STABILITY OF SMALL VISCOSITY
NONCHARACTERISTIC BOUNDARY LAYERS

Guy METIVIER
MAB Université de Bordeaux I
33405 Talence Cedex, France

June 12, 2003



Contents

1 An Example

1.1
1.2

1.3

14
1.5

2.1
2.2

2.3
24

The equation . . . . .. . .. ..
Transport equation . . . . . . . ... ... ... ...
1.2.1  The Cauchy problem . . . . . . .. ... ... .....
1.2.2  The mixed Cauchy-boundary value problems . . . . .
1.2.3 The boundary value problem . . . .. ... ... ...
Viscous perturbation: existence of layers . . . . . . ... ...
1.3.1 The Cauchy problem . . . . . .. ... ... .. ....
1.3.2 The mixed Cauchy-problem . . . . .. ... ... ...
BKW expansions . . . . . .. ... ..o
Laplace Fourier transform . . . . . ... ... ... .. ....
1.5.1 Definitions . . . .. .. ... oo
1.5.2 Green’s functions . . . . .. ...
1.5.3 The inviscid limit: layers . . . .. ... .. ... ...
1.54 Estimates . . . . . ... ... ... ... ...
1.5.5 Solutions of the BVP . . . . ... ... ... .....

Hyperbolic Mixed Problems

The equations . . . . . .. ... ... .. ... ...,
Hyperbolic boundary value problems . . . . . . .. ... ...
2.2.1 The adjoint problem . . . . ... ... ... ......
2.2.2  Energy estimates. Existence of weak solutions. . . . .
2.2.3 Strong solutions . . . . ... ..o
2.2.4 Regularity of solutions . . . . . . ... ... ... ...
2.2.5  Solutions of the boundary value problem (2.2.1)
Solutions on | — 0o, T'] and the causality principle . . . . . . .
The mixed Cauchy problem . . . . ... ... ... ......
24.1 L%solutions . . . . ... ... ... ... ... ... ..
2.4.2 Compatibility conditions . . . . . . .. ... ... ...

13
13
14
14
15
16
17
17
17
19
23
23
25
27
29
32



2.4.3 Smoothsolutions . . . . . ... ... ... ....... 54

2.5 Nonlinear mixed problems . . . . . . ... ... ... ..... 57
2.5.1 Nonlinear estimates . . . .. ... .. ... ... ... 58
2.5.2  Compatibility conditions . . . . . . .. ... ... ... 60
2.5.3 Existence and uniqueness . . . . ... ... ... ... 60
2.5.4 A criterion for blow-up. . . . ... ... ... 63
2.5.5 Regularity of solutions . . . . . . ... ... ... ... 64

Hyperbolic-Parabolic Problems 65

3.1 Theequations . . . . . .. .. .. ... 65

3.2 Linear existence theory . . . . . . .. ... ... L. 66
3.2.1 Variational methods . . . . . .. .. .. .. ... ... 66
3.2.2 Regularity estimates . . . . . ... ... ... ... .. 71
3.2.3 Smooth solutions . . . . . .. ... oL 74

3.3 Uniform estimates . . . . .. .. .. ... ... .. 78
3.3.1 Long time estimates . . . . . ... ... ... ... .. 78
3.3.2  Small viscosity estimates. . . . . . ... ... 81

3.4 Tangential and conormal estimates. . .. ... ... ... .. 83
3.4.1 Tangential regularity . . . . . .. ... ... ... .. 83
3.4.2 Conormal regularity . . . .. ... ... ... ... 85

3.5 Nonlinear problems . . . . . . .. .. .. ... ... .. ... 89
3.5.1 Existence for fixed viscosity . . . .. .. .. ... ... 89
3.5.2  Uniform existence theorem I . . . . .. .. ... ... 91
3.5.3 Uniform existence theorem IT . . . . . . ... ... .. 94

Semilinear boundary layers 96

4.1 Statement of the problem . . . . .. .. ... ... ...... 96

4.2 Asymptotic boundary layers . . . . . . ... ... L. 97

4.3 The boundary layer ode and the hyperbolic boundary conditions100
4.3.1 The inner layer o.d.e. . . . . .. ..o 100
4.3.2 Layersprofiles . . ... ... ... ... ... ... 102
4.3.3 The hyperbolic boundary conditions. . . . . . . .. .. 103

4.4 Solving the BKW equations . . . . ... .. ... ....... 103
4.41 Theleading term . . . . . .. .. ... ... .. ... 103
4.4.2 The full expansion . . . . ... ... ... ... .. .. 105

4.5 Convergence and approximation theorems . . . . ... .. .. 106
4.5.1 Approximate solutions . . . . . ... ... 106
4.5.2 An equation for the remainder . . .. ... ... ... 107
4.5.3 Exact solutions and their asymptotic expansions . . . 111



5 Quasilinear boundary layers: the inner layer o.d.e. 113

5.1 Theequations . . . . . .. ... ... o 113
5.2 The inner-layer ode, and the hyperbolic boundary conditions 116
5.2.1 Example: Burgers equation . . . . ... ... ... .. 117
5.2.2 Example: the linear case. . . . . ... ... ... ... 117

5.3 Solutions of the inner layer od.e. . . . . . ... ... 118
5.4 Smooth hyperbolic boundary conditions . . . . ... ... .. 124
5.4.1 Small amplitude layers . . . . . .. .. ... ... ... 124
5.4.2 Large amplitude layers . . . . . . . .. ... ... ... 124

5.5  The linearized profile equation . . . .. .. .. .. ... ... 125
5.5.1 Conjugation to constant coefficients . . . . ... ... 126
5.5.2 Transversality and the tangent spacetoC . . . . . .. 128

6 Plane wave stability 131
6.1 Statement of the problem . . . . ... ... ... ... .... 131
6.2 Necessary conditions . . . . . . . ... ... ... ... ..., 133
6.2.1 General discussion . . . . .. .. ... 133
6.2.2 The hyperbolic case: the Lopatinski Determinant . . . 135

6.3 Evans functions . . . . . ... ..o o Lo Lo 138
6.3.1 Reduction to first order and rescaling . .. ... ... 138
6.3.2 Spectral analysis of the symbol . . . . . .. ... ... 139
6.3.3 Conjugation to constant coefficients . . . . .. .. .. 140
6.3.4 Stability conditions . . . . .. ... oo 141

6.4 Low frequency analysis of the Evans condition. . . . . . . .. 143
6.4.1 Detailed spectral analysis of G . . . . ... ... .. 143
6.4.2 Proof of Theorem 6.4.1, necessary conditions . . . . . 144
6.4.3 Proof of Theorem 6.4.1, sufficient conditions . . . . . . 148

7 Stability estimates 150
7.1 Theestimates . . . . . . . . . ... 150
7.2 The method of symmetrizers . . . . . ... ... .. ..... 153
7.3 High frequencies . . . .. ... ... 0L 156
7.4 Medium frequencies . . . . . . ... ... 160
7.5 Low frequencies . . . . . . . . .. ... ... 161
7.6 Proof of the L? estimates . . . . . .. ... .......... 166
8 Kreiss Symmetrizers 169
8.1 Scheme of the construction . . ... .. ... ... ...... 169
8.1.1 Notations . . .. ... ... .. ... .. 169
8.1.2 Blockreduction . . . . . ... ... oL 171



8.2

8.3

8.4

ers
9.1
9.2

8.1.3 Ellipticmodes . . .. . ... .. ... .. ....... 173

Hyperbolicmodes . . . . . . .. ... ... .. ... ... . 173
8.2.1 Preliminaries . . . . . ... ... o oL 173
8.2.2 Symmetrizers for hyperbolic modes . . . . . . . .. .. 174
The block structure property . . . . .. .. .. ... ... .. 177
8.3.1 The hyperboliccase . .. .. .. .. ... ... .... 178
8.3.2 The generalized block structure condition . . . . . .. 185
Construction of symmetrizers near glancing modes . . . . . . 190
8.4.1 Examples . . . . . .. . . 190
8.4.2 Proof of the main lemmas . . . . .. .. .. ... ... 194
8.4.3 Proof of Proposition 8.1.6 near glancing modes . . . . 198
Linear and nonlinear stability of quasilinear boundary lay-

202
Assumptions . . . ... 202
Linear stability . . . . .. .. .. ..o oo 205
9.2.1 L%stability . . ... ... ... ... ... 206
9.2.2 Conormal stability . . . . .. ... ... ... ..... 208
Nonlinear stability . . . . .. .. .. .. ... . ... 210

9.3



Introduction

These notes correspond to lectures and graduate courses given in Brescia,
Bordeaux and Toulouse. They are intended to serve as an introduction to
the stability analysis of small viscosity boundary layers which is developed
in [MZ1]. There is a huge literature concerning formal asymptotic analysis
or WKB expansions for boundary layers using multiple scale analyses, in-
cluding sophisticated multiple layers expansions and matched asymptotics.
Here we study the basic problem of a single layer, but focus on the stabil-
ity analysis, aiming to give rigorous justification of the approximation of the
exact solutions by the formal or asymptotic expansions. These notes are not
intended to give an hypothetic complete treatment of the problem. Instead
they aim to point out a few important features:

- existence of exact solutions of hyperbolic and parabolic problem, in-
cluding stability estimates allowing to estimate the difference between exact
and approximate solutions;

- analysis of the nonlinear inner layer o.d.e. which arises for quasi-
linear systems, making a link between its stability and a geometric transver-
sality condition;

- formulate almost necessary and sufficient conditions for the multi-
dimensional plane wave stability of the inner layer, in terms of an Evans
function;

- extend the Kreiss construction of multidimensional symmetrizers
to hyperbolic-parabolic problem, proving the basic L? estimate for linear
stability.

To be more specific, consider a N x N system

d
Oru+ Y Aj(w)du—e > 0;(Bjr(u)dpu) = F(u),
j=1

d
jk=1

The variables are (t,7) € R x R%. The equation is considered for z in a
smooth domain Q C R% and supplemented with boundary conditions. Here
we consider homogeneous Dirichlet boundary conditions:

’LL|QQ =0.



We assume that the first order part is sufficiently hyperbolic, for states
uw € U C RY and that the second order singular perturbation is elliptic. A
major assumption in the analysis below is that 0€2 is noncharacteristic for
the hyperbolic part:

Vu € UVe € 00 ¢ det (Y njA;(u)) #0,

where n = (ny,...,nq) is the normal to the boundary. ¢ is a positive param-
eter which, in applications, measures the strength of the viscous or dissipa-
tive phenomena. The goal is to understand the behavior of solutions when
€ tends to zero. The limit is expected to satisfy the hyperbolic equation

d
Opu+ > Aj(u)dju = F(u).
j=1

The main questions are:

1 - existence of solutions for ¢ in an interval of time independent of ¢.
This is not an easy consequence of know results for parabolic systems, since
the parabolic estimates break down as € — 0;

2 - identification of the boundary conditions for the limiting hyperbolic
problem; well-posedness of this boundary value problem;

3 - convergence of the solutions of the viscous equation to the solution
of the inviscid problem.

A general approach to answer these questions is to proceed in two steps:

- first, one constructs approximate solutions by multiple scale ex-
pansions. This construction provides the good candidate for the limiting
boundary conditions of question 2; it relies on the well-posedness both of
the inner-layer equation and of the limiting hyperbolic boundary value prob-
lem;

- second, one studies the linear and nonlinear stability of the ap-
proximate solutions. The stability conditions are in general much stronger
than the conditions necessary for the construction of approximate solutions.
There are examples of strongly unstable approximate (or even exact) solu-
tions see for instance [Gr-Gu|. Indeed, the existence of unstable layers is a
well known occurrence in fluid dynamics. In the favorable cases when the
layers are linearly stable under multidimensional perturbations, they also
are nonlinearly stable and one can exhibit exact solutions which are small
perturbations of the approximate solutions, answering questions 1 and 3
above.



These notes can be divided in two parts: the first one, Chapters one
to four is devoted to linear and semilinear systems. We present most of
the analysis in [Gul] about noncharacteristic semilinear layers, including
a detailed exposition of the existence and regularity theory for symmetric
hyperbolic boundary value problems. The second part, from Chapter five to
the end concerns quasilinear systems. We focus on two important aspects of
the analysis: the study of the nonlinear inner layer equation, and the plane
wave stability analysis which yields to the stability estimates in [MZ1].

Part 1: semilinear layers.

For linear equations the analysis of boundary layers in a general setting
as above, is studied in [BBB], [Ba-Ra], [Lio]. Next we mention the important
work of O.Gues ([Gul]) where the semilinear case is solved in great details.
He constructs and rigorously justifies high order approximations. Moreover,
his analysis includes the completely different case of characteristic equations.

In Chapter one we study the elementary example of viscous perturba-
tions of a transport equation:

Oru + adru — ac‘)gu =f.

In this example, explicit computations are available and most of the phe-
nomena can be easily observed.

In Chapter two, we give a detailed analysis of the hyperbolic mixed
Cauchy problem for symmetric operators (see e.g. [Frl], [Fr2], [Fr-La],
[Tar]). For simplicity, we restrict attention to constant coefficients equa-
tions, but, with the additional use of Friedrichs Lemma our presentation is
immediately adaptable to variable coefficients. We follow closely the presen-
tation in [Ch-Pi] to derive existence, uniqueness, smoothness, the causality
principle for linear equations, from weighted L? estimates. Next, we carry
out the analysis of semi-linear equations, using Picard’s iterations. With one
more degree of smoothness, this method extends to quasilinear systems, as
shown, for instance, in [Maj],[Mok|,[Mé2]. We also give a detailed account
of the compatibility conditions at the corner edge, which are necessary for
the existence of smooth solutions, both in the linear and nonlinear mixed
Cauchy problem (see [Ra-Ma], [Ch-P1i]).

In Chapter three, we first review the classical construction of smooth
solutions for parabolic systems, including the analysis of compatibility con-
ditions. The most important part is devoted to the proof of estimates which
are uniform with respect to the viscosity €. Because of the layers, there
are no uniform estimates in the usual Sobolev spaces. At most, one can
expect tangential or conormal smoothness and we prove uniform estimates



in spaces Hj, and Hg, of functions possessing this tangential or conormal
regularity. Moreover, although these spaces are not imbedded in L°°, one
can prove L> bounds for the solutions of the equations in Hj, or in H},.
This allows to use iterative scheme to solve nonlinear equations.

The analysis of semilinear boundary layers is done Chapter four, follow-
ing [Gul]. First, one uses BK W multiple scale expansions, to find approx-
imate solutions

uipp(t, x) = anUn(t, x,xq/e), Up(t,x,z)=U;(t,x,2) + up(t, x).

n=0

Each profile Uy, is the sum of an inner term U} which is rapidly decreasing
in z and carries the rapid variations of ug,, in the layer 0 < x4 = 0(¢). The
outer part, up, describes the behavior of ug,, in the interior of the domain,
that is for x4 > 9, for all 6 > 0. The U, are determined inductively. The
Uy, are solutions of hyperbolic boundary value problems. There we use the
results of Chapter two. The U,; are given by explicit integration. Next we

construct the exact solutions

Ut = gy, + €705, -

We use the uniform estimates of Chapter three to solve the equation for v%,
proving in the same time the existence of u on a uniform interval of time
[0,7] and the estimate

u® — g, = O(E™).

Note that the estimates of Chapter three are stronger than the estimates
used in [Gul], so that the result given in Chapter four apply as soon as
m > 1.

Part 2: quasilinear layers.

For quasilinear equations the analysis is much more delicate. A first
result is given in [Gi-Se| in one space dimension and in [Gr-Gu] for multi-
dimensional problems. Indeed, the analysis in [Gr-Gu] has two parts. In
the first part, approximate solutions are obtained using formal expansions
in power series of the the viscosity €. In the second part, the authors prove
the stability of this approximate solution, proving that the exact solution
is actually close to the approximate one, using a smallness condition (as
in [Gi-Se|). By an example, they also show that some condition is needed.
However, the smallness condition is not natural and does not allow large
boundary layers.



In the model case of planar layers (in analogy with planar shocks) that is
boundary layers created by viscous perturbations of constant state solutions
u of hyperbolic equations on a half space {x4 > 0} :

ut(t,x) = w(rq/e) withw(0) =0 and lim =u,

rescaling the variables transforms the problem into a long time stability
analysis for parabolic systems. In the study of reaction—diffusion equations,
is has been shown that the accurate long time stability conditions are based
on the analysis of an Evans function, see, e.g. [Evl]-[Ev4], [Jon], [AGJ],
[Pe-We], [Kap]. Evans functions have also been introduced in the study of
the stability of planar viscous shock and boundary layers (see, e.g., [Ga-Zu],
[ZH], [ZS], [Zum], [Ser], [Rol], and references therein. They play the role
of the Lopatinski determinant for constant coefficient boundary value prob-
lems. When they vanish in the open left half plane, the problem is strongly
unstable and when they do not vanish in the closed half space, the problem
is expected to be strongly stable. This indicates that assumptions on the
Evans function should be the correct approach in the study of the stability
of boundary layers. This has been proved to be correct in space dimension
one [Gr-Ro| and in [MZ1] for multidimensional problems.

The one space dimensional analysis in [Gr-Ro| is based on integrations
along characteristics for the hyperbolic equations and on pointwise estimates
of the Green’s function for the parabolic part, which are then combined to
yield L' bounds on the Green’s function for the linearized equations about
the full boundary layer expansion. In multi-dimensions, both ingredients
break down, due to more complicated geometry of characteristic surfaces. In
particular, the known estimates of the parabolic Green’s function [Zum]| con-
sist of LP bounds, p > 2, and do not include pointwise behavior. Moreover,
it is known from study of the constant-coefficient case [Ho-Zu] that the L!
norm of the Green’s function is not necessarily bounded in multi-dimensions,
but in general may grow time-algebraically. This is a consequence of focus-
ing and spreading in the underlying hyperbolic propagation, the effects of
which are even more dramatic without parabolic regularization; indeed, as
pointed out by Rauch [Raul], there is good reason to believe that L? is
the only norm in which we can expect that multi-dimensional hyperbolic
problems be well-posed.

Thus, in multi-dimensions, the hyperbolic (or “outer”) part of the solu-
tion forces to seek L? — L? bounds. For hyperbolic equations satisfying a
“uniform Lopatinski condition”, this has been done by H.O. Kreiss ([Kre],
see also [Ch-Pi|) using symmetrizers. In [MZ1], it is shown that this method



can be extended to the parabolic regularizations of the systems, under the
analogous “uniform Evans condition”. It provides us with maximal esti-
mates which are sharp for both hyperbolic and parabolic parts of the equa-
tions, as seen by comparison with explicit representations of the resolvant
in the planar case (see [Agm| and [Zum]).

In Chapter five, we study the inner-layer equation, that is the equation
satisfied by w(z) if w(xz4/¢) is a stationary solution of the viscous equations.
Moreover, this analysis also gives the natural boundary conditions for the
limiting hyperbolic equation: the boundary value of the hyperbolic solution
must be a limit at z = +o00 of a solution of the inner-layer o.d.e..

Chapter six is mainly devoted to the definition of the Evans function,
starting from general considerations about the plane wave stability analysis
of boundary value problems. In particular, we also recall the definition of
the Lopatinski determinant. A key point of the analysis, due to [Rol] (see
also [ZS] for an analogous result about viscous shocks), is that the uniform
Evans stability condition for the viscous problem implies, first, that the
natural boundary conditions are smooth and second, that the limiting invis-
cid hyperbolic problem satisfies the uniform Lopatinski conditions. These
are the two ingredients which are necessary to construct BKW solutions in
[Gr-Gu].

The basic L? estimates for the linearized equations around a planar layer,
are given in Chapter seven. The method of symmetrizers is recalled, as well
as their construction for “large” and “medium” frequencies, which means
here that the space-time wave numbers ¢ satisfy €|¢| > 1 and 0 < r <
el¢] < R < 400 respectively.

The analysis of low frequencies, that is €|(| < 1, is performed in Chapter
eight, where Kreiss’ construction of symmetrizers is extended to the viscous
equations.

Finally, in Chapter nine, we state (without proof) the main result of of
[MZ1], indicating where the key results of the previous chapters are used.

Further remarks

We end this introduction with a few remarks about applications and
further developments. There are many motivations for the analysis of small
viscosity perturbation of hyperbolic problems. For instance, for scalar con-
servation laws, there is the basic Krushkov analysis ([Kru], see also [Ole]).
In space dimension one, for systems there are analogous results in particu-
lar cases ([Go-Xi], [DiP]) and now in a general context by S.Bianchini and
A.Bressan [Bi-Br]. Boundary layers occur in many circumstances and appli-
cations, it is impossible to make a complete list here. Many examples come
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from fluid mechanics, starting with the analysis of Navier-Stokes equations
with small viscosity. However, it is important to note here that the frame-
work developed in these notes rules out the specific case of compressible
Navier-Stokes equations. For two reasons. First, for Navier-Stokes equa-
tions, the viscous part is only partially parabolic: there are no viscous term
in the equation of mass conservation. This is probably not fundamental, and
one can reasonably expect that the analysis of [MZ1] extends to partial vis-
cosity, with suitable assumptions on the kernel of the parabolic symbol. The
second reason, is much more serious: the boundary condition for the limiting
Euler equations usually include that the velocity is tangent to the boundary,
so that the boundary is characteristic. This is a dramatic change. In the
semi-linear case, the analysis of O.Gues shows that characteristic boundary
layers are of order /¢ instead of € in the noncharacteristic case and are not
governed by an o.d.e. but by a parabolic partial differential equation. When
applied to Navier-Stokes equations, this analysis yields Prandtl equations,
which have been shown to be strongly unstable at least in some cases, but
this is probably a general phenomenon, see the works by E.Grenier [Grl]
[Gr2]. This reflects the well known fact that many layers in fluid dynamics
are unstable.

An important example of noncharacteristic boundary value problem, for
general system of conservation laws, is the equations of sock waves. It is
a transmission problem, with transmission conditions given by Rankine-
Hugoniot conditions. The main new difficulty is that it is a free bound-
ary value problem, but the analysis of classical multidimensional hyperbolic
boundary value problem has been successfully extended to the shock prob-
lem by A.Majda (see [Maj]). The analysis of viscous perturbations of shocks
has been done in dimension one, see [Go-Xi| for sufficiently weak shocks,
[Ro2] under an Evans function hypothesis. In higher dimension, O.Gues
and M.Williams, have constructed BKW approximate solutions to any or-
der [Gu-Wi]. Extending the stability analysis of [MZ1] which do not directly
apply due to a singularity of the Evans function at the origin, their stability
is studied in [GMWZ1] [GMWZ2], first in the context of long time stability
for fixed viscosity, and next in the small viscosity framework, using addi-
tional technical assumptions which are expected to be removed soon. This
work should extend to partial viscosity and thus should apply to the analysis
of multidimensional small viscosity shock waves for the real Navier-Stokes
equations.
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Chapter 1

An Example

This chapter is an introduction to the main topics developed in this course.
We consider a very simple example: the viscous perturbation of a transport
equation. The advantage is that we can perform explicit computations and
show when and how boundary layers occur.

1.1 The equation

We consider the equation
(1.1.1) O + adyuf — ed*uf = f

The variables are t € R (time) and = € R (space). The unknown u is a real
(or complex) valued function. The parameter e (viscosity) is “small” and
the main goal is to understand the behavior of u® as € goes to zero. The
limit u is expected to be a solution of

(1.1.2) Ou+ alyu = f.

We consider the equation (1.1.1) for z in Ry = {z > 0}. Then a bound-
ary condition must be added to (1.1.1):

(1.1.3) u®(t,0) = 0.

However, depending on a, this boundary condition may be incompatible
with the limit equation (1.1.2). Thus if u® converges to a solution u of
(1.1.2) which does not satisfy (1.1.3), u® must experience a rapid transition
between something close to u in the interior z > 0 and 0 on the boundary:
this transition is called a boundary layer.

13



We may also consider the Cauchy problem, solving (1.1.1) for ¢ > 0 with
an initial condition

(1.1.4) u®(0,2) = h(x).

The goal of this chapter is to introduce on the toy model (1.1.1) dif-
ferent methods and tools which will be useful in the more general analysis
developed in the next chapters.

We first investigate the wellposedness of boundary value problems for
the transport equation (1.1.2). Next we study the viscous equation (1.1.1)
and, by explicit computations, we study the convergence of viscous solutions
to solutions of the inviscid equation, revealing when a < 0 the phenomenon
of boundary layers. Then, we will introduce on the example two methods de-
veloped later: the BKW asymptotic analysis and the use of Fourier-Laplace
transform in the analysis of boundary value problems.

1.2 Transport equation

In this section we consider the transport equation (1.1.2). We consider here
only classical solutions, that is C' solutions, for which the equation has a
clear sense. The case of weak solutions could be considered too, see Chapter
two.

1.2.1 The Cauchy problem
Using the change of variables y = x — at and setting
(1.2.1) o(t,y) = ult,z) = u(t,y +at),  g(t,y) = f(t,y + at)

the equation (1.1.2) is equivalent, for C' functions, to d;v = g. Thus, for
C' source term f and initial data wug, the Cauchy problem has a unique
solution:

v(t,y) =v(0,y)+/0 9(s,y)ds

that is

(1.2.2) u(t,z) = h(z — at) + /0 f(s,z—a(t—s))ds.

14



1.2.2 The mixed Cauchy-boundary value problems

Consider the problem (1.1.2) on Q = {(¢,z) : t > 0,2 > 0} with f € C*(Q)
and initial data h € C1(Ry).

1) When a < 0, the formula (1.2.2) defines a solution of (1.1.2)

satisfying the initial condition uj,—g = up. (since z — a(t —s) > 0 when
x>0,t>s>0).
Proposition 1.2.1. When a < 0, for f € C*(Q) and h € CY(Ry), the
Cauchy problem (1.1.2)(1.1.4) on Q, without any boundary condition, has a
unique solution u € C1(Q) given by (1.2.2). If the data are C*, with k > 1,
the solution is C*.

2 ) On the other hand, when a > 0 the formula (1.2.2) defines a
solution only for x > at. For x < at, one has

1 xX
(1.2.3) u(t,x):u(t—x/a,O)—i—a/ ft—y/a,x —y)dy.
0
Thus to determine the solution, one boundary condition
(1.2.4) u(t,0) = £(t)
must be added. The solution is (uniquely) determined by f, up and .

Remark 1.2.2. For the function u defined by (1.2.2) for x > at and by
(1.2.3) when = < at to be continuous on the half line {z = at > 0}, the
Cauchy data h and the boundary data ¢ must satisfy

(1.2.5) h(0) =£(0) (=u(0,0)).
For u to be C!, one has to impose the condition
(1.2.6) 0l(0) = £(0,0) — ad,h(0),

which is clearly necessary from the equation evaluated at the origin.
Exercise : show that these conditions are necessary and sufficient to
define a solution u € C1(9).
This is an example of compatibility conditions to be discussed in Chap-
ter 2.

Proposition 1.2.3. When a > 0, for f € CY(Q), h € CY(Ry) and ¢ €
CY(Ry) satisfying (1.2.5)(1.2.6), the mized Cauchy problem (1.1.2)(1.1.4)(1.2.4)
has a unique solution u € C1(Q) given by (1.2.2) for x > at and by (1.2.3)
for x < at.

If the data are C* and vanish near the origin, then the solution is C*.

15



1.2.3 The boundary value problem

To avoid the problem of compatibility conditions, one can consider the prob-
lem (1.1.2) on the half space R2 = {t € R,z > 0}, assuming that f vanishes
far in the past (say for ¢ < Tp). In this case there is a unique solution
vanishing for t < Ty, given as follows.

1) When a <0,

(1.2.7) u(t,z) = /_ f(s,x—a(t—s))ds.

In this case, no boundary condition is required.
2 ) When a > 0, one boundary condition (1.2.4) must be added and

(1.2.8) u(t,z) =0t —x/a) + / ft—(z—y)/a,y)dy

Remark 1.2.4. In both cases, note that u = 0 for t < Tj if f (and ¢) vanish
for t < Ty. More generally, the solutions defined by (1.2.7) and (1.2.8) satisfy
the causality principle: their value at time ¢ only depend on f (and ¢) for
times less than or equal to t.

Remark 1.2.5. Above, we considered the cases a > 0 and a < 0. Note that
the case a = 0 is very particular. When a < 0, the formula (1.2.7) shows
that classical solutions satisfy

t
u(t,0) = / f(s,—a(t —s))ds
— 0o
thus
1

(1.2.9) (-, 0l L1 g—co,r)) < a||f||L1(]—oo,T}><R+) :

This extends to weak solutions : one can show using (1.2.7) that they are
continuous in x with values in L!(] — oo, T]) for all T. In particular their

trace on z = 0 is well defined.
In sharp contrast, when a = 0 the formula

u(t,x) = /_too f(s,x)ds

shows that the value of u on x = 0 is not well defined when f € L.
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1.3 Viscous perturbation: existence of layers
We come back to the viscous equation (1.1.1)
1.3.1 The Cauchy problem
Perform the change of variables

y=x—at, u(t,z)=v(t,x—at), f(t,z)=g(t,z—at).
In these variables, the Cauchy problem for (1.1.1) reads
(1.3.1) 0w — 6(95’0 =9, U= = V0-

The solution is given by the heat kernel:

f(y y') /4€tvg(y')dy’

v(t,y)
(1.3.2) dmet

e~ Wy /Ae(t=5) ¢ (5 o/ )dy .

+/0 /R \/47r51(t — )

Exercise : show that (1.3.2) provides a solution v to (1.3.1), for vy and
f in various spaces. Moreover, when ¢ — 0, v® converges to the solution of
Oyv = g with the same initial condition.

1.3.2 The mixed Cauchy-problem

We consider here the mixed Cauchy problem on Q = {t > 0,z > 0} and for
simplicity we assume here that there is no source term:

(1.3.3) (O + ady — ed?)uf =0, Uy =0, uy—=nh.

When a = 0, the mixed Cauchy problem with initial data h € C§°(R;.) is
transformed into a Cauchy problem by considering odd extensions of A and
u® for negative x. This yields to the following formula for the solution:

(t CL' 7(:(3 y)? /4et _ef(x+y)2/45t)h(y)dy

\/ dret

The case a # 0 is reduced to the case a = 0 using the change of unknown

ug(t,x) e~ @ 2t/de+ax /2 ~ 5(t .7})
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Thus the solution is given explicitly by

(1.3.4) ue(t, ) (e~ /4=t — =Y/ 4t () dy

\/ 4ret

with
b= (zx—at—y)?, V= (x+y—at)?+dayt= (x+y+at)’> - dazt.

We can pass to the limit in (1.3.4) as € tends to zero. Assuming for simplicity
that h = 0 near the origin, the stationary phase theorem implies that

_<I>/4ath (y)dy — h(z —at) == up(t, z)

Varet

where B(y) is the extension of h by zero for y < 0. The convergence is
uniform on compact sets, and since h is C'°°, the stationary phase theorem
also gives complete expansion of the integral in powers series of €.

Note that u° is a solution of the limit equation dyug + adzug = 0, with
up(0,2) = h(z). When a < 0, up(t,z) = h(x —at) for t > 0 and > 0
since then  — at > 0. In this case, ug is the unique solution of the (mixed)
Cauchy problem on 2 without boundary condition, see Proposition 1.2.1:

(1.3.5) (8t + aax)uo =0, Ug|t=0 = h.

When a > 0, we find that ug(¢,z) = h(x —at) for x > at and ug(t,z) =0
for x < at. Thus ug is the unique solution of the mixed Cauchy problem
with homogeneous boundary condition, see Proposition 1.2.3:

(1.3.6) (6,5 + a@x)uo =0, UQ|p=0 = 0, UQ|¢=0 = h.

The behavior of the second term depends on the sign of a. When a > 0,
the phase W is strictly positive for y > 0 in the support of h and (¢, z) € Q.
In this case the second integral is 0(6_6/ £) for some ¢ > 0, proving that

(1.3.7) u(t,z) = uo(t,xz) + O(e).

When a < 0, we write the second term

am/s s(t x) with Ue(t,x) — —(z+y+at)? /45th( )dy

VAamet

By the stationary phase theorem

v (t,2) — h(—z — at) := vo(t, x).

18



Note that the limit is different from zero when —(z + at) > 0 belongs to the
support of h. Since a < 0, this occurs for points (¢, z) € Q. In this case, we
have

U (t, ) = ug(t, z) — e/ Fvo(t,z) + O(e) .

Note that e~%/€vy(t, 2) = e=%/yy(t,0)+O0(e), and vo(t, 0) = ug(t,0). Thus
(1.3.8) us(t, ) = ug(t, x) — e/ Fug(t,0) + O(e) .
Summing up we have proved that for h € C§°(]0, 4o00[):

Conclusion 1.3.1. i) When x > 0, the solution u®(t,z) of (1.3.3) converges
to the solution ug of the limit problem, which is (1.3.5) when a < 0 and
(1.3.6) when a > 0.
ii) When a > 0, the convergence is uniform on Q and (1.3.7) holds.
ii1) When a < 0, the convergence is not uniform on 2. Near the
boundary, a corrector must be added, and the uniform behavior is given by
(1.3.8).

When a > 0, the limit ug satisfies the boundary condition, and therefore
it is natural to get that ug is a good approximation of u®. When a < 0,
the solution ug of (1.3.6) has no reason to satisfy the boundary condition,
and thus there must be a corrector of order O(1) near the boundary. The
computation above shows that this corrector is —e®/<ug(t, 0), revealing the
scale x/e and the exponential decay in the fast variable z = x/e. The
boundary layer is this rapid variation of u® near the boundary.

1.4 BKW expansions

This section is an introduction to the general method developed in Chapter
four. We construct formal asymptotic expansions in power series of ¢ for
the solutions of (1.1.1). They provide approximate solutions. We always
assume that a # 0.

Inspired by (1.3.8), we look for solutions of the initial boundary value
problem (1.1.1) (1.1.3) (1.1.4) such that

(1.4.1) w(t,x) ~ Y Unltz, g)
n>0

with U, (¢, x, z) having limits u, (¢, z) at z = 400 such that U,, — u,, rapidly
as z — oo. At this stage, the expansion is to be understood in the sense of
formal series in powers of e.
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Introduce the space P(T') of functions of the form
(1.4.2) V(t,z,z) =v(t,x) + V*(t,2)

with v € C°°([0,T] x Ry), Vx € C°([0,T] x R4)! and such that for all
indices (7, k), there are C' and 0 > 0 such that

0708 V*(t,2)| < Ce™0% .
The splitting (1.4.2) is unique since
v(t,z) = lim Vt,z,z2).
Z—>00

For V € P, we also use the notation V (¢, x) for this limit. We denote by P*
the class of V € P such that V = 0. Note that for all V € P, 0,V € P*.

The profiles U, are sought in the class P. The boundary condition for
u® leads to impose that for all n,

(1.4.3) Un(,0,0) = 0
Similarly, the initial condition (1.1.4) reads:
(1.4.4) Uo(0,2,2) = h(x), U,(0,2,2)=0 forn>1.

In the sense of formal series, (1.4.1) implies that

_ 2\, € ~ n {
(at"‘aam Eam)u f Z 3 Fn(tv‘rv 6)7

n>—1
with
F_1=—-LUy,
Fy=—LU, + LoUy — f
Fo=—LUpi1 + LoUy, — 02Uy, n>1,
with

E::ﬁf—aﬁz, Lo=0: +ad,.

There is an unessential simplification here: there are no cross term 9,0,U,,
since the decomposition (1.4.2) of profiles implies that they all vanish.

Definition 1.4.1. We say that > e"U, is a formal solution of (1.1.1) if
all the F,, n > —1, vanish. It is a formal solution of the boundary value
problem (1.1.1) (1.1.3) if in addition the conditions (1.4.3) hold for n > 0.
It is a formal solution of the mized Cauchy problem (1.1.1) (1.1.3) (1.1.4) if
in addition (1.4.4) holds.

LC22(Q) denotes the space of C* functions on Q which are bounded as well as all their
derivative
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Theorem 1.4.2. Given f € C;°([0,T] x R}) and h € Cg°(Ry) which both
vanish near the origin, there is a unique formal solution of the mized Cauchy
problem (1.1.1) (1.1.3) (1.1.4).

Proof. a) Analysis of F_1 = 0. The equation LUy = 0 reads ad, U} = 02Uj.
Thus the solutions are

Uo(t,z,2) = Po(t,z) + ap(t,x)e.
1) When a > 0, the bounded solutions in P are
(1.4.5) Uo(t,x, z) = up(t, x).

In particular, the boundary condition (1.4.3) for n = 0 and the initial con-
dition (1.4.4) imply that necessarily

(1.4.6) uo(t,0) =0, wp(0,z) = h(z).
2) When a < 0, the solutions in P are

(1.4.7) Uo(t,z, z) = up(t, z) + ap(t)e®

The boundary condition (1.4.3) for n = 0 reads

(1.4.8) ap(t) = —up(t,0).

while the initial condition is

(1.4.9) up(0,2) = h(z), «p(0)=0.

Next, we split the equations F,, = 0 into £, = 0 and F; = 0, where
F,=lim, .. F, and F; = F, — F,.

b) Analysis of F\; = 0. The equation reduces to
Loug = (615 + a@x)uo = f

When a < 0, this equation coupled with the initial condition has a unique
solution by Proposition 1.2.1. Therefore, oy € Cp°([0,T7]) is determined by
(1.4.8) . With (1.4.5) and (1.4.7) this determines Up. Note that, because the
data vanish near the origin, the solution ug also vanishes near the origin, so
that g also vanishes near t = 0 and the second equation in (1.4.9) is also
satisfied.

When a > 0, by Proposition 1.2.3, there is a unique solution of the mixed
Cauchy problem defined by the equation coupled with (1.4.6),
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Remark 1.4.3. In both cases, ug € Cg°([0,7] x R4) is determined as the
solution of the inviscid problem (1.1.2) (1.1.4) augmented with the boundary
condition ug(t,0) = 0 when a > 0. In both case, the leading term Uy given
by this formal computation is equal to the leading term rigorously derived
in section 3.

c) Analysis of Fj = 0. The equation reduces to
LUy = 02Uy — ad, Uy = Q,U; .

