = 0, this implies that the ql(z) and therefore
Q̃(z) are real when γ = 0. In addition, Lemma 2.1 and (2.21) imply that

∂D

∂γ
(z, ξ) =

∂qν

∂γ
(z) 6= 0.

Therefore Q̃(z) satisfies the property iv) of Definition 1.2 and the proofs of
Proposition 2.2 and Theorem 1.5 are complete.

3 Characteristic boundaries

In [5], A.Majda and S.Osher have extended Kreiss’ analysis to a class of char-
acteristic boundary value problems. Our purpose here is to show that the
block structure assumptions introduced in [5] are automatically satisfied by
symmetrizable hyperbolic systems of constant multiplicity.

Consider a system (1.1). In place of (1.4) we now assume that the boundary
matrix has a constant rank, i.e. that there is N ′ ≤ N such that

∀a ∈ U , rankA(a) = N ′ . (3.1)
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Thus, one can assume that

A(a) =
[

0 0
0 A22(a)

]
, det A22(a) 6= 0 . (3.2)

We also introduce the notations z = (a, τ, η, γ) and

G(z) := (τ − iγ)IN + ηB(a) =
[

G11(z) G12(z)
G21(z) G22(z)

]

The substitute for the matrix M (1.5) is

M ′(z) := A−1
22

(
G22 − G21G

−1
11 G12

)
. (3.3)

which is defined when det G11 6= 0.

Theorem 3.1. Suppose that L is a symmetrizable hyperbolic system with con-
stant multiplicity satisfying (3.1). Then, for all z ∈ Σ such that det G11(z) 6= 0
the matrix M ′(z) satisfies the block structure condition of Definition 1.2 on a
neighbourhood of z.

When det G11 tends to 0, it is shown in [5] that M ′(z) has a smooth block
decomposition into a singular part and a regular part. The block structure
assumptions of [5] also concern the regular part of M ′(z) when det G11 → 0.
We now give an equivalent presentation of these conditions.

Consider z ∈ U ×Σ such that the polynomial ∆(z, ξ) := det(ξA+G(z)) does
not vanish identically. This, it has a finite number of roots, Ñ ≤ N ′. Fix R > 0
such that the roots of ∆(z, ·) are contained in the disc {|ξ| < R/2}. There is a
neighbourhood O of z such that for z ∈ O, one has

∆(z, ξ) := det
(
ξA + G(z)

)
= ∆̃(z, ξ) e(z, ξ) (3.4)

where ∆̃ and e are polynomials in ξ with C∞ coefficients in z. ∆̃ is monic of
degree Ñ and its roots are contained in {|ξ| < R/2}. Moreover, e(z, ·) does not
vanish on {|ξ| < 2R} and its roots tend to ∞ when z tends to z.

Lemma 3.2. There are invertible matrices T1(z) and T2(z) defined and C∞ on
a neighbourhood O of z, such that

T2(z)
(
ξA + G(z)

)
T1(z) =

[
ξÃ(z) + G̃(z) 0

0 ξA[(z) + G[(z)

]
(3.5)

where Ã(z), G̃(z), A[(z) and G[(z) are C∞ matrices on O. Moreover, Ã(z) is
invertible and M̃(z) = Ã−1(z)G̃(z) satisfies

det
(
ξIÑ + M̃(z)

)
= ∆̃(z, ξ) . (3.6)
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Proof. By (3.4), ξA + G(z) is invertible for R/2 < |ξ| < 2R. Introduce the
projectors

P (z) =
1

2iπ

∫

|ξ|=R

(
G + ξA

)−1
Adξ , (3.7)

P ′(z) =
1

2iπ

∫

|ξ|=R

A
(
G + ξA

)−1
dξ . (3.8)

They are C∞ functions of z ∈ O. Denote by K̃(z), K[(z), K̃′(z) and K′
[(z) the

range of P (z), IN − P (z), P ′(z) and IN − P ′(z) respectively. One has

P ′(z)A = AP (z) , P ′(z)G(z) = G(z)P (z) .

This implies that A and G(z) map K̃(z) [resp. K[(z)] into K̃′(z) [resp. K′
[(z)].

Taking bases in K̃(z), K[(z), K̃′(z) and K′
[(z) implies (3.5).

The definition (3.7) shows that P vanishes on ker A. Thus, if APu = 0 one
has P (Pu) = 0 , hence Pu = 0. This proves that A is one to one from K̃(z) to
K̃′(z). Similarly, P ′ is valued in the range of A, thus for all f ∈ K̃′, there is u

such that f = Au, thus f = P ′f = P ′Au = APu, showing that A maps K̃(z)
onto K̃′(z). Therefore, the matrix Ã(z) in (3.5) is invertible.

For |ζ | 6= R, introduce

U(z, ζ) =
1

2iπ

∫

|ξ−ξ
k
|=r

(
G + ξA

)−1 dξ

ζ − ξ
.