When a > 0, the right has side vanishes and the only bounded solution in
P are
Ur(t,z,z) =ui(t, x), with  w;(¢,0) =0.

The initial-boundary conditions imply that
u1(0,2) =0, wi(¢t,0)=0.
When a < 0, the right hand side is dyap(t)e**. The solutions in P are
Ur(t,z, z) = ui(t,x) + aq(t)e” + 2@&0(15)26“2 .
The boundary condition (1.4.3) for n = 1 reads
(1.4.10) a1(t) = —uq(t,0).

and, because aq vanishes for ¢ near the origin, the initial condition reduces
to

(1.4.11) u1(0,2) =0, a1(0)=0.
d) Analysis of F'; = f. The equation reads
(O 4 ady)uy = g,

Together with the Cauchy data uq(0,2) = 0 and the boundary condition
u1(t,0) = 0 when a > 0, there is a unique solution ;. It vanishes near the
origin. When a < 0, we determine 7 by (1.4.10) and the second equation
in (1.4.11) is satisfied.

e) The analysis of the other terms is similar. The equations F_; =
0,...,Fh—1 =0and F,, = 0 determine Uy, ...,U,. Then, F¥ = 0 determines
U; 11 in terms of up11, plus a boundary condition on u, 41 when ¢ > 0 and a
choice of a function ay,+1(t) such that u,11 = —ay,41 on the boundary when
a < 0. Next, I, . is a transport equation for wu,1 which, together with
the Cauchy conditions and the boundary condition when a > 0, determines
Up+1. The details are left as an exercise. O
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Remark 1.4.4. The leading term Uy is equal to the leading term rigor-
ously derived in section 3. More generally, using complete stationary phase
expansions in section 3 provides rigorous expansions (1.4.1) for the exact
solutions. We leave as an exercise to check that both method provide the
same result.

Remark 1.4.5. If Y ¢"U, is a formal solution, then the partial sums
U (t, ) = Z e"Uy(t,x,x/e)
n<N

provide approximate solutions: they satisfy

{ (O + ady — 56§)uzpp = f+eNre,
U'pr(tv 0) =0, upr(va) =h,

with r¢ uniformly bounded.

1.5 Laplace Fourier transform

The Laplace transform is a classical tool in the analysis of evolution equa-
tions, starting with ordinary differential equations. In this section, as an
introduction to Chapters 6 and 7, we sketch an application of this trans-
formation to the analysis of the boundary value problem (1.1.1) (1.1.3) on
R2 = {(t,z): x> 0}.

Suppose that the source term f vanishes for ¢ < 0 and has a controlled ex-
ponential growth when ¢t — +oc: assume for instance that e=0! f € L%(R%).
Then the time-Laplace transform f of f is defined and holomorphic for
Re A > 7. The Laplace transform of the equation is

(1.5.1) (A +ad, —cd?)i=f

If one can solve this equation, by inverse Laplace transform one can get a
solution of the original equation (1.1.1). Moreover, with good control of @
for Re A > 79, one can expect that the solution u vanishes for ¢ < 0. More
generally, this construction agrees with the causality principle.

1.5.1 Definitions

We first recall several definitions and known properties. Consider first
functions of one variable ¢t. The Fourier transform @ = Fu is defined for
u € LY(R) by

a(r) = / o
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and then extended to temperate distributions v € §’. F is an isomorphism
from S’ to S’ and for @ € L,

1 .
u(t) = 27r/fz”tﬁ(7')ci7'
If e~ 7'y € L', the Laplace transform

i) = / e Mu(t)dt

is defined for Re A = -, where we use the notation A = v +i7. This extends
to u € 'S’ as
a(y +it) = Fle M) (7).
In this case, u = " F 1 {u(y+i-)}. When u(y+i-) € L' :
1 >\t~
u(t) = — eMu(N)dA.
2 Re A=y

Lemma 1.5.1. i) (Plancherel) u € e7*L? if and only if u(y+i-) € L? and

le™ " ull p2r) = LHfL||L2({ReA— N
2T =

ii) If u € 'S’ and u =0 for t < Ty, then u is defined and holomorphic
for ReA > ~.

For u(t,z) defined on R x Ry, we define (when possible) the Laplace
transform in ¢ for fixed z. For instance, for u € €LY (R x R, ), we can
define

(A, x) :/Re_)‘tu(t,x) dt

when Re A = «, and u(), -) € LY(Ry) for all A =« +i7.
Similarly, using Plancherel’s theorem, one obtains the next result:

Proposition 1.5.2. The time Laplace transform is an isomorphism from
eL2(R x Ry) to L>({Re X = v} x Ry) and

- IR
e VtuHL2(JR<xJR+) = EHUHLQ({Re)\:'y}XRJr)
Introduce the space W of functions u € L?(R x R,) such that dyu, d,u

and 0%u belong to L2(R x R,). This space, and the weighted spaces YW,
are natural spaces for solutions of (1.1.1).

24



Proposition 1.5.3. For u € e”iVJV, the Laplace transform is defined for
Re A = v and belong to the space W, of functions v € L*({Re A = v} x R})
such that \v, Oyv and 0%v belong to L*({Re X = v} x R4).
Conversely, if v € WW, its inverse Laplace transform belongs to eV'W.
Moreover, for u € e*W the trace Ujp—o belongs to e L? and its Laplace
transform is the restriction of 4 to x = 0.

We can now perform the Laplace transform of the equation (1.1.1):

Lemma 1.5.4. Consider f € e?'L?. Then u € W is a solution of (1.1.1) if
and only if its Laplace transform u € W, satisfies

(1.5.2) —e%U + adi+ ANu = f .

In addition, u satisfies the homogeneous Dirichlet boundary condition
(1.1.3), if and only if the Laplace transform satisfies

(1.5.3) W\, 0)=0.

1.5.2 Green’s functions

We consider here the Laplace transformed equations (1.5.2) (1.5.3), for a
fixed A. Dropping the tildes, the o.d.e. on R reads:

(1.5.4) —ed%u+ adpu+ = f, u(0) =0, u e LA(Ry).

We assume that ¢ >0, a € R, a#0, A€ C, A0 and v =Re\ > 0.
This is a constant coefficient second order equation. The indicial equa-
tion
—erl+ar+A=0

has two solutions
a
(1.5.5) ri=—+pn, ro=—p

where

a de A A e’

Here, /z is the principal determination of the square root in C\| — oo, 0]

(Re/z > 0).
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Lemma 1.5.5. The indicial equation has one root r— such that Rer_ < 0
and one root ry such that Rery > 0. Namely:

if a>0: r—=ry and 71 =171,
(1.5.6) : 2 o
if a<O: r—=mry and ry=rm3.
Proof. Consider
EA
A= —.
a2

Then

SIS
——

(Re V1I+4A)* = %{1 + 4Re A + ((1 +4Re )% + (4ImA)2>

|Tm A |?
>1+4+4ReA .
>1+4ReA + T+ ]A]
Thus
Re A |Tm A|?
1.5.7 Rev1i+4A>1+c¢ + .
(5.0 IFIR 2 Lol mmm e

for some ¢ > 0. In particular, Re (\/1 +A-— 1) >0for A#0, ReA >0 and
Re p # 0 and has the sign of a. With (1.5.5) the lemma follows. O

Definition 1.5.6 (Green’s functions). For A # 0, Re A > 0, define

e e <y,
GS(z,y) = I /
- —ay/e
5(7“_;,_ o 7“_) ¢<$)(P(y)€ fOI‘ Yy < T,
with
SD(:E) =e" — 67;17 Q/)(x) = 67‘71‘7

where T+ are the solutions of the indicial equations given by (1.5.6).

Proposition 1.5.7. For A\ # 0, ReA > 0 and f € L*(Ry) the equation
(1.5.4) has a unique solution u € H*(Ry) given by

(15.8) umzﬁm%@wmmy
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Sketch of proof. First check that (1.5.8) gives a solution when f is contin-
uous with compact support, and that u is exponentially decaying at +oc.
The Lemma 1.5.5 implies that the homogeneous equation has no nontrivial
solution in L?. Thus the solution is unique in L?. The explicit form of the
definition reads

u(x) = 1)(/: e~ f(y)dy

e(ry —r-
oo o0
b [ gy = e [T ey,
T 0
Next use the explicit form of Gf to check that

sup [|G5(x, - )|[pr < 400, sup [[GS(-,y)|pr < +oo.
T Yy

Using Schur’s lemma, this implies that (1.5.8) defines a bounded mapping
GS from L*(Ry) to L*(Ry). Similarly, 0,G5 and 92GS are shown to map
L? to L?. Thus GS maps L? to H?. Because GS f is a classical solution of
(1.5.4) when f is continuous with compact support, by density, G5 f is a
weak solution of (1.5.4) when f € L2 O

1.5.3 The inviscid limit: layers

We now pass to the limit in (1.5.4) as ¢ tends to zero. More precisely,
we consider the limits of the solutions u® given by (1.5.8). Assume that
f € L' N L. In this section, we also assume that

(1.5.10) v=ReX>0.
Proposition 1.5.8 (Case 1 : a > 0). One has
(1.5.11) @) = o)l = O(e)
where ug is the unique bounded solution of

(1.5.12) adpuo + Mg = f,  u(0)=0.

Proof. There holds e(ry —r_) — a, r— — —A/a and r4 ~ a/e. Thus

| e rwlay el [ e I wlay < <l

/ &V f(y)dy — / @0/ () dy.
0 0
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Therefore,
[[u® = ugl[e = O(e)

with | e
wo(z) = / A0/ () dy
0

a

which is the unique solution of (1.5.12). O

Proposition 1.5.9 (Case 2 : a < 0). There holds

(1.5.13) uf () = up(x) — e™/Fug(0) + O(e) in L=([0, 00[)
where ug s the unique bounded solution of

(1.5.14) alzug + Aug = f, ue L>.

Proof. When a <0, e(ry —r_) — —a, r — —\/a, r— ~ a/e and thus

.A eV f(y)|dy < el fll e s
/ e+ f(y)dy — / A=/ (y)dy .

Hence
[uf — up — €**/Fug(0)]| L= = OCe)
where 1 oo
w() = =5 [ gy,
Note that ug is the unique bounded solution of (1.5.14). O

Comment. The analysis above is quite similar to the time dependent anal-
ysis of section 3. More precisely, (1.5.11) (1.5.13) can be seen as the Laplace
transform of (1.3.7)(1.3.8)

When a < 0, ug does not satisfy in general the boundary condition
up(0) = 0. This is why a boundary layer appears: the solution of the
singular perturbation (1.5.4) is ug plus a corrector —e/e gy,
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1.5.4 Estimates

The Propositions above provide solutions (A, -) to the Laplace transformed
equations (1.5.2). To construct solutions of (1.1.1) we need to apply the
inverse Laplace transform to w. In order to apply Proposition 1.5.3 and
Lemma 1.5.4, we want to show that u belongs to a space W,. This means
that we need estimates for the solutions of (1.5.4).

One can use the explicit formulas (1.5.8) to find the suitable estimates.
To prepare the multidimensional analysis, we will prove them using the
method of symmetrizers.

Theorem 1.5.10. For A\ = v + it # 0 with v > 0 and f € L?>(Ry), the
solution u € H*(R) of (1.5.4) satisfies

(1.5.15) pllull 2w,y + Veveldeullzw,y < Cllifll2w,) -
with C' independent of A, € and f and

 y+er? when e[| <1
(1.5.16) pN{ |\l when ¢|A|>1

According to Proposition 1.5.7, for f € L?(Ry), A # 0 with Re A > 0,
the boundary value problem (1.5.4) has a unique solution v € H?(R, ). We
first give the easy estimates.

Lemma 1.5.11. For f € L?(Ry), A # 0 with Re\ > 0, the solution u €
H2(R4) of (1.5.4) satisfies

1
(1.5.17) HlZom,y + 2¢100ulZo@. ) < ;||f||%2(R+) :

Proof. Multiply (1.5.4) by @, integrate over R and take the real part. This
yields

Mul2eqe, ), +€l0sul 2z, ) = Re /0 F@ya(a)dr < [ fllzag o lull 2, ) -

O]

Proof of Theorem 1.5.10. To get the sharp estimates (1.5.15) we consider
(1.5.4) as a first order system: with

UZ(Z)’ v = e0,u, Fz(?f)

29



the equation (1.5.4) reads

1
(1.5.18) 0.U=_GU+F, TU0)=0

o=(5 1) x(1)=

The eigenvalues of G are ery thus a 4+ e and —ep. Thus G can be diago-
nalized. Consider

a-( 1 1Y) gu_ 1 erm 1Y)
ery  er— e(r— —ry) \ —ery 1

Thus U is solution to (1.5.18) if and only if

V= ( Ut ) =0 U
v_

with

satisfies
(1519) a;ﬂ).;r =Tr4v4+ + f+ on R+ y
(1.5.20) Opv— =r_v_ + f_ on Ry,
(1.5.21) v4+(0) +v_(0) =0,
with
(1.5.22) fr=—fo=

- M

Multiplying (1.5.19) by 74 and integrating over R yields:
1 2 2
[+ OF + Rer floi [* < [+ o+l
where the norms are taken in L?(R,). Thus
1
(1.5.23) 0O +Reryllos | < =411
er4

Similarly, multiplying (1.5.20) by —v_ and integrating by parts yields

1
|Rer_|

(15.24) —[o- () + [Rer_[u_|> < AR

30



Using the boundary condition (1.5.21), the definition (1.5.22) of fi, adding
2 x (1.5.23) and (1.5.24) yields

1
§|V(0)I2 +ReryJog [P +Rer—| [l

2 1 1
< (fers + o) P
~ &2lry —r_|2\Rery  |Rer_| I71

Denoting by r1 and ry the roots as in subsection 1.3.1 and labeling accord-
ingly (v1,v2) the components of v, we also get

1
S VOF + [Rer[lur]*+Rers vz

< (e I
~ e2|ry — o2 \|Rer1|  |Rery] '

Forgetting the traces, we get the following estimates for v = v; + v9 and
OzpU = T1V1 + 7209 :

(1.5.25) full € (2 ! e

_|_
elry — rol \|Rer1|  |Rersg

2 1 1 L2 rol2 \ %
(1.5.26) [|8,ul < ( n )2( [ral® o] )2||f”

elry —rol \|Rery|  |Rerg] |Rer1|  |Rers]

Introduce the weight p such that p ~ v + 72 when ¢|]\| < 1 and p = ||
when ¢|A\| > 1 as indicated in (1.5.16). Note that both definitions agree
when e|A| & 1, in which case p ~ ¢~. The goal is to prove that there is
a constant C such that for all A # 0 with ReA > 0 and all u € H%(R,)
solution of (1.5.4)

(1.5.27) pllull < CIIfI,
(1.5.28) Veyplldaull < ClIf]l-

a) The LF regime. Suppose that e|\| < 1.
In this case, ery ~ a, 12 = —\/a + eA\?/(2a®) + O(2|\]?. Thus, with
A=~y —iT:

|al

1
Rera|~ 2, [Rera| = o v+ (2 = 72) + O > op.

d
and
1 1 1

_ ~ < .
efry = 2| ~ af, |Re | + [Rera| — ep

31



This yields (1.5.27). Moreover,

P _C P _CA?_C
<—, < < —.
[Rer1| — € |Re s p €

Thus (1.5.28) follows.
b) The HF regime : [e\| > 1.

In this case,
Ve Ve

re v 220 Rery~ 420
€ €
thus |r1|, |r2, Rery, Rers and |r; — 12| are of order \/p/e. Hence (1.5.25)
and (1.5.26) imply the estimates (1.5.27) and (1.5.28)

c) The MF regime: 0 < ¢ < |e\| < C < +o0.
In this case, |r+|, 7+ —r—, Rery and p are of order 1/e and (1.5.27)
(1.5.28) follow from (1.5.25) and (1.5.26). O

1.5.5 Solutions of the BVP

With the estimates, one can perform the inverse Laplace transform to get
a solution of (1.1.1) on R x Ri. We do not give the details here, most of
them can be found in the next chapter.
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Chapter 2

Hyperbolic Mixed Problems

In this chapter, we discuss the classical theory of mixed Cauchy boundary
value problem for symmetric hyperbolic systems see [Frl], [Fr2], [Fr-La] and
also [Tar], [Ra-Ma]. We follow closely the presentation in [Ch-Pi]. For
simplicity, we consider here only constant coefficients equations, and flat
boundaries, but all the technics can be adapted to variable coefficients and
general smooth domains.

2.1 The equations

Consider a N x N system

d
(2.1.1) Lu:=0m+ Y Ajdju=F(u)+f
j=1
For simplicity, we assume that the coeflicients A; are constant. F'is a C™°
mapping from RY to RY. The variables are t € R, y = (y1,...,yq—1) € R
and z € R. The derivations are 9; = 9,, for j € {1,...,d — 1} and 9y = 0.
For simplicity, we work in the class of symmetric hyperbolic operators:

Assumption 2.1.1.

(H1) There is a positive definite symmetric matriz S = 'S > 0 such that
for all j, SA; is symmetric.

(H2) det Az # 0

The assumption (H2) means that the boundary is not characteristic for
L. The eigenvalues of A4 are real and different from zero. We denote by N
[resp. N_| the number of positive [resp. negative] eigenvalues of A;. Then
N=N;+N_.
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Lemma 2.1.2. The matriz SAg has only real eigenvalues. Counted with
their multiplicities, Ny are positive and N_ are negative.

Proof. Dropping the subscript d, SA = S1/2 (51/2A51/2)8_1/2 is conjugated

to the symmetric matrix A’ := S¥/248Y2 Therefore the eigenvalues of
SA are those of A’, thus are real. In addition, A’ has the same signature
(N4,N_) as A. O

We consider the equations (2.1.1) on the half space {x > 0} together
with boundary conditions:

(2.1.2) Mujy—g = Mg.

where M is a N’ x N matrix.
In the theory of hyperbolic boundary problems, the simplest case occurs
when the boundary conditions are maximal dissipative:

Definition 2.1.3. The boundary condition (2.1.2) is maximal dissipative for
L if and only if dimker M = N_ and the symmetric matriz SAq is definite
negative on ker M.

In this Chapter we study the well-posedness of the hyperbolic boundary
value problem (2.1.1) (2.1.2). We always assume that Assumption 2.1.1
holds and that the boundary condition is maximal dissipative. Restricting
attention to the image of M, there is no loss of generality in assuming that
N’ = N4, so that M is a Ny x N matrix.

Remark 2.1.4. The number of boundary conditions is N’ = N, and there
is an easy way to see that is the correct number of conditions. In space di-
mension one, consider a diagonal system 0;+ AJ, with A = diag(ay,...,an).
The diagonal entries are real, and N+ are positive, N_ are negative. We
have seen in the first chapter, that a boundary condition is needed for
O + a;0, for positive aj. So, the total number of boundary conditions
must be N.

Remark 2.1.5. The dissipativity condition is satisfied in many physical ex-
amples (wave equations with Dirichlet boundary conditions, Maxwell equa-
tions with usual boundary conditions, etc). However, it is far from being
necessary (see the discussion in Chapter 6 for an approach to necessary
conditions). In the analysis below, it appears as a trick to warranty good
energy estimates, but in applications these computations mean dissipation
of a physical energy.
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2.2 Hyperbolic boundary value problems

In this section we consider the problem

Lu= on R x RY
(2.2.1) { ! M

Mujz—g =g on R x R!

We use the notation R4 = {(y,z) € R : z > 0}. We assume that the
Assumptions (H1) and (H2) are satisfied, that M is a Ny x N matrix and
that the boundary condition is maximal dissipative.

We first solve this equation in weighted spaces: we look for solutions
u = 4, assuming that f = €' f and g = €"'g, with u, f and g at least in
L?. This yields the equations

{(L—i—v)ﬂ:f on R x RY

(2.2.2) _ "
Muj,—g =9 on R xR4T,

The choice v > 0 corresponds to the idea that the functions u, f and g
vanish at ¢t = —oo and thus to an orientation of time.

We first study (2.2.2), dropping the tildes. We denote by H?® the usual
Sobolev spaces. We also use the notation ]led =R x Ri.

2.2.1 The adjoint problem

The adjoint of L (in the sense of distributions) is L* := —9;—_ A70;. Thus
—L* has the same form as L.

Lemma 2.2.1. S™! is a symmetrizer for —L*.

Proof. Since S is symmetric definite positive, S~! is also definite positive.
Moreover, SflA; = SflA;fSSfl = S57184;571 = A;571 is symmetric. O

. : . =1+d
For C'! functions with compact support in R ++ , one has

(2.2.3) (Lu,v)L2 = (u, L*v) 2 — (Adu\x:07v\:p:0)L2

where (-, )2 denotes the scalar product in L?. Consider a space of dimension
N4 on which SA, is definite positive. There is a N_ x N matrix M; such
that this space is ker M7. Since M is maximal dissipative, SAy is definite
negative on ker M and therefore

(2.2.4) RY = ker M & ker M,
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Lemma 2.2.2. There are matrices R and Ry of size N_ x N and Ny x N
respectively, such that for all vectors u and v in RN :

(2.2.5) (Aqu,v) = (Mu, Ryv) + (Myu, Rv) .

Moreover, ker R = (Agker M) has dimension Ny and S™1A% is definite
positive on ker R.

Proof. The identity (2.2.5) is equivalent to

(Aqu,v) = (Mu, Riv), Yu € ker M
(Aqu,v) = (Myu, Rv), Yu € ker M .
Since M is an isomorphism from ker M; to R+, the first equation deter-
mines Riv € RN+, Similarly, the second equation determines Rv € RV-.
The identity (2.2.5) implies that (Aju,v) = 0 when u € ker M and
v € ker R, thus ker R C (Agker M)*. Because the two spaces have the same
dimension, they are equal.

Suppose that (S_IAZ}U,U) < 0 for some v € ker R. Then for all u €
ker M, (SAqu, S™'v) =0 by (2.2.5) and for all o € R

(SAq(u+ aS '), u+aS™ ') = (SAqu, u) + a*(AgS v, v) 0.

Since ker M has maximal dimension among spaces on which SA; is non
positive, this implies that S™'v € ker M. Because ker R and Ajker M are
orthogonal, one has (A4S~ 'v,v) = (SA44S 'v,S ') = 0. Since SAy is
definite negative on ker M, this shows that S~'v = 0, hence v = 0. O

Definition 2.2.3. The system L* with boundary condition R is the adjoint
problem of (L, M).

Note that R is not unique, but the key object ker R = (Agker M )J- is
uniquely determined from L and M.

With (2.2.3), the lemma implies that for all « and v in C} (@}Jd)

((L + 7)“7 'l)) 2 — (U, (L* + ’Y)U)Lz - (Mu|:r207 R1v|x:O)L2
- (Mlu\x:m Rv\x:O)LQ :

In particular, if u is a solution of (2.2.2) and Rv = 0 on {x = 0}, one has

(f; U) L2 — (u, (L* + ’Y)U)Lz — (g, R1U|z:0)L2

This motivates the following definition of weak solutions.
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Definition 2.2.4. Given f € L*(RI™) and g € L*(R?), u € L2(RY™) s
a weak solution of (2.2.2), if and only if for all ® € Cgo(ﬁifd) such that

R<I>|x:0 =0 one has
(226) (’LL, (L* + ')’)(I))LQ = (fa q)) L2 + (gv qu)|cc:0)L2 :

We now discuss in which sense weak solutions are indeed solutions of
(2.2.2) Introduce the spaces H%*(R'*%) of temperate distributions such that
their Fourier transform satisfy

(2.2.7) / (1472 + |2)°a(r, 0, €) Pdrdnde < +oo.

For s € N, this is the space of functions u € L? such that the tangential
derivatives Dy, of order |a| < s belong to L?. When s is a negative integer,
this is the space of

U= Z foyua, Ug € L.

laj<—s

The space H**(R1™) is the set of restrictions to {z > 0} of functions in
HO%s (RHd). When s is a positive or negative integer, there are equivalent
definitions analogous to those given on the whole space.

Lemma 2.2.5. For all s € R:

i) the space C’SO(Rfd) is dense in the space Hl’S(R}fd) of functions
u € HO YR such that Dyu € HO (R,

i) the mapping u +— uj,—q extends continuously from HLS(led) to
Hs-i—% (Rd ) .
Proof. The first part is proved by usual smoothing arguments. The details
are left as an exercise.

Consider next u € C§° (@ifd) and denote by (7, n, x) its partial Fourier

transform with respect to the tangential variables (t,y). Integrating 0, |d|*
on R, yields

[ee]
i(r,m, ) < 2 / Bz, )|, m, 2l de,
0

Thus, with A = (1 +72 + ’77’2)1/27

A2 a(, 0)2 < A% /0 Bgii(-, ) *de + A2+ /0 (-, 2)Pde
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Integrating in (7,7) implies
s O a2y < N0ullFyo, . reay + 1l o v greay = lullf . e, -
( HO»s(RY H (R HLs(RYTY)

Thus the mapping u — wuj,—q extends by density continuity to H Ls (]R_lﬁd)
with values in H5+1/2(R%). O

We apply this lemma to the space
(228) D(L) = {ue L}RY) : Lue AR}

Here Lu is computed in the sense of distributions on {x > 0}. This space
is equipped with the norm |ju| ;2 + ||Lu||z2. Because Ay is invertible, for
u € D(L) one has

d—1
(2.2.9) Opu= Ay Lu— Ay 0u— > Ay A0, u
j=1

and therefore D(L) C Hlﬁ_l(Rfd). This shows that all w € D(L) has a

. _1
trace in H ™ 2.

Proposition 2.2.6. i) Cj°(R Hd) is dense in D(L)
it) For all w € D(L) and v € Hl(Rfd), there holds

(2'2'1()) (Luv U)L2 = (U,L*U)Lz - <Adu|x:07U\x:0>H—1/2XH1/2

Proof. Consider a tangential mollifier 7 € C°(R x R%™1), with 7 > 0 and
such that [ j(t,y)dtdy = 1. For € > 0, let

Lty d—1
2.2.11 ty) = —=(-,%), teR, ye R .
( ) Je(ty) = (2, 2) Y
Denote by J: the convolution operator jcx.
If u € D(L) and ® € C(RF?) then J.® € C5°(R1*?) and in the sense
of distributions
(u, L*J.®) 12 = (Lu, J.D) 12

Note that we assume here that the support of ® is contained in the open
half space {z > 0}. Because J. commutes with differentiation and with
multiplication by constants, L*J.® = J.L*®. Moreover, for all u and v in
LQ(Rfd), one has

(u, Ja”)LZ = (J€“7U)L2
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Thus, there holds in the sense of distributions on {z > 0}:
LJou=J.Lu .

In particular u. = J.u € D(L). Moreover, for all v in LQ(REd), Jev con-
verges to v in L? when ¢ tends to zero. Thus, for u € D(L), u. converges to
w in D(L).

Next we note that for all v in L?, J.v € H*® for all s € N, since for all
a 0, (Jov) = (9¢,9:) * v € L2, Thus, uc € H%® for all s. Using (2.2.9) we

see that u. € H'® for all s. In particular, u. € H I(Rfd) and this shows
that H'(RX™) is dense in D(L). Since C§° (E}:_d) is dense in H'(RLT?) this
implies 7).

By (2.2.9), we see that D(L) C H»~1 and

[ull g S llullze + | Lul L2 -
Thus by the trace lemma, the trace u|,—q is well defined on D(L) and

[to=o0llgr-1/2 < NlullL> + [[Lull 2 -
The identity (2.2.10) holds when u and v belong to C§° (@Td). Both side
are continuous for the norms of u in D(L) and v in H'. Thus, the identity
extends by density to D(L) x H'. O

Corollary 2.2.7. Given f € LQ(Rfd) and g € L*>(RY), u € L2(]Rfd) is a
weak solution of (2.2.2) if and only if
i) u € D(L) and Lu = f — vyu in the sense of distributions on {x > 0},
i) the trace uj,—o which is defined in H=12 by i) satisfies Muj,—g = g-

Proof. If u is a weak solution, taking ® with compact support in the open
half space implies that Lu 4+ yu = f in the sense of distributions. Thus
u € D(L).

Comparing (2.2.10) and (2.2.6) we see that for all ® € Cgo(@f_d) such
that R® = 0 on the boundary, there holds

(9: B1®pmo) 12 = (Adtjo=0: Plo=0) 172, yy1/2

Next we use Lemma 2.2.2, which means that A; = (R1)*M + R*M; to see
that the right hand side is equal to

<Mu|:c:07 Rl(I)|x=0>H71/2><H1/2 .

39



For all ¢ € C5°(R?) there is ® € C5°(R} ) such that ®),_y = ¢. Thus, for

all ¢ € C§°(RY) such that Rg = 0,
(9, B19) = (Mujao, B1®) 12, 41172
Similar to (2.2.4), there is a splitting
RY = ker R @ ker R;

Therefore, for all ¢ € C$°(R?) with values in R+, there is ¢ € C$°(R?)
such that R¢ = 0 and R1¢ = . Thus for all p € C§°(RY):

(gv (‘0)0 = <Mu|x:07§0>H—1/2><H1/2 .

This means that Mu,—o = g.
Conversely, if u € D(L) and Lu + yu = f, for all test function ®, one

has
(u7 (L* + 7)@)0 - (fv (p)o :<Mu|a::07 R1¢>H_1/2><H1/2
+ <M1U|x:07 R¢>H*1/2><H1/2 .
with ¢ = ®,_o. Taking ® such that R¢ = 0, we see that if Mu,_o =g

then u is a weak solution of (2.2.2). O
2.2.2 Energy estimates. Existence of weak solutions

Lemma 2.2.8. The symmetric matriz SAq is definite negative on ker M if
and only if there are constants ¢ > 0 and C such that for all vector h € CV :

—(SAgh, h) > c|h|* — C|Mh|*.
Proof. Since S A is definite negative on ker M, there is ¢ > 0 such that
Vh e ker M :  —(SAgh,h) > c|h]?.

Since SAy is invertible, dim(SAgker M) = dimker M = N_, thus K =
(SAgker M)+ has dimension N — N_ = N,. In addition since SAy is
definite negative on ker M, K Nker M = {0} and RY = K @ ker M. In
particular, there is Cp such that for all v € K, |v| < Cy|Mv|. By definition
of K, if h =v+ w with v € K and w € ker M, there holds

_(SAdh7 h) = —(SAd’U,U)—(SAd’UJ,’lU) > C|’UJ|2 - C|U|2
> c(]w|2 + |’U|2) —(C+ C)C’S[Mv|2.
> g|h|2 —(C'+ ¢)C2|Mhl?.

The converse statement is clear. O
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Proposition 2.2.9 (Energy estimates). There is C' such that for all
v > 0 and all test function u € HY(R x RL), one has

(2.2.12) YllulZe + lup=ollz> < C(ZIEL +Mulzs + | Mup—ollZ-)

1
|l
g

(2.2.13) YllolZe + lve=olize < C(ZIL" +7)vlZ2 + [ Ruj=oll?2)

1
ol
Y
Proof. Both side of the estimates are continuous for the H! norm. Since

C(‘)’O(@Td) is dense in H 1(R}:rd) it is sufficient to make the proof when

u € Cg°. Then, using that the SA; are self adjoint and integrating by parts
yields

2Re (S(L + V)U, u)LQ = ’}/(S’U,, u) L2 (SAdu\x:m u\m:O)L2
By Lemma 2.2.8, there are ¢ > 0 and C > 0 such that
— (S Aquja=0, Ujp—0) 12 = =072 — Cl|Mujz=ll72 -
Because S is definite positive, there is ¢; > 0 such that
(Su,u)L2 > cp|ulls .
Therefore
ervllulla + elup=olz2 < 2IS[I(L +)ul g2 lull 22 + ClMujzzoll?- -
This implies (2.2.12). The proof of (2.2.13) is similar. O

Proposition 2.2.10. For ally > 0, f and g in L?, the problem (2.2.2) has
a weak solution in L?.

Proof. Consider the space H of ® € H'(R x R‘i) such that R®,_o = 0. Let
Hi = (L* +~)H C L?. By (2.2.13), the mapping L* + v is one to one from
‘H to ‘H; and the reciprocal mapping F satisfies

MFellrz + VAllBrF ool < Clloll L2 -

Thus the linear form

® = E(QO) = (f? f@)L2 + (g7R1f90\x:0)L2

is continuous on H; equipped with the norm || - || ;2. Therefore it extends as
a continuous linear form on L? and there is u € L? such that £(¢) = (u, ¢)o.
The definition of £ implies that u is a weak solution. ]
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2.2.3 Strong solutions

Definition 2.2.11. Given f and g in L?, u € L? is a strong solution of
(2.2.2) if there exists sequences (up, frn) in Hl(Rfrd), and g, in H'(R?)
solutions of (2.2.2) and converging to (u, f) in L2(Ri+d). and to g in L?(R?)
respectively.

By the density of C§° (Ki—i-d) in H' (R}jd) and continuity from H' to
L? of L and the traces, one obtains an equivalent definition if one requires
that there is a sequence (uy, fpn,gn) in C§° (@fd) solutions of (2.2.2) and

converging to (u, f,g) in L2.

Proposition 2.2.12 (Weak= strong). For ally > 0, f and g in L?, any
weak solution of (2.2.2) in L? is a strong solution and

1
(2.2.14) YlullZz + lua=ollz: < C(jlfll%z +lgll72)

In particular the weak=strong solution is unique.

Proof. Consider again the mollifiers 7 (2.2.11) and the convolution operator
Jeu = 9. * u.

Suppose that u € L? is a weak solution of (2.2.2). For all test function
®, J.® is also a test function and RJ.® = 0. Therefore,

(uv (L* + 7)']6@)[/2 = (f7 J&‘(D)L2 + (gv lee(p‘x:O)LQ .

As in the proof of Proposition 2.2.6 this implies that

(Jou, (L* + ’y)@)L2 = (J-f, <I>)L2 + (J=9, R1<I>‘x:0)L2 .

This means that u. = J.u is a weak solution of

{(L'i_’}/)ua:faa

(2.2.15)
Mue|z—0 = ge -

with f. = J.f and g. = J.g.

The proof of Proposition 2.2.6 shows that for all € > 0, u. € H'(R!T9)
and by Corollary 2.2.7 the equations (2.2.15) hold in L.

Since ue, f- and g. converge in L% to (u, f,g) respectively, this shows
that u is a strong solution.

In addition, the energy estimates (2.2.12) hold for u.. Passing to the
limit, we obtain that u satisfies (2.2.14). O
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2.2.4 Regularity of solutions

We prove that if the data are regular, then the solution is regular. It is con-
venient to equip the spaces H S(Rfd) with a family of parameter dependent
norms:

(2216) ”UHS,'y = Z '78_‘a|||agy,:cu”L2 .

la|<s

We define similar norms on the spaces H*(R?), using only tangential deriva-
tives Oy, .

Proposition 2.2.13. Let s be a non negative integer. For v >0, f € H®
and g € H® the solution of (2.2.2) belongs to H® and

1

Proof. First prove the tangential regularity. We use the mollified equation
(2.2.15). Since u. € H'* for all s, we can differentiate this equation as many
times as we want in (t,y) and 95, u. € H' (R}i_+d) satisfies

(L + ’Y)atcfyua = 81?:ny 9
MO ucja—0 = Ofy9e -

Proposition 2.2.12 implies that

1
Yllelzgo. + lluepe=ollFpo.s < C(;Hsz?{o,s +119e 1 7o)

with C independent of ¢.
Next we use the equation to recover the normal derivatives. We start
from (2.2.9) which implies that

[0zt gro.s—1 S || fell go.s—1 + ||uel goss -

In addition, since f. can be differentiated s times in =, we see by induction
on k < s that d¥u. € H**' for all s’ with

d—1
Ofue = AP0V fo — AT OE TOme — > A A;0E Ojuc
j=1

Thus
105 el ros—r < 108 fell gro.s—r + 1|05 e pro.s—isa
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Adding up, we see that u. € H**! and that there is C independent of ¢ and
~ such that

1
Ve llZ + e pe=oll3 < C(;Hfsllin, +1ell2 )

This means that the wu. satisfy (2.2.17). Similarly, the differences u. — u.s
satisfy (2.2.17). Hence the family u. is a Cauchy sequence in H®, so that
the limit u belongs to H® and satisfy (2.2.17). O

2.2.5 Solutions of the boundary value problem (2.2.1)

We now turn to the original equation (2.2.1). Propositions 2.2.10, 2.2.12
and 2.2.13 imply the next result.

Theorem 2.2.14. Suppose that v > 0, s € N, f € e""H® and g € "' H?®.
Then the problem (2.2.1) has a unique strong solution u € ' H® and

_ _ I, _ _
(2218)  Alle™ullZ, + e upoll2, < C(;Ile MEIR L+ lle g2 )

where C' is independent of v and u, f, g.

2.3 Solutions on | — 00, 7| and the causality princi-
ple

In this section, we show that if the data of (2.2.1) vanish in the past, then
the solution also does, and we solve the boundary value problem on {t < T'}.
First we note that we have a strong uniqueness result:

Lemma 2.3.1. Assume that f € e'L2NetL? and g € €' L% Ne"t L2with
0 < v < 71. Then the solutions u~, and u., giwven by Proposition 2.2.13
applied to v =~y and v = 1 are equal.

Proof. Note that f € €7 L? for all y € [yo,v1]. Therefore, for such v (2.2.1)
has a unique strong solution u., € e L2

Introduce a function § € C*°(R) such that #(t) = 1 for ¢ < 0 and
O(t) = et for t > 1. Thus §;0 = hf with h € L>®. With § = v — o,
introduce

v = 0(6t) (uy — uy) -
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The properties of § imply that v € e7°'L? and
Lv = 60,0(8t) (uy — ) = 6h(6t)v, Mujz_og=0.

Thus, by uniqueness in €?L?, Theorem 2.2.14 applied to v = 7o, implies
that there is a constant C, independent of the ~’s, such that

volle™ ]|z < Cdlle™ ]|

If C§ < ~p, this implies that v = 0. Summing up, we have proved that
for v < (14 1/2C)y and 79 < v < 71, one has uy = u,,. By induction,
this implies that for all integer k& > 1, uy = u,, for v € [yo, 71] with 7 <
(1+1/2C)* . Hence, uy = u,, for v € [y0,71]. O

This implies local uniqueness:

Proposition 2.3.2. If f € thL2(]R}r+d) and g € e L2(RY) with v > 0
vanish for t < T, then the solution u & e'ytL2(Ri+d) of (2.2.1) vanishes for
t<T.

Proof. Since f and ¢ vanish for ¢ < T, f and ¢ belong to ¢?*L? for all 4/ > ~.
Thus, by the lemma above, u € e7*L? for all 4/ large and by Theorem 2.2.14
there is C' such that for all 4" > ~:

A 1 A A
Ve ulZs < C?He T fIGe 4+ Clle gl -
Thus

1 C 1 1
Y llullZa ey < 7l T uls < ~ille” T |72 + Clle” T £ |17
C

<=
5

17T f12, 4+ CJle? 0 fI|2, .

The right hand side is bounded as 4’ tends to infinity, thus u<ry = 0. O

We now consider solutions of (2.2.1) on | — 00, T] x RL. First, we note
that the trace makes sense.

Lemma 2.3.3. Suppose that u € L*(|Ty, To[xR%) satisfies Lu € L?(JT1, To[xR%).
Then the trace uj,—q is well defined in H_1/2(}T1,T2[><Rd_1).

loc
Proof. Consider x € C§°(]T1,T2[). Then xu, extended by 0 belongs to
L%Rf‘d) and L(xu), which is the extension by 0 of x Lu+ 0y xu, also belongs
to LQ(Rfd). Thus, by Lemma 2.2.5, yu has a trace in H~'/2 and the lemma
follows. u
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Therefore, for u € L2(|Ty, To[xR%) such that Lu = f € L*(|Ty, To[xR%)
the equation Muj,—g =g € L? makes sense.

Corollary 2.3.4. Suppose that v > 0 and u € e’ L?(]—o00,T] xRi) satisfies

Lu=0 on ] —o0,T] x Ry)
Mujy—g =0 on | — o0, T].

Then u = 0.
Proof. For 6 > 0 choose x € C*°(R) such that

x(t)=1 fort<T —9§ and x(t)=0 fort>T—4/2.

Extend v = x(t)u by 0 for t > T. Then v € ¢"L?, Mwv vanishes on the
boundary, and f := Lv which is the extension of (9;x)u by 0 for ¢t > T
vanishes for ¢ < T — 6 and belongs to €' L?. Thus, by Proposition 2.3.2
v and hence u vanish for ¢ < T — §. Since § is arbitrary, this implies that
u = 0. O

Remark 2.3.5. If v and u; are two solutions in e”L? of (2.2.1) on | —
00, T1] x R% associated to L? data (f,g) and (f1,g1) respectively, and if
f=fiand g =g for t < T, then u = uy for t <T'. Thus the values of u for
times t < T only depend on the values of the data f and g for ¢ < T. This
means that the solutions constructed above satisfy the causality principle.

Theorem 2.3.6. Suppose that f € Y H*(]—o0, T]xR%) and g € e H(] -
00, T] x R4™Y), for some v > 0 and s € N. Then the problem (2.2.1) has a
unique solution u € Y H*(] — 00, T] x R4).
If f and g vanish fort < T4, then the solution u also vanishes fort < 1Tj.
Moreover, estimates similar to (2.2.18) are satisfied.

Proof. Extend f and g for t > T as fe H* (R x ]Ri) and g € H*(R x R4~1).
We can choose the extension such that they vanish for ¢ > 7"+ 1. For
instance, when s = 0, we can extend them by 0. Because f = f and g = g
for t < T and vanish for t > T + 1, f and g belong to e?'H*. Therefore, by
Theorem 2.2.14 the problem

(2.3.1) Lu=f, Miuj,—g =g

has a unique solution @ € e? H*. Its restriction to {t < T’} satisfies (2.2.1).
This proves the existence part of the statement.
The uniqueness follows from Corollary 2.3.4. O
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2.4 The mixed Cauchy problem

We now consider the mixed Cauchy-boundary value problem:
Lu=f on [0,7] x R%
(2.4.1) Mujy—g =g on [0,T] x R4!
Ujg=0 = Uo on Ri
We first solve the problem in L? and next study the existence of smooth

solutions.
When u € L*([0,7] x R%) and Lu € L([0,T] x R%), the trace uj,—g

is defined in H. l;cl/ 2 (]0, T[xR41) thus the boundary condition makes sense.

We will construct solution in the space C°([0, T7; L*(R%)) identified with a
subspace of L?([0, 7] xR% ) and for such u the initial condition is meaningful.

2.4.1 L? solutions

The starting point is an energy estimate. Note that, by standard trace theo-
rems (see also Lemma 2.2.5) all w € H'([0,7] x R%) belongs to
CO([o,T); HY2(R4)) < €°([0,T); L2(R%)). In particular, for such w, the
value of u at time ¢ € [0, 7], denoted by u(t), is well defined in L?(R%).

Proposition 2.4.1. There is a constant C' such that for all T > 0, all
ue HY([0,T) x RY) and all t € [0,T), the following inequality holds:

)l 2y + Npamoll 2 go.g sy < € (ol 2gae
(2.4.2)

t
+ [ 1O sz + lgliaqoan )
where ug = u(0), f:= Lu and g := Mu|,—.

Since u € H', f = Lu belongs to L?, thus

/
£ Ol = ([ 176000 dydz)

is well defined in L?([0,77), thus in L'([0,T]).

Proof. By integration by parts, as in Proposition 2.2.9, there holds:

2Re (Sf, u)LQ([OJ]XRi) = (Su(t), u(t))LQ(Ri) — (Su(0), u(O))LQ(Ri)

- (SAdu|$:0’u|$:0)L2([O,T]><Rd—1) :
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Since S is definite positive and using Lemma 2.2.8, this implies
(22 ey + a0z a1 < C (10 2ages,
t
gl operin + [ 176 gz (o)l ua ) -

Taking the supremum of these estimates for ¢ € [0,t], we can replace in
the left hand side ||u||ig(Ri) by n?(t) where n(t) := SUPy e[ Hu(t/)HLZ(Ri)-

Moreover, the integral in the right hand side is smaller than

t t
) [ 17 eyds < ent0)+ e ([ 156 aayds)

Choosing & small enough to absorb Cen? from the right to the left, yields,
with a new constant C"

n?(t) + Hu|z:0||%2([0’t]><Rd*1) < C(HU(O)H%z(Ri)
t
2
ol o gers-sy + (| 1Flsaegy)’as)
and (2.4.2) follows. O

This estimate has consequences for strong solutions of (2.4.1).

Definition 2.4.2. Given f € L?([0,T] x R%), g € L*([0,T] x R¥1) and
uy € L*(RYL), we say that u € L*([0,T] x R%) is a strong L*-solution of
(2.4.1) if there is a sequence u™ € L?([0,T] x R%) such that u™ — u, Lu™ —
[y Mu™,—g — g and u™(0) — ug in L2,

Proposition 2.4.3. Ifu € L?([0,T]xR%) is a strong L*-solution of (2.4.1),
then u satisfies the equations (2.4.1), u € C°([0, TY; LQ(Ri)), its trace uj,—g
belongs to L2([0,T] x RY™Y) and the energy inequalities (2.4.2) are satisfied.

Proof. Suppose that u” is a sequence in H! such that u” — wu, Lu™ — f,
Mu™,_y — g and u"(0) — ug in L.

Applying the estimate (2.4.2) to differences v — u™, we conclude that
u™ is a Cauchy sequence in C°([0,77; L?(R%)) and that the traces u"—o
form a Cauchy sequence in L2([0,7] x R?1). Hence u™ converges to a
limit v € CO([0, T]; L*(R%)) and the traces u" |,y converge to a limit h €
L%([0, T]xR%1). Since u™ — w in L2, by uniqueness of the limit in the sense
of distributions, v = u. Moreover, Lu™ — Lu in the sense of distributions,
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thus Lu = f. Using Lemmas 2.3.3 and 2.2.5, we get that the traces u"|,—o

converge t0 Ujy—q in Hl_oi/z(]O,T[defl), and since the traces converge to
h in L?, this implies that Ugy—o = h € L%([0,T] x R4Y). In particular,
Muj,—g = lim Mu",_o = g. Since u" — u in C°([0,T]; L?), there holds
u™(0) — u(0) and thus u(0) = ug in L?. This shows that u is a solution of
(2.4.1) and that the trace on {x = 0} is in L.

Knowing the convergences u" — u in C°([0,T]; L?), Lu™ — f, Ufyg =
Ujp=0 N L?, we can pass to the limit in the energy estimates for 4", and so
obtain that u satisfies (2.4.2). O

Remark 2.4.4. This statement applies to solutions of (2.2.1). Suppose that
feL?(]—o00,T) xRL) and g € L?(] — 00, T] x R471) vanish for t < 0. The
unique solution u € L?(]— oo, T] x RL) of (2.2.1) which vanishes when ¢ < 0,
given by Theorem 2.3.6 is a strong solution by Proposition 2.2.12, or as seen
by writing f = lim 7, g = lim ¢” with f* € H', g" € H' vanishing when
t < 0. Then, by Theorem 2.3.6, the solution u™ of (2.2.1) with data (f", ")
belongs to H' and converge in L? to u. Since u™ vanishes for t < 0 and
u™ € H', the trace of u™ on {t = Ty} vanishes, i.e. u"(Tp) = 0 for all Ty < 0.
This shows that u, restricted to {t > Ty} is a strong solution of (2.4.1) with
vanishing initial data at time Ty. Thus, u € C°(] — oo, T]; L?(R%)) and the
estimates (2.4.2) hold.

We can now state the main theorem.

Theorem 2.4.5. For all ug € L*(RL), f € L*([0,T] x RL) and g €
L2([0, T)xRI7Y), there is a unique solutionu € C°([0,T], L*(R)) of (2.4.1).
It is a strong solution, its trace on {x = 0} belongs to L%([0,T] x R%") and
the energy estimate (2.4.2) is satisfied.

Proof. a) Existence.

Denote by HE(R?) the space of functions in v € H'(R%) such that
Vjp—g = 0. Since H}(R%) is dense in L*(R%), there is a sequence uff such
that:

uf € HYRL), luf — uollz — 0.

Considered as a function independent of ¢, u? belongs to H1([0, 7] x ]R‘i), its
trace on = = 0 vanishes and Lul} € L2([0,T] x R%+). By density of smooth
functions with compact support in L?, there is a function f™ such that

1
freH' (=00, T)xRL), flio=0, 1F* = (f = Lug)ll 2o, ryxmey < -
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Similarly, there is g" such that

S

g" € H'(] = 00, T] x R*1), Ji<o =0, 19" = gll2(o,ryxri-1) <

By Theorem 2.2.14, there is a unique function v", such that
v € HY(] — 00, T] x Ri), Lv" =", v"c0=0, Mv",—qg=g".

In particular, since v" € H!, v" € C%(] — 00, T]; L*(R%)), and since v" = 0
when ¢ < 0, this implies that v™(0) = 0.

Consider u” the restriction on [0,7] x R% of v™ + uf. It belongs to
H'(] — 00, T] x RY), its trace on {z = 0} is equal to the trace of v, thus
Mu"y—g = ¢g" — g in L% Moreover, u™(0) = u} — ug in L? and Lu" =
f" + Luy — f. Thus, applying the estimate (2.4.2) to differences u" — u™,
we conclude that u™ is a Cauchy sequence in C°([0,77; L*(R%)). Thus u"
converges to a limit u in C°([0,T]; L*(R4)), thus in L%([0,7] x R%). The
properties listed above show that w is a strong solution of (2.4.1), thus a
solution which satisfies the estimates (2.4.2).

b) Uniqueness.

Suppose that u € C°([0,T]; L>(R%)) satisfies Lu = 0, Muj,—g = 0 and
u(0) = 0. Consider a C* non decreasing function x(¢) such that xy = 0
for t < 1and x(t) =1 for t > 2. For § > 0, let x5(¢) = x(¢/9). Consider
ug the extension by 0 for t < 0 of xsu. Thus Lug is the extension by 0 of
(Osxs)u and thus belongs to L2. Moreover, the trace of us is the extension
of Xsu|y—o- Thus Mus,—o = 0. Therefore, us is a solution of (2.2.1) which
vanishes in the past. By Remark 2.4.4, it is a strong solution and the energy
estimates (2.4.2) are satisfied. Hence, for ¢ > 26

t 2
Ju(®)l> < C/O (Dixs)(s)lu(s) 2ds = 0/1 (Dex(s)|[u(ds)l| L2ds -

Since u € C°([0,T]; L?) and u(0) = 0, the right hand side converges to zero
as 0 tends to zero, implying that u = 0. O
2.4.2 Compatibility conditions

In order to solve the mixed Cauchy problem in Sobolev spaces, compatibility
conditions are needed. For instance, the initial and boundary conditions
imply that necessarily

(2.4.3) Mugjz—0 = gjt=0 = Mujt=0 =0,
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provided that the traces are defined. Next, denote by A the operator

d
Au=Y" A;0;.
j=1

Thus, if Lu = f, Oyu = f — Au and therefore
uy = Opuj—o = —Aug + fo
if fo = flt=o- Thus, provided that the traces are defined,
(244) Muip=o = M(fo — Auo)jz=0 = 91 := Orgt=0 = M Ou)4=0 z=0 -

These conditions are necessary for the existence of a smooth solution. Con-
tinuing the Taylor expansions to higher order yields higher order condition
as we now explain. ‘

For u smooth enough denote by u; = 9] uj;—o the traces at t = 0 of
the derivatives of u. For instance, if u € H®, s > 1, they are defined for
j < s—1. Similarly, we note f; = 9] fii—o and g; = 9/g;—o when they are
defined. If u is a solution of Lu = f, then for j > 1:

uj = fij-1— Auj

By induction, this implies that

-1
(2.4.5) uj = (=AY ug + Z(*A)j_l_lfl .
=0

The boundary condition Mu,—o = g implies that
Mujjz—o = gj
Thus necessarily, for smooth enough functions, solutions of (2.4.1) must

satisfy on the edge {t =0,z = 0}:

J—1
(2.4.6) M((—A)juo + 3 M(—Ay f,) =g
=0

|z=0 N
Lemma 2.4.6. For s > 1, ug € H*(RY), f € H*([0,7] x RY) and g €

H*([0,T] x RI=1), the left and right hand sides of (2.4.6) are defined for
j€{0,...,5—1} and belong to H*~I~1/2(R4-1).
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Proof. Forug € H®, AJug € H*7 and the trace (Ajuo)‘mzo is defined for j <
s and belongs to H*7~1/2(R%1). For f € H®, the traces f; are defined for
| < s—1 and belong to H~=1/2, Thus, A7~!=1f, € H5=7+1/2 and the traces
(Aj_l_lfl)pg:o are defined for j < s and belong to H*~7(R?~1). For g € H*,
the traces g; are defined for j < s and belong to Hs—I=1/2(Ra-1), O

The lemma shows that the following definition makes sense.

Definition 2.4.7. The data ug € HS(Ri), f e H*([0,T] x Ri) and g €
H*([0,T] x R4YY satisfy the compatibility conditions to order o < s — 1 if
the equations (2.4.6) hold for all j € {0,...,0}.

For instance, the first two conditions, given by (2.4.3) and (2.4.4) are

(2.4.7) Muojz—0 = gjt=0
(2.4.8) (M Aug) =0 = foz=0 — 91 -

When s = 0, there are no compatibility condition. When s = 1, there is
only one, (2.4.7). When s = 2, there are two conditions, (2.4.7) and (2.4.8),
etc.

Remark 2.4.8. Suppose that f = 0 and ¢ = 0. In this case, the com-
patibility conditions read M (A7 uo)jz—o = 0. Considering the operator A
with domain D(A) = {u € L*(R%); Au € L*(R%)and Muj,_q = 0}, the
compatibility conditions of order s reads ug € D(A?®).

The next result is useful in the construction of smooth solutions.

Proposition 2.4.9. Suppose that ug € H*(RY), f € H*([0,T] x R%) and
g € H*([0, T) xRY1) are compatible to order s—1. Then there are sequences
up € HPYRL), fm e HTY([0,T] x RY) and g" € H*1([0,T] x RI-1),
compatible to order s, such that uj — ug, f* — f and g" — g in H®.

Proof. a) Consider first the case s = 0. Then wug, f and g are arbitrary data
in L2. One easily construct approximating sequences u?, f", g" arbitrarily
smooth and compatible to any order, by approximating the data by C'*°
functions which vanish near t = 0,z = 0.

b) Suppose now that s = 1, ug, f and g are data in H'! which satisfy
the first compatibility condition (2.4.7). Consider sequences u(, f", ¢" in
H?, which converge in H' to ug, f and g respectively. By (2.4.7) and the
continuity of the traces, rj := gﬁzo — Mug|,—o satisfies

Ty € H3/2(Rd_1), H'f’gHHl/Z(Rdfl) — 0.
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To construct H? data (ug + o™, f*,¢™) which are compatible to first order,
it is sufficient to construct v” such that:

v" EHQ(Ri)v ||Un||H1 —>Ov MU\Z:O :7"8, M(Avn)u::o:?“?,

with 7 = M (Aug)|y—0 — Jlreteo = Oi9t—o € HY2(R41). Since M is onto,
there is a N x N, matrix, M’, such that MM’ = Id. Thus is is sufficient to
find v™ such that

(24.9) " e HARY), [ |m =0, Wl_g=h, (Ao =hY,

with b = M'r™ € H3/2 b} = M'r} € H'Y2. Moreover, hj} — 0 in H'/2.

Note that (2.4.9) concerns only functions of (y,z) € R? and their traces
on {z = 0}. We recall the classical construction of Poisson operators. Con-
sider ¢ € C§°(R), ¢ > 0, such that ¢(x) =1 for |x| < 1 Denoting here by ©
the Fourier transform with respect to y, consider the operator

K:he Kh, Kh(n,z)=d(xn)hn)

with (n) = (1 + [n|?)*/2. Then, K is bounded from H'/?(R%~') to H'(R%)
and from H3/2(R?1) to H2(R%). Moreover, (Kh)jz—o = h. Consider vf =
Kh™. Then, v} € H?, vy |z=0 = h{ and vy — 0 in H'. Therefore, to find a
solution v™ = v + w™ of (2.4.9), it is sufficient to find w™ which satisfy the
same properties with Ay = 0 and hf replaced by kf' = AT —(Avf) =0 € H'/2.
In addition, A = 440, + A" where A" =" ._, A;0;. Thus, is is sufficient to
find w" such that

j<d

(2410) "€ HARL), [u"lm —0, wly=0, du",_q=k",

with k" = Ak € HY/2.
We use a Poisson operator P, defined by

—

Pah(n, ) = 2d(Aaz(n))h(n)

where A, > 11is to be chosen. We note that P, maps H'/?(R4~1) to H2(R%),
that (Pyh)jg—o = 0 and (0:Pph)jz—0 = h. Thus, w" = P,k" satisfies the
first, third and fourth property in (2.4.10). It remains to show that one can
choose the sequence \, such that w” — 0 in H'.

Elementary computations using Plancherel’s theorem, show that

IPabls ey < € [ wnta)lhn) P
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with C independent of n and h and

o) = [ (@002 + DIl + X 0716 )

For A\, > 1, there holds

Un(n) < 5

with C independent of n. Therefore

n C
[ | ety < Wllk”IIHﬂ/z(Rd—l)-

n (M)

One can now choose A, such that the right hand side converges to zero,
showing that w™ satisfies (2.4.10). This finishes the proof of the proposition
when s = 1.

c) When s > 2, the proof is similar. One is reduced to find v €
H*(R%) such that v™ — 0 in H" and (A7v"),_¢ = h} where the h} are
given in H*7+1/2(R%1) for j < s and converge to zero in H5~I~1/2(R4-1)
for j < s—1. We first lift up the s—1 first traces by a fixed Poisson operator,
and reduce the problem to find w" € H*"1(R%) such that w™ — 0 in H"

and (&%w”)mzo =0 when j < s—1and (Jjw")|,—o = k" € HY2(R41). We
lift up the traces using a Poisson operator

— J

(2.4.11) Poh(n,z) = %¢(/\nx<n>)ﬁ(n),

and show that if the sequence )\, is properly chosen w” = P,k™ has the
desired properties. The details are left as an exercise. ]

2.4.3 Smooth solutions

Definition 2.4.10. W*(T') denotes the space of functionsu € C°([0, T], H*(R%))
such that for all j < s, &]u € C°([0,T), H*J(RL)).

W#(T) is considered as a subspace of H*([0,7] x R%) and H**1([0,T] x
R?) C W*(T). We also use the notation

N9 |
(2.4.12) lu®)lls = 2 O:H@U(t)”HH(RiV
j:

This function is bounded (and continuous) in time when u € W* and in L?
when u € H?.
We first state an a-priori estimate for smooth solutions.
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Proposition 2.4.11. There is a constant C' such that for oll T > 0, all
ue HY([0,T]) x RY) and all t € [0,T], the following inequality holds:

lw(®)lls + ool rr2 (0,4 xra-1) < C(IIIU(O) lls+

(2.4.13) .
+ [ 1O + gl

where f:= Lu and g := Muj,—.

Proof. Consider the tangential derivatives uq := 9, u for a € N, |a| < s.
Since u € H*T!, they satisfy

Luy = fo = 8ffyf, Mug|z—0 = go = (9t°fyg.

Introduce the tangential norm

lu()ls =D 107 u(®)]] 1

lal<s

The L? estimates (2.4.2) imply that
lulls + llwe=oll s (jo,g xma-1) < C(lllu(o) I

t
+ [ A + oo )

which is dominated by the right hand side of (2.4.13). It remains to estimate
the normal derivatives by tangential ones, using the equation (2.2.9). By
induction, one proves that

lu@lls < C (s + 1f @lls-1) -

Since .
I1f @O ls—1 < £ (O)fls-1 +/0 [0:f ()l s-14t’
and
£ O)lls—1 < Iw(O)lls,  NOf E)s—1 < WFEs
the estimate (2.4.13) follows. O
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We can now prove the main theorem of this chapter.

Theorem 2.4.12. For all ug € H*(R%), f € H*([0,T] x RY) and g €
H5([0,T] x R¥YY satisfying the compatibility conditions up to order s — 1,
there is a unique solution w € W*5(T') of (2.4.1). Moreover, the trace of the
solution u on {x = 0} is in H*([0,T] x RY™Y) and u satisfies the estimates
(2.4.13).

Proof. When s = 0, this is Theorem 2.4.5. We suppose now that s > 1.
Step 1. Solve the equation with a loss of smoothness.

We prove that when ug, f and ¢ belong to H**? and satisfy the compat-
ibility condition up to order s, there is a solution in H**1([0,7] x R%+) C
WsTH(T).

With f; = 8éf‘t:0 € H*t17I(R%), consider the functions u; € H27J(R%)
defined by (2.4.5) for j < s+ 2. Then, there is u® € H**2+1/2(R x R?) such
that

(2.4.14) Ouy—o=uj,  forj<s+2.
We look for a solution as u = v/ + u®. The equation for v’ reads
Lu' = f':=f—Lu", Mu|,—g=9¢ =g— Mu®,—y, uj—=0.

We have f' € H*t? — H*t3/2 ¢ H**! and comparing (2.4.14) and (2.4.5)
we see that

(2.4.15) 8 flio=0  forj<s.
Moreover, ¢’ € H*t2 and the compatibility conditions imply that
(2.4.16) 9lg\i—o=0  forj<s.

Denote by f/ and §' the extensions of f/ and ¢’ by 0 for ¢ < 0. Then, the
trace conditions (2.4.15) and (2.4.16) imply that f' € H*7(] — 0o, T] x R%)
and §' € H*T!(] — 0o, T] x R%1). Thus, by Theorem 2.3.6, the boundary
value problem

Li'=f, Mij_oq=7
has a unique solution @ € H**1(] — oo, T] x R%) which vanishes when ¢ < 0.
Thus 4/(0) = 0 and denoting by v’ the restriction of @’ to t > 0, u = v’ +u®
is a solution of (2.4.1).
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Step 2. H? data.

Given ugp € H*(RY), f € H5([0,T] x RY) and g € H*([0,T] x R%1)
satisfying the compatibility conditions up to order s — 1, by repeated ap-
plications of Proposition 2.4.9, there is a sequence ug € H 5+2(Ri), fve
H*+2([0,T] x RY) and ¢g” € H*+2([0, T] x R471) satisfying the compatibility
conditions up to order s+1 and converging in H® to ug, f and g respectively.

We note that for solutions of (2.4.1),

lw(O)lls = D llujll s

Jj<s

where the u; are defined at (2.4.5). Thus [|u”(0) — u*(0)||s tends to zero as
w and v tend to infinity. Therefore, the energy estimates (2.4.13) imply that
the sequence u” is a Cauchy sequence in W#(T') and therefore converges
tow € W9(T). Since s > 1, the limit w is clearly a solution of (2.4.1).
The uniqueness follows from the L? uniqueness of Theorem 2.4.5. passing
to the limit in the energy estimates for the u” implies that u also satisfies

(2.4.13). 0

2.5 Nonlinear mixed problems
Consider the equation

Lu=F(u)+f on0,T] xRL

(2.5.1) Muj,—o=g  on[0,T] xR*!
’LL|t:0 = Up on Ri
We assume that F(0) = 0, so that it makes sense to look for solutions

vanishing at infinity and in Sobolev spaces H®.

Theorem 2.5.1. Let s be and integer s > d/2.

i) Suppose that f € H*([0,Tp] x RY), g € H*([0,Tp] x R1) and
uy € HS(Ri). Suppose that the compatibility conditions of section 2.5.2
below are satisfied up to the order s — 1. Then there is T €]0,Ty] such that
the problem (2.5.1) has a unique solution uw € W*(T).

i) If o > s and the data (f, g,uo) belong to H° ([0, T|xR%L), H°([0,T]x
R1) and HO(R) respectively and satisfy the compatibility conditions to
order o — 1, then the solution u given by i) belongs to W (T).
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2.5.1 Nonlinear estimates

Recall the following multiplicative properties of Sobolev spaces.

Proposition 2.5.2. For non negative integers s > d/2 and j,k such that
j+k < s there is C such that for u € H*J(RL) and v € H*"*(R%) the
product wo € H*1=¥(R%) and

(2.5.2) [wvl| grs—i—r < Cllullga=s 0]l o= -

Corollary 2.5.3. Let F' be a C* function such that F(0) = 0. For all
s > d/2, there is a nondecreasing function C(-) on [0,4o00[ such that for all
T >0 andue W3(T), F(u) € W(T) and for allt € [0,T]:

(2.5.3) lu@®lls <R = [F)@)]s < C(R).

Moreover, for all w € W*(T) and v € W5(T) with |Ju(t)|s < R and
lo@ls < R:

(2.5.4) I{E () — F0)}()lls < C(R)[{u — v} ()]s -
Proof. Since F(0) = 0, there holds

[E @)@z < IVuF Lo Brllu®)lz2,  with R = Ju(®)]|ze < [lu(®)]s,

where Br denotes the ball of radius R in the space of states u. The last
inequality follows from Sobolev embedding H*(R%) C L>®(R%).
Next we estimate derivatives. For smooth functions u, there holds

|a|

(255) °Fw) =Y > ckal,. .. o)) (0% u,...,0% )

k=1qal+4. . +ak=a

where the c(k, o!, . .., o) are numerical coefficients. Since 8 u(t) € H~ 1| (R1)

with ,
J
10 (O] re-iosr < Nu@®)lls
by Proposition 2.5.2 we see that each term in the right hand side of (2.5.5)
belongs to C%(L?) and the estimate (2.5.3) follows.
The estimate of differences is similar. O

Recall next the Gagliardo-Nirenberg-Moser’s inequalities, which hold
with € equal to an Euclidian space R™ or a half space of R, or a quad-
rant :

58



Proposition 2.5.4. For all s € N, there is C such that for all « of length
la] <'s, all p € [2,25/|a] and all uw € L>®(Q) N H*(Q), the derivative 0%u
belongs to LP(Q2), and

(2.5.6) 10%u]| o < Cllull 5227 Jul /7.

The condition on p reads % < 2 5= 1. Recall that the the proof when
Q) = R" relies on the identity

o:/aj(uyajuyp—%ju) z/|(9ju|p+(p—1)/u8j2»u](9ju]p_2.

With Holder inequality, this implies that

2 1 1

|0sullze S Nl 10l 5 =5t
The estimate (2.5.6) follows by induction on s. Note that the proof applies
not only to the d; but also to any vector field.

Using extension operators, the estimate holds on any smooth domain €2,
but the constant depends on the domain. For instance, if Q = [0, T'] xR‘j_, the
constant are unbounded as ' — 0. However, splitting u = x(t)u+(1—x(t))u
with y € C*°, x = 0fort > 2T/3 and x = 1 for t < T'/3, reduces the problem
to functions x(t)u and (1 — x(¢))u which can be extended in H*® by 0 for
t > T and t < 0 respectively, hence reducing the problem on quadrants
[0, +00[xR% or | — 00, T] x R% . Therefore:

Lemma 2.5.5. Given Ty > 0, there is C such that for oll T > T the
estimates (2.5.6) are satisfied on Q = [0,T] x R%

Corollary 2.5.6. Let F' be a C* function such that F(0) = 0. For all
s €N, and Ty > 0, there is a non decreasing function Cr(-) on [0,00[ such
that for all T > Ty, for all u € L*°() N H*(Y) where Q@ = [0,T] x RY, one
has F(u) € H*(Q) and

(2.5.7) 1E @)l s < Cr(llulleo)lullas -

Proof. We estimate the L? norm as above :

[EW)ll2 S [VuFllzeeppyllullrz,  with R = |luf[ze~,

where Br denotes the ball of radius R in the space of states u. Next we
estimate derivatives using (2.5.5) which is valid at least for smooth u. Using
the estimate (2.5.6) for 9%’ u with 2/p; = |af|/s, we see that each term in
the right hand side of (2.5.5) has an L? norm bounded by the right hand
side of (2.5.7). The formula and the estimates extend to uw € L N H® by
density (Exercise). O
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2.5.2 Compatibility conditions

For (2.5.1), the definition of traces u; is modified as follows. First, with
uj = 0] u—, there holds

(2.5.8) O] F ()10 = Fj(uo, - - ., uj)

with F; of the form

J
Fiuo, .. .ug) =Y > elk gt i) (uo) (ujn, . uge)

k=1 jt4. +jk=j
The definition (2.4.5) is modified as follows: by induction let
(259) Uj = —AUJ',1 + fj*l + .ijl(’LLO, ce ,Ujfl) .

Then, for ug € H® and f € H® with s > d/2, using Proposition 2.5.2, we
see that u; € H*J(R%) for j < s.

Definition 2.5.7. The data ug € H*(RL), f € H*([0,T] x R%) and g €
H5([0,T] x R4YY satisfy the compatibility conditions to order o < s — 1 if
the u; given by (2.5.9) satisfy

Mujjp—o = 39—, 5 €{0,...,0}.

2.5.3 Existence and uniqueness

We prove here the first part of Theorem 2.5.1. Below, it is always assumed
that s > d/2, f € H5([0, Ty) xR%), g € H*([0, Ty] x R4™1) and up € H*(R4).

Proposition 2.5.8. Suppose that the compatibility conditions are satisfied
up to the order s — 1. Then there is T €]0,Ty] such that the problem (2.5.1)
has a solution w € W*(T).

Proof. a) The iterative scheme.
Let ug € H*(RL), f € H*([0,T]xR%) and g € H*([0,T] x R%"!). Define
the u; € H*I(RL) by (2.5.9). Let u® € H**1/2(R x R%) such that

(2.5.10) Hul g =u;, 0<j<s.

We can assume that u° vanishes for [t| > 1 and thus u® € W*(T) for all T
There is Cy depending only on the data such that

S luglls—s < Co, Nl (@)lls < Co.

Jj<s
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For future use, we note that Cy depends only on the data: there is a uniform
constant C' such that

(2.5.11) Co < Clluollzs + £ (0)fls—1 -
For n > 1, we solve by induction the linear mixed problems
(2.5.12) Lu™ = f+ F(u™ 1), Mu",—g =g, u"jj—o=1uo-
Suppose that u”~! is constructed in W#(Tp) and satisfies
(2.5.13) Au Vg =u;, j<s.

This is true for n = 1. Then, by definition of the F; and by (2.5.13),
(9th(u"_1)|t:0 = Fj(ug,...,u;). Next, for the linear problem (2.5.12) we
compute the u} by (2.4.5). Comparing with the definition (2.5.9), we see
that uj = w;. Thus, the compatibility conditions Muj,—o = g; imply
that the data (f + F(u""!),g,up) are compatible for the linear problem.
Therefore, Theorem 2.4.12 implies that (2.5.12) has a unique solution u"™ €
W#(Tp) and that .
@u"‘tzo =uj =uj.

This shows that the construction can be carried on and thus defines a se-
quence u" € W#(Ty) satisfying (2.5.12)

b) Uniform bounds
We show that we can choose R and T €]0, Tp] such that for all n:

(2.5.14) vee[0,1] : [Ju"(®)]s < R.

By (2.5.10), this estimate is satisfied for n = 0 if R > Cj.

Assume that (2.5.14) is satisfied at order n—1. Next, the energy estimate
(2.4.13) and Corollary 2.5.3 imply that there is a constant C' and a function
Cr(-) such that for t <T

lu™(@E)s < C(Jlu™(0)]|s + TCr(R) + C1)
with
To
(2.5.15) Ch = 9l aroqo.z0) i1y + /0 1)t
By (2.5.13) at order n and (2.5.10):

Il () = > gl o3 < Co.

J<s
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Thus, (2.5.14) holds provided that
(2.5.16) R>Cy, R>C(Co+Cy+1) and TC(R)<1.

This can be achieved, choosing R first and next T'. For such a choice, by
induction, (2.5.14) is satisfied for all n.

c) Convergence

Write the equation satisfied by w™ = w1 — 4™ for n > 1. By (2.5.13),
there holds [|w™(0)||s = 0. Knowing the uniform bounds (2.5.14), estimating
the nonlinear terms by Corollary 2.5.3 and using the energy estimate (2.4.13)
one obtains that forn > 2 and ¢t < T"

" (1)l < CCr(R) /0 Jo ()t

Thus there is K such that for all n > 1 and ¢ € [0,T]:
lw™(t)]ls < K"/ (n — 1)1

This implies that the sequence u™ converges in W#(T'), thus in the uniform
norm and the limit is clearly a solution of (2.5.1). O

Next we prove uniqueness.

Proposition 2.5.9. If T €]0,Tp] and u' and u? are two solutions of (2.5.1)
in We(T), then u! = u?.

Proof. The traces at {t = 0} necessarily satisfy
6fu1|t:0 = 6fu2|t:0 = Uj .

Thus w = u? — u! satisfies [Jw(0)|ls = 0. Write the equation for w. Using
bounds for the norms of u!' and u? in W#, the energy estimates and Corollary
2.5.3 to estimate the nonlinear terms, imply that there is C' such that for all
tel0,T):

t
HW@WSCANMﬂMW‘
Thus w = 0. O
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2.5.4 A criterion for blow-up

Suppose that f € H*(]0, To] xRi), g € H*([0,To] xR41) and ug € HS(Ri),
with s > d/2. Suppose that the compatibility conditions are satisfied at or-
der s — 1. We have proved that there is a local solution in W*(T'). The
question is how long can the solution be extended. Let T} denote the supre-
mum of the set of T' €]0, Tp] such that the problem (2.5.1) has a solution
in W#(T'). By uniqueness, there is a unique maximal solution u on [0, T%].
The proof of Proposition 2.5.8 above gives an estimate from below of T™*:
since by (2.5.11), (2.5.15) and (2.5.16), there is a function C(-) such that
the solution is W*#(T') for

(2.5.17) T = min{Tp, C(K)}

with
To
(2.5.18) K = |uollms + I1f(O)lls—1 + g/l &5 (o, 7] x -1y +/0 £ (&) sdt" .

Proposition 2.5.10. If T* < Ty or if T* = Ty but u ¢ W*5(Ty), then

(2.5.19) lim sup ||u(t)| g = +00.
t—T*

Proof. Suppose that (2.5.19) is not true. This means that u € L>([0, T*[xR%).
From Proposition 2.5.8 we know that T* > 17 for some T} depending only
on the data. Thus, by Corollary 2.5.6 there is a constant C, depending only
on the L* norm of u such that for all T € [T}, T*[:

HF(U)HHS([O,T}xRi) < ClH“HHs([o,T]xRi) :

The energy estimate (2.4.13) implies that

()1 < o+ C( [ 1P@@)Lar)",

where Cj only depends on the data and C' depends only on the operator L.
Thus, using Cauchy-Schwarz inequality, we get that there is C' such that for
all t € [Th, T%[

lu@)llZ < Co+ C||F(u) < Co + CCtllullf

2
Vs o) 0xRY)

t
§%+CQ/WMwMW-
0
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This implies that there is a constant C'5, depending only on Cy, C,C; and
the norm of u in W*#(T}), such that
(2.5.20) sup [lu(t)|s < Cs.
t<T*

Next we consider the Cauchy problem for (2.5.1) with initial data (7™ —¢)
at time T —0. Because u € W#(T*—§/2) is a solution, computing the traces
from the equation we see that the compatibility conditions are satisfied up
to order s — 1. Therefore, by Proposition 2.5.8 there is a solution % in W*
on the interval [T — §, T5]. By (2.5.17), we have an estimate from below for
Tg:

Ty = min{Typ, T — 6 + C(K)}
with

To
K = |lu(T™ = 8)|las + 1F(T" = 6)lls—1 + 91l s jo,10) xre-1) +/0 If @) lsdt’ .