Then

(ζA + G(z))U (z, ζ) =
{

P ′(z) when |ζ| > R ,
P ′(z) − IN when |ζ| < R .

Moreover, changing the path of integration in (3.7) (3.8) , implies that
{

U (z, ζ) = P (z)U (z, ζ) = U(z, ζ)P ′(z) when |ζ | > R ,
P (z)U (z, ζ) = U (z, ζ)P ′(z) = 0 when |ζ | < R .

This implies that (ζÃ + G̃) [resp. (ζA[ + G[)] is invertible when |ζ | > R [resp.
|ζ | < R]. We also know that both matrices are invertible for R/2 < |ζ| < R.
Therefore the roots of det(ζIÑ + M̃) [resp. det(ζA[ + G[)] are located in |ζ | ≤
R/2 [resp. |ζ| ≥ 2R]. Since

∆(z, ζ) = det T2 det T1 det Ã det(ζIÑ + M̃) det(ζA[ + G[) ,

(3.6) follows.

Theorem 3.3. Suppose that L is a symmetrizable hyperbolic system with con-
stant multiplicity such that the boundary matrix A satisfies (3.1). Consider
z ∈ Σ such that the polynomial ∆(z, ·) does not vanish. Then, the matrix M̃(z)
satisfies the block structure condition of Definition 1.2 on a neighbourhood of z.
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Proof. The hyperbolicity assumption implies that condition i) of Assumption 1.4
is satisfied. Consider next z ∈ U × Σ0 and ξ ∈ R such that ∆̃(z, ξ) = 0. Note
that (η, ξ) 6= 0 since (τ , η) 6= 0. Therefore, there is an eigenvalue λ of ξA + ηB
such that τ = −λ(a, η, ξ). The constant multiplicity assumption implies that
(1.8) is satisfied near (z, ξ).

Consider (z, ξ) in a neighbourhood of (z, ξ). Let Π(a, η, ξ) denote the eigen-
projector associated to λ, extended to a complex neighbourhood of ξ. Then

(ξA + G(z))Π(ξ) = 0 , when τ − iγ + λ(a, η, ξ) = 0

Since ξA[ + G[ is invertible, the block decomposition (3.5) implies that when
τ − iγ + λ(a, η, ξ) = 0, the range of Π is contained in K̃(z). Therefore, there is
a C∞ projector Π̃(z, ξ) such that

(ξÃ + G̃(z))Π̃(z, ξ) = 0 , when τ − iγ + λ(a, η, ξ) = 0 .

Therefore (1.9) is satisfied and Theorem 3.3 follows from Theorem 1.5.

Remark that Theorem 3.1 follows from Theorem 3.3. When det G11(z) 6= 0,
the coefficient of ξN ′

in ∆ doe not vanish. Therefore ∆(z, ·) = ∆̃(z, ·) and the
matrices M ′(z) and M̃(z) are conjugated.

4 Higher order systems

In this section, we extend Theorem 1.3 to systems of equations of arbitrary
order. Consider a system

P (a, τ, η, ξ) :=INτm +
m−1∑

j=0

Pm−j(a, η, ξ)τ j

=A0(a)ξm +
m−1∑

j=0

Am−j(a, τ, η)ξj

(4.1)

where Pj [resp. Aj ] is a N × N matrix, C∞ in a and polynomial of degree j in
(η, ξ) [resp. (τ, η)]. We assume here that the boundary is not characteristic, i.e.

∀a ∈ U , det A0(a) 6= 0 . (4.2)

In the study of boundary value problems for P , one considers P (a, τ − iγ, η, ξ)
and the associated first order pseudodifferential Nm × Nm system of symbol

L(z, ξ) = ξINm + M̃(z) (4.3)

where

M̃(z) =




0 −Λ . . . 0
...

. . . . . .
...

0 . . . 0 −Λ
Mm . . . M1


 (4.4)
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where Mj = Λ1−jA−1
0 Aj and Λ = (τ2 + |η|2 + γ2)−1/2IN (see e.g. [1]). In this

reduction the matrix M̃ is homogeneous of degree one in (τ, η, γ).
The characteristic determinant is

∆(a, τ, η, ξ) = det P (a, τ, η, ξ) = det A0(a) det
(
ξINm + M̃(z)

)
(4.5)

Definition 4.1. P is a symmetrizable hyperbolic system of constant multiplicity
if

i) for all a ∈ U and (η, ξ) ∈ Rd\{0}, all the roots in τ of ∆ are real,
ii) locally their multiplicity is constant,
iii) the dimension of ker P (a, τ, η, ξ) is equal to the multiplicity of τ as a

root of ∆.

Theorem 4.2. If P is symmetrizable hyperbolic system with constant multiplic-
ity, then the matrix M̃(z) defined in (4.3) satisfies the block structure condition.

Proof. The hyperbolicity assumption implies that condition i) of Assumption 1.4.
is satisfied. Consider the Nm × Nm matrix

P̃ (a, η, ξ) =




0 −IN . . . 0
...

. . . . . .
...