Since f and g are given in H?®, the last three terms are bounded indepen-
dently of T* — 4. By (2.5.20), the first term is bounded independently of
T* and 6. This shows that the increment C'(K) is bounded from below
independently of T* and §.

If T* were strictly smaller that T, we could choose § = C(K)/2 so that
T5 > T*. By uniqueness, @ would be an extension of u, contradicting the
definition of T*. If T\, = Tp, choosing again 6 = C'(K)/2, we see that Ty = Ty
and thus u € W(Ty). O

2.5.5 Regularity of solutions

Suppose that T > 0 is given, f € H*([0,T] x R%), g € H*([0,T] x R 1)
and ug € H?® (R‘i), with s > d/2. Suppose that the compatibility conditions
are satisfied at order s — 1 and uw € W#(T) is a solution of (2.5.1). The next
result finishes the proof of Theorem 2.5.1.

Proposition 2.5.11. Suppose that o > s and (f, g,ug) belong to H° ([0, T] x
]Ri), H ([0, T] xR4"Y) and H° (Ri) respectively and satisfy the compatibility
conditions to order o — 1, then the solution u belongs to W (T)).

Proof. By Proposition 2.5.8 there is T} €]0,7] such that the problem has
a solution u € W7(T1). Denote by T* the maximal time of existence of
solutions in W9. By uniqueness in W*(T") for 7" < T*, v = @ for t <
T*. Since u € W*(T) and s > d/2, u € L®([0,T] x RY) and thus @ €
L>°([0, T*[xR%). Therefore Proposition 2.5.10 implies that T* = T and
u=1uc WoT). O
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Chapter 3

Hyperbolic-Parabolic
Problems

In this Chapter, we first recall the classical existence and uniqueness results
for parabolic systems. Next we look for uniform estimates, independent of
the viscosity, in spaces with tangential or conormal smoothness.

3.1 The equations

With notations as in Chapter 2, consider an “hyperbolic” N x N system

d
(3.1.1) Lu = 3tu+ZAj8ju: F(u)+ f
j=1
and a “parabolic” viscous perturbation

d
(3.1.2) (L—eP)u:=Lu—c Y Bjpdipu="F(u)+f.
jk=1
For simplicity, we assume that the coefficients A; and Bj are constant. F’
is a C*° mapping from RY to RY.
We consider the equation (3.1.2) on the half space {x > 0} together with
homogeneous Dirichlet boundary conditions:

(3.1.3) Up—g = 0.

For simplicity, we work in the class of symmetric operators. The next
assumption implies that L is hyperbolic and that P is elliptic.
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Assumption 3.1.1. There is a positive definite symmetric matriz S =
'S > 0 such that for all j the matriz SA; is symmetric. Moreover, for all
£ # 0 the matriz ) ;6. Re SBj ), is symmetric definite positive.

Recall that for a matrix M, Re M = %(M + M*) is always symmetric. .

In this chapter, we fist solve the equations for fixed . This is much
easier than the hyperbolic theory, since we can rely on classical variational
methods. The results are classical, but we sketch proofs as they will serve for
the € dependent analysis. Because the equation is nonlinear and the viscous
regularization depends on ¢, the life span is expected to depend strongly
on €. The main question is to prove the existence of solutions on domains
independent of €. This relies on uniform estimates, in suitable spaces. This
analysis is performed in the second part of the chapter and will be used in
the next chapter to prove the convergence of asymptotic expansions.

3.2 Linear existence theory

In this section we prove the existence of solutions to the linear equations for
a fixed €. Thus, changing P into € P, we assume in this section that ¢ = 1.
In this section, we do not use the full strength of Assumption 3.1.1, we only
assume that there is ¢ > 0 such that

(3.2.1) VEERT 1 ) & Re (SByg) > cf¢)’Id
7.k
With G =P — A, A=) A;0;, consider the problem
du—Gu=f  on[0,T] xRL
(3.2.2) Upo=0  on [0,T] x R}

Ujj—0 = Ug on Ri

Recall that RY = {(y,2) € R?: 2 > 0}.

3.2.1 Variational methods

As usual, C§°(U) denotes the space of C*° functions v on U C R™ with
compact support contained in U: this means that there is compact set
K C R™, such that K is contained in U and u vanishes on U \ K. We use
this notation when U is open, but also when U is closed (typically a closed
half space, or o closed strip) or for instance when U = [0, T[xR9.
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Definition 3.2.1. i) V := L%([0,T]; HY(R%)) denotes the space of functions
u € L*([0,T] x Ri) such that the spaces derivatives Oju for j = 1,...,d,
belong to L*([0,T] x RY) .

i) Vo = L2([0,T]; HY(RY)) is the closure in L?([0,T]; HY(RL) of
Cs°(10, T[xR1).

ii) L2([0, T); H-Y(RY)) is the set of distributions f on]0, T[xR% such
that there exist functions g; € L*([0,T) x R%) for j =0,....d such that

d
(3.2.3) f=g0+> 09;.

Jj=1

We collect here a few properties satisfied by theses spaces.
e They are Hilbert spaces. L2([0,7]; H 1(R%)) is equipped with the

norm 1/2
min (> [lg;13:)

where the minimum is taken over all the decompositions (3.2.3) of f. They
are the spaces of restrictions to Ri of analogous spaces on R%, which can be

characterized using the spatial Fourier transform. C§°([0;77] x Ri) is dense
in V.

e The functions in V = L%([0, T]; H*(R%)) satisfy v € L? and §,v € L2
Therefore they have a trace on {z = 0} which belongs to L2([0,T] x R4~1).
Vo is the set of v € V such that Vjg=0 = 0. Below, the trace condition in
equation (3.2.2) is encoded in the condition u € V.

e Because H ! is the dual space of H}, the spaces L2([0, T]; H} (R%))
and L%([0,T); H"Y(R4)) are in duality: if f is given by (3.2.3) and u €
C5°(10, T[xR%) then, in the distribution sense:

d
(3.24) (fou) = (g0,u)p2 — Y (95, 05u)
J=1

where (-,-);2 denotes the scalar product in L2. By density continuity, this
formula extends to u € L?([0, T]; H} (R%)) and uniquely defines f in the dual
space of L2([0,T]; H}(R%)). In particular, the right hand side of (3.2.4) does
not depend on the particular decomposition (3.2.3) of f.

Conversely, suppose that f is a linear form on L2([0, T; H}(R?)). Con-
sider the space Ky of the U = (ug,u1,...,uq) with u; = Ojug and ug €
L2([0,T); H3(R%)). This is a closed subspace of K = (L*([0,T] x Ri))Hd,
and the linear form U — (f,u) is continuous on K for the norm of K.
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Thus it extends to K and by Riesz theorem, there are (go,91,...,94) such
that the extension f* satisfies

d
<f*7U> 907u0 L2 — Z g]au] 2
7j=1

Comparing with (3.2.4), this shows that f coincide with the linear form
associated to f = go + Y. 9;9; € L2([0,T]; H-1(R%)).

Thus we identify L?([0,T]; H~'(R%)) with the dual space V) of Vy =
L2([0,T); H}(RL)) and the duality (u,v)z2 for smooth functions extends to
(u,v) € V) x Wy or to (u,v) € Vy x V). We denote it by (u,v).

Proposition 3.2.2 (Coerciveness). G is bounded from L*([0,T]; H*(R%))
into L*([0,T); H-Y(R)). Moreover, there are vo > 0 and ¢ > 0 such that
for all w € L*([0,T); HY(RL)) and v > ~o:

(3.2.5) Re (S(y — G)u,u) > CHUH%Q([O,T];Hl(Ri)) )

Proof. By definition, d; maps LQ([O,T] HY(R4)) into L*([0,7] x R%) and
L2([0,7] x RL) to L2([0 T); H-Y(R)). Thus G maps L*([0,T]; H'(R%))
into L*([0,T); H~1(R4)).

Moreover, (3.2.4) implies that for v € L?([0,T]; H}(R%))

Re (S(y — G)u,u) =y(Su,u)2

+Re Y (SA;05u,u)z2 + Y Re (SB;iOku, dju)rs
J Jik

By density continuity, it is sufficient to prove (3.2.5) for u € C§°([0,T] x RSIF).
In this case, extending u by 0 for negative x and denoting by (, €) its spatial
Fourier transform, (3.2.1) implies that

d
Re Y (&&SBri, i)z > ¢y |1&al3- .

gk J=1

where the L? norm is now taken for (t,£) €]0,T[xR?. By Plancherel’s
theorem, this implies that for all u € C§°([0, T] x R%):

d
(3.2.6) Re Z(SBj’k(‘)ku, oju)pz > CZ 10jull3 2

gk Jj=1
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Since
|(SAj6jU, u)r2| < C”aju||L2 [|ull 2

Thus (3.2.5) follows for v large enough. O

Definition 3.2.3. Let H denote the space of functionsu € L*([0,T]); H*(R%))
such that the time derivative in the sense of distribution, Ou, belongs to
L2([0, 7] H- (RY).

Ho denotes the subspace of functions u € L?([0,T); H}(RL)) such that
dyu € L2([0,T); HH(RL)).

Proposition 3.2.4. i) H is an Hilbert space and C§°([0,T] x @i) is dense
in H.

i) Ho = {v € H;vjy—¢ = 0} is a closed subspace of H.

iii) H is continuously imbedded in C°([0,T]; L*(RL)). Moreover, for
all u € Hy

(3.2.7)  2Re (SO, u) = (Su(T), u(T))LZ(Ri) - (Su(O),u(O))B(Ri) :

Proof. Using cut-off function in time it is sufficient to prove the results for
functions on [0, +oo[xR% and functions on | — 0o, T] x RZ. We consider the
former case. We leave the proof of the density as as exercise, which can be
solved by standard cut-off and mollification. We also leave the characteri-
zation of Hjy to the reader.

There is an extension operator E continuous from H'(R%) to H!(R?) and
from H1(R1) to H~}(R?). Extending trivially this operator to functions of
(t,x) reduces the analysis of analogous spaces on [0, co[xR¢. Using Lemma
2.2.5 with ¢t and z interchanged, yields:

ot )22 gy < ull oy 1ol s

Since H! is a subspace of C°(L?), this implies by density and continuity,
that H C CO(L?).

For u € C§°([0,T] x R%), Oyu is smooth and the duality (SOu,u) is
simply (SOpu,u)r2 and the identity (3.2.7) holds. It extends to u € Hy,
using in the left hand side the duality V), x V. O

Theorem 3.2.5. For all f € L*([0,T); H '(RL)) and up € L*(R%), the
equation (3.2.2) has a unique solution u € Hy.
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Proof. a) Introducing weights. The mapping v +— €7'v is an isomorphism
both in Vy and in V). Moreover, d,e7'v = €7(d; 4+ ~)v. Thus, solving (3.2.2)
in Hy is equivalent to solving for « large enough

(3.2.8) wueHy, (—G+y)u=f, uy(0)=1uo.

From now on, we fix v > 79, where g is as in Proposition 3.2.2.

b) Uniqueness.
By Propositions 3.2.2 and 3.2.4, for u € Hg the following estimate holds

(Su(T),u(T)) > + CHVy,w“H%%B)
< (Su(0), u(O))L2 +2Re (S(0 — G + v)u,u),
thus
(329) D)2 + clulagrn) < Cu(O)]2 +2Re (S0 — G+, )
This immediately implies uniqueness for (3.2.8).

b) The adjoint equation.

The adjoint operator of J := 0y — G + v is J* = —0; — G* 4+ v with
G* = Y By j0k0; + > A30;. Tt maps H to L*([0,T); H'(RY)). S7'is a
symmetrizer for the Bj ; since S~'B* = S71(SB)*S~! and ReS™'B* =
S~'Re(SB)S~!. Thus G* satisfies the assumption (3.2.1). Due to the
change of J; into —0;, the analogue of (3.2.9) is

(3.2.10) [0 ()72 + cllvl|F2(zy < [0(T) 72 + 2Re (S™HT v, v)

which holds for all v € Hj.
Moreover, by density continuity, for all 4 and v in Hyg:
Re (Ju,v) — Re (u,J*v)

(3.2.11) = (w(T),v(T)) ;2 — (u(0),0(0)) ;5.

c) Existence
Let £ denote the subspace of v € Hy such that v(7) = 0. By (3.2.10),

there is C such that for all v € &€ :
[(0) Iz + [[v]lvy < Cl[T*]lyy -

Consider the space F = J*€ C V. The estimate above implies that there
is a linear operator R from F to &£ such that

(3.2.12) VgeF : |IRg(0)]r2 + [ Ryllve < Cliglly -
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Given f €V and ug € L?, consider the anti-linear form on F

l(g) = (f, Rg) + (uo, Rg(0)) - .

By (3.2.12), ¢ is continuous on F for the V)-norm. Thus ¢ extends to V)
and there is u in Vy such that

U(g) = (u,9) -

Tracing back the definition, this means that for all v € H,
<U, (_815 - G* + 7)U> = <f7 U> + (u07v(0))L2 .

Comparing with (3.2.11) yields
(O — G+ v)u,v) + (u(O),v(O))L2 = (f,v) + (uo,v(O))L2 )

Choosing test functions with compact support in ]O,T[xRi implies that
(8;—G+~)u = f. Thus for all v € £ we are left with (u(0) —ug, v(0)) ., = 0.
Since v(0) can be chosen arbitrarily in C§°(R%), this implies that u(0) = uo.
Therefore we have solved the equation (3.2.8). O

3.2.2 Regularity estimates

We show that for smooth data satisfying compatibility conditions the so-
lution given by Theorem 3.2.5 is smooth. The form of the equation shows
that the time derivative and the spatial derivatives have not the same weight.
This leads to introduce nonisotropic spaces.

Definition 3.2.6. For s € Z, s > —1, denote by H® the space of functions
u € LQ([O,T];HS(]R%_)‘) such that for all nonnegative integer j < (s +1)/2,
0ju € L*([0,T); H*~%(RY))

H~1 is simply L2([0,7]); H*(R%) and H® = L2([0,7] x RY). H! is the
space introduced in Definition 3.2.3. Similarly we note

(3.2.13) Hy = {uecH, Ujg—o = 0} .

For further use, we note the following result which extends Proposition 3.2.4:
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Proposition 3.2.7. i) For s > —1, C§°([0,T] x @i) is dense in H°.

i) For s > 0, the spatial derivatives 0y, and O, map H® into HEL
For s > 1, 0; maps H® into H*2.

ii1) For s > 2, the tangential spatial derivatives 0,, map H® OH(I) mto
H YN HE. For s >3, 0, maps H® N'HY into H*~2 NH}.

) For s > 1, H® is embedded in the space of u € C°([0,T); H*~}(R4))
such that &u € CO([0, T); H¥=27Y(R1)) for j < s/2.

Before proving smoothness of solution, we prove a-priori estimates. As
in the previous subsection, we consider the equation (3.2.8).

Theorem 3.2.8. For all s > 0 and v > 0 large enough, there is a constant
C such that all u € HST N'H} satisfies the following estimate

(3.2.14) [ullzgtr < Cllu(O)| s me ) + Cll(0 = G +Y)ullpgs-r -
By (3.2.9), there is C' such that for v large enough and u € H} :
ull 2y < Cllu(0)| o ey + ClI0 = G +Vull 2y -

Since
(G =ullz@-1y < Cllull 2y,
this implies
ans M 10wl <CluO) s
+ 1@ = G+l -

Thus the estimate (3.2.14) is proved when s = 0. We prove it for s = 1 and
next conclude by induction on s.

Lemma 3.2.9. The estimate (3.2.14) holds for s = 1.

Proof. a) By (3.2.15), we already have an L? estimate of u and of the first
(y, z) derivatives.

When u € H? N Hé, the tangential derivatives 9,; belong to Hé and
(0 — G+ )9y, u = 0y,(0y — G + y)u. Thus

10 = G +7)y;ull 2 (z-1) < (00 = G+ )ull 2.
Therefore the estimate (3.2.15) implies that

(3216)  [9,9y0ullie < Clyu0) | 2y + Cl@ — G+ 7)ul g2
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b) Hence, to prove the lemma it remains to estimate the second normal
derivative of u. We cannot use the differentiated equation for d,u since
0,u does not satisfy the boundary condition. Instead, we deduce from the
equation and (3.2.15) (3.2.16) that

O — By g02u = f
where
1£llze < Cllu(O)]l gy rey + Cll(O: — G+ V)ull L2077 xm ) -

We multiply this equation by Sd2u and integrate by parts in the term
(SOu, 0?u) 2. For smooth functions v vanishing on the boundary, there
holds

2(S0pv, 63U)L2 = —(80,v(T), 8:EU(T))L2 + (50,v(0), 8:]0”(0))[/2

By density continuity, this identity extends to u € H? N'H} and thus

—2Re (Sf, a,,%u) L2 =2 (Sdeagu, &%u) 12

+ (S9,u(T), pu(T)) 2 — (S8u(0), 0ru(0)) 1

Since SBy 4 is definite positive, using the Cauchy Schwarz inequality in the
left hand side yields:

|10Zu] 2 < Cll0u(0) L2 + Ol fl 2 -
Together with the estimates above, this finishes the proof of the lemma. [J

Proof of Theorem 3.2.8. We proceed by induction on s. The estimate is
proved for s = 0 and s = 1. So, consider s > 2 and assume that the theorem
is proved up to order s — 1.

Since s > 2 and u € H*T! N H}, the tangential spatial derivatives Oy, u
belong to H* NH and (9 — G + Y)0y,u = Oy, f with f := (0y — G + 7)u.
Similarly, du € H* 1 NH} and (9 — G + ¥)ou = df. Therefore the
induction hypothesis implies that

10y, ullrs + N|Oullygs—1 S 1u0)|ars + 105w (0) |2 + [1fll3¢=—1

Thus, to control the H**! norm of u, only the L? norm of 95 !u is missing :
all the norms of derivatives with at least one 0; are controlled by the H*~!
norm Oyu, and all the purely spatial derivatives with at least one J,; are
controlled by the H*® norm 9d,u. Using the equation, we write —Bd7daj+1
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as the sum of 9572 fu plus 05~ 29,u and spatial derivatives with at least one
tangential. Therefore, we obtain

[ullpesr S Nu(O)llzrs + [[0:w(O)| =2 + ([ Fllpgs—

To finish the proof, we note that dyu = (G — y)u + f € H*~!, and since
s —1>1 we can take the trace at t = 0 to obtain

10cu(0)| a2 < [[u(O) [ s + [ f O) | rs—2 S Nu(O) | zs + | Fll3gs-1 -

Adding up, this implies (3.2.14) at the order s. O

3.2.3 Smooth solutions

We first discuss the compatibility conditions. With s > 1, let u € H*H!
and f = (Qu — Gu) € H*'. Then &u € CO(H* %) for j < s/2 and
oFf € CO(H*=27%F) for k < 5/2 — 1 when s > 2. Thus one can define the
traces u; = & u(0) for j < s/2 and [i= & £(0) for j < s/2 — 1. Moreover,
when s > 2, one has u; = Guj_1 + fj—1 and thus,

j—1
(3.2.17) uj=Glug+ Y GITFf when 1< <s/2.
k=0

We use the following remark:

Lemma 3.2.10. If u € H?> N H}, which means that w € L*([0,T); H? N
HY(RY)) and 0w € L2([0,T] x RL), then u € CO([0,T]; HY(RL)).

- When u € H*t! nH{, then &#u € H1% N'H} when j < s/2. Thus
d/u € CO([0,T]; HY(RZ)). This leads to the following definition:

Definition 3.2.11. Given s > 1, the data ug € H*(RL) and f € H*™!
satisfy the compatibility conditions up to order o < s — 1 if ug and the
uj € H¥721(R) defined by (3.2.17) when s > 2, satisfy

(3.2.18) Ujlp—o =0, forj<o/2.

When s = 0, there are no compatibility conditions, as indicated by
Theorem 3.2.5. When s = 1, there is one compatibility condition, which
reads

(3.2.19) up € HY(RL).

74



When s = 2, ug € H? and u; € L? are defined, but there is still only one
compatibility condition, (3.2.19). When s = 3, ug € H> and u; € H' and
there are two compatibility conditions

(3.2.20) up € H* N HJ(RY)  wy € H(RL).

The computations before Definition 3.2.11 show that the compatibility
conditions are necessary:

Lemma 3.2.12. Suppose that u € H*T'NHS with s > 1. Then up = u(0) €
Hs(Ri) and f = (0 — G)u € H*™! satisfy the compatibility conditions to
order s — 1.

Theorem 3.2.13. Given s > 1, ug € HS(R‘j_) and f € H5™1 satisfying the
compatibility conditions up to order s — 1, the solution u of (3.2.2) given by
Theorem 3.2.5 belongs to HT1 N 'H(l).

In particular, when s = 1, this implies :

Corollary 3.2.14. Suppose that f € L*([0,T] x RY) and uy € H}(RL).
Then the solution u € H{ of (3.2.2) belongs to H?.

As in the previous section we write u = @, f = e f so that @ and f
satisfy

(3.2.21) O —G+y)a=F, fyg=uo.

The traces @; and fi of @ and f are related to those of u and f. The
definition (3.2.17) is modified as follows

j—1
(3.2.22) i = (G —vYug+ > (G—7)""Ff,
k=0

and the compatibility conditions read
(3.2.23) a; € H2 N H), forj<(s—1)/2.

We prove that for f € H*! and ug € H® satisfying the compatibility
conditions to order s — 1, the solution @ € H{ of (3.2.21) belongs to H**1.
For simplicity of notations, below we drop the tildes. We first consider
special data.

Proposition 3.2.15. Suppose s > 1 and f € H*~'. When s > 2, assume
in addition that OF f(0) = 0 for k < (s — 2)/2. Then the solution u € H} of
(3.2.2) with initial data ug = 0 belongs to H5T.
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Proof. Denote by v the extension of v by 0 for ¢ < 0. Since v € H!
and u(0) = 0, O’ = (du)® and u¢ € H! N H{(] — o0, T]). Moreover,
(0 — G +y)u® = f¢. Since f € H*1 and 9 f(0) =0 for k < (s — 2)/2, we
have Of f¢ = (OF f)¢ for k < (s — 1)/2 and f¢ € H*1(] — 00, T)).

Consider tangential mollifiers 7. (t,y) = e~%y(t/e, y/e) with 7 € C§°(R%),
7>0, [7(t,y)dtdy =1 and j supported in ¢ > 0. Consider then u. = j * u®
and f. = 7. % f¢. The convolution is well defined thanks to the support
condition on j and w. and f; vanish for ¢ < 0. The convolution commutes
with derivatives and u. — u in H! and f. — f in H*~!. Moreover, Ug|p=0 =
Je * (urm:()) = 0. Thus

u€€7‘(1ﬂ7‘{é, 0y — G+7)ue = fo, u:(0)=0.

In addition, u. and f. are infinitely smooth in (¢,y). In particular, we
know that 0fd5u, 0f05d,u, OFds0L f belong to L([0,T] x R%) for all k,
a and n < s — 1. Using the equation, we get that 8{“8;‘8;% belongs to
L2([0,T) x RY) for all k, « and n < s+ 1 and therefore u. € H¥1.

Thus we can apply Theorem 3.2.8 to u. and to differences u. — u.s. The
estimate (3.2.14) and the convergence f- — f in H*~! imply that u. is a
Cauchy sequence and hence converges in H**!. Since u. — w in H!, this
implies that u € H*+!, O

Next, we need an approximation lemma for compatible data.

Lemma 3.2.16. Given s > 1, ug € H*(R%) and f € H*™! satisfying the
compatibility conditions up to order s —1, there are sequences ufy € H> and

fm e H>® U satisfying the compatibility conditions up to order s and such
that ul} — ug in H*(RY) and f* — f in H¥L.

Proof. Consider a sequence f* € H™ such that f* — f in H*~!. The traces
fi = 0Ff™(0) converge to fr = 9Ff(0) in H*"172K(R4) for k < (s — 1)/2.
Consider next a sequence uj € H* such that uj — uop in H?® (Ri). Thus,
the u} associated to ug and f" by (3.2.22) satisfy for j < s/2:

n s+2—27 (mn n oo s—2j
ui € H RY), uj —wu; inH

The compatibility conditions mean that wjj,—o = 0 when j < s/2. The
convergence above implies that

h} == ul|z=0 € H>(RI1) when j <s/2,

(3.2.24) { B =0 in He=2-1/2(Rd-1) when j < s/2.

LH® or H* denotes the intersection NH?®, NH* of all spaces H® or H*.
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To prove the lemma, we look for modified initial data uj — vf. By (3.2.22),
this modifies the traces uj into uj — o7 with v} = (G — ) v}. Therefore, it
is sufficient to construct a sequence v such that

o€ HO(RY), o —0 in H®,
(3.2.25) { 0 +)

{(G —fy)jvg}|x20 =hj forj <s/2.

We see that the equations on {x = 0} determine by induction Ford V0 |2=0
knowing 8’:5116“35:0 for k£ < 2j. We can choose arbitrarily the odd traces, for
instance to be zero, and (3.2.25) is implied by

vy € H(RL), of —0 in H*,

(3.2.26) OF vy |pmg = I} for 2j < s,

af,’““vg‘x:o =0 for2k+1<s,

where the ﬁ;‘ are determined from the h} and satisfy (3.2.24).

When s is odd, there are no fzj with 25 = s and all the l~1j tend to zero
in the appropriate space. In this case, the problem (3.2.26) is solved lifting
the traces by standard operators.

When s is even, the term E? for j = s/2 is not controlled but we want
to prove the convergence of vy in H® where the trace v — O9jv|,—g is not
defined. Using classical Poisson operators to lift up the 2s — 1 first traces,
one is reduced to solve (3.2.26) with h; = 0 for j < s/2. To lift up the
last trace, keeping the first s — 1 equal to zero, we use a modified Poisson
operator as in the proof of Proposition 2.4.9 of Chapter 2, see (2.4.11) O

Proof of Theorem 3.2.13. Consider ug € H*(R%) and f € H*~! satisfying
the compatibility conditions up to order s — 1, with s > 1. Introduce se-
quences ufl € H*T! and f* € H?® as indicated in Lemma 3.2.16. We show
that the equation

(3.2.27) (O =G +yu" =f", u"j=o=ug

has a solution u" € H™' N H{. By Theorem 3.2.8, applying (3.2.14) to
u™ — u™ | we see that u™ is a Cauchy sequence in H**1 N H} and therefore
converge to u € H**t1 N H} which is solution of (3.2.21). By uniqueness in
H{, this is the solution given by Theorem 3.2.5.

Thus it only remains to solve (3.2.27) in H** N'H}. For j < s/2, define

the u} € H**T1727 C H**! by (3.2.22). The compatibility conditions to
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order s imply that uj € H& for j < s/2. Introduce
t
u™(t, z) = Z ﬁu’;(ﬂs) e H N M.
j<2s 7’
The traces of f™% = (9; — G + vy)u® € H*~! satisfy
3tkfn’a\t=0 = “Zfl —(G=)u = fi
when k + 1 < s/2. Thus, by Proposition 3.2.15 the problem
(O =G+ =f" =" V= =0,

has a solution v" € H*TI N H{. Thus u” = u™® + 0" € HSTIN Hé is a
solution of (3.2.27), and the proof of the theorem is complete. O

3.3 Uniform estimates

The estimates given in the previous section depend strongly on the ellipticity
constant ¢ of (3.2.1), thus on the viscosity ¢ when one considers (3.1.2). In
this section, we give the precise dependence of the constants with respect to
€. From now on, we suppose that Assumption 3.1.1 is satisfied.

3.3.1 Long time estimates

We start with giving estimates independent of time 7' for the solutions of
(322) with G = ZAjaj - ZBj,kaij, i.e. when e =1.

We denote by H*([0,T7]) the spaces H?® of the previous section on [0, 7] x
]Ri. For s > 0, we introduce the following notations for u € H?*([0, T)),

HS(U;T) - Z Hatjagixu(T)”L2(Ri)
(3.3.1) , Arlelszmt
Ny(w;T) = Z Hat]a;acuHLQ([O,T]XRi) :
0<2j+|a|<2s

For the source terms f € H?$([0,77]), we use the norms

N(fsT) = Y 1905 fllaqomxzd)
(3‘3‘2) 0<2j+]a|<2s '
M(f;T)= > 167 02 Fl L2 (0,72 ) -
0<2j+|a|<2s

The slight difference between N and N’ is that the case j = |a| = 0 is
allowed in the former case.
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Theorem 3.3.1. For all s > 0, there is a constant C' such that for all
T >0, all feH*(0,T)) and ug € H**! (Ri) satisfying the compatibility
conditions up to order 2s, the solution u € H*72 of (3.2.2) satisfies for all
tel0,7T]:

(3:3.3)  mss1(ust) + Nipy(ust) < C(nsn(u; 0) + Ny(f5 1) + M(f51)) -

Remark 1. Integrating 9|0, ,v|?, and using Plancherel’s theorem, one
obtains the estimate

(3:34)  [0yv()I72 < 10y,20(0)l[72 + 201000l L2(j0.0:2) 19500 L210.17:22)

for v € C$°(]0,t] x R?). Using an extension theorem, one proves that this
estimate also holds on [0,#] x R and for functions in H?. Easier is the
estimate

(3.3.5) lo@®z2 < [0(0)IIF2 + 2010e0ll 22(10,9:22) 101l 210,01 22) »
Suppose that u € H2*2 with s > 0. Consider j and « such that 2j + |a| <
25+ 1. If a # 0, we can write 9% = 9°0;, for some k. Consider v = Ggafxu
The L? norms of d;v and 857331) appear in N/, (u). Thus we can use (3.3.4)
to estimate the L? norm of Dyu(t) = 8]9S ,u(t). If o = 0, then j < s. If
j > 0, the L? norms of v = &u and dv appear in N..;. In this case we
apply (3.3.5). Adding up, we have the uniform estimate

(3.3.6) 0, (ust) < C(n)(u;0) + Ny (ust))

where 1/, is the sum of terms in ng, except the first one ||u(t)||z2. Therefore,
it is sufficient to prove (3.3.3) with ng(u;t) replaced by ||u(t)||z2 in the left
hand side.

However, as it is stated, the estimate (3.3.3) has the nice feature to give
the same norm ngy; at time ¢ and at time zero.

One can also eliminate this last term, using an L'([0,¢]; L?) norm of
dyu. What we have in N/ (u;t) is an L?(L?) norm of dyu. For a fixed T,
the L'(L?) norm is controlled by the L?(L?) norm, but the control is not
uniform in 7.

Remark 2. The right hand side can be made explicit in terms of the data
ug and f. When s = 0, this is immediate:

(3.3.7) 0y (u; 0) = [Juol gy -

When s > 1, using the equation, the traces Ggu(O) are given by (3.2.17),
and therefore

(3.3.8) ns+1(u; 0) < C(HUOHH%H(Ri) + Ils(f; 0)) .

79



Proof of Theorem 3.3.1. a) The case s = 0.
Since the matrices SA; are symmetric, for u € H{ there holds

Re (SA;0ju,u)r2 =0.

By (3.2.6) and Proposition 3.2.4, we deduce that

t
(Ol + 10yl o o cpay S luollfz + /0 1) el o

where a < b means that there is a constant C, independent of T', such that
a < Cb. As in the proof of Proposition 2.4.1 this implies

[l L2y + 110y2ull L2 (0,0xre )

(3.3.9) e ,
S ool + [ A€yt

When ug € H&, that is when the first compatibility condition is satisfied,
one can also estimate the second derivatives as in the proof of Lemma 3.2.9.
Differentiating the equation in y, multiplying by Sd,u and integrating over
[0,] x RY yields

10y00) + 1040y s a0+ | O 292
With Cauchy-Schwarz inequality, this implies
19yu(t) 22 + 19y 0012 o gty S 1yt0ll3 + 1 W2t -
thus
(3.3.10) [[9yu(®)llz2 + 10y.0yull 1209 xret ) S NFyuollze + 11l 20, xmre ) -

Next, we multiply the equation by S9%u and integrate over [0,t] x ]Ri. We
get

t
0 + 102l o) S 10rols + [ lgloz2ut)]sad
thus

(33.11)  [Gau(®)l 2 + 107ull 120 4 wrety S 10xuollzz + 19l L2 oty -
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where g = f — > A;0;u+¢e) Bxkﬁiku with (7, k) # (d,d) in the last sum.
The terms in 8,0, are controlled in L? by the previous estimate (3.3.10).
The terms in Jy zu are controlled by (3.3.9). Hence ||g| ;2 is dominated by
the sum of the right hand sides of (3.3.9) and (3.3.10). Adding up, we have
proved that

[w(®)]| L2 +18y,u ()| 2 + [0y,2ull 20,022 + 1105 2ull L2 (0,4:22)
S lluollzz + 19yzuollz2 + 1 FllLro,g:02) + 1 F11 22 0,0:02) -

Since Oyu = f + Gu, we can add ||yul|z2(z2) in the left hand side. This
yields (3.3.3) for s = 0.

b) The general case.

We proceed by induction as in the proof of Theorem 3.2.8. Given f € H?
and vy € H?**t1, compatible to order 2s, we know that there is a unique
solution u € H25+2,

We consider s > 1 and assume that the estimate is proved at the order
s—1. Thus we have L? bounds for u(:®) := 905 yu for 2j+|al < 2s. Thanks
to (3.3.6), we only need bounds for the u(»®) when 2541 < 2j+|a| < 2s+2.

Differentiating the equations with respect to d, 9, and 83, the induction
hypothesis implies that the L? norm of the derivatives Qf 85 Ok is bounded
by the right hand side of (3.3.3) for 25 + |3| + k < 2s 4 2 except for j =0
and k =2s+ 1 or k = 2s + 2. Because s > 1, we can use the equation to
express these derivatives as linear combinations of 92571 f, 8y835_1 f, 0% f
and derivatives 6{858’;11 with 7 € {0,1}, |8 <3,k <2sand 2j + |B| + k <
2s 4 2, which are already estimated. O

3.3.2 Small viscosity estimates
We now consider the equations with small viscosity e:
d
Lu—cePu=f on [0,T] x RY
(3.3.12) Upeo=0  on[0,T] x R
Ujp=0 = Uo on le_

For fixed ¢, the existence and uniqueness of solutions follows from the analy-
sis of section 2. In this section we discuss uniform estimates for the solutions.

Because of the boundary layers, the right hand side (and the solutions)
are not uniformly smooth in the normal variable. For instance, we have
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seen in Chapter one, that solutions of the form wug(t,z) + e~%*/¢a(t) must
be expected. For these solutions, the normal derivatives satisfy for & > 0:

(3.3.13) |08 u| 2 ~ e F L2,

The solutions of (3.3.12) are related to the solutions of (3.2.2): w is a
solution of (3.3.12) on [0,7] x R%, if and only if

a(t, 7, %) = u(et, €7, )
is a solution of (3.2.2) on [0,7/¢] x R%, with initial data g and source term
f given by:
ﬂO(?j? j) = uO(‘SEa ey, 5@) ’ f(ga j) = €f(€7§, £y, Ej) :

Thus the estimates for @ are immediately transposed for u. Up to a factor
e~%2 the norms (3.3.1) and (3.3.2) for @ and f are equal to:

ne@T) = 3 o008 (T agus,
2j+|al<2s-1

Ngo(u;T) = Z 5j+|a|_l/2||aga§,xu||L2([o,T}xRi) ;
0<2j+|a|<2

(3.3.14) e Hal+1/2) A

Nee(£;T)= Y &t 167 0 fll L2 10,7y )
0<2j+|a|<2s

M (f;T) = Z €j+|a|Hatjagixf”Ll([O,T];LZ(Ri) :
0<2j-+]al<2s

Theorem 3.3.1, immediately implies:

Theorem 3.3.2. For all s > 0, there is a constant C' such that for all
T >0, all f € H*([0,T)]) and ug € H*TH(RL) satisfying the compatibility
conditions up to order 2s for the problem (3.3.12), the solution u € H?*+?
of (3.3.12) satisfies for all t € [0,T]:

(3.3.15) ngy1e(u; t>+N/s+1,a(u§t) < C(ns—l—l,s(u% 0)+N5,5(f;t)+1\/[5,5(f;t)) -

For instance, for s = 0, f € L*([0,7] x RY) and up € H}(R%), the
solution u € H? satisfies

u(t)ll 2 + ellOyzu®)ll 2 + Vel Oy zull L2(j0.4,02)
(3.3.16) +%2110] Jull z20.,L2) S lluollzz + ]9y zuol| 2
1 o,,02) + VENFllz20.0,12) -

By (3.3.13), the factors €'/2 and £%/2 in front of the first and second normal
derivatives are optimal.
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3.4 Tangential and conormal estimates.

The estimates (3.3.15) are not suitable for nonlinear equations, since they
do not provide uniform L*° estimates. Moreover, the boundary layer solu-
tions are expected to be smooth in the tangential variables. This leads to
introduce norms measuring the tangential smoothness.

3.4.1 Tangential regularity

For functions u on Ri define

(3.4.1) lullm, = > 05wl ®%) -

la|<s

For functions on [0, 7] x Ri, introduce

(3.4.2) [l g, (10,77 = > ”dzaguuLz([O,T}xRi) =y HagUHH;g—j :
=0

J+lal<s
The importance of these spaces is apparent in the next lemmas:

Lemma 3.4.1. For s > g, there is C such that for all uw € Hy, such that
Oyu € Hfg_l:

1/2

1/2
(3.4.3) ol e ety < Nl 9wl 12
tg

Proof. Extend u for negative x as an even function. The extended function
belongs to the Hy, space on R? with derivative in Hfgfl.

Denoting by and (7, ) the Fourier transform of u(y, =), the L estimate
on R x R? follows from the Holder’s inequality:

allFe < llpll 2 IA%a] g2 X7+ J€l)all =

with A = (1+[n]), p = (L + |nl)~*(1 + [¢[) /2.
O

There are easy a priori estimate in Hyj spaces. Introduce the notation

(344)  ngse(wit) = Y 107 u®) 2 + 107y Oyau(t)] p2ra) -

lof<s

For simplicity, we fix Tj > 0 and restrict attention to T' < Tj.
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Proposition 3.4.2. Given s and Ty > 0, there is C such that for oll T €
[0, ), all £ €]0,1] and all u € C§°([0,T] x RY) with ujp_g = 0, all t € [0, ]

(3.4.5) Neg,s.e (1) + €210y 0l g, 0.) + €110 wull g, 10,1
4 < C (g3 0) + 115 00 -

with f = (L — eP)u.
Moreover, if s > % + 1, then

(346) ([7 ]X +) ( ( +)
+ Itgysﬁ(u; 0) ||f”Hfg([O,t])> .

Proof. The estimate for s = 0 follows immediately from (3.3.16), estimating
the L([0,]; L?) norm of f by its L2([0,¢]; L?) norm for t < T < Tp.
Differentiating the equation with respect to (¢,y) immediately implies
the estimate (3.4.5) for the tangential derivatives.
Consider v = €9, u. Then,

lollag o < €/°R - and 00|y, o7y < & V2R

where R is the right hand side of (3.4.5). Thus aq(t) := ||U(t)HH; (R and
g
as(t) := HamU”Hfg(Ri) satisfy

e 2l 2oy + €2 llazll 2o,y < R
When s > d/2, we deduce from Lemma 3.4.1:
1/2
a(t) = [[v(®)l| oo ma) < (ar(t)az(t)) "~

Hence, |||l 2201 S R-
The equation for u reads:

—c0?u+ A0u =g

where A = BgéAd and g is a linear combination of f, Oy, u, 585” and
€0,0yu. Thus,

Hg”Hf;l([o,T]) S HfHH;gfl([o,T]) + ||UHH;Q([0,T]) +€|o ,quHfg([O,T]) SR
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Consider w = A’u — £9,u. Then

lwll g, (o) < R-

Since d,w = g, Lemma 3.4.1 applied for fixed t as above, implies that
b(t) := ||w(t)||Lw(Ri) satisfies [|b]| L2(jo,r) < R Since u = (A) " (w +v), we
have proved that for s > d/2, ¢(t) := Hu(t)HLoo(Ri) satisfies |[c[| p2(o,m) S R-

When s > 1+ d/2, we can apply the same analysis to d;u and conclude
that ¢1(t) := Hatu(t)HLoo(Ri) satisfies ||c1/z2(jo,r) S R- Since

T
[l oo (0.7 xety < 1w(0) oo (e ‘1‘/0 10¢u ()| oo (et y It

the estimate (3.4.6) follows. O

There are difficulties to convert the estimates above into existence the-
orems in the corresponding spaces. This come from the fact that the initial
value ngg ¢(u,0) cannot be expressed in terms of the data when they only
belong to tangential spaces. Indeed, by (3.2.17) n, s(u,0) involves high or-
der 0, derivatives of ug and of the traces 8tj f(0). However, there is an easy
case: when ug = 0 and the traces 8/ f(0) vanish.

Theorem 3.4.3. Assume that f € Hi([0,T]) and
(3.4.7) & frmo=0, forj<s-—1.

The solutionu € H* of (3.3.12) with initial data uo = 0 belongs to H,([0,T])
as well as Oy zu and 83’111. Moreover, u satisfies the estimates (3.4.5) and,
when s > 1+d/2, (3.4.6).

Proof. Fix e > 0. Thanks to (3.4.7), we can approximate f in Hy ([0, 77])
by functions f" € C§°(]0,7] x R%). In this case, the f* and ug = 0 are
compatible at any order and the unique solution of (3.3.12) given by Theo-
rem 3.2.5 is infinitely smooth. The estimates (3.4.5) show that the u" form
a Cauchy sequence in H,([0,T]) as well as 9y ,u™ and 0; ,u™, thus in H2.
Therefore the limit u which is the unique solution of (3.3.12) in H? has the
tangential regularity as claimed. O

3.4.2 Conormal regularity

The analysis above is simple but its application to variable coefficients or
curved boundary leads to difficulties because it relies on good commutation
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properties of the fields d;, 8, with the equation. Note that this set of fields
is not preserved by all the changes of variables which leave the boundary
invariant. The boundary layer solutions we construct in Chapter four (see
also Chapter one) are smooth functions of  for = > 0, with singularity only
on {x = 0}. Typically, we expect solutions of the form

u*(t,y, ) =U(t,y,z,x/e)

with U(t,y,x, z) converging at an exponential rate when z tends to +oo.
So one can expect u® be tangentially smooth. But, the form above shows
that one can also expect to apply vector fields 20, tu u®. In particular,
away from the boundary, this allows to recover the usual isotropic Sobolev
smoothness. To take care of this additional regularity, one introduces an
extra vector field which is tangent to the boundary but independent of the
O, Oy, when x > 0:

X

3.4.8 —
( ) 1+

T -

The choice of the function in front of J, is far from unique: we ask it to be
positive, to converge to a positive constant at infinity, and to be equivalent
to x for small . X behaves like 0, for x > 1 and like 0, for x < 1. We
also introduce the notations

(349) Zo = O, Zj:é?y]. fOI’jG{l,...,d—l}, Zg=X.
For a multi-index o = (v, . .., aq) € NI+ Z0 = Z50... 754,

Definition 3.4.4. For s € N, and T > 0, H: ([0,T]) denotes the space
of functions u € L*([0,T] x RL) such that Z%u € L2*([0,T] x RL) for all
a € N with |a| < s.

As expected, for all 6 > 0, the function in HZ, are in H* on {x > §}.
Moreover, this space is invariant by any change of variables which preserves
the boundary.

The new difficulty is that X does not commute exactly to the equation.
We use the following facts:

1
/ . /
k—1
(3.4.11) (X = X5+ enxt,
=0
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where the ¢ (x) are bounded C* functions with bounded derivatives. In
commuting X with the operator L — P, the difficult term is [X, d,]. This
is why we compute X'(L —eP) — (L — eP)X. There holds

(XL —eP) — (L—eP)X"* =

3.4.12 k-1
( ) Z (c@t,yXl + cs@in + aax(chﬁx)>

=0

where ¢ denotes various functions of x, bounded as well as all their deriva-
tives.

Parallel to Proposition 3.4.2, there are a priori estimates in the conormal
spaces. Introduce

(B413)  Negecust) = |Z 120Dl 2 gaay + €100 2D 2gas -
la|<s
Proposition 3.4.5. Given s and Ty > 0, there is C such that for all T €
[0, T0), all e €]0,1] and all u € Cg([0, T] x RY.) with ujy_q = 0, all t € [0, T]
Neos.e(U,t) + 51/2Hat,y,xUHHgo([O,t]) + 53/2||8§,quHgo([0,t])

(3.4.14)
< O (o (50) + [ e ) -

with f = (L — eP)u.

We need a modification of the basic L2-estimate (3.3.16).

Proposition 3.4.6. There is C such that for all T € [0,Ty], all € €]0,1]
and all uw € C§°([0,T] x @i) such that u,—g = 0 and

d
(3.4.15) (L—ePu=f+) cdg;,
j=0

the following energy estimate is satisfied

[u()l 2 + ellOyau(®)ll e + Velloryaull 2o, L2)

(3.4.16) +e32)|0 ull p2(0.0,12) < C(HUOHL2 + €l|0y,zuoll L2+

110,22 + D VEIgs ooy + 210591 2o o)) -
J
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Proof. First, we multiply the equation by Su. We estimate (f, Su)r2 as
before by the L? norm of f and the L>(L?) norm of u. Since v vanishes on
the boundary,

(9595, Su)g2 = —e(95,0;5u) 2 = O(IVEgs |2 | VEdjul 12 ) -
This implies

lu(®)l 22 + Veldyaullz < luollzz + 1fllz2 + Y VElgillza-
i

Next, we differentiate the equation in 9,; and multiply by e28 Oy, u. Since u
vanishes on the boundary,

(8yj (f + €0kgr), Sayju)LQ = —(f ~+ e0r gk, Sc‘);ju)p
and thus

elldyut) 2 +*10y00yull 2 S elldyuollce + &2 fll2 + Y 210595 1 -
i

To get control of 92u, we multiply the equation by £259%u, and obtain

lDwu(®)l 2 + /202ull 2 S eldsuoll 2 + [l

with
h = \/g(f — O — Z Aj(?ju +¢€ Z Bj,k(‘)jaku) .

j<d j+k<2d

The norm ||A||z2 is estimated by the previous steps. At last, \/e0;u is esti-
mated using the equation and the proposition follows. ]

Proof of Proposition 3.4.5. We have to bound the norms

[, 6,kll L= (22) €10y 21,6,k Lo (L2)
(3.4.17) s g,
VEllOry.awjpkll L2 e%/2)|85 yuj g 2

of uj g = &8 X*u, for j+ |B| + k < s, by the right hand side of (3.4.14)

We proceed by induction on k. For s = 0, the estimate is true by
(3.3.16) or by the proposition above. Differentiating in (¢, y), we can bound
the norms in (3.4.17) by the right hand side of (3.4.14) for ¥ = 0 and
j+ 1Bl <s.
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Suppose that we have bounded the norms (3.4.17) up to the order k — 1.
We use the commutation relation (3.4.12) to write an equation for u; g :

(L — eP)u; g =00) (X" f
+ ) cujrg + €0y a(cOy i) + €0y (cuy pr)

where the sum runs over indices (j',’,1) such that j' + || +1 < s and
| < k. With Proposition 3.4.6, we can bound the norms in (3.4.17) at the
order k by by the norms at order | < k and the right hand side (3.4.14). O

Parallel to Theorem 3.4.3, the energy estimates imply regularity of the
solution when ug = 0 and the source term f vanishes at high order at ¢t = 0.

Theorem 3.4.7. Assume that f € HS ([0,T]) and
(3.4.18) & fr—o=0, forj<s-—1.

The solution u € H? of (3.3.12) with initial data ug = 0 belongs to HZ ([0, T])
as well as 8y y ,u and O ,u. Moreover, u satisfies the estimates (3.4.14) and,
when s >1+d/2, (3.4.6).

3.5 Nonlinear problems

In this section we consider the semilinear problem (3.1.2). We always sup-
pose that Assumption 3.1.1 is satisfied and that F' is a C°° function from
RN to RN such that F(0) = 0.

3.5.1 Existence for fixed viscosity

We consider the semilinear equation
(3.5.1) (L—eP)u=f+F(u), uy—=0, up—g="uo.

We also use the notation, L = d; + A. The compatibility conditions must
be modified as follows: first we define the functions Fj(uo, ..., u;) of the

form
fj(u(),...,uj)zz Z CFk(U[))(Ujl,...,Ujk)

k=1 j14..4+jk=j
such that . ,
O F(u)ji—o = Fj(uo, -, u5),  uj = duj—g.
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Next, the definition (3.2.17) is modified as follows
(3.5.2) Uj = (eP — A)Uj,1 + fj,1 + .7:]',1(’LLO, R ,uj,l) .

The multiplicative properties of Sobolev spaces in Proposition 2.5.2, im-
ply the following result.

Lemma 3.5.1. For ug € H*"! and f € H*® with s > d/4, (3.5.2) defines
by induction functions uj € H25+1_2j(Ri) for j < s.

Definition 3.5.2. The data ug € H**1(RY) and f € H?*([0,T)) satisfy the
compatibility conditions to order o < 2s if the u; given by (3.5.12) satisfy
Ujlg—0 =0, Jj€{0,...,0/2}.
We first state a local in time existence theorem for a fixed €.

Theorem 3.5.3. Given ug € H*TY(R%) and f € H*([0,T]) compatible to
order 2s with s > d/4, there is T' €]0,T) such that the equation (3.5.1) has
a unique solution u € H*2([0,T"]).

Note that, in this theorem, 7" may depend on €.

Proof. We only sketch the argument since it is quite parallel to the proof of
Theorem 2.5.1. We consider the iterative scheme

(3.5.3) (L —eP)u" = f+ F(u"1), u" im0 =0, u"—o=uo-

a) Define the u; € H?>T172/(R1) by (3.5.2). Consider extensions in
H?T1721(R9) of the uj. Then, denoting by - the spatial Fourier transform
define

(0.6 = 30 i) A= (14 fnl +1€).

This function u® belongs to H***2 and 8{u0|t:0 = u; for j < s.

Starting with this u°, we check by induction that for all n > 0, the data
ug and source terms f+ F(u""!) are compatible to order 2s and thus (3.5.3)
has a solution u™ € H2**2 with satisfies Hu" =g = uy for j <s.

b) We use the norms ns; with ¢ = 1 defined in (3.3.14). Using the mul-
tiplicative properties of Sobolev spaces as in Proposition 2.5.2, we see that
for 2s > d/2

(3.5.4) ns(F(u);t) < C(ns(u;t)).
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Thus the energy estimate (3.3.3), one shows that there are 77 > 0 and R such
that for all n and t € [0,T"], ns11(u";t) < R and Ngyq1(u™;T") is bounded.
Next, one shows that the sequence u" is a Cauchy sequence in H22([0, T"])
and thus converge to a solution of (3.5.1).
The uniqueness follows form the L? energy estimate applied to a differ-
ence of solutions. O

Next we state a continuation theorem, parallel to Proposition 2.5.10.
The proof is based on Gagliardo-Nirenberg-Moser’s inequalities. With
denoting R¢, R‘i or a strip [0,7] x ]Ri, with 7" > T7 > 0, there holds ( see
the discussion after Proposition 2.5.4):

Proposition 3.5.4. For all s € N, there is C such that for all j € N and
a € N® with 25 + |a| < 2s and all u € L=(2) NH (), 305 ,u € LP(Q) for
2<p<4s/(2j+|a|) and

j 1-2 2 2j+|af _ 2
(355) 1005l < Clulp Pl =5 = <<

Corollary 3.5.5. Given 17 > 0 and s € N, there is a non decreasing
function Cr(-) on [0,00[ such that for all T > Ty, for all u € L*(2) N
H25([0,T]), one has F(u) € H**(Q) and

(3.5.6) 1 () 1325 0,27y < Cr(llull oo ) l[all325 10,1y -

Suppose that f € H?$([0, Tp] x RY) and ug € H**T1(R4), with s > d/4,
satisfy the compatibility conditions are satisfied at order 2s. Let T™* denote
the supremum of the set of T €]0;Tp] such that the problem (3.5.1) has a
solution in H?**2([0, T]). By uniqueness, there is a unique maximal solution
uw on [0,7*[. Repeating the proof of Proposition 2.5.10, one obtains the
following criterion for blow up:

Theorem 3.5.6. If

(3.5.7) limsup ||u(t)| L < 400,
t—T*

then T* = Ty and u € H*T2([0, Ty)).

3.5.2 Uniform existence theorem I

Our goal is now to prove the existence of solutions on interval of time in-
dependent of ¢. Consider bounded families of initial data {ug}.cj0,1 C
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H*TY(R4) and source terms {f°}.c01) € H**([0,T]). By Theorems 3.5.3
and 3.5.6 we know that there are solutions u® € H?**2([0,T(¢)[) where
T(e) > 0and T(e) =T or uf ¢ L>®([0,T(c)] x R%). The strategy is to use
the L* bounds of Proposition 3.4.2 to show that there is 77 > 0 such that
for all € €]0,1], T'(e) > T".

Toward this end, we need uniform estimate on the norm nyg s .(u;0) of
the traces u; = Bg uj;—o- We also need a good control of the source term

(3.5.8) IF (), 0.y S CF ([[ulloe + negse(ust)) -

with Cr(-) independent of time ¢. It turns out that theses estimates are
delicate to prove: for instance application of Corollary 2.5.6 for fixed =z,
yields estimate with constants which blow up as ¢ — 0.

Consider initial data u§ € H**1(R4) and source terms ¢ € H?$([0, 7).
For j < s, define the uj € H?5t172) by (3.5.2). We make the following
assumption: there is C such that for all € €]0, 1]:

(3859 Y (1955l 2y + VIO Dyt paea) ) < Ci,

jHlal<s
(3.5.10) 151 g, 0.7y < Ch -

We further assume that there are Cy and a family @° € H*+2([—1,0]) such
that

(3.5.11) { 18\ g, (1—111) + 1@ | oo 1,77 xe ) < Cos

8,{118“:0 =uj, forj<s.

Example 3.5.7. The difficult part is to check the condition (3.5.9). Com-
puting the u; involves @, derivatives, while the assumption on ug involves
only 9, derivatives. However, there are several cases where the assumptions
are easy to check. A first example, already occurs when uj = 0 and f¢
satisfies

(3.5.12) 0 fieg=0, forj<s—1,
In this case, all the uj vanish and the data are compatible to order 2s.

Example 3.5.8. Another interesting example occurs when f¢ is bounded
in H*([0,7] x R%) and the uf are bounded in H***1(R%). In this case,
the uj are bounded in H 2s+1-2j (Ri) Moreover, there are u°, bounded
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in H?*72(] — 00, +0o0), such that 8,{&5”:0 = u. In particular, they are
bounded in Hj,. If in addition one assumes that uf and f€ vanish for z <r
and x4+t < r respectively, then the u; vanish for x < r and the compatibility

conditions are satisfied.

Remark 3.5.9. The assumptions (3.5.9) (3.5.11) are well suited for contin-
uation results : they are satisfied if solutions u® are given on [—77, 0], such
that they are bounded in L* and the norms ny, . (u®,t)) for t € [-17,0] are
bounded.

Note that one obtains equivalent conditions if one replaces in (3.5.11)
the interval [—1,7] by any interval [—T7,0] or on [0,7}], for any 77 > 0,
since one can extend the 4® to t € R.

Theorem 3.5.10. Assume that s > 1+ % and consider families of initial
data uf € H*1(RL) and source terms f& € H?([0,T)) satisfying the com-
patibility conditions to order 2s. Assume that (3.5.9)(3.5.10)(3.5.11) hold.
There is T' €]0,T] such that for all € €]0,1] the problem (3.5.1) has a
unique solution u® € H?***1([0,T']). Moreover, the family u® is bounded
in H,([0,T]) N L>2([0,T] x RY).

~ Denote by K°([0,77]) the set of functions v € H?*2([0,7"]) such that
Oju = u5 for j < 5. We use the following estimate:

Lemma 3.5.11. For s > d/2, there is constant C3 and a function Cp(-)
such that for all t € [0,T], all € €]0,1] and all uw € K5([0,¢]), there holds

(3.5.13)  [1F(w)llm;, (o) < C3+ CF(HUHLOO([O,t]XRi)) (1 + Nlullag, 0.)) -

Proof. For u € K¢([0,71"]) consider the function @ defined to be equal to
u® for t € [-1,0] and equal to u for ¢t € [0,7"]. Since @¢ and u have the
same traces at t = 0, the extended function belongs to H?**2([-1,T]) C
Hi, N L®([-1,T'] x R%). Moreover,

%l oo (=1, xRey < C2 + HUHLOC([O,T/}xRi) )
1@l g, (-1, < Co+ Nl mg, o) -

Applying Corollary 2.5.6 on [~1,7"] x R~ with z as a parameter, and
integrating in x, yields the estimate:

(35.14)  NE@m, (-1, < CF (Il oo ey Nl i, (-1,m) -

The lemma follows. O
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Proof of Theorem 3.5.10. By Theorems 3.5.3 and 3.5.6 we know that there
are solutions u¢ € H?**2([0,T(¢)[) where T'(¢) > 0 and T'(¢) = T or u® ¢
L=([0, T ()] x RY).

Theorem 3.4.3 implies that for ¢ € [0,7(¢)]

ne(t) = nyg se(uit) and  m"(t) = [|u”|| oo g0 g xme)

satisfy
n.(t) < Cy + CF(mE(t))(/o (1+ na(t’))2dt/> 1/27
1/2

m.(t) < C5+Cp(m5(t))</0t (1+ng(t'))2dt’> :

where Cy and Cj5 are independent of ¢ € [0, 7 and € €]0, 1]. There is 7" > 0
such that
2C4Cr(2C5)VT' < min{Cy, Cs} .

The estimates above imply that

Vit <min{T(e),T'} : n.(t) <2C; and m.(t) <2Cs.
By Theorem 3.5.6, this implies that T'(¢) > T”. In addition, this shows that
the u® are uniformly bounded in L> and Hj, on [0,7"] x R%. O

3.5.3 Uniform existence theorem II

There are analogous results in spaces H:,. We make the following assump-
tion: there is C; such that for all £ €]0, 1]:

(3.5.15) > (H@;‘XkusHLz(Ri)—i-\/gHag‘ay,g;Xku;HLQ(RiJ <C,
J+lal+k<s

(3.5.16) 1/ mre, o,y < Cir-

We further assume that there are Cy and a family @° € H?**2([—1,0]) such
that

(3.5.17) { 1, 1,17+ 18 e ) < o

a{aﬂtzo =uj, forj<s.
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Examples 3.5.12. The assumptions (3.5.15) and (3.5.17) are satisfied when
uj = 0 and f© satisfies (3.5.12). In this case, all the u$ vanish and the data
are compatible to order 2s.

As in Example 3.5.8, the assumptions are satisfied when the f¢ are
bounded in H?([0,T] x R%) and the u§ are bounded in H*T1(R4). In
this case, the u$ are bounded in H 25+1-2)(RL). If in addition u§ and f°
vanish for x < r and x4+t < r respectively, then the u; vanish for z < r and
the data are compatible to order 2s.

Theorem 3.5.13. Assume that s > 1 + % and consider families of ini-
tial data u§ € H*THRL) and source terms f¢ € H?*([0,T]) satisfying the
compatibility conditions to order 2s. Assume that (3.5.15)(3.5.16)(3.5.17)
hold. There is T' €]0,T] such that for all € €]0,1] the problem (3.5.1) has a
unique solution u® € H2*1([0,T"]). Moreover, the family u® is bounded in
H,([0,T]) 0 L((0,T] x RY).

The proof is similar to the proof of Theorem 3.5.10. The analogue of
(3.5.14) is

(35.18)  [[Flms, (-1, < Cr([ull poo —1,2xme)) Il (-1,7)) -

It is a consequence of the following estimates on [—1,7"] x R%:

1-2 2 la| 2
(3.5.19) 12wl < Cllullp P uliy?, =<5 <1
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Chapter 4

Semilinear boundary layers

In this Chapter, we present the analysis of O.Gueés ([Gul]) in the case of
constant coefficients systems, with noncharacteristic flat boundary. We first
construct approximate solutions, using the existence theory of Chapter two.
Next, we use the uniform estimates of Chapter three to solve the equation
for the remainder.

4.1 Statement of the problem

In this Chapter we study the existence and the asymptotic behavior of so-
lutions of the equations

(L— P = F(u)+ f,
(4.1.1) U |p— = 0,

with
d d
Lu := Opu + ZAjaju, Pu := Z B 00k u .
j=1 Jik=1

The goal is twofold : first, prove the existence of the solutions u® on an
interval of time [0,7] independent of £ and second, give the asymptotic
behavior of u® as e tends to zero. In particular, it is expected that

(4.1.2) u® —u=0(e)
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where u satisfies

Lu=F(u)+ f,
(4.1.3) Mujz—o =0,
U\t:o = h7

provided that h* — h = O(e). Part of the analysis is to determine the
boundary conditions M. Throughout the chapter, we suppose that the
following Assumption is satisfied:

Assumption 4.1.1. i) There is a positive definite symmetric matriz S =
tS > 0 such that for all j the matriz SA; is symmetric. Moreover, for all
£ # 0 the symmetric matriz ) ;¢ Re SBjy, is definite positive.

ii) The matriz Aq is invertible.

iii) F is a C> mapping from RN to RN, such that F(0) = 0.

To avoid the difficult questions of compatibility conditions, which are dif-
ferent for (4.1.1) and (4.1.3), we also assume that f vanishes on a neighbor-
hood of the edge {t = = 0} and that the h° vanish on a fixed neighborhood
of {z = 0}.

We first construct asymptotic and approximate solutions of (4.1.1) as
power series of €. This leads to solve ordinary differential equations for
the inner layers and hyperbolic boundary values problems for the interior
terms in {x > 0}. Next, we look for correctors to get exact solutions of the
equations. There we use the analysis and estimates of Chapter three.

4.2 Asymptotic boundary layers

We look for solutions of (4.1.1) as formal series in powers of e:

(421) Ua(t,y,x) ~ ZgnUn(tayaxvg) .
n>0

We look for the profiles U, in the class P(T") of functions
(4.2.2) Ut,y,x,z) =ult,y,z) + U*(t,y,x, z)

with u € H®([0,T] x RY) and U* € e %2H>([0,T] x RY x Ry) for some
d > 0 (depending on U*). Here, H*(Q2) = NH*(2). In particular, functions
in H% are C*°, bounded as well as all their derivatives.
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For u® as in (4.2.1), the left hand side of (4.1.1) is (formally)

(4.2.3) Lu® — ePu® ~ Z e"Ly(t,y,x, E) ) L,eP
n>—1 €

with

(4.2.4) L= —Bd,dagUO + A40,Uy

and, for n > 0:

Lnfl = _Bd,dazUn + AdazUn - P,(ay,x)azUnfl

(4.2.5)
+ L(at,y,x)Unfl - P(ay,x)Un72

with P'(9y2) = >.(Ba; + Bja4)0; and U, = 0 for n < 0. Formal series
expansions yield

(4.2.6) f+ F(anUn) ~Y "R,  F,eP
n>0 n>0
with Fop = F(Up) + f, F1 = F'(Uy)U; etc. Thus for u® given by (4.2.1) the
right hand side of (4.1.1) reads
x
(4.2.7) F(uf)+ f ~ Y "Fult,y, z, ).
n>0
The boundary condition is easily interpreted for formal series (4.2.1) since
(4‘2’8) Ug\mzo ~ Z EnUn‘az:O,z:O .

n>0

Definition 4.2.1. We say that Y "U, is a formal or a BKW solution of
(L—eP)u® = f+ F(u®) if and only if L_1 =0 and L, = F,, for alln > 0.
It is a formal solution of the boundary conditions u®,—q if and only if for
alln > 0:

(4.2.9) Upla—o.2—0 = 0.

Remark 4.2.2. The expansion (4.2.1) is not unique. For instance, one
can perform a Taylor expansion with respect to the slow variable x in
U*(t,y,z,2):

U(t,y,z,2) =U"(t,y,0,2) + 2V*(t,y,z,2) .
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The function V* is rapidly decaying in z, as well as W* = zV*. In this case
U*(t’ y’ I‘, E) = U*(t, y? 07 f) + €W*(t7 y7 x? f) °
€ € €

This means that, at first order, U*(t,y, x, z) and U*(t, y, 0, z) define the same
function. To fix the indeterminacy, one could restrict the class of profiles,
as in Chapter one, to profiles of the form

(4.2.10) Un(t,y,z,2) = ult,y,x) + U*(t,y, 2) .

The lack of uniqueness is not a difficulty. On the contrary it gives some
flexibility. However, it implies that the expansions (4.2.3) (4.2.7) are not
unique. Above we have made an explicit choice for the L,, and F}, given by
(4.2.5) and (4.2.6). Note that the computation of profiles F,, of the form
(4.2.10) for (4.2.7) is more complicated.

The aim of this section is to construct formal solutions of the mixed
Cauchy problem (4.1.1) with initial condition

(4.2.11) u—g = h°.
In this analysis, the initial data should also be given by formal series:
x
hs(ya SC) ~ Z Ean(ya xz, g)
n>0

However, to avoid the difficult question of compatibility conditions, we as-
sume that the initial data has no rapid dependence on z:
(4.2.12) he(y, z) ~ Za”hn(y,x)
n>0

with h, € H*(R%). Moreover, we assume that that there is 7 > 0 such that
Yn>0,: hp(y,z)=0 for x<r,
(4.2.13) - n(9,7)

flt,y,z) =0 for x+t<r.

This implies that the data are compatible at infinite order.
We say that ) €"U, is a formal solution of the Cauchy condition (4.2.11)
if
(4.2.14) Vn>0,: Unp=o(y,z,2) = hn(y,x),
that is
Vn > 07: un\tZO(yv‘r) = hn(y7$) and U;|t=0(y7$72) =0.

Theorem 4.2.3. For f € H®([0,T]xR%) and a formal initial data y" €"hy,
satisfying (4.2.13), there are T' €]0,T| and formal solutions Y e"U, of
(4.1.1).
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When U(t,y, z, z) is a profile in P(T"), we denote by
U(t,y,x) = lim U(t,y,x,2)

its limit at z = 400 and by U* = U — U the exponentially decaying part.
In the decomposition (4.2.2), U = u. We use this notation for the profiles
the L, and F,, and write:

By (4.2.4), L_; is rapidly decaying and the limit L_; vanishes. There-
fore, it is equivalent to solve inductively for n > 0 the equations L) ; and
L, together with the boundary condition (4.2.9) and the initial condition
Up|t =0 = hy. Thus, > e"U, is a formal solution if and only if

Bd,dagUO + A,0,Uy =0,
L(at,y,ﬁgo =F,=FU,) + [,

(4.2.15) Unjaeseo = 0,
Uojt=0 = ho,
and for all n > 0
n1="Fn_1,
(4.2.16) L =L,
Unjg=2=0 =0,
Unjt=o = hn -

4.3 The boundary layer ode and the hyperbolic
boundary conditions

4.3.1 The inner layer o.d.e.

The first equation in (4.2.15) is a constant coefficient differential equation
in z. More generally, consider the equation on [0, col:

(4.3.1) ~Bga0?U + A40.U = F € P*, U=U+U*eP.

Here, P* denotes the space of exponentially decaying C*° functions on R4
and P the space generated by constants and P*. We add the boundary
condition

(4.3.2) U(0)=0.



Notation. For a N x N matrix G, E4(G) [resp E_(G)] denotes the invari-
ant subspace of CV generated by the generalized eigenvectors associated to
eigenvalues with positive [resp. negative| real part. Denote by ILi(G) the
spectral projectors on E4 (G).

Note that Assumption 4.1.1 implies that By q and Ay are invertible. The
next lemma is crucial in the analysis of (4.3.1).

Lemma 4.3.1. The matriz Ggq = (Bd,d)_lAd has no eigenvalues on the
imaginary axis, thus CN = E_(Gy)PE(Gy). Moreover, dimE_(Gy) = N_,
the number of negative eigenvalues of Ag, and the matriz SAg is negative
definite on E_(Gy).

Proof. a) Suppose that A is an eigenvalue of G4 and h # 0 satisfies Ggh =
Ah. Thus, _
(SBdﬁd)\h, )‘h)(CN = (SAdh, h)(cN

Assumption 4.1.1 implies that Re SBy 4 is definite positive and that SA  is
symmetric. Moreover, A # 0 since G4 is invertible. Therefore

Re A(SAqh, h)en > 0.

In particular, Re A # 0 and therefore CV = E_(G4) ® B4 (Gy).
b) Suppose that h € E_(Gy) \ {0}. Thus u(z) = e*“¢h is exponentially
decaying at +oo and Bg 40,u = Aqu. Therefore

0 < 2Re / (Sdedﬁzu(z),ﬁzu)CNdz = —(SAdh, h)cN .
0

This shows that S Ay is definite negative on E_(Gy). In particular, dimE_(Gy) <
N_, where N_ is the number of negative eigenvalues of SA,, which is the

number of negative eigenvalues of Ay as seen in Chapter two.
Similarly, for h € EL(Gg) \ {0}, there holds

0
0 < 2Re / (Sdeazu(z), Ozu)cNdz = (SAdh, h)(cN .
Thus S A, is definite positive on E4 (G4) and dimE4 (Gg) < Ny = N — N_.
Since CN = E_(Gy)®E (Gy), the two inequalities imply that dimE_ (Gy) =
N_. ]
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4.3.2 Layers profiles

Lemma 4.3.2. For F' € P* the bounded solutions of equation (4.3.1) belong
to P. They are given by

(4.3.3) Uz) =U + &CU° + I1(F)(z), UeRYN, U’eE_(Gy)

where I(F') is an integral operator described below.
In this case, the boundary condition (4.3.2) is equivalent to

I (Ga)U = —IL(Ga)I(F)(0),
{ U’ = —T1_(Ga) (U + I(F)(0)) .
Proof. The equation for V = 0,U reads
(4.3.5) 0.V =G4V =By, F.

(4.3.4)

Dropping the indices d and setting 11 = I11(G4), there is 9 > 0 such that
for z > 0:

(4.3.6) e*CTI_| < e7%% e *OI, | < e %%,
Therefore, the solutions of (4.3.5) are

V(z) = eV / e CI_BT R (2)d2!
0

+ / =G, BT R (2)d2' .
Thus
(4.3.7) U(z) = U+ &%’ + I(F)(z) .
with U’ = G='V? and U arbitrary and

I(F)(z) = — /0 e NCT_(Gy)G ' By F(2)d?

(4.3.8) + / eF L (Gg) G By F () d2!

- / Gy ' BygF(2)d .

We note that the integrals are well defined thanks to (4.3.6) and that
I(F) is exponentially decaying if F' € P*. Thus the solution is bounded if
and only if U” € E_(Gy). In this case U € P.

By (4.3.7), U(0) = U+I1_(Gq)U’+I(F)(0) and (4.3.4) follows projecting
by II; and II_. O
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4.3.3 The hyperbolic boundary conditions.

From Lemma 4.3.2 the first equation in (4.2.15) is equivalent to
(4.3.9)  Ui(t,y,z, 2) = U (t,y,2) with US(t,y,z) € E_(Gyq).
and the boundary condition to

(4.3.10) I (Ga)Upjeo =0, Ufjumo = —11-(Ga)Usgjs—o

Thus, see that U, must satisfy the boundary value problem

{ L(at,y,w)go = F(QO) +f,

(4.3.11)
T4 (Ga)Uglap = 0

By Lemma 4.3.1, the invariant space E_(Gy) = kerIl(Gy) is of di-
mension N_. To match the notations of Chapter two, it is convenient to
introduce a N_ x N matrix M such that

(4.3.12) ker M =E_(Gy) .

Thus, M is an isomorphism from E (G4), the range of IT, (Gy), to RV+. In
particular, the first equation in (4.3.4) can be replaced by

(4.3.13) MU = —MI(F)(0).

A key observation is that the limiting problem is well posed: Lemma 4.3.1
immediately implies

Proposition 4.3.3. The boundary condition M is maximal dissipative for

L.

4.4 Solving the BK'W equations

4.4.1 The leading term

We first solve (4.2.15). We have seen that ug = U, must satisfy

L(Oty,z)uo = F(uo) + f,
(441) MUO\x:O = 07

ug|t=0 = ho
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Proposition 4.4.1. There is T' €]0,T] and a unique solution of (4.4.1),
uy € H*®([0,T] x R%). Moreover, there is ¢ > 0 such that up = 0 on
A:=[0,T]xREN{z+ct <r}.

Proof. By (4.2.13) the initial data are compatible to any order. Thus The-
orem 2.5.1 implies that there is 77 > 0 and for s > d/2 a unique solution
u € W*(T"), which belongs to W7 (T") for all o.

That u vanishes near the edge x = ¢ = 0 is a consequence of the finite
speed of propagation. For the sake of completeness we sketch a proof.

Fix ¢ > 1 such that the symmetric matrix 3 := S(cId+A,) is nonnegative
For C! functions, integration by parts over the domain A = [0, 7] x Ri N
{z + ct <r} yields

_ _ Lo _
’yHe 'Ytu”%z(A) +/3A (6 2’Yt2u, ’LL) < HU(O)H%Q({IST}) + ;He 'YtLuH%Q(A)

where A = [0,T] x RE N {x + ¢t = r}. Since ¥ is nonnegative the second
term on the left hand side can be dropped.

Since wug is smooth, there is a constant C' such that |F'(up)| < Clugl|. In
addition f =0 on A and up(0) = 0 for {z < r}. Thus there is C' such that
for all v > O:

=1Q

e uoll72a) < —lle” M uol|F2a -

Thus, for ~ large enough, He‘”tuoH%Q(A) =0, hence v = 0 on A. O

Next, we choose U € H>®([0,T'] x R%) such that (4.3.10) holds:
(4.4.2) Ug\mzo = —II(Gg)uojz=0 » US(t,y,z) =0 for et <r.
Note that the second condition can be fulfilled since UQ|g=0 = 0forct<r.
Then we define
(443 Uo(t,y, @, 2) = uo(t,y, @) + €FUG (¢, y, x)
=uo(t,y,z) + Us(t,y,z,2).

Because U} vanishes for t = 0, there holds Uy (0, y, z, 2) = ho(y, ). Adding
up, we have proved:

Proposition 4.4.2. There is T' > 0 such that the problem (4.2.15) has a
solution Uy € P(T"), given by (4.4.3). Moreover, U, vanishes on A and Ug
vanishes for ct < r.

Note that only the trace of UOb lz—0 18 uniquely determined. The lifting

of UOb to x > 0 is arbitrary. This reflects the lack of uniqueness mentioned
in Remark 4.2.2.
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4.4.2 The full expansion

Next we solve (4.2.16) by induction on n. Suppose that (Up,...,U,_1) are
known such that the equations are solved up to order n — 1. Suppose in
addition that the Uj vanish on A and the U} vanishes for ¢t < r. The n-th
equation reads

— Bg.a02U,, + Aq0,U, = @,
L(0iy)U, =2,,

Un\x:z:O =0 ,

Unjt—o = hn -

(4.4.4)

where ®* and ®,, are given by (Up,...,Up—1). They belong to P*(T") and
to H°([0,T"] x R+) respectively and vanish for (¢,,y) € A.
By Proposition 4.3.2 the first equation is equivalent to

(44.5)  Ui(ty,a,2) = CUL(t y,2) + (@), Ul(t,y,x) € E_(Ga),
and the boundary condition to

MQTL'CCZO =g9n = _Mj(q):;)m:z:() )

(4.4.6) b .
UO\:UZO = _H*(Gd)gmxzﬂ - H*(Gd)l(q)n)\x:zzo

Thus, u, = U,, must satisfy the boundary value problem

L(at,y,mx)un - gn ’
(4.4.7) Mu,, =0 = gn ,

Un|t:0 = hn .