0 . . . 0 −IN

Pm . . . P1


 (4.6)

Then
det

(
τINm + P̃ (a, η, ξ)

)
= ∆(a, τ, η, ξ) . (4.7)

Moreover, if −τ is an eigenvalue of P̃ (a, η, ξ), the associated eigenspace is
Jτ ker P (a, τ, η, ξ) where Jτ is the mapping from CN into CNm :

Jτ : u 7→ (u, τu, . . . , τm−1u)

In particular,

dim ker P (a, τ, η, ξ) = dim ker
(
τINm + P̃ (a, η, ξ)

)

Thus, for (η, ξ) 6= 0, the eigenvalues λj(a, η, ξ) of P̃ are real, semi-simple and
have constant multiplicity. Moreover, the eigenprojectors are of the form

Π]
j(u1, . . . , um) = J−λj Πju1 (4.8)

where Πj = Πj(a, η, ξ) is a projector onto ker P (a, −λj , η, ξ). Since Π]
j is

smooth, Πj is a C∞ function of (a, η, ξ). In addition, the eigenvalues λj , the
eigenprojectors Π]

j and hence Πj extend holomorphically in ξ.
Consider z ∈ U × Σ0 and ξ ∈ R such that ∆(z, ξ) = 0. By homogeneity,

(η, ξ) 6= 0 and there is j such that τ + λj(a, η, ξ) = 0. The constant multiplicity
assumption and (4.5) (4.7), imply that the condition (1.8) is satisfied, with α
equal to the multiplicity of λj . Next, we introduce the mapping

Jz,ξ : u 7→ (u, ξΛ(z)−1u, . . . , ξm−1Λ(z)1−mu)
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and we remark that when ξ is close to ξ and τ − iγ + λj(a, η, ξ) = 0,

Π̃j(a, η, ξ)(u1, . . . , um) = J̃z,ξΠj(a, η, ξ)u1

is a projector of rank α onto onto the kernel of ξINm + M(z). Therefore the
property (1.9) is satisfied and Theorem 4.3 follows from Theorem 1.5.

5 Examples

5.1. Consider the linearized equations of isentropic gas dynamics in space
dimension three

{
Xρ̇ + ρdivv̇ = f ,

Xv̇j + ρ−1c2∂xj ρ̇ = gj for 1 ≤ j ≤ 3 ,
(5.1)

where X = ∂t + v1∂x1 + v2∂x2 + v3∂x3 . The unknowns are (ρ̇, v̇). The symbol
of (5.1) is of the form (1.1) with parameters a = (ρ, c, v). We choose {x1 = 0}
as a boundary. It is non characteristic when v1 /∈ {0, −c, c}. The characteristic
polynomial is

∆(a, τ, ξ) = (τ + v · ξ)2
(
(τ + v · ξ)2 − c2|ξ|2

)
. (5.2)

It is of degree 4 in ξ1.
The blocks Mk which correspond to roots of (τ + v · ξ)2 −c2|ξ|2

)
are studied

exactly as in the strictly hyperbolic case. On the other hand, the root in ξ1 of
τ + v · ξ is always simple and the corresponding block Mk is diagonal.

The equation (5.1) occurs in the study of shock fronts for Euler’s equation
([3]) and also in the study of shallow water waves ([5]).

5.2. The equations of linear elasticity read

P (∂t, ∂y, ∂x)u := ∂2
t u − (λ + µ)grad divu − µ∆u = f . (5.3)

In space dimension d, this is a d × d systems of second order equations. The
characteristic equation is

(τ2 − µ|ξ|2)d−1 (
τ2 − (λ + 2µ)|ξ|2

)
(5.4)

The eigenvalues ±√
µ|ξ| [resp. ±

√
λ + 2µ|ξ|] have constant multiplicity equal

to d− 1 [resp. 1 ] and the dimension of kerP (τ, η, ξ) is equal to the multiplicity.
Therefore, Theorem 4.2 applies and the block structure condition is satisfied.
Here both factors (τ2 − c|ξ|2) have multiple roots in ξ1 (glancing modes) when
τ2 = c|η|2.
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5.3 The three dimensional Maxwell’s equations in vacuum read
{

∂tE − curlB = 0
∂tB + curlE = 0

(5.5)

Then
∆(τ, ξ) = τ2(τ2 − |ξ|2)2 (5.6)

The system is symmetric hyperbolic and the multiplicities are constant. The
boundary {x1 = 0} is characteristic and the condition (3.1) is satisfied. When
τ − iγ 6= 0, M ′(z) is a 4× 4 matrix and Theorem 3.1 applies (see also [5]). Note

that the characteristic polynomial of M ′(z) is
(
ξ2 − (τ − iγ)2 + |η|2

)2
. In this

example, real roots in ξ occur only when γ = 0 and τ2 ≥ |η|2, in which case,
with the notations of §3, det G11 6= 0. In the block decomposition of M ′, double
Jordan blocks occur when τ2 = |η|2.
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