The computation of ®;, shows that it involves the Uy, and at least one Uj..
Thus @} and g, vanish for ¢t < r. Similarly, ®, vanishes on A, and h,, =0
for « < r. Hence the data (®,,gn,h,) satisfy the compatibility condi-
tions to any order. Therefore, by Theorem 2.4.12 there is a unique solution
un, € H([0,T"] x R%). Moreover, repeating the argument in the proof of
Proposition 4.4.1, one shows that w, vanishes on A.

Next, we choose Uf, € H*®([0,T"] x R%) such that

(4.4.8) UZ\x:O = —IL(Gg)un|g—o , Ul (t,y,z) =0 for ct <r.

Then we define
(4.4.9)
Un(t,y, o, 2) = un(t,y, 2)+*1U) (¢, y, 2)+1(D}) = un(t,y, 2)+ U (t,y, 2, 2) € P(T).
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Since @}, vanishes for ¢t < r, I(®}) and hence U, vanish on this set. In
particular, U, (0,y, z, z) = hy,(y, x).

By construction, U,, € P(T”) is a solution of (4.4.4), U,, vanishes on A
and U, vanishes for ¢t < r. This finishes the induction and the proof of
Theorem 4.2.3 is complete.

4.5 Convergence and approximation theorems

Assume that ) "U, is a formal solution of the equations. The series is not
likely to converge, and the question is to know what kind of information it
gives on the existence and approximation of exact solutions of (4.1.1).

4.5.1 Approximate solutions

Given a formal solution ) &"U, and a positive integer m, consider

m
x

(4.5.1) Ugpp = Z e"Uy, (t, Y, T, g) .

n=0
For all €, ug,, is in H>°([0,T] x Ri), but of course, the estimates are not
uniform in €. However, the ug,, satisfy for all a € 7" and k € N:

k k

(452) azﬁ)pl} ||E ZaaquppHLOOQL2([0,T]><R‘1+) < +00.

When (4.5.1) is substituted in the equation, we see that
(4.5.3) Tapp = (L — eP)ug,, — f — F(ug,,)

is a function of the form e ' R(e, t,y, z, x/c) where R(e,t,y, z, 2) is a smooth
function of its arguments. Moreover, in the Taylor expansion R(e,:) ~
e"Ry(+), the first m + 1 terms Ry, ..., R, vanish. Therefore,

x
rZPP - 6m¢€’ (ba(t?y’m) - q’(&ﬂ%%g)
with {®(e, )} bounded in P(T"). Therefore, the ¢° satisfy

(4.5.4) . 15 2% 056% | w20, 11xme ) < +00-
€ ’

The ug,,, satisfy

m
(4.5.5) Uspplomo = 0, Um0 = Dy = > "hp.
n=0

106



Moreover, if one assume that U,, = U, + U} € P(T), U,, = 0 on a domain
A=0,T)] xREN{z+ct <r}and U} =0 for ¢t <r, for some ¢ > 0 and
r > 0, then ug,, and ¢ also vanish on A.

Comment. ug,, is an approximate solution of the equation, in the sense

that it satisfies the boundary condition and also satisfies the equation up to
an error term which is O(¢"). The question is to know wether there exists

an exact solution u® close to ug,,. Typically, one expects that u® —u
O(g™).

app =
4.5.2 An equation for the remainder

We look for exact solutions of (4.1.1) with initial condition

(4.5.6) U =g = h® = hg,,, + ™.

We look for u® as a perturbation of ug,,:

(4.5.7) Ut = gy, +M°.

Introduce the notation
F(u+v) = F(u) + F'(u)v + Q(u, v;v)
with Q(u,v;w) quadratic in w. The equation for v° reads

(L — eP)v® = Ev° 4+ MG (v°) + ¢°,

(4.5.8) Vp=0 =0,
U8|t:0 = ;
with
(4.5.9) Ef = F'(ug,,), G°(v) = Q(ugy,,"v;v).

We use the notations H*, HZ, of Chapter three and we fix s > 1 + 4. By
(4.5.4), the ¢° belong to H?* and are bounded in H,([0; 7).
We consider initial data ¢¢ such that

(4510) sup H€€HH2S+1(R1) < 400 y Egl{mgr} = O .
€€]0,1]

Since ¢* = 0 for x + ct < r, the data ¢° and £¢ are compatible to order 2s.
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Theorem 4.5.1. If m > 0, there is ¢9 > 0, such that for all € €]0,¢], the
problem (4.5.8) has a solution v € H***2([0,T]) and the v¢ are uniformly
bounded in HZ,([0,T) N L®([0,T] x RL).

Consider the Taylor expansion at time ¢ = 0 of the solutions. Using the
notation L = 9; + A, the traces v for j € {1,...,s} are given by induction
by vg = £¢ and for j > 1:

j—1
(45.11) 0§ =(eP— A+ dj1+ > Bl +Gyoa(vf,. .., v5)
k=0

where G is a linear combination of terms of the form

e"Q(a§, ™) Ay - - - A, V5, -G,
where Q(a,v) is a multi-linear function depending smoothly on (a,v) and
k>0, p+q<j,k1+--+kpy+j+--+Jj,=7and

0 =0 0, B = OB me, @ = Ofuippsy, 0G5 1.

Lemma 4.5.2. i) For j < s, the v} are uniformly bounded in to H?st1-2j
and vanish for x < r.
ii) There is a bounded family {vs’o}se]m} C H?**2 such that for all

€ €]0,1] and j € {0,..., s}, 8,{1)5’0#:0 = 5.

Proof. The first statement immediately follows from (4.5.2), (4.5.4) and
(4.5.10).

Next, since the v vanish for x < r, their extension by 0 for x < 0 belong
and are bounded in H25T1=2%/(R9). The traces can be lifted up to H?**2 as
in the proof of Theorem 3.5.3: denoting by * the spatial Fourier transform

define

S

J
0t 6) =Y j.,qu%;(n,g) C A= (140l + D)
j=07"

0

Starting from v*", we consider for v > 1 the iterative scheme

(4.5.12)

e,

{ (L N EP),UE,V _ (ba + Eave,u—l + GE(,U&,V—l),

8% _ __pE
v ‘xzo—o, v \t:O_E .

Theorem 4.5.1 follows from the next statement:
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Proposition 4.5.3. There iseg > 0, such that for all e €)0, 1], the equations
(4.5.12) define a Cauchy sequence v™" in H>*T2([0,T]) such that for all
J€10,... s}, O o = 05

Moreover, the family {v®" : e €]0,e0],v € N} is bounded in L N
H2, ([0, 7] x RY).

Proof. a) We use the following notations, inspired with minor modifications
from Chapter three:

ne(ust) = > €j+‘a|||353imu(T)||L2(Ri)
2jtlal<2s+1

NL(ust) = > EjHO['il/Z||8ga§i:vu”L2([O,T]><Ri) ;
0<2j5 <2542

(4.5.13) et i
« (0%

Na(f;T) - Z &l Hat ay,foLz([O,T}X]Ri) ’
0<2j-+]a|<2s

neo(uit) = D 1 Z%u(t)|| 2(pa ) -
la|<s

By (4.5.2), E* satisfies for all k£ and «

sup EkHZaaﬁEEHLm([QT]XRi) < +00.
€€]0,1]

Therefore, there is a constant C such that for all v € H?*$([0,T]), Efv €
H25([0,T]) and for all t < T

N:(Efv;t) < CN.(v;t),

(4.5.14) 6 t oA L/2
150l o) < ol oy < ©( [ meotos ') "

Using the estimates (4.5.2) for ug,, and Corollary 3.5.5 on one hand and

(3.5.18) on the other hand, one obtains that for v € H?*([0,T]), Q°(v) €
H25([0,T]) and there is a function Cg(+) such that

(4.5.15) Ne(Q°(v); T) < CG(R)(l + NE(U§T)) )
1Q° ()l s, o,y < Ca(R)(1+ vl gs, (0,7))
with R := [|v]| oo (0,7) xR )-

b) Suppose that v*” —1 € H252([0,T)) is defined and satisfies the trace
conditions ang—ﬂtzo = v for j < s. By definition (4.5.11), we see that the
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traces associated to the equation (4.5.12) are vj-’" = vj. Thus they vanish
for < r and the compatibility conditions are satisfied. Moreover, the right
hand side belongs to H2*([0,7]). Therefore, by Theorem 3.3.2 there is a
unique solution v*¥ € H2*+2(]0, T]) which satisfies the trace conditions.

Moreover, Proposition 3.4.5 and the estimate above imply that there are
constants Cp and C and a function Cg(-), depending only on the data, such
that for all € €]0,1],» > 1 and ¢ € [0,T]:

neo(v751) < Cot+Ca[[v™ ||z, (0.1

(4.5.16) . ol -
+ &M Ca(RTYN) (L + 10 M ars,0,17)) -
RS,V S C +C U87V_1 .
(4517) " 1Hm HZC;E[?,T]) e,v—1
+eMCq(R*V 1) (14 v HHCSO([O,T])) )
with R®Y := ||’U8’V||Loo([0’T]XRd+). We show by induction that there are con-

stants g9 > 0, Co2, R and K such that € €]0,1],v > 1 and ¢ € [0,T:

Neo (V55 1) < Coet
(4.5.18) o
R < R.
The estimates are clearly satisfied for v = 0, provided that
(4.5.19) Cy > ts[lélgp] neo(v%t), R> |’U570||L°°([07T]xRi) '
S )

These conditions only depend on the data. We choose successively Cs, K,
R and ¢¢ such that in addition to (4.5.19) there holds

Cy >3Cy, V2K >3C;, R>2Cy+ CoelT,

4.5.20
( ) el'Ca(R) (14 C2(2K)7H2eKT) < (.

Suppose that the estimate (4.5.18) is satisfied up to the order v — 1. Then

t 1/2 C
ev—1 ewv—1.,1\\2 74/ 2 Kt
’ s == ’ ) < .
[[v HHca([O,t]) (/0 (nCO(U it )) dt) > \/ﬁe

Therefore (4.5.16) implies:

Neo(v5751) < Co + Cliem +e™Cq(R) (1 + CQ(QK)_l/zeKT) .

V2K
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If € < gg, this implies that
C
ne (V575 t) < 2CH + ?Qem < Cyelft.

Similarly, (4.5.17) implies for e < g:

R < Cy+ %eKT +e™Cq(R)(1+ CQ(2K)71/2€KT) <R.

This shows that (4.5.18) holds at the order v and the proof of Theorem 4.5.1
is complete. ]

4.5.3 Exact solutions and their asymptotic expansions

We can now gather the different results obtained above. Suppose that f €
H>([0,Tp) x R%). Suppose that h? is a bounded family in H*(R%) with
asymptotic expansion (4.2.12) in the sense that for all integer m

e "(h® — Zm: e"hy)
n=0

is bounded in H*°(R%). Assume in addition that the support conditions
(4.2.13) are satisfied.

By Theorem 4.2.3, we construct a formal solution > e™U,, on [0, T]xR%,
for some T' €]0, Tp).

Theorem 4.5.4. There is g > 0 such that for all € €]0,¢¢|, the problem
(4.1.1) has a solution u® in H®([0,T] x R). Moreover, for all m >0 and
s >0,

m
ro"(ty,x) == u (ty,x) — Za”Un(t,y,x, z/e)
n=0
satisfies

(4.5.21) HUE’m”LoomHgo([o,T}xRi) = O(5m+1) .

Proof. Applying Theorem 4.5.1 with m = 1 and sy large enough, gives a
solution u® € H?*072 for ¢ < gy. These solutions are bounded in L>([0, T] x
]Ri). Since the data are infinitely smooth and infinitely compatible, Theo-
rem 3.5.6 implies that u® € H*>® = H°.

By uniqueness, Theorem 4.5.1 applied to any m and s large enough,

implies that for € small enough, 7™ = u® — ug,,, satisfies:

7™ | Loorms, = O(e™),
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Since the last term in u,, is O(¢™), this implies that =™~ = O(e™) and

the theorem follows. O

Remark 4.5.5. One can consider finite expansions and in particular restrict
attention to u®(t,y,z)—Uy(t,y,x, /). One could also consider profiles with
finite smoothness, but the precise count of derivatives to get m terms in the
expansion and to prove the approximation in ;) is delicate.
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Chapter 5

Quasilinear boundary layers:
the inner layer o.d.e.

In this Chapter, we start the analysis of quasilinear equations. We study the
ordinary differential equation satisfied by stationary solutions which depend
only on the normal variable. The admissible solutions w connect 0 at z = 0
to a bounded end state at z = +o00. The set C of those reachable end states
is given by a central manifold theorem. It determines the boundary condi-
tions associated to the limiting hyperbolic system. The local structure of C,
depends on transversality conditions or equivalently on stability conditions
of the o.d.e.

5.1 The equations

Consider a first order quasilinear system

d
(5.1.1) L(u,0)u := O+ Y Aj(u)dju = F(u)

=1

The equation holds on R x Ri. The unknown u is valued in RY. The space
time variables are (t,y,z) as in Chapter 2.
Next, we consider a parabolic viscous perturbation of (5.1.1)

(5.1.2) L(u,0)u—e > 0;(Bjr(u)dpu) = F(u).

1<j,k<d
with Dirichlet boundary conditions:

(5.1.3) Ujpeo = 0.
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The parabolic solutions take values in &* C R while the hyperbolic
solutions take values in U C U*. It is assumed that 0 € U*.

Assumption 5.1.1.
(HO) The Aj and B are N x N real matrices, C* for u in U*; F' is
a smooth function from U* to RN,

(H1) There is ¢ > 0 such that for all w € U* and all £ € R? the eigen-
values of Z?,k:l §i&kBjk(u) satisfy Rep > €%

(H2) For all w € U, the eigenvalues of Y &;Aj(u) are real and semi-
simple. Moreover, the multiplicities are constant for u € U and € € Rd\{O}.

(H3) There is ¢ > 0 such that for all u € U and &€ € R? the eigenvalues
of Z?:1 i A (u) + Z?,k:l §i&kBjk(u) satisfy Rep > ‘§|2
(H4) For all w € U, there holds det Ag(u) # 0.

Remarks 5.1.2. 1) The assumption (H1) means that for all ¢ > 0 the
equation (5.1.2) is parabolic, for all state u in the large set U*. The first
role of (H2) is to ensure that the first order equation (5.1.1) is hyperbolic for
all state u in the domain uw € . It is important for applications to consider
situations where the domain of hyperbolicity U is strictly smaller than the
domain of definition U* of the equation; for instance this occurs for Euler’s
equation with non monotone state laws.

The theory of hyperbolic boundary value problems is well developed in
two cases: first in the case of dissipative boundary conditions for symmet-
ric systems, as explained in Chapter two; second in the case of hyperbolic
systems with constant multiplicity and boundary conditions satisfying a uni-
form Lopatinski condition (see [Kre], [Ch-Pi], [Maj], [Mé3]). In the second
part of this book we have chosen to consider the second framework, first to
give a new approach, and second to introduce to the sharp stability condi-
tions which involve Lopatinski determinants. With (H4), we assume again
that the boundary is noncharacteristic.

(H3) is a compatibility condition between the hyperbolic part and the
parabolic singular perturbation. On one hand, letting £ tend to zero, it
implies that L is hyperbolic, but does not say anything about the multi-
plicities. On the other hand, letting £ tend to infinity it implies that the
condition in (H1) holds, but only for u € Y.

2) For instance, if L satisfies (H2), then the assumptions (H1) (H2) are
satisfied for the artificial viscosity perturbations:

L(u,0)u — eAu.

114



3) In the symmetric case, that is when there is a symmetric definite
positive matrix S(u) for u € U*, such that SA; and SB; are symmetric
and ) &j&xSBj is definite positive for { # 0 (see Assumption 3.1.1 of
Chapter three), the assumptions (H1) and (H3) satisfied, as well as the
first part of (H2). The full assumption (H2) requires that in addition the
eigenvalues have constant multiplicity. On the other hand, in the analysis
below, the assumptions on the boundary conditions are not restricted to the
dissipative case. This is important because, in contrast with the linear or
semilinear case, for large amplitude quasilinear layers, there is no analogue of
Proposition 4.3.3, and for symmetric systems, the limiting inviscid boundary
conditions are not necessarily maximal dissipative.

We denote by N [resp. N_] the number of positive [resp. negative]
eigenvalues of Ay(u) counted with their multiplicity. Then, by (H4), N =
N, +N_.

Lemma 5.1.3. Foru €U,

i) The matriz Bgq(u) is invertible with eigenvalues in Re p > c.

ii) The matriz Gq(u) := Bgq(u) L Aq(u) has no eigenvalue on the imag-
inary axis. Ny of them, counted with their multiplicity, have positive real
part and N_ have negative real part.

Proof. Taking £ = (0,...,1/6), (H3) implies that for § # 0, the spectrum of
Bga(u) +i6Ag4(u) is contained in Rep > c. Letting 0 tend to zero implies
i).

If 1 is an eigenvalue of G4(u), then p # 0 and 0 is an eigenvalue of
—utAg(u) + Bga(u). Thus, u ¢ iR.

Similarly, for ¢ € [0,1], the spectrum of tBg4(u) + (1 — t)Id + i0 Ag(w)
is contained in Rep > 0 and G(t) := (tBga(u) + (1 — t)Id)_lAd(u) has no
eigenvalue on the imaginary axis. Thus the number of eigenvalues of G(t)
in Re > 0 is constant for ¢ € [0,1] and equal to N4 when ¢ = 0. O

We use the following notation from Chapter four: given a matrix G,
E4 (G) denotes the invariant space generated by the generalized eigenvectors
of G associated to eigenvalues p lying in {£Re 1 > 0}. We denote by I (G)
the corresponding spectral projectors. When G is real, then 11 are real so
that the spaces E1 are real. In particular, for all u € U, we have

RY = E(Ga(u)) ® E-(Ga(u))

and E_(Gq) = |,y E-(G4(u)) form a fiber bundle over U.
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5.2 The inner-layer ode, and the hyperbolic bound-
ary conditions

There are exact stationary solutions which depend only on the normal vari-
able, scaled to describe the inner layer:

(5.2.1) u(t,y,x) = u(x/e).

In this case, the equation for u® is equivalent to the ordinary differential
system:

(5.2.2) Aq(w)d.u — 9. (Bga(u)d.u) = 0.
One can also consider approximate solutions, using BKW expansions
uf (t,y,x) = Up(t,y,z,x/e) + eUp(t,y, z,x/e) + 2. ..

with Up(t, y, x, 2) = un(t,y,x) + Ui(t,y, z) and U} rapidly decreasing when
z — +o0o. Plugging this expansion in the equation, the singular term in
g1 yields the same equation (5.2.2) for z — Uy(t,y,x,z). The boundary
condition (5.1.3) reads

U,(t,y,0,0) =0

and the convergence at infinity implies that w(z) = Uy(t,y,0, 2) must also
satisfy the boundary conditions

w(0) =0, lim w(z)=up(ty,0).

z——+00

In particular, we see that the supposed interior limit wg must satisfy the
boundary condition

(5.2.3) uo(t,y,0) € C
where

Definition 5.2.1. C is the set of p € U such that there exists a solution u
on [0, +oo[ of the profile equation

(5.24)  Ag(w)d.u — 0. (Bag(u)d:u) =0, w(0)=0, lim u(z)=p.

z——+00

This section is devoted to the analysis of (5.2.4) and to the construction
of smooth pieces C of C.
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5.2.1 Example: Burgers equation

Consider in space dimension one, the Burgers-Hopf equation:
(5.2.5) O + udyu — 66§u =0.
In this case, the inner-layer o.d.e is
(5.2.6) O*u = udu, u(0)=0.
The equation can be integrated once yielding
0u = %u2+k, u(0) =0.

Depending on the sign of the constant k, there are two families of solutions

1) u(z) = —Xtanh (Az/2)
2) w(z) = ptan (pz/2).

Changing A into —A or p into —u does not change the solution, so we can
assume that the parameters are nonnegative. The two families intersect only
on the trivial solution v = 0.

Solutions of the second family, have a finite time of existence: they do
not provide solutions of (5.2.5) on the half line.

Thus, we have to restrict attention to solutions of the first family, which
are globally defined. In this case, we have

lim u(z) =-A<0.
z—+00

The end state —A is non characteristic (i.e. satisfies (H4)) if A # 0. Thus
we have shown:

for the Burgers equation (5.2.5), the set of end states p which satisfy (H4)
and which can be connected to 0 by a solution of (5.2.6) is C =] — oo, 0].

5.2.2 Example: the linear case.

Suppose that Ay and B, 4 are constant (independent of w). This situation
has been analyzed in Chapter 2. The o.d.e. reads

(5.2.7) O*u — Gyd.u.
The solutions of the o.d.e are

u(z) = p+ e*%da,
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with G4 = (Bb’d)_lAd and arbitrary constants p and a. Because the eigen-
values of G4 are real and different from zero, the explicit formula implies
the following results.
1. The solution is bounded if and only if a € E_(Gy).
2. Bounded solutions of (5.2.7) converge at an exponential rate at
infinity.
3. The bounded solutions of (5.2.7) form a manifold of dimension
N+ N_.
If we now add the initial condition u(0) = 0, we obtain
4. The set of end states p which can be connected to 0 by a solution
of (5.2.4) is equal to E_(Gy). In particular, the set of bounded solutions of
the boundary value problem form a manifold of dimension N_.
Remember that p € E_(G) appeared as the limiting boundary condition
for the hyperbolic problem in Chapter four.

5.3 Solutions of the inner layer o.d.e.

We come back to the equation (5.2.2). Our goal is to extend the analysis
performed in the linear example. First, we note that the constants are
solutions of the o.d.e. We study solutions which converge at infinity.

Lemma 5.3.1. Suppose that u satisfies the equation (5.2.2) on the interval
[20, +00] and u(z) — p € U as z — +oo. Then, 0,u(z) tends to zero when
z tends to infinity.

Proof. With v = By 40.u, (5.2.2) implies that
(5.3.1) v =H(u)v.
with H (u) := Ag(u)(Bga(w)) . Therefore,
0:0(2)] < Clo(2)|, €= max [H(u(z))].

[Z09+OO[

|0, u(2)| < Cilv(z)], Ci; = max |B;jl(u(z))]

[Z07+OO[

For z; > zp, consider the interval I = [z1, 21 + 1] and 2 € I such that

m = mjax|v(z)| = |v(z2)| .

There is a unit vector ¢ such that ¢ - v(z2) = m. Since |0,v] < Cm on I,
there holds £ -v(z) > m/2 for z € I} ;== {z € I : |z — 29| < 1/(2C)}. Let
9 =min{1,1/(2C)}. Then I; contains an interval [z3, z3 + 0] and

¢-Bgq(u)0.u >m/2 on [z3,23+0].
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Since u tends to p at infinity and By 4 is invertible, write
'Bua(u)t =€ +0'(z)
with ¢/ # 0 and ¢/(z) — 0 at infinity. Since £ is unitary, one has
01> FBIYG)I, 1) < 1Baalp) — Baa(u(2))
In particular, if 21 is large enough, one has |¢'(z)| < 1/4C; and therefore
0 -0,u>m/2—|0(2)||0u] >m/4 on [z3,23 +9].

Therefore, we have shown that there are ¢ > 0 and § > 0 such that for all
21 large enough, there is ¢’ with |[¢/| > ¢ and there is z3 € I = [21,21 + 1]
such that

0 (u(zg +6) —u(z3)) > mdé/4.

Since u has a limit at infinity, the left hand side tends to zero as z3 tends to
infinity and therefore m must tend to zero as z; tends to infinity. O

We continue the analysis of bounded solutions of (5.2.2). With U =
(u,v), v = 0,u, the equation is equivalent to the first order system

d.u=v,
(5.3.2) { 8.v = Ga(u)v — By g(u) (v - VuBga(u))v.

‘We look for solutions such that
(5.3.3) lim u(z) =pel.

We consider (5.3.2) as a quadratic perturbation of
o,u =,
0,0 = Gy(p)v.

F(u,v) = (G4(u) — Ga(p))v — Bd_’;(u) (v VyBaa(u))v
which is quadratic in (u — p,v). More precisely, there holds

Set

(5.3.4) F(u,v) = O(|Ju — p|[v] + [v]?) .
Suppose that v satisfies on [zg, +00]

(5.3.5) 0.v =Ga(p)v+ F,
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then, denoting by Ili(p) the spectral projectors on E4(G4(p)), one has for
all z and z; in [zg, +00[:

I (p)o(z) = e IO (p)u(zq) + [ e IHWI () (5)ds,

20

21
L (p)o(z) = €GO (plu(zn) — [ eI () F(s)ds.

z

Note that there is 8 > 0 such that

|€(zfs)GH_‘ < 00679(zfs) ’ s<z,
(5.3.6) 0
|e(z_s)GH+‘ < Cpe~ (s—2) , s> z.

Therefore, the operator

L(F)(2) = [ eSO ()P (y)dy

20

- [ S, )Py

z

is bounded from L' ([zp,+o0]) to itself for all r € [1,00]. Thus, if F € L"
and v is a solution of (5.3.5) which tends to zero at infinity, letting 2; tend
to 400 in the representation of II; (p)v(z) above, implies that v satisfies

v(z) = elz=20)Galp) ] _ (p)v(0) + Z,,(F)(2) .
In particular, together with Lemma 5.3.1, this implies the following result.

Lemma 5.3.2. If u is a solution of (5.2.2) on [zo, +o00[ satisfying (5.3.3),
then v = O,u tends to zero at infinity and satisfies the integral equation

(5.3.7) v(z) = FTGDIL (p)o(0) + Loy (F(u,v))(2)

Next, we show that the solutions of (5.3.7) have exponential decay at
infinity.

Lemma 5.3.3. If u is a solution of (5.2.2) on [zo, +00[ satisfying (5.3.3),
then for all § < 6, €®*0,u is bounded.

Proof. For ¢ € [0,0[, denote by || - ||5 the norm

[vlls = sup [e”v(2)| = [|v]lo = [|v]| Lo -
z>0
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Consider the mapping w — f(w) = F(u,w). From (5.3.4), we deduce that
for all w € e L>°;

1 (w)lls < C(llu = pllzee + lwlzee)llwls -

Similarly,

[ f(w1) = f(w2))lls < C([lu—pllre + [|wi|lpe + [lwz]| L) Jwr — walls

Next, we note that for all § € [0, 6], there is a constant Cs such that for all
y > 0 the integral operator 7, satisfies:

1Zy(£)lls < Csll.fls -

Thus, the convergence (5.3.3) and the fixed point theorem imply that for all
91 < 0, there are R, r > 0 and z; such that for § € [0,01], all y > 2; and all
la] <7, the equation

(5.3.8) w = WD (p)a + I, (f(w))

has a unique solution in e™*L> such that ||w|/s < R. The uniqueness in
L implies that the solutions in L™ and e %?L*> coincide. Therefore, the
bounded solution belongs to e~ %1%,

Since d,u — 0, for y large enough there holds [|0,ul| Loo [y 400y < I and
|0,u(y)| < r. Since O,u is a solution of the integral equation (5.3.8) with
a = 0yu(y), we can apply the result above and conclude that d,u coincide
with the exponentially decaying solution. ]

Corollary 5.3.4. u is a solution of (5.2.2) on [z0, +oo[ satisfying (5.3.3),
if and only if v = 0,u € L'([z9,+00]) and there is a € E_(G4(p)) such that

u(z) =p= [ o)y = p - 10)(2),
v(z) = elF7200GaP g 4 T (F(u,v))(2).

(5.3.9)

In addition, a = I1_(p)v(zo) = I1_(p)0,u(z0).

Proof. The direct part follows from the two lemmas above. Conversely, if
(u,v) solves (5.3.9) and v € L', then u satisfies (5.3.3), u and v are smooth,
v = O,u and the definition of Z,, shows that u is a solution of the o.d.e.
(5.2.2). The definition of Z,, also implies that II_(p)v(z9) = a. O
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We now construct solutions of (5.2.2)(5.3.3) on [0,00[. According to
Corollary 5.3.4, we add the boundary condition

(5.3.10) II_(p)0,u(0) = a,
and solve (5.3.9) with zg = 0.

Proposition 5.3.5. Given w a relatively compact open set in U, there are
R >0 and r > 0 such that for allp € w, all a € E_(G4(p)) with |a| <7, the
equation (5.2.2) has a unique solution uw = ®(-,p,a) satisfying (5.3.3) and
(5.3.10) and

(5.3.11) |0:ullpr <R and ||0.ullL~ < R.

The function ® is a C*° function on [0, +00[xS), where Q is the set of
(p,a) withp € w and a € E_(Gq4(p)) with |a| < r. It satisfies

O(z,p,a) = p+ PG (p)a+ O(|al®) .
Moreover, there are 6 > 0 and C' such that for all z and (p,a) € Q:
|0.9(2,p,a)| + |®(z,p,a) —p| < Ce™**,

Proof. Choose Ry > 0 such that for all p € w, the closed ball of radius Ry
centered at p is contained in U*. For R < Ry, denote by Bp the set of
(u,v) such that ||u — p|lp~ < R, |[v]|;n < R and ||v||z=~ < R. Note that if
(u,v) € Bpg, then u takes its values in U*. Then, for (u,v) € Bpg, one has

()l < R, F(u,v)llp1nre < CR
With (5.3.6), this implies that
|1 Zo (F(u,0)) | Linee < CLllF (u,0)l| p1pze < C1OR?.
In addition, for a € E_(p), one has
le”““®)al| i < Colal .

Therefore, for R and r small enough and |a| < r, the mapping
T : (u,v) — <p + I(v),e*%Pg 4 T (F(u, v)))
maps Bp into itself. Similarly, for (uj,v1) and (ug2,v2) in Bpg, there holds

[1(v1 — o)l Lo < [[I(v1 —v2)llp1,
| F(u1,v1) — Fug,v2)|| priape < C'R(||uy — ugl|pee + |lv1 — 2| ze) -
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Thus, decreasing R if necessary, the mapping 7 is a contraction in Bp
equipped with the distance ||u; — ugal||p + 2||v1 — v2|| 1. Therefore, the
fixed point theorem implies that the equation (5.3.9) has a unique solution
in Bp, and the first part of the proposition follows.

The fixed point theorem also implies that the solution depends smoothly
on the parameters p and a € E_(p).

By construction, the solution satisfies ||v||;1 = O(|al), thus ||u —p||r~ =
O(Jaf). Hence [v—e*Ca®al| 1 = O(Jaf?) and [[u—p—e-CaP) G (p)all = =
O(lal?).

The exponential decay of 0,u follows from Corollary 5.3.4 and Lemma
5.3.3, choosing a decay rate # in (5.3.6) uniform in p € w. One can also
apply the fixed point theorem to construct solutions in spaces e L. [

Next, we note that the proposition above allows to find all the solutions
of (5.2.2) (5.3.3). Below, we assume that w C U is given and that the
solutions ®(z,p,a) are defined by Proposition 5.3.5 for p € w, a € E_(p)
with |a| <7 and z > 0. We still denote by ®(z, p, a) their maximal extension
for z < 0 as solutions of the o.d.e. (5.2.2).

Proposition 5.3.6. u is a solution of (5.2.2),(5.3.3) with p € w, if and
only if there are a € E_(p) with norm |a| < r and zp € R such that u(z) =
®(z — z0,p,a).

In this case, for all zg large enough, one has

u(z) = ®(z — 20,p,a), with a=T_(p)dyu(zg).

Proof. Since the equation is invariant by translation, for all zy € R, u(z) =
®(z — 29, p,a) is a solution which converges to p at infinity. It is defined on
|2« 20, +00[ where ]z, +00] is the maximal interval of existence of ®(-,p, a).

Conversely, by Lemma 5.3.3, if u is a solution of (5.2.2) (5.3.3) on
[21, +00], then for all zy > z; large enough, there holds

10:ull 1 (20, 400p) < By Ho(p)Du(z0)| <7,

where R > 0 and r > 0 are the constants determined at Proposition 5.3.5.
The equation is invariant by translation, thus u(z + 2p) is another solution
with the same end point. By Corollary 5.3.4 and uniqueness in Proposition
5.3.5, one has

u(z + z0) = ®(z,p,a) for z>0

with a = II_(p)9,u(zp). By uniqueness of the Cauchy problem for (5.2.2),
the identity extends to negative values of z, as long as z + zy remains in the
domain of definition of u, and hence of ®(-, p, a). O
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5.4 Smooth hyperbolic boundary conditions

With now turn to the the boundary value problem (5.2.4) and construct
smooth pieces of C. We first consider small values of p, assuming that 0 is
an hyperbolic state.

5.4.1 Small amplitude layers

Proposition 5.4.1. If 0 € U, there are a neighborhood w C U of 0, a
manifold C C w of dimension N_ and a smooth mapping W from [0, +oo[xC
to U such that for all p € C, W(-,p) is a solution of (5.2.4) which converges
at an exponential rate to p as z tends to infinity.

Proof. We apply Proposition 5.3.5 to find & on a neighborhood of p =
0,a = 0. Next we use the implicit function theorem to solve the equation
®(0,p,a) = 0. The proposition implies

®(0,p,a) =p+ Gy (p)a+ O(lal?).

Thus,

Vpa®(0,0,0)(p, @) = p+ Gz (0)a
and V,, ,®(0, 0, 0) is an isomorphism from the space of (p,a) € E(0) xE_(0)
to RYN. Therefore, the implicit function theorem implies that, locally near
the origin, the equation ®(0,p,a) = 0 defines a manifold parametrized by
p— =11_(0)p, as p = P(p-), a = A(p—). We define locally the manifold C
as p= P(p_), and for p € C, the profile W(z,p) as ®(z,p, A(p_). O

5.4.2 Large amplitude layers

Below, we assume that w C U is given and that the solutions ®(z,p,a) are
defined by Proposition 5.3.5 for p € w, a € E_(p) with |a|] < r and z > 0.
We still denote by ®(z,p, a) their maximal extension for z < 0 as solutions
of the o.d.e. (5.2.2).

Remark 5.4.2. The boundary value problem (5.2.4) reduces to the equa-
tion

(5.4.1) ®(zp,p,a) =0

Indeed, if ®(z, p, a) vanishes at zp, then z — ®(z+ 20, a, p) is a solution of the
boundary value problem (5.2.4). Proposition 5.3.6 implies that conversely,
if u is a solution of (5.2.4), then there is a € E_(p) with norm |a| < r

and zp € R such that ®(-,p,a) is defined for z > 2y, ®(z0,p,a) = 0 and
u(z) = ®(z + 20,p,a).
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To solve (5.2.4) , that is (5.4.1), with large data, the analysis is much
more delicate and depends on global properties of the differential system.
There might be no solutions (see the example of Burgers equations with end
states p > 0), there might be multiple solutions. What we study next is the
structure of the set of solutions near a given solution wu.

Consider a particular solution w of (5.2.4) with end point p. Then, by
Proposition 5.3.6 there are a and z such that: a

(5.4.2) w(z) = ®(z+z,p,0a),

with ®(z,p,a) = 0. To apply the implicit function theorem to the equation
(5.4.3) ®(z,p,a) =0

we differentiate ¢ and introduce

(5.4.4) (2, p,a) = pVp®(z,p,a) + aVa®(z,p, a)

Proposition 5.4.3. Suppose that

rankV,®(z,p,a) = N_,
rankV, ,®(z,p,a) = N .

Then, in a neighborhood of p, there is a smooth manifold C C U of dimension
N_ and a smooth mappingiw from [0, +00[xC to U such that for all p € C,
W(-,p) is a solution of (5.2.4) which converges at an exponential rate to p
as z tends to infinity.

Proof. The assumptions implies that there are coordinates p = (p_,p4) €
RN x RN+ such that Vap, ®(z,p,a) is an isomorphism. Therefore, the
implicit function theorem implies that (5.4.3) defines near (p,a) a manifold
of dimension N_ parametrized by p_ = II_(0)p, as p = P(p_), a = A(p_).
We define locally the manifold C as p = P(p—), and for p € C, the profile

W(z,p) as ®(z,p, A(p-). O

5.5 The linearized profile equation

In this subsection we study the linearized equations from (5.2.2) at w. We
assume that there are p € & and § > 0 such that

(6.5.1) w(z)—p= O(e™%), d.w(z)=0(e%), d*w(z)=0(e).
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The linearized equation reads
(5.5.2) Pu = —0%u+ G 2)0u + E}z)u = f .

where G*(2) — G4(w(2)) and E* involve first and second order derivatives of
w. In particular:

(5.5.3) GH(2) = Ga(p) + O(e™%), E*(z) = O(e™%)

As a first order system, (5.5.2) reads, with v = 0,u:

(5.5.4) 0.U=G')U+F, Giz) = ( EOti gj )
u 0
v=(3) (%)
We note that
(5:5:5) GH(2) = Ga+ Oe™").
with

gd:<8 sz?p) )

5.5.1 Conjugation to constant coefficients

An important idea is that variable coefficient systems like (5.5.4) with co-
efficients which converge at an exponential rate, are conjugated to constant
systems.

Lemma 5.5.1. There is a matriz W(z) such that
i) W and W=t are C* and bounded with bounded derivatives,
ii) there are C' and &' > 0 such that

(5.5.6) IW(z) —Id| + [0, W(2)| < Ce %,
iii) W satisfies
(5.5.7) W = GW —WG,.

Moreover, if Gt depends smoothly on parameters, one can choose locally
W depending smoothly on those parameters.
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Proof. Consider (5.5.7) as an ordinary (linear) differential equation in the
space of matrices. Because G converges exponentially to Gy, it has the form

oW = LW +G'(2)W,

where £ is the constant coefficient operator adGg(W) := [G%, W], and G'(z)
is the left multiplication by G(z) — Gg = O(e™%%). W is obtained as the
solution of

W(z) = Id+ /z eCTILI_(5)G (s)W(s)ds

20

[e.e]
—/ eFTILIL G (s)W(s)ds

z

where I1; [resp II_] is the spectral projector on the sum of the generalized
eigenspaces of L associated with eigenvalues in Re u > —k [resp. Re u < —k]
where & is chosen in ]0,d[ such that £ has no eigenvalues on {Repy = x}.
Arguing as in Proposition 5.3.5, using the fixed point theorem, we prove the
existence of a solution on [zg, +-00[ such that W — Id = O(e~%) for some
0 < k and zg large enough. The solution of the linear equation (5.5.7) is next
extended to z € [0,+o0o[. This construction shows that one can choose W
depending smoothly on parameters, as long as the eigenvalues of £, which
are differences of eigenvalues of G4, remain separated by a line Re u = & for
some k €]0, 0[.

Consider D(z) := det W(z). Then

(5.5.8) 0.D(z) =tr(G(z) — Gq) D(z2) .

This clearly implies that D(z) never vanishes on [0, 00[. In addition, since
D(z) = 14+0(e~%), this also provides uniform bounds for D(z) and 1/D(z).
To prove (5.5.8), denote by (W1,...,Way) [resp denote by (G, ...,Gan)]
the columns of W [resp. G]. Then (5.5.7) implies that

0.D = det[Wr,...,G(2)Wj,... Wan]
J
— Zdet [Wl, ... ,WG]'(OO),. . .WQN] .
J

Next use the following algebraic identities for matrices WW and G with columns
(Wl, ey WQN) and (Gl, ceey GQN)t

> det [Wh,...,GW;,.. . Way] = (trG) det W,

J
> det [Wh,...,WGj, ... Way| = (trG) det W,
J
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which are quite clear when (W7,...,Wsy) is a basis, and extend alge-
braically to general W. O

The Lemma 5.5.1 means that the variable coefficients equation (5.5.4) is
conjugated to the constant coefficients equation

(5.5.9) 0,U1 = GqUq + Fy .

Indeed, U satisfies (5.5.4) if and only if U3 = WU satisfies (5.5.9) with
F; = W™'F. In particular, the solutions of the homogeneous equation
0,U = GU are

U(z) = W(2)Ui(2), Ui(z) = e*9U,(0), U1(0) =W H0)U(0).

and

Ul _ <U1> _ (Ul(O) + (ezGd(ﬂ) — Id)GJIQE)Ul(O) ) .

eZGd@Ul (0)

The solution U, or equivalently Uj, is bounded if and only if v1(0) €
E_(G4(p)). In this case, v; and v are exponentially decaying and

lim u(z) = lim wi(z) =wui(0) — G;l(g)vl(()).

z—+00 zZ—+00
This immediately implies the following result.

Lemma 5.5.2. The space S of bounded solutions of the homogeneous equa-
tion Pu = 0 has dimension equal to N + N_. The subspace Sy of solutions
which tend to zero at infinity has dimension equal to N_.

5.5.2 Transversality and the tangent space to C

We suppose now that w is a particular solution of (5.2.4) with end point
p € U. Then, by Proposition 5.3.6 there are @ and z such that: w(z) =
®(z + 2,p,a). We now give equivalent formulations of conditions (5.4.5)
(5.4.6).

Proposition 5.5.3. If w is a particular solution of (5.2.4) with end point
p €U, the condition (5.4.5) is satisfied if and only if the problem

(5.5.10) Piu=0, u(0)=0, lim u(z) =0

z— 400

has no nontrivial solution.
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The condition (5.4.6) is satisfied if and only if for all ug € RY, the
problem

(5.5.11) Pi=0, u(0)=ug
has a bounded solution.

Proof. For all (p,a) close to (p,a), ®(- + 2,p,a) is a solution of (5.2.2).
Differentiating the equation in (p, a) implies that for all (p,a) € RY xE_(p),
O'(- + z,p,a) is a solution of the homogeneous linearized equation. Next,
Proposition 5.3.5 implies that

(5.5.12) lim @/(z,p, a)=p

zZ—00

and the convergence holds at an exponential rate. Moreover,
aVq,®(0,p,a) =a.

Therefore, the mapping (p,a) — ®'(- + z,p,a) from RY x E_(p) into the
space S of bounded solutions of the homogeneous equation, is injective.
Since both space have dimension N + N_, the mapping is an isomorphism
and therefore

(5.5.13) S={¥(+zpa): (pa) e RN xE_(p)}.

By (5.5.12), the function u(z) = ®'(z 4 z,p,a) in S tends to zero at infinity
if and only if p = 0. Therefore, the dimension of the space of solutions of
(5.5.10) is equal to the dimension of the space {a : aV,®(z,p,a) = 0}. It
is equal to zero if and only if V,®(z, p,a) has maximal rank N_.

Similarly, V,, ,®(z, p, a) has maximal rank N, if and only if the mapping
u — u(0) from S to RV is onto. O

Definition 5.5.4. We say that the the profile w solution of (5.2.4) is transver-
sal if and only if the conditions (5.4.5), (5.4.6), or their equivalent formula-
tions given in Proposition 5.5.3, are satisfied.

In analogy with the previous subsection, let C denote the space of p such
that there is a solution u of Pu = 0 with u(z) — p as z — +o0.

Proposition 5.5.5. Suppose that w is a transversal solution of (5.2.4).
Then dimC = N_ and C is the tangent space to C at p, where C denotes the
local manifold constructed in Proposition 5.4.3.
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Proof. Recall from the proof of Proposition 5.4.3 that there are coordinates
(p—,py) € RN= xRN+ for p such that the manifold C is defined by p = 7(p_).
Moreover, the manifold of solutions (p,a) of ®(z,p,a) = 0 is given by p =
m(p—) and a = a(p_). Therefore, the tangent space to C at p is determined
by the differentiated equation pV,®(z,p,a) + aVa®(z,p,a) = 0, which by
the transversality assumption determines p = 7'(p )p_ and @ = o/(p )p_.

By (5.5.13), this corresponds to end points p of solutions in u € S such that
u(0) = 0. O

We now consider the inhomogeneous equation (5.5.2).

Proposition 5.5.6. Suppose that w is a transversal solution of (5.2.4) and
f € e %L>®, with 6 > 0 small enough. Then the equation (5.5.2) has
solutions in e 2?2,

Furthermore, for all ug € RN, the equation (5.5.2) has bounded solutions
u such that u(0) = ug, u has a limit p at infinity, and u—p € e *W>> for
some ¢ > 0.

Proof. Consider F = (0, f) and Fy = *(f1,91) = W~F. A solution of
(5.5.9) is
() = [ IS (g (s)ds — [ eI (g (51,
() == [ () + Ale)ds.
Thanks to the exponential estimates (5.3.6), for 0 < 6, one has
12U | poe + [[€20.Un| o < Clle” F o=

Thus the solution U = WU, of (5.2.4) satisfies similar estimates. This
provides us with an exponentially decaying solution u of (5.5.2).

To prove the second part of the proposition, it is sufficient to find a
bounded solution @ of Pi = 0 such that 4(0) = up — u(0). By Proposition
5.5.3, the transversality conditions imply that this problem is solvable. The
analysis before Lemma 5.5.2 shows that 4 has a limit p at infinity and that
1 — p is exponentially decaying. O
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Chapter 6

Plane wave stability

In this chapter we analyze the plane wave stability of profiles w(z). We
start with general remarks about plane wave stability, deriving necessary
conditions for energy estimates. These conditions are expressed in terms of
a Lopatinski determinant in the constant coefficient case, and of an Evans
function when the coefficients depend on the normal variable. We refer to
the introduction for references concerning these notions. A key point in
this Chapter is the theorem of F.Rousset ([Rol]) asserting that the uniform
FEvans condition implies that the limiting hyperbolic boundary value problem
satisfies the uniform Lopatinski condition (see also [ZS] for viscous shocks).

6.1 Statement of the problem
Consider a C*° profile w on R and an end state p such that for all £k € N
(6.1.1) 95 (w(z) - p)] = O(™)

for some 6 > 0. It can be (and it will be in applications) a solution of (5.1.2),
but we do not use this property here. In this Chapter, we always suppose
that the equation (5.1.2) satisfies Assumption 5.1.1 of Chapter five and that
p € U. The linearized equations of (5.1.2) (5.1.3) around w(z/e) read

7,k77,

d d

1

atu+EIA§-6ju—glkg 1_Bﬁ a2ku+gEﬂu:f, x>0,
J= JR=

(6.1.2)

u\x:O =0.
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with
Agv = Zjv —(v- Vuéjvd)azw — (0w - Vuédd)v,
p
(6.13) B%, = By,
Efy = (v- vuﬁd)azw —(v- Vuéd,d . v)a?w — Viédd(v, 0, w)0,w ,
where A denotes the function A(u) evaluated at u = w(z/¢)). Note that
all the coefficients Ag-, Bg i and E* are C™ functions of z = z /€. Moreover,

they converge with an exponential rate when 2 tends to +co. The limits are
denoted by A%°, B2, and E*. They are given by

(6.1.4) A7 = Aj(p), Bjy = Bjklp), E*=0.

There are C and § > 0, such that for all indices j and k:
(6.1.5) | AL (2) — A% +|BE (2) — A°| + |[E*(2)] < Ce .

In this chapter we investigate the uniform (with respect to ¢) well posedness
of (6.1.2). Typically, we look for uniform a priori estimates for (6.1.2).

We also have to study the stability of the limiting hyperbolic problem.
In this case, the unperturbed solution is the constant p, and the linearized
operator reads

d
(6.1.6) Opu + ;Aj<p)aju =f,

Mu|$:0 =9,

where Mp = 0 is an equation of the tangent space C at p of the manifold C,
see Proposition 5.5.5. .

To avoid repetitions, we consider the general setting

(6.1.7) { dru+ G (22,0, 0 )u=f, fora >0,

Tu=g, forxz=0,

where G° is a differential operator in (9y,0;) with coefficients depending
only on z = x/e and the boundary operator I' is constant.
We have two examples in mind: first, the hyperbolic case

(6.1.8) G=Y A;(p)9;,



and second, the hyperbolic-parabolic case

d d
(6.1.9) G=> A2)0 —= > B (2)0;0.
j=1

J,k=1

Performing a Laplace-Fourier transform in (¢,y), or applying the equa-
tions to the plane waves

(6.1.10) u(t,y, z) = eTTEEMYG (),

the equation (6.1.7) becomes

. l : . ) U = A, f >0,
(6.1.11) { (o7 + Y)U + G (z/e,in, 8p)0 = f, forxz >0
g

I'n=g, forxz=0,

This is a first order system of ordinary differential equations in x, depending
on the parameters ¢ = (7,7,7). The main goal of the chapter is to link the
well posedness of (6.1.7) to the well posedness of (6.1.11) and next to give
“explicit” criteria for the later problem. In the constant coefficient case, i.e.
when G is independent of z, the stability condition is naturally expressed in
terms of a Lopatinski determinant. In the variable coefficient case, assuming
that the coefficients converge at an exponential rate when z — 400, the
Lopatinski determinant is replaced by an Evans function.

6.2 Necessary conditions

6.2.1 General discussion

Definition 6.2.1. We say that the equation (6.1.7) is uniformly stable if,
for T > 0, there is a constant C' such that for all ¢ €]0,1] and all u €
H>(] — 00, T] % Ri) vanishing for t < 0, there holds

el 20,77ty Hlleta=ol| 220,y
(6.2.1)
< C(HfHLz([o,T]XR}:rd) + HgHL?([O,T}deﬂ)) )

with f = O+ G*(x/e,0y, Oz )u and g = Tuj,—.

We denote by ¢ the frequency variables (7,7,7) and by 8¢ the set of
solutions in H of the equation

(6.2.2) (i + 7)o + G*(x/e,in,02)p = 0.
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Proposition 6.2.2. If the equation (6.1.7) is uniformly stable, then there
are constants ¢ > 0 and C such that for all ¢ € R4 with v > ¢, and all
e €]0,1], the solutions ¢ of (6.2.2) satisfy

(6.2.3) [9(0)| < CIT'p(0)].

Proof. Introduce x € C*°(R) such that x(t) =0 for t < 0 and x(¢t) = 1 for
t > T/2. Suppose that ¢ € S, and introduce

Ot y,z) = TG u(t,y,x) = x(D)e W o(t y, x).
Then v € H* and vanishes for t < 0. There holds
(0 + G = ¢ (Axe M 4 x[G, e~ 1)).
Therefore
[l 20,7y xre ) = 00~ D2 L2l x| 2 o)
1(8: + G)ull 2 =cod 7216l 2l Dex | p2po, 1)
+ 67 D20 (Vo) 8l 2 e x| L2 o,1)

In addition, [le x|l L2(0,7) > c1737/% and 17 Dexl L2 (j0,1) < coe?T/2. Hence,
there is -y such that for v > 79, one has

1
€™ 0exl 2 o1y < 75 1l€™ Xl 2207y

where C' is the constant in (6.2.1). Note that vy depends only on the choice
of x and C. This implies that for § small enough (depending on ¢), there
holds

1
100 + G*)ullzz < 5= llullzz o) -
Thus, (6.2.1) implies that for v > =y and ¢ small, there holds

[wje=oll L2 < CllTujg—oll 2 -

We have
Fmollz2 = 08~ @D216(0)] 2 €7 X 2oz
Tl 22 = o6~ D2 Th(0)| 22 [l € x| L2 jo.77) -
This implies (6.2.3). O
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6.2.2 The hyperbolic case: the Lopatinski Determinant

In the hyperbolic case (6.1.8), the equation and the space S¢ are independent
of €. The equation (6.2.2) reads

d—1
(6.2.4) 0.0+ A7 (p) <(i7’ +)Id + Zz‘njAj(p))cb = 0z¢ — H(()p = 0.

J=1

We use here that the boundary is non characteristic for p € U, i.e. that Ay(p)
is invertible. We introduce the sign minus in front of H to be coherent
with notations used in the sequel. Moreover, p = i€ is an eigenvalue of
H(() if and only if 7 — iy is an eigenvalue of ) n;A; + {A4. Therefore,
the hyperbolicity assumption (H2) implies that for v # 0, the matrix H(()
has no eigenvalue on the imaginary axis. Thus, for v > 0, the space of
L? or H* solutions of (6.2.4) is the space of functions e*#(©)¢(0) with
$(0) € E_(H(C)), the invariant space generated by generalized eigenvectors
associated to eigenvalues in {Rep < 0}. By homogeneity, E_(H (X()) =
E_(H(¢)) for A > 0, and the condition (6.2.3) is equivalent to

(6.2.5) V¢ e 8 withy >0, VoeE_(H(C)) : |4 <C|l¢l.
where S% = {¢ € R . |¢| = 1}. In particular, for all v > 0:
(6.2.6) kerTNE_(H(¢)) = {0}.

For a given (, the geometric property (6.2.6) implies the estimate in (6.2.5)
with a constant C¢ depending on (. The point in (6.2.5) is that one can
choose a uniform constant C. By homogeneity, one can always restrict
attention to ¢ in the unit sphere.

Lemma 6.2.3. For vy >0, dimE_(H({)) = N4.

Proof. The Assumption (H2) implies that for v # 0, H(¢) has no eigenvalues
on the pure imaginary axis. Thus the dimension of E_(H(()) is constant
for v > 0. Taking 7 = 0 and n = 0, we see that this dimension is equal to
N, the number of positive eigenvalues of Ay(p). O

Suppose that we have
(6.2.7) dimkerI' = N_ =N — N,.
Then, the condition (6.2.6) can be expressed using the determinant

(6.2.8) D(¢) = det(E_(H(C)), ker T)
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where det(E, F') denotes the determinant formed by taking orthonormal
bases in E end F, when E and F are subspaces of C” with dim £ +dim F =
D. This determinant is independent of the choice of the bases. It vanishes
if and only if £ N F # {0}. It measures the angle between the two spaces:

Lemma 6.2.4. Consider E C CP with dim E = D, and a D, x D matriz
I' such that dim E 4+ dimkerI' = D. If

(6.2.9) |det(E,kerT")| > ¢ >0,
then
(6.2.10) Vee E : le| < C|le|

with C = ¢~ HI™*(Ty*) Y.

Conversely, if (6.2.10) holds, then (6.2.9) is satisfied with ¢ = (C|T|)~P+.
Proof. Consider the orthogonal projection 7 on F := (kerT')*. Diagonaliz-
ing the hermitian form (me,7e) on E, one obtains orthonormal bases {e;}

and {f;} on E and F respectively such that me; = A\ f; with 0 < X; < 1. In
this case,

det(ker T, E) = det(F*, E) = det(e;, fr) = [ [ As-

If this determinant is larger than or equal to ¢, since A\ < 1 for all k, then
min \; > ¢ and
cle| < |me| < [T (Ty*) 7| Te]
since 7 = I'*(Iy*) 71T,
Conversely, if (6.2.10) is satisfied, then
le] < CIT el

since I'e = I'me. Therefore, \;C|I'| > 1 for all j and the determinant is at
least equal to (C|T'|)~P+. O

Definition 6.2.5. The function D is called the Lopatinski determinant of
the hyperbolic boundary value problem.
The uniform Lopatinski condition holds if and only if

(6.2.11) V¢ e 8 withy >0 :  |D(C)| > c.
Proposition 6.2.2 and Lemma 6.2.4 imply:

Proposition 6.2.6. In the hyperbolic case and assuming (6.2.7), if the prob-

lem (6.1.7) is uniformly stable then the uniform Loptinski condition is sat-
isfied.
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The definition of the determinant depends on the choice of a scalar prod-
uct on CV. The uniform Lopatinski condition does not depend on this
choice. In particular, we note for future use the following result.

Lemma 6.2.7. Suppose that W is an invertible D x D matrixz. Then there
is a constant C such that for all subspaces E and F of CP such that dim E +
dim F' = D there holds

%det(E,F) < det(WE,WF) < Cdet(E, F).

Proof. Consider orthonormal bases {e;} and {f} in £ and F' which is also
orthogonal for the scalar product (Wh, Wh'). Then, é; = ojWe; and fr =
BeW fi. are orthonormal bases of W E and W F respectively if a; = [We;|~*
and G = |Wfk’_1. Then

det(WE,WF) = [ a; [ ] Be det(We;, W f)
= [ o [[ Bedet W det(E, F).

Since

W[t < aj, B < WY

the lemma follows. O

There are equivalent formulations of the uniform Lopatinski condition.
For instance, one can show

Lemma 6.2.8. Under Assumption (H2), for allp € U, the spaces E_(H(())
defined for v > 0 have a continous extension IE_(C) to the set Sﬁlr of ¢ =
(7,m,7) in the unit sphere S¢ with v > 0.

In particular, the Lopatinski determinant has a continuous extension D
to Sjir.

By homogeneity, continuity and compactness this implies:

Proposition 6.2.9. The uniform Lopatinski condition condition (6.2.5) is
equivalent to

(6.2.12) V¢ e S withy >0 : kerI'NE_(¢) = {0}.
It holds if and only if

(6.2.13) V¢ e S withy >0 : D(C)#0.
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6.3 Evans functions

In the hyperbolic-parabolic case, the analysis is similar but not identical.

6.3.1 Reduction to first order and rescaling

The equation (6.1.11) reads

~

1
(6.3.1) %+ A(g,ao(%ﬁ + EM(g,ac)a — f, o =0,
with

d—1
Ale,Q) = (Bhg) (45 = Y imy (B, + B,)
=1

d—1 d—1
M(z,0) = (Bl )7 (Gr +7) + Y im Al + > mym B, + BF).
j=1 k=1

where the coefficients Ag-, Bg . and EF are functions of z defined at (6.1.3).

Write (6.3.1) as a first order system for U = ( Y A)
£0,1

N 1 N N
(6.3.2) &U:gﬂ§¢QU+F,IWW£:mFO:U

g(z,o:(/& fjl)

It is convenient to eliminate the € in (6.3.2) by setting

where

(6.3.3) U(z) =Ulez), F(z)=cF(ez), (=¢C.
Then, (6.3.2) is transformed into
(6.3.4) 0.U=G(zOU+F, TU(O0)=0.

We recall from (6.1.5) that G(z,() converge at an exponential rate at
infinity: with obvious notations, for ¢ in any compact set, there holds

(6.3.5) 1G(2,¢) — G (¢)| < Ce™**

To take care of large frequencies, we have to take into account the
parabolic homogeneity: We note that A is first order in n and M is first
order in (7,7) and second order in 7. This leads to introduce the weight:

1

(6.3.6) () = <T2 A2 4 \77|4)Z ‘
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6.3.2 Spectral analysis of the symbol

Lemma 6.3.1. i) There are ¢ > 0 and p1 > 0 such that for || > p1
with v > 0, and z € [0,00], G(z,() has N eigenvalues, counted with their
multiplicities, in Reu > 0 and N eigenvalues in Rep < 0. They satisfy
[Re | > ¢(C).

ii) When ¢ # 0 and v > 0, G®({) has N eigenvalues, counted with
their multiplicities, in Rep > 0 and N eigenvalues in Re pu < 0.

iit) When ¢ = 0, G*°(0) has 0 as a semi-simple eigenvalue, of multi-
plicity N. The nonvanishing eigenvalues are those of Gq(p) = (Baa(p)) tAa(p).

Proof. a) When ( is large, we use the quasi-homogeneity to write

M= ()*M+0({), A=(QA+0(1),

where
d—1
M = (Bgvd) 1<(zr+7)ld+ > B k)
(6.3.7) e
X d—1
A=—i)y (B (Big+ By
k=1
with
Fo= @:L7 ﬁ:l.
(€)? (€)? (€
Thus (©)1d (©)11d
OId 0 “ld 00
( 01 )g( 0 Id ) = ()G +0(1)
with

Tracing back the definitions, f is an eigenvalue G if and only if —(iT+7) is
an eigenvalue of

d
> &&Bjn(w(z2))
Jik=1
with & = —if and (&1,...,&4—1) = 7. If i belongs to imaginary axis, &4
is real and by (H1) one must have 4 < —c|¢]?. For 4 > 0, this implies

that £ = 0, and therefore that 7 — iy = 0, which contradicts that ({) = 1.
Thus G has no eigenvalues on the imaginary axis. Therefore, the number of
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eigenvalues in Rey > 0 and in Rep < 0 is independent of f when 4 > 0.
Moreover, when 7 =0, 7 =0 and 4 = 1 , G reduces to

< (Bd,d<3<z>>‘1 151 ) '

In this case, the eigenvalues of G are the square roots of the eigenvalues of
B(Zé, and therefore N of them are in Reu > 0 and N in Re u < 0.

By a standard perturbation argument, for (¢) large, the eigenvalues of
G are u = (O)u+ O(1), where fi is an eigenvalue of G, and i) of the lemma
follows.

b) Similarly, tracing back the definitions and using (6.1.4), p is an
eigenvalue of G*°(() if and only if —7 + i~y is an eigenvalue of

d d
> _niAi(p) =i Y &&Bink(p)
j=1 jik=1

with & = —ip and (&1,...,64-1) = 1. Since p € U, (H3) implies that if
Re = 0 then ¢ is real and v < —c(|u|? + |n]?). For v > 0, this implies that
v =0, x =0 and n = 0. Thus the matrix above vanishes, the eigenvalue —7
must be zero and therefore, ( = 0. This shows that G* has no eigenvalues
on the imaginary axis when ¢ # 0 and v > 0.

The number of eigenvalues in Rep > 0 and in Re u < 0 is independent
of (p,¢) when ¢ # 0 and v > 0. Letting z tend to oo, ¢) implies that for ¢
large, N eigenvalues lie on each half plane.

c¢) When ¢ = 0, one has

0= (0 aip )

By Lemma 5.1.3, GG is invertible when p € Y. Thus the eigenvalues of G
are zero with multiplicity IV, and the eigenvalues of B;CIZAd. O

6.3.3 Conjugation to constant coefficients

Lemma 6.3.2. For all ¢ € R with v = 0, there is a neighborhood w of ¢
and there is a matriz VW defined and C™ on [0, co[xw such that
i) WL is uniformly bounded and there is 0 > 0 such that

(6.3.8) W(z,¢) —1d| < Ce
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ii) W satisfies
(6.3.9) W (z,¢) = G(2,OW(z,¢) = W(z,()G%(() -
Proof. This is a parameter dependent version of Lemma 5.5.1. O
The substitution U = WU, transforms the equation (6.3.4) into
(6.3.10) 9.Ur =G*(Q)U1+ F1, T1(Q)U1(0) =0
with F; = W~LF and
(6.3.11) I'v(¢) =TW(0,¢).

We have won that (6.3.10) has constant coefficients, but the boundary con-
dition now depends on the frequency (.
We introduce the following notations.

Definition 6.3.3. We denote by E_(¢) [resp. F_({)] the space of initial
data U(0) [resp. Uy(0)] such that the corresponding solution of 0,U =
G(z,Q)U [resp. 0.U1 = G*®(C)U1] is bounded as z tends to infinity.

Since the two equations are conjugated by W, the two spaces are related
and:

(6.3.12) E_(¢) = W(0,0)F-(¢) -

Corollary 6.3.4. E_({) and F_({) have dimension N and vary smoothly
with ¢ when ¢ # 0 and v > 0.

Proof. Since F_ is the spectral subspace for G associated to eigenvalues
lying in Re pu < 0, it has dimension N by Lemma 6.3.1 and varies smoothly
with ¢ when ¢ # 0. O

6.3.4 Stability conditions

According to the general discussion of section 6.2, necessary stability condi-
tions are that there hold estimates

(6.3.13) YUEE_(¢) : |U|l<CTU,

In order to measure the angle between the spaces E_ and kerI', which
are subspaces of dimension N in a space of dimension 2N, we form the
determinant

(6.3.14) D(¢) = det (E_(C), kerT)
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obtained by taking orthonormal bases in each space. The result is inde-
pendent of the choice of the bases. This is the Evans’ function (see [Zum],
[Ser]). D vanishes if and only if E_ NkerT is not reduced to {0}.

To deal properly with the high frequencies, some appropriate scaling is
required to recover the maximal parabolic estimates. With

(6.3.15) MO = (1472497 +[n*)

introduce the space E_(¢) = JyE_(¢) where Jy is the mapping (u,v) —
(u, A=) in CN x CV and the “scaled” Evans’ function

(6.3.16) D(¢) = det (E_(¢), kerT)..

Note that ker I' is invariant by Jj so that D vanishes if and only if l;j vanishes.
Moreover, for bounded values of , there is C' such that &|D| < |D| < C|D|,
since, in the computation of the Evans’ functions, the introduction of Jy
only amounts to a change of scalar product in C2V.

The weak stability condition requires that D # 0 for { # 0 with v > 0.
The strong or uniform reads

Definition 6.3.5 (Uniform Evans’ condition). We say that the lin-
earized problem (6.1.2) satisfies the Uniform FEvans condition, if there is a
constant ¢ > 0 such that for all for all ¢ = (1,7v,m) # 0 with v >0

(6.3.17) ID(Q)] > ¢

For a fixed (, the condition 5(@“) # 0 is equivalent to the condition
D(¢) # 0. It holds if and only if

(6.3.18) E_({)NkerI'={0} or E_(¢)NkerI"={0}.

Other equivalent conditions are: there are constants C; or Cé such that
YUEE_((): |UISCTU| or YU€EE_(C): |U|<CHIU|

The uniform condition (6.3.17) is equivalent to the fact that one can choose
a uniform constant C’é independent of (. Lemma 6.2.4 implies:

Lemma 6.3.6. The uniform Evans’ condition holds if and only if there is
a constant C > 0 such that that for all for all { = (7,7,n) # 0 with v > 0,
there holds

(6.3.19) VU eE_(¢) : |U|<CTU|.
Using the definition of E_, (6.3.19) can be written
(6.3.20) V(u,v) e E_(C) :  |v] < CA(C)|u].
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6.4 Low frequency analysis of the Evans condition
Consider a profile w solution of (5.2.2) such that

w(0)=0 and lim w(z)=pel.
Z2—+00
On one hand, we consider the linearized equation (6.1.2) around w. On
the other hand, when the profile w is transversal in the sense of Definition
5.5.4, one can define a smooth manifold C near p and consider the linearized
hyperbolic equation (6.1.6) at p where the boundary operator M is such
that Mu = 0 is an equation of the tangent space T),C.

Theorem 6.4.1. The uniform Evans condition (6.3.17) is satisfied on 0 <
IC| < po for some py > 0, if and only if the profile w is transversal and the
hyperbolic boundary value problem (6.1.6) satisfies the uniform Lopatinski
condition.

6.4.1 Detailed spectral analysis of G*

By Lemma 6.3.2 there is W(z, ¢) defined for ¢ in a neighborhood wy of 0 in
R+ such that (6.3.8) and (6.3.9) are satisfied on wp.

Lemma 6.4.2. There is a C™ invertible matriz V(¢) defined on a neigh-
borhood wy of 0 such that V~'G®V has the block diagonal form

e voreeve = (Y L ) = e

with H(0) = 0, P(0) = G4(p)(Ba,a(p)) ' Aa(p) and

The eigenvalues of P satisfy |Re u| > ¢ for some ¢ > 0 and
d—1

643) 1 =—(Ap) (G + A+ D iniAip) + O(C).
j=1

A crucial remark is that the principal term in the right hand side of
(6.4.3) is the symbol of the hyperbolic operator appearing in (6.2.4).
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Proof. By Lemma 5.1.3, G4(p) is invertible. Lemma 6.3.1 implies that, on
a small neighborhood wy of the origin, there is a smooth family of matrices
V such that (6.4.1) and (6.4.2) hold. Moreover, the eigenvalues of P(0) =
G4(p) do not belong to the imaginary axis, and this remains true for P((),
¢ close to 0.

Next, note that

G — ( 0 Id )
M +O(|nl*)  Ga+ O(|nl)
with
d—1

M = (Bua(p))™ (i + 7)1+ in Ay (p)

Writing V(¢) = V(0) + O(|¢|), one obtains that the left upper block of
V7G>V is H = —G;'M$° + 0(|¢[?), implying (6.4.3). O

The lemma immediately implies that the negative space F_(¢) = E_(G*(())
is

(6.4.4) F_(¢) = V(O (E-(H(¢)) x E_(P(())) -

In particular, for ¢ # 0 with v > 0, the bounded solutions of the homoge-
neous equation 0,U = GU are

(6.4.5) U(z) = W(z, OV(C) (e Oug, e Oup)

with ug € F7(¢) :=E_(H(¢)), up € FE(¢) := E_(P(¢)).

Because P(0) has no eigenvalues on the imaginary axis, the spaces F¥ ()
depend smoothly on ¢ € wy and their value at ¢ = 0 are F£(0) = E4(G4(p)).
Thus dimF”(¢) = N_. For ¢ > 0 and y > 0, the space F_(() is well defined
and dimF_(¢) = N by Lemma 6.3.1. Thus F(¢) depends smoothly on ¢
for ¢ > 0 with v > 0 and

(6.4.6) dimFZ(¢) = Ny for ¢ > 0 with v > 0.

6.4.2 Proof of Theorem 6.4.1, necessary conditions

Introduce

(6.4.7) I5(¢) = TW(0,O)V(() -
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Since W and V are smooth, we deduce from Lemma 6.2.7 that there is a
constant C' such that for all ( € wg, with ¢ # 0 and v > 0, there holds

(6.45) ZD(Q) < Da(¢) < CD(Q)
with
(6.4.9) Do(¢) = det (Flj (€) x FP(¢), ker FQ(C)) .

Moreover, the uniform Evans condition (6.3.17) is satisfied on a neighbor-
hood of the origin, if and only if there is a constant C such that for all ¢
small with ¢ # 0 and v > 0, there holds

(6.4.10) Y(um,up) € F(Q) x FX(¢) + |um|+ Jup| < C|T2(C) (up, up)|.

Proposition 6.4.3. If the uniform Evans condition (6.3.17) is satisfied for
¢ small, then the profile w(z) is transversal.

Proof. The linearized equation (6.3.4) at ¢ = 0 is exactly the linearized pro-
file equation (5.5.4) considered in Chapter five. In particular, the bounded
solutions of the homogeneous equation are

(6.4.11) U(z) = W(z,00(0)(g, e*"Ov)

with v € FZ(0) = E_(Gy) and ¢ arbitrary. The Dirichlet condition TU(0) =
0 corresponds to I'2(0)(g,v) = 0.
Applying (6.4.10) with ug = 0, implies that for all v € FZ(():

v < CT2(¢)(0, v)]-

Since FZ(¢) is smooth in ¢, this extends to ¢ = 0. Thus v = 0if I'2(0)(0,v) =
0 and v € E_(G4) proving that the equation (5.5.10) has no nontrivial
solution.

If the uniform Evans condition holds, for { # 0 small with v > 0, the
mapping I's(¢) from FH(¢) x FP(¢) to CV is an isomorphism. Thus, for
all h € CV there is a solution U(¢) € FZ(¢) x FE(¢) of T'o(Q)U(C) = h.
By (6.4.10), the U({) are bounded, and extracting a subsequence, we can
assume that U(() converges to U = (q,v) as ( — 0 with v > 0. By con-
tinuity of F¥(¢), the limit v belongs to FZ(0) = E_(Gy), and (g,v) solves
I'2(0)(¢,v) = h. This shows that the mapping I'2(0) from CV x E_(Dy)
to CV is surjective, hence that the problem (5.5.11) has always a bounded
solution. By Proposition 5.5.3, this implies that the profile w is transver-
sal. O
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Suppose that the profile w is transversal. By Proposition 5.5.5 and the
representation (6.4.11) of bounded solutions, the tangent space C to C at p
is

C:= W(kerfg(()) N ((CN X E,(Gd))>

where 7 is the mapping

T (q,v) —q.
The transversality hypothesis implies that dimC = N_ and there is a map-
ping K from C to E_(G4) such that

ker I'y(0) N ((CN xE_(Gq)) = {(p,Kp); ¢ € C}

By continuity, this extends to a neighborhood of the origin where the space
m(K(¢)) with
K(¢) = ker '2(¢) N (CY x FE(¢))

has dimension N_ and there is a mapping K (¢) from (K (¢)) to F(¢) such
that

(6.4.12) K(¢) = {(¢, K(Q)¢); ¢ € m(K(C))} -

Consider next the space E, (G4). Then CV = E_(Gy) @ E(Gyq). Con-
sider the mapping
@ 1 (q,v- + vq) vy

from kerI'5(0) C CV x CV to E4(Gq). The kernel is kerI'2(0) N (CV x
E_(Gg4)) and thus has dimension N_. Thus the range has dimension N —
N_ = dimE, (Gy), proving that w is surjective. Therefore, there is map
K' from E_(Gg) to kerI's(0) such that wK’ = Id. The N4 dimensional
space K'(0) = K'E_(Gy) satisfies kerI'2(0) = K(0) @ K'(0). By continuity,
this extends to a neighborhood of the origin where there is a mapping K'(¢)
from E_(Gg) to kerI'y(¢) such that wK’ = Id and ker I';(¢) = K(¢) @ K'(()
where K'(¢) := K'(Q)E_(Gyq).
Taking bases {ef'}, {e}’}, {¢1, K1)} and { K¢, 1hm)} in FY, FX K and

K’ respectively, we see that the determinant Ds(() is, up to a permutation
of columns, equal to

e]H Pl 0 Kiwm

0 K(,O[ ekp Kéwm

where we have written K’y = (K{, Ki) € CN x CV. Since the Ky
belong to the space generated by the ekP , we can eliminate these terms
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in the determinant. Moreover, since wk’ = Id on E;(G4) and CV =
E_(Gq) @ EL(Gy), the determinant

det (ekP, Kéwm)
does not vanish on a neighborhood of zero. Summing up, we have proved:

Proposition 6.4.4. When the profile w is transversal, there is a neighbor-
hood wq of the origin in R such that the Evans determinant satisfies

(6.4.13) D(¢) = B(C) det (FZ(¢), 7K(()) -
where (3 is a non vanishing smooth function on a neighborhood of the origin.

Since H(0) = 0 the analysis of F(¢) is more delicate. We use polar
coordinates:

(6.4.14) C=pE=p(r5i), with p=Ic|, |¢]=1.
Then, (6.4.3) implies that
(6.4.15) H(¢) = H(p¢) = pH(C, p)

where H is a smooth function of (¢, p) € R*! x R for |{| < 2 and |p| < po
for some pg > 0. In addition:

d—1

(6.4.16) H(C,0) = —(Aa(p) 7 (7 + I+ Y i1 A;(p)) -
j=1

In particular, the negative space of H(¢) is the negative space of H(C, p)
which we denote by F_((, p):

(6.4.17) F?(¢) =F((,p), when ¢ =pC.

By (6.4.6) this N, dimensional space is well defined for p > 0 small enough
and |¢| = 1 with ¥ > 0.

Denote by S¢ the unit sphere {¢;|(| = 1}, by Si the half sphere {¥ > 0}
and by gi the closed half sphere ¥ > 0.

Lemma 6.4.5. The N dimensional vector bundle IF'(QI, p) extends smoothly
to S¢ x {0}.
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Proof. When p = 0, (6.4.16) and the hyperbolicity Assumption (H2) imply
that H((,0) has no eigenvalues on the imaginary axis when 4 > 0. There-
fore, the negative space of H((,0) depends smoothly on ¢ for ¢ € Sd

For a fixed C e 54 ¢, by continuity H (C p) has no eigenvalues on the imag-

inary axis for ({, p) in a small neighborhood of (g ,0) when 4 > 0. Therefore
the negative space F((, p) is smooth for (¢, p) in a small neighborhood of

(¢,0)- O
Remark 6.4.6. Consider the hyperbolic boundary value problem (6.1.6).
By definition ker M = C = 7(K(0)) with the notations above. Therefore,

the Lopatinski determinant of this problem is:

(6.4.18) D(¢) = det (F(¢,0), 7(K(0))) .

Proposition 6.4.7. If the system (6.1.2) satisfies the uniform Evans condi-
tion (6.3.17) for small (, then the hyperbolic boundary value problem (6.1.6)
satisfies the uniform Lopatinski condition.

Proof. Using Propositions 6.4.3 and 6.4.4, the assumption implies that
(6.4.19) | det (F(C, p), m(K(pC)))| = ¢ >0

for all ¢ € gi and p > 0 small enough.

The 7(K(¢) form a smooth N_ dimensional bundle; by Lemma 6.4.5,
the F(, p) are smooth up to p = 0 when § > 0. Hence, the determinant
above is smooth in (é, p), up to p =0 when 5 > 0. Therefore, the estimate
implies that

| det (F(¢,0), 7(K(0)))| > ¢>0

for all { € S9. O

6.4.3 Proof of Theorem 6.4.1, sufficient conditions

To prove the converse of Proposition 6.4.7, the idea is to prove that the
determinant in (6.4.19) extends continuously to p = 0 for ¢ in the compact

set gi. This follows from the next result which is much stronger than
Lemma 6.4.5.

Theorem 6.4.8. Under the Assumptions 5.1.1, the N1 dimensional vector
bundle F(C, p) extends continuously to the ?i x {0}.

The proof of this theorem is postponed to the next Chapter, where we
show that it is a consequence of the construction of symmetrizers, see [MZ2].
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End of the proof of Theorem 6.4.1 If the profile is transversal, then the Evans
function satisfies (6.4.13) for small values of p = |¢|. By Theorem 6.4.8, the
determinant

det (F(¢, p), m(K(p()))

is continuous for (¢, p) € gi x [0, po] for some py > 0. The uniform Lopatin-
ski condition states that this determinant is uniformly bounded from below

for p =0 and ¢ € Sf‘ﬁ. Thus the extension does not vanish for { € §i
and p = 0, and by compactness and continuity, it does not vanish for
x —d

(¢,p) € S; x [0, p1] for some p; > 0.
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Chapter 7

Stability estimates

In this chapter we prove that the uniform Evans condition of Definition 6.3.5
implies uniform estimates for the solutions of (6.1.2). Moreover, these esti-
mates are optimal from the point of view of parabolic smoothness. The proof
relies on the use of symmetrizers, which are constructed as Fourier multi-
pliers. A corollary of the construction of symmetrizers, is the continuous
extendability of the spectral spaces E_ stated in Lemma 6.2.8 and Theorem
6.4.8 (see [MZ2]). In this chapter, we always suppose that Assumption 5.1.1
are satisfied and consider the linearized equations (6.1.2) around a profile w
which satisfies (6.1.1).

7.1 The estimates

They involve weighted norms. We consider the following weight functions :
with ¢ := (7,7,n), let

1
(’Y +€|C’2)§ when |e¢| <1,
(711) p={ ~ec2 when 1< e <2,
1
% ~(v+|rl+en?)?  when [e¢] >2.

where A is defined at (6.3.15). Note that the three terms above have the
same order when |eC| =~ 1.
Given a weight function ¢ (7,7), we introduce the norm

(112) iy = ([ vl atr, P aran)

150



where @ is the Fourier transform of u(t,y) defined on RY. When u also
depends on the variable z, we denote by [lul|(,) the norm

1

(7.1.3) Jull gy = (/Omyu(x)@)dx)?.

We use different weight functions, ¢, ¢?, ¢/A etc. In these case, the weights
and the norms depend on the parameters ¢ and ~. For simplicity we do
not reflect this dependence in the notation and write || - ||(,) etc. When the

weight is equal to 1, we obtain the usual L? norms on Rfd and R?, denoted
by || - || and | - | respectively.

Theorem 7.1.1. Under the stability Assumption 6.3.5, there is a constant

C such that for all uw and f in Cgo(]Rf—d) satisfying (6.1.2), for all v > 0
and all € €]0,1], one has

(7.1.4) ||e_7tu\|(¢2)—I—\@He_"’tazuﬂ((p)+€‘6_7t8xu‘$:0‘(¢/m) < Clle .
We first state a simplified version of the estimates:

Corollary 7.1.2. Under the stability Assumption 6.3.5, there is C' such that
for all € €]0,1], all v > 0 and all test functions u, f satisfying (6.1.2), one
has

(7.15)  ylle™ull + vEYlle " Vypull + elle ™ Vy Vypull < Cle™ S|

To simplify notations, we write below a(e, (,u, f) < b(e, (, u, f), to mean
that there is a constant C' such that for all € €]0, 1], all ¢ with v > 0 and all
uw and f there holds a(e, (,u, f) < Cb(e, (,u, f).

Proof of Corollary 7.1.2. There holds

VI+ Vel S

which by Plancherel’s theorem implies that

lull + vErlloyull + elojull S llullp2y,  vAllull+ Velldyull < llull) -

Thus (7.1.4) implies (7.1.5). 0
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Introducing u. = e "*u, (6.1.2) is equivalent to

d d
D — i 52 Lt =
7j=1 7,k=1
u*|x:0 =0.
with f, = e 7' f. Thus (7.1.4) is equivalent to
1T el + vElaulg) + elOstmol s, S 11

for the solutions of (7.1.6).

Denote by 4 [resp. f] the space-time tangential Fourier transform of u,
[resp. f.], that is the partial Fourier transform with respect to the variables
(t,y). The Fourier transform of (7.1.6) is pecisely the equation (6.3.1).
Therefore, by Plancherel’s theorem, the energy estimates (7.1.7) are implied
by, and indeed equivalent to, the following estimates

(1.18) il 2,y + Verluilagm,) + o/ VRO < Il
for the solutions of (6.3.1). We get rid of the € ’s using the rescaling (6.3.3)

a(z) =(ez), flz)=ef(ez), (=eC.

In this case, the equation (6.3.1) is transformed into

(7.1.9) —0%u+ A(z,0)d. 0+ M(z,Oa=f, @0)=0.
Introduce the weights
(7.1.10)
) (3 +1¢17)> when [¢] <1,
RE) = V() = { ~1 when 1 < |¢] <2,
AQ) = (F+ 17 +1*)?  when |C] > 2,

- Sa o —1/2

£(¢) = h(QA(C)

Therefore, the estimates (7.1.8) and Theorem 7.1.1 are consequences of the
following estimates:

Theorem 7.1.3. Suppose that the uniform Evans condition 6.3.5 is satis-
fied. Then, there is a constant C such that for all ¢ € R4 with 4 > 0 and
for all u and f in C3°(Ry) satisfying (7.1.9), there holds

(T111) Bl ey + ROl 2, + 00:(0)] < C)Fll e,
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As in Chapter six we write the equation as a first order system: (6.3.4)
for U = (@, v) with o = 9,4 and F = (0, f). The estimates to prove are

(7.1.12) B2 il 2y + RlE 2 + E5O)] < ClF ey -

These estimates are proved using symmetrizers.

7.2 The method of symmetrizers

Recall now the essence of the “method of symmetrizers” as it applies to
general boundary value problems

(7.2.1) Opu=G(x)u+ f, Tu(0)=0.

Here, u and f are functions on [0, co[ with values in some Hilbert space H,
and G(x) is a C! family of (possibly unbounded) operators defined on D,
dense subspace of H.

A symmetrizer is a family of C! functions z +— S(x) with values in
the space of operators in H such that there are Cy, A > 0, § > 0 and C;
such that

(7.2.2) Ve, S(x)=S(x)* and |S(x)| <Ch,
(7.2.3) Vz, 2ReS(x)G(z)+ 0,5(z) > 2\Id,
(7.2.4) S(0) > 6Id — C1T*T.

In (7.2.2), the norm of S(z) is the norm in the space of bounded operators
in H. Similarly S(x)* is the adjoint operator of S(z). The notation ReT =
(T + T*) is used in (7.2.3) for the real part of an operator 7. When T
is unbounded, the meaning of ReT > A, is that all u € D belong to the
domain of T" and satisfy

(7.2.5) Re (Tu,u) > Alul®.

The property (7.2.3) has to be understood in this sense.

Lemma 7.2.1. If there is a symmetrizer S, then for all u € C([0, co[; H) N
CY([0, 00; D) with compact support in time, there holds:

CZ
(7.2.6) Allull® + 8lu(0)]* < 7°||f||2 +Ci[Tu(0)[?,

where = 0,u — Gu.
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Here, | - | is the norm in H and || - || the norm in L?([0, co[; H).

Proof. Taking the scalar product of Su with the equation (7.2.1) and inte-
grating over [0, oo, (7.2.2) implies

—(S(0)u(0), u(0)) = / Ou(Su, u)dz
(7.2.7)

= / ((2Re SG + 0, S)u, u)dz + 2Re / (Sf,u)dx.
By (7.2.3), there holds:

/ ((2Re SG + 0,.)u, u)dz > 2 |Ju|? .

By (7.2.4),
(S(0)u(0),u(0)) = 8|u(0)]* — C1[Tu(0)[*.
By (7.2.2)
C8 i 2 2
of [ (7, u)de| < 200071 Jull < SEUFIZ + Mpul?
Thus the identity (7.2.7) implies the energy estimate (7.2.6). O

To prove Theorem 7.1.3, it is sufficient to construct symmetrizers S(z, ()
for G(z,¢). Three different regimes appear in the construction: the high
frequency regime, when |(]| is large, the low frequency regime when |(| is
small, and the intermediate regime when ( is bounded and bounded away
from zero. The three different constructions are developed in the next two
sections.

Remark 7.2.2. In our application below, the operators are matrices and the
Hilbert space H is finite dimensional. However, thinking of the matrices as
Fourier multipliers, our computations apply in the Hilbert space H = L? (]Rd)
of functions of the variables (¢,y). This is the correct approach to generalize
them to variable coefficients operators, where the Fourier multipliers are
replaced by pseudo-differential operators (see [MZ1]).

The construction of the symmetrizers has two parts. First, we construct
families of symmetrizers S, (z, () satisfying (7.2.2) and (7.2.3). This only
uses the structural hyperbolicity-parabolicity Assumptions (5.1.1). Next we
choose & such that the third condition (7.2.4) holds. There we use the sta-
bility condition (6.3.5). We end this section with noticing a general recipe
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linking Evans-Lopatinski conditions to (7.2.4). Consider the following situ-
ation:

Suppose that we are given continuous vector bundles E4(¢) C CP de-
pending on parameters ¢ in some set w C R™ and such that

(7.2.8) CP =E_(¢) 2E+(¢).

Denote by 111 (¢) the projectors associated to this decomposition. Consider
a family of matrices I'(¢) depending continuously on ¢ € w and such that
dimkerI'(¢) + dimE_({) = D.

Proposition 7.2.3. Consider a family S,(C) of symmetric D x D matrices,
with k € Ry and ( € w. Suppose that there is a compact set w C w such
that for all {( € w

(7.2.9) S > RIF Iy — I I .
and
(7.2.10) det (E_(¢), kerT'(¢)) #0.

Then, for k large enough, there are Cy, 6 > 0 and a neighborhood of w in w
such that for ¢ in this neighborhood:

(7.2.11) Sk(C) + CiI(¢)*T'(¢) > ¢o1d.
Proof. By continuity, there is ¢ > 0 such that
| det (E_(¢), ker'(¢))| > ¢

on a neighborhood of w. By Lemma 6.2.4, this implies, that for ¢ in a
possibly smaller neighborhood:

TAJ? < ColTTI P2 < Ch(ITLhJ2 + [ThI?)
with Cp and C) independent of h and ¢. Thus, (7.2.9) implies that
(Seh,h) + C1|Th|? > (k — C))[IL A2 + (C1/ChH — D)|TT_h|*.
If C; > C and k > C1, (7.2.11) holds for some § > 0. O

In most of the applications, E_ and E will be the positive and negative
space of G, but near the so-called glancing modes, the spectral projectors
on positive and negative spaces are not uniformly bounded. In these cases,
E is chosen as a suitable supplementary space of the negative space E_.
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7.3 High frequencies

We first consider the case where ( is large. In this case the parabolic proper-
ties are dominant. As in the proof of Lemma 6.3.1, we introduce “parabolic
polar coordinates at infinity

(73.1) (= (7,1,%) = (A1, A, \%y)  with
3. .

= () = (P22 + Inh5.
and )\ is small. Then

M(z,¢) = (O)*M(2,C,A)  A(2,¢) = (O)A(2,(, M)
with
M(z,C,A) = M(2,0) + AM*(2,{) + A2M?(2,()

(7.3.2) L R N
Az, N) = A(2,0) + AA(2,0)

where the M7 and A7 are smooth and bounded functions of z and é in the
“sphere” §¢ := {{(¢) = 1}. Moreover, the leading terms M and A are given
by (6.3.7). A € [~1,1]. We denote by S¢ the closed half sphere {4 > 0}.
It is convenient to reduce G to first order as in the proof of Lemma 6.3.1,
introducing the change of unknowns

(7.3.3) up = (Q)u, v =wv.
Then, (6.3.4) is transformed into

(7.3.4) .U = X"'Gi(2,C, UL + F, TUL(0) =u1(0) =0,

Gr(2,6,0) = ( /?4 f )

Proposition 7.3.1 (symmetrizers for high frequencies). When the
uniform Evans condition (6.3.17) holds, there are Ay > 0, ¢ > 0, § > 0,
C >0 and a C* self adjoint matriz S on [0, —f—oo[ng‘f_ x [0, Ao] such that

i) S and its derivatives are uniformly bounded and converge with an
exponential rate at z = +00.

ii) A'Re(SG1) + 19.8 > eA~1d.

iii) Sj,— + CT*T > 41d.
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Proof. With (7.3.2), one has G1(z,¢,A) = G1(2,¢) + O()\) with

A 0 Id

G = (M A)
Thus the matrices Gy are uniformly bounded and by (6.3.5) they converge
when z tends to infinity. Moreover, G (z, ¢, A) has the same eigenvalues as
A1G(z,¢). Hence, by Lemma 6.3.1, for (e gi, Ql(z,é,)\) and C;loo(f,)\)
have no purely imaginary eigenvalues. Thus, the spectrum of Ql(z, ﬁ ,A) re-
mains in a compact set which does not intersect the imaginary axis when
4 > 0. Therefore, the spectral _projectors Iy (z, C A) on the N dimensional
invariant spaces Fi( .C, A) of gl( .C, A) associated to eigenvalues with posi-
tive/negative real part are well defined and smooth, bounded as well as their
derivatives, for z > 0, f € gi and A > 0.

Because the eigenvalues of Q1H+ have positive real part there are self-

adjoint matrices 3+ such that

(7.3.5) Re (S:GiIly) > IIGI,,  IIGIL, < Sy < CITLIL, .
For instance we can choose
A OO A* 5
(7.3.6) Sy = / Hie_sgl e 9 I ds.
0

Note that
eI, = / “p—Gr) tdp

where « is a positively oriented circle in the right half plane {Reu > 0}
surrounding the eigenvalues of Gy in this half space. Thus, 6_5G1H+ and its
adjoint Hie‘sgf are exponentially decaying in s. With the choice (7.3.6),
one has Re (84G111,) = I I1;. Moreover, S, < CII* 11 and multiplying
S’Jr by a positive constant we can achieve that & > IV II,. In addition,

we note that the matrices $+(z,é ,A) are smooth functions of z,f and A,
uniformly bounded as well as their derivatives. In particular, (7.3.5) holds
with a constant C independent of z > 0, 6 € S’i and A € [0, 1].

Similarly, there is S_(z, ¢, A), such that

(7.3.7) —Re(S_GiII_)>II*II_, II'I_<S_ <CI*II_.
One construct S as

(7.3.8) S=rS, —S_.
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with k£ > 0 to be chosen large enough. Property i) is clear. Moreover,
SGi = SQ1H+ +SGIII_ = RS+Q1H+ ~S_GII_
hence, there is ¢ > 0 such that for all z > 0, all ¢ € 5%, all X € [0,1] and all
k>1, o
ReSG, > wII 1T +TIT 11 > cld.
Since 0,S is bounded by C(k + 1), this implies property i) provided that A
is smaller than some Aoy > 0, ( possibly depending on k). R

To prove ii1), we use the following result, concerning the spaces F_ (0,(,A) =
ker IT4 (0, ¢, A).

Lemma 7.3.2. Under Assumption 6.3.5, there holds
(7.3.9) F_(0,¢,0) NkerD = {0} .

Taking this lemma for granted, we finish the proof of Lemma 7.3.1. For
(e Sf‘ﬁ there holds

(CZN =F_ (07 éu 0) D F-‘r(ov 67 0)

Moreover, (7.3.9) implies that the determinant det(F_(0,¢,0),kerT") does
not vanish. With (7.3.8), we are in position to apply Proposition 7.2.3 and
there are x and Ao > 0 such that the estimate 4ii) holds for (e S’f‘ﬁ and
A€ [0, )\0]

Hence, by continuity-compactness, it does not vanish for é € S‘i and A
small. This implies 7i7). It only remains to prove Lemma 7.3.2. O

Proof of Lemma 7.3.2.

In order to use Assumption 6.3.5, we give a link between the spaces
IF‘_(O, f, 0) and the spaces E_(({) introduced in Chapter 6, section 3. Recall
that E_(() is the set of initial data U(0) = (u(0),v(0)) for bounded solutions
U = (u,v) of the homogeneous equation (6.3.4) with F' = 0. In addition to
the change of unknows (7.3.3), rescale the variable z = A% and introduce

uz(2) = u1(A2) = AN tu(A2),  va(2) = v1(\2) = v(A2).
Then the homogeneous equation (6.3.4) is transformed into

(7310) 82U2 = 62(2767)‘)[]2
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with
(7.3.11) Ga(2,C,A) = G1(A2,{, \)

Denote by F_(C, ) the set of initial data for bounded solutions of (7.3.10).
The computation above shows that F_(, ) = {(A\ u, v); (u,v) € E_(¢)}.
Therefore, by (6.3.20), Assumption 6.3.5 implies that there is C' such that
for all ¢ € $¢ and all A € [0, 1]:

(7.3.12) YU = (u,0) € F_(C,N) = |v] < Clul.

When A tends to zero, (7.3.11) implies that

R A A . 0 Id
92(274.1)\) - g1(07<70) = < MO AO >

where Mo and flo are the evaluation at 0 of the functions M and A defined
at (6.3.7). Since G1(0,¢,0) is constant, the space of initial data of bounded
solutions of the equation

(7.3.13) 8.Us = G1(0,¢,0)

is the negative spectral space F>°(0, ¢, 0).
Using that G has no eigenvalues on the imaginary axis, one shows that

F_({, ) — F=(0,¢,0)
as A — 0 The uniform estimate (7.3.12) implies that the estimate [v] < C|u]
extends to the limit space F_(0,¢,0), (7.3.9). O
Remark 7.3.3. The transversality condition (7.3.9) is equivalent to the
requirement that the problem
(7.3.14) —0%u+ Agd.u+ Mou =0, u(0) =0

has no nontrivial solution in H2([0, oo[). Suppose that the parabolic problem
is symmetric, i.e. that there is a smooth symmetric definite positive matrix

S(p) such that

(7.3.15) Re > &S (p)Bjik(p)
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is definite positive. Recall the definition (6.3.7) of A and M. If u € H?
satisfies (7.3.14), taking the real part of the scalar product in L? with
(S(0)Bg,4(0))u yields

U

-1
Re (SBd,dazu, azu) + Rein; (S(Bjd + By j)0:u, u)
1

.
Il

d—1

+ Z Renjnk(SBMu, u) —i—’y(Su, u) =0,
Jk=1

where the matrices S and Bj, are evaluated at the state p = 0. The as-
sumption on S implies that the sesquilinear form on the left hand side is
coercive on the space H}([0,+00[), as easily seen by extending u by 0 for
negative z and considering the Fourier transform in z. Thus (7.3.14) has no
non trivial H? solution. Therefore, the symmetry of the Parabolic operator
implies te transversality (7.3.9) and thus that the uniform stability condition
is automatically satisfied for large (.

7.4 Medium frequencies

Consider ¢ = (1,7n,7) € R with v > 0. We construct symmetrizers for
¢ close toig. By Lemma 6.3.2 the system (6.3.4) is transformed into the
constant coefficient system (6.3.10) through the change of unknows U(z) =
W(z,()U1(z). Thus the main idea is to construct symmetrizers for the
constant coefficients system (6.3.10). They will provide estimates for Uy,

and thus for U = WU;.

Proposition 7.4.1 (Symmetrizers for medium frequencies). Suppose
that the uniform stability condition (6.3.17) holds. Then, for all { # 0 with
~v > 0 there is a neighborhood w of ¢ and there are constants ¢ >7O, d >0,
C >0 and a C® matriz S(¢) on w such that for all ¢ € w:

(7.4.1) 5=5*,
(7.4.2) Re (8§G*) > ld,

Proof. By Lemma 6.3.1, the eigenvalues of G*°({) are away from the imagi-
nary axis. Hence, there is a smooth invertible matrix ¥ on a neighborhood

w of ¢, such that
100y, [ G+ O
Vo gxyY = ( 0 G
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where GG+ have their spectrum in +Re > 0. Consider
-y [ BS+0 -1
s (50 )
with S symmetric, positive definite and such that

Re (S+G+) > Id, —Re (S_G_) > 1d.

For instance, as in (7.3.6), one can choose
o0 *
Sy = 2/ SRR
0

and use a similar expression for S_. For all x > 1, (7.4.2) holds. Moreover,
the form of § implies that there are constants ¢ and C' such that

(7.4.4) (SV,V) > ek|ILL V> = C|ITI_V|?.

where II; [resp. II_] is the spectral projector of G> on the space F
[resp. [F_] generated by generalized eigenvectors associated to eigenvalues
in Rep > 0 [resp. Rep < 0]. These projectors are smooth functions of ¢ in
a neighborhood of ¢ since the two groups of eigenvalues remain separated,
thus one has the smooth decomposition:

(7.4.5) CN=F_()aF.(().

The space kerIl; = F_ is the set of initial data such that the cor-
responding solution of 0,U; = G*°U; is bounded. Thus, by (6.3.12), the
Evans-Lopatinski stability condition (6.3.18) implies that

(7.4.6) F_(¢) Nker Iy (¢) = {0}

and this remains true on a neighborhood of ¢. Thus, with (7.4.4) and (7.4.5),
we are in position to apply Proposition 7.2.3 and (7.4.3) follows for « large
enough. O

7.5 Low frequencies

We now turn to the most difficult case of low frequencies and work near
¢ = 0. We use the change of unknows Uy = V~1U; given by Lemma 6.4.2.
It transforms the equation (6.3.10) into

(7.5.1) 0:Uz = G2(Q)U2 + Fp,  T'2(Q)U2(0) =0,
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with F, = V71Fy and T9(¢) = I'1(¢)V(¢). The matrix Gy has the block

diagonal form (6.4.1)
H 0
G2 = ( 0 P ) '

In a neighborhood of ¢ = 0, we construct a symmetrizer for the matrix G :

(7.5.2) S = < S(f SOP )

where Sy and Sp are symmetrizers for H and P respectively. The con-
struction of Sp is quite similar to the construction performed for medium
frequencies, using that the spectrum of P is away from the imaginary axis.
The construction of Sy is much more delicate. We use polar coordinates:

(7.5.3) (=pC=p(#%,m), with p=I¢, [(=1.
Recall that
(7.5.4) H(¢) = pH(C, p)

with H((,0) given by (6.4.16). As in Chapter 6, Section 4, S¢ denotes the

sphere {|{| = 1}, Si the open half sphere where ¥ > 0 and ?i denotes the
closed half sphere ¥ > 0.

Theorem 7.5.1 (Symmetrizers for low frequencies). Suppose that the
uniform stability condition (6.3.17) is satisfied. There are constants ¢ > 0,
0 >0 and C such that:

i) there is a neighborhood w of 0 and there is a C*° N x N matriz Sp
on w such that for all { € w:

(7.5.5) Sp(¢) = (Sp(C))",  Re(Sp(Q)P(()) = cld;

i) there are po > 0 and a C>® matriz Sy on gi x [0, po] such that for
all (&, p) € gi x [0, po] there holds:

(7.5.6) Si = (Su)*. Re(SiH) > c(¥ + p)ld;

iii) for all ¢ = pl € R with ¢ € Ei and p €]0, pol, the matrix

(7.5.7) S¢) = 0 Sp(0)
satisfies
(7.5.8) S(C) + CTy(¢) T'2(¢) > d1d.
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Since the eigenvalues of P are away from the imaginary axis, there are
families of symmetrizers Sp(¢) on a neighborhood of 0 in R4*! such that

(7.5.9) Sp = k(II5)*SH, — ()" Spll;,  Re(SpP) > dd,

where HIiD are the spectral projectors associated to the spectral decomposi-
tion

(7.5.10) cN =FL(¢) e FL(Q)

associated to the splitting of eigenvalues of P in the half spaces {£Re u > 0}
and Sf,? are definite positive. Recall that dimF{ = Ni. For ¢ # 0 with
~v > 0, Lemma 6.3.1 implies that G(¢) and hence H({) and H((, p) have no

eigenvalues on the imaginary axis. Thus the positive and negative spaces
FH(¢) associated to H satisfy

(7.5.11) dimF¥ (¢, p) = N+

To construct the Sg, one can argue locally near a given point é € gi.
The main argument is the following result which is proved in Chapter 8:
Theorem 7.5.2. For all g € ?i, there are spaces F o satisfying
(7.5.12) CN=F_oF,, dimF, =Ny,

and such that for all k > 1 there are a neighborhood @ of (é, 0) in R x R,
a C*® mapping Sg from & to the space of N x N matrices and a constant
¢ > 0 such that for all (,p) € w,

(7.5.14) (3G, p)hs ) = Kl AP — TR,

and for all (C, p) € @ with p >0 and 5 > 0:
(7.5.15) Re (Su(C.p)H (S, p)h,h) = (5 + p)|h[*.

In (7.5.14), I, denote the projectors on F associated to the decomposition
(7.5.12).

Concerning the choice of spaces F,, the first idea would be to take
Fy = FH(,0). However we don’t know yet that theses spaces are well
defined when 4 = 0, and the splitting (7.5.12) is not always true for all ¢. On
the contrary, we can use this theorem to prove the continuous extendability
of the F¥({, p) to p =0 . We stress the fact the uniform stability condition
is not required for this Theorem and for its following corollary:
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Theorem 7.5.3. The vector bundle T ((, p) defined for € gi and p €
10, po] extends continuously to p = 0.

Proof. a) Consider £ > 2 and & given by Theorem (7.5.2). For ({,p) € @
with 4 > 0 and p > 0, consider h € F¥({, p) and

u(z) = e#H(Co)p,

This function is exponentially decaying at +oco and satisfies d,u = H(C, p)u.
Therefore multiplying by S(¢, p) and integrating by parts yield, thanks to
(7.5.13):

(Sh,h) + 2Re /OO (SHu(z),u(z))dz =0
0

By (7.5.15), the integral is nonnegative. Therefore (Sh,h) is nonpositive
which by (7.5.14) implies that x|IL, h|? < |II_h|?. Thus

1
Jr—1

This implies that the mapping II_ from Ffl(g, p) into F_ is one to one

and since both spaces have dimension N, it is a bijection. Therefore, there
is a mapping ®(¢, p) from F_ to F, such that

(7.5.16) vh e FE((, p) - I, h| < |h|.

(7.5.17) F2( p)={u+®((,p)u:uecE_}
and
(7.5.18) VueF_ : |0 p)ul < \/El_ Sl

Since « is arbitrarily large, this proves that
(7.5.19) F_=1limF?((, p),

where lim means that (¢, p) tends to (é, 0) with p >0, 5 > 0.

b) The relation (7.5.19) implies that for all { € gi there is a unique
space F_ such that the properties listed in Theorem 7.5.2 are satisfied. We
denote by ﬁl_{(é, p) = F_ the extension of F#((, p) defined by (7.5.19) for
p = 0. We prove that ﬁf[(f, p) is continuous at p = 0.

Consider again a given point é € gi. For k > 2, let @ be given by
Theorem 7.5.2. For all ({,p) € &, the estimate (7.5.16) holds. For all
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({',0) € @, thanks to (7.5.18), we can let ({,p) tend (,0) in the sense of

lim. Therefore, passing to the limit in (7.5.16) implies that for all (¢, p) € Q
with ¥ > 0 and p > 0:

_ . 1
Vh e FE((, p) - L, h| < m\h’-

Arguing as before, this implies that

F_=F"((0) =1mF?((, p),

where the limit is taken for ({, p) tending to (¢, 0) in ?i % [0, po]. This means
that the bundle FZ ({, p) is continuous in (, p) € gi x [0, po] at (£,0). O

Proof of Theorem 7.5.1 assuming Theorem 7.5.2. Consider é € gi. We ap-
ply Proposition 7.2.3 to the symmetrizers

S (F _ S’H,K(é’p) 0
Sn(Cvp) - 0 SP#;(PCV)

where S 1, is given by Theorem 7.5.2 in a neighborhood of (g ,0) which may
depend on k and Sp,, is given by (7.5.9). By (7.5.12), the spaces F satisfy
the property (7.2.8). By (7.5.9) and (7.5.14), the estimate (7.2.9) is satisfied

at (g, 0).
For p > 0, the negative space of Go(pC) is

F_(C,p) =T ((, p) x FE(pC).

Transporting the uniform stability condition by the change of unknows V((),
we know that for all ¢ € gi and p > 0O:

}det (F_(é,p),kerI‘Q(pf))‘ >c>0

By Theorem 7.5.3 this estimate extends to p = 0 and thus the determinant
det (ﬁ', (C, p), ker I‘(pé)) does not vanish at ¢ = é and p = 0. Thus Proposi-
tion 7.2.3 implies that there are x, C' and § > 0 and a neighborhood of w of
(é, 0) in S x R such that

V(Cp) €w s SalCp) +CT2(¢)*T2(¢) > 01d.
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. . —d
By compactness, there are pg > 0 and a finite covering Uw; of S x [0, po],
parameters ~; and constants C' and § > 0 such that

(75200 W, WCp)ews i Sey(Cp)+ CTH(Q)Ta(C) = o1d.
Consider a partition of unity ) x; = 1 on gi x [0, po] with x; € C§°(wj).

Let
( P ZX]SH Kj
Sp(¢

):Sp,i(), K" = maxkj,

CQ<

S(F _ S (CHO> 0
S0 = [ o Sp(pf)} '

By (7.5.9), Spw+ > Spy, for all j. Hence S > ) x;Sk; and therefore (7.5.20)
implies that

S(Csp) + CT2(¢) Ta(¢) > 81d.

Thus property #i7) in Theorem 7.5.1 is proved.
Properties i) and ¢i) directly follow from (7.5.9) and (7.5.15) respectively.
O

7.6 Proof of the L? estimates

We prove the estimate (7.1.12) in the three different regimes.

a) Medium frequencies. Lemmas 7.4.1 and 7.2.1 imply that for all
¢ # 0 with v > 0, there is a neighborhood w of ¢ such that for all { € w, the
solutions of (6.3.10) satisfy

101122z + 01O < [ E1 B2, -

Shrinking w if necessary, we can assume that the contjugation matrix W(z, ¢)
is defined for ¢ € w. Therefore, the solutions U = WU of (6.3.4) satisfy

HUH%%RJF) +|UO) < HFH%2(R+) )
which implies (7.1.12) for ¢ € w.

b) Low frequencies. ~We first consider the equation (7.5.1). We use
the symmetrizers Sy () = Sg((,p) and Sp(¢) given in polar coordinates
¢ = p¢ by Lemma 7.5.1. For 0 < ¢ < pg and v > 0, the lemma implies that:

Re (SgH) Z p(¥ +p) = c(v+[¢]*) ® h*, Re(SpP) 2 1d.
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Therefore, the components (ug,v2) and (f2,g2) of Uy and Fy respectively,
satisfy

1
W?|luall72m, ) + (Sauz(0), u2(0)) < ﬁ||f2||%2(R+)7
[v2l|72r. ) + (SPv2(0),02(0)) S Cllgallize, ) -
Adding up and using the third part of Lemma 7.5.1, we obtain that
1
W2 |luall72m, ) + o2l 2@,y + 102000 < ﬁ||f2||2L2(R+) + 1920172, )
thus

h2||uzl r2, ) + Allvell e,y + AU2(0)] S [ f2llze@,y + Rllg2|
S Pl e my) -

Thanks to the special form (6.4.2) of V(0), Uy = VU, and Fy = VF; satisfy
U = O(l)UQ, V] = 0(1)112 + O(C)UZ , Fy= O(l)Fl .

On the neighborhood |{| < pg of the origin, & is bounded and |¢| < h. Hence
|C|h < h? and the solutions U; of (6.3.10) satisfy

(7.6.1) h2Hul”L2(R+) + hllvi|lp2ryy + 2UL(0)] < ClFil 2R, -

Decreasing pq if necessary, we can assume that the matrix W is defined for

I¢] < po. Since W =1d + O(e~%%), U = WU] satisfies:
a=00)U;, ©=01)v+0(e Pu, F=0Q1)F.
Therefore, the solutions U of (6.3.4) satisfy

W2\ 2,y + B0l 2,y + RIT0)] S K2 Jlurll 2, )

(7.6.2) o
+ hllorll2ey) + hlle™ ull L2y + AIUL0)]

We use here the following inequality:

Lemma 7.6.1. Given 6 > 0, there is a constant C' such that all function
u € H'(R,) satisfies the inequality:

(763) e P ulligoney < € (Ju(0)|+ 10:0l 20.00p)-
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The proof is left as an exercise. We apply this estimate to u1, noticing
that the equation (6.3.10) implies that d,u; = vy. Thus

le™"%u1 ]l 2,y < C(IULO)] + o1ll2ey)) -

With (7.6.1) and (7.6.2), this implies that for 0 < |¢| < pp with v > 0, the
solutions of (6.3.4) satisfy

W2\l 2, ) + ROl e,y + IO S 1P 2@,y S 1F 2, -
This implies (7.1.12).

c) High frequencies. We use notations (7.3.3): u; = ({)u, v1 = v. By
Lemmas 7.3.1 and 7.2.1, for ¢ large enough, the solution U; = (uj,v1) of
(7.3.4) satisfies

1
OO 2,y +I01O) < @HFH%WH

Thus, the solution U of (6.3.4) satisfies
(Ol 2@y + (N8l 2@y + (OO S I1F |2y
This implies (7.1.12).

d) Endgame. By steps b) and c), there are pg > 0 and A\g > 0 such that
the estimate (7.1.12) is proved for ¢ # 0 with v > 0 and either |(| < pg or
|| > Ao. By step a), one can cover the compact set {pg < |¢| < Ag v > 0} by
a finite number of open sets where the estimate holds, proving that (7.1.12)
holds with a uniform constant C, independent of (. O
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Chapter 8

Kreiss Symmetrizers

This chapter is entirely devoted to the proof of Theorem 7.5.2. For strictly
hyperbolic equations the construction of symmetrizers is due to O.Kreiss
([Kre] augmented with J.Ralston’s note [Ral], see also [Ch-Pi]). It was then
noticed by A.Majda and S.Osher ([Ma-Os], [Maj]) that the strict hyperbol-
icity can be somewhat relaxed and that the construction extends to systems
satisfying a block structure condition. Finally, it is proved in [Mé3] that the
block structure condition is satisfied for all hyperbolic systems with constant
multiplicity. We discuss in this chapter the extension of Kreiss construction
to hyperbolic-parabolic systems given in [MZ1].

8.1 Scheme of the construction

8.1.1 Notations
We denote here by

A, &) = njAi(p) +EAa(p), (n,€) €T xC,
j<d

the symbol of the hyperbolic part of the equation evaluated at a given point
p € U and by

B(n,&) = Y nymBx() + > nj(Bja(p) + Baj(p)) + & Baa(p)
jk<d j<d

the symbol of the parabolic part. In accordance with Assumption 5.1.1, we
suppose in this chapter:
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Assumption 8.1.1. i) For all (n,£) € RI\{0} the eigenvalues of A(n,§)
are real, semi-simple and have constant multiplicity. Moreover, Ag is non-
singular.

i) There is ¢ > 0 such that for all (n,€) € RY, the eigenvalues of

iA(n, &) + B(,€) satisfy Repu > c(|nf? + €2).

Denoting by ¢ = (7,71,7) € R x R4~! x R the tangential Fourier-Laplace
frequencies, the symbol called H (¢, 0) in (6.4.16) reads

d
(8.1.1) H(C,0) = —A ' ((ir + NI+ > in;A;) .
j=1

With notations as in Chapter six, the block decomposition (6.4.1) shows
that the perturbations H(C, p) occurring in (6.4.15) satisfy

det (ip€ld—pH ({, p)) det (ip€ld — P(p¢)) = det (ip€ld — G>°(p())
= det(—By ) det ((ip7 + p7)1d + ipA(i}, §) + p* B(1,€))

Factoring out p"V implies that the perturbations H(C,p) satisfy the next
hypothesis.

Assumption 8.1.2. i) The N x N matrices H((, p) are smooth functions
of ¢ in the unit sphere S and p € [—po, po] such that H((,0) is given by
(8.1.1).

ii) There holds

det ((it + v)Id+iA(n, &) + pB(n,£))
= e(¢, &, p) det (i€ld — H(¢, p))

where e is a polynomial in & with smooth coefficients in ((, p).

(8.1.2)

Remark 8.1.3. When p =0, (8.1.1) implies that
(8.1.3) e(¢,£,0) =det Ay #0.

Remark 8.1.4. The Assumptions 8.1.1 and 8.1.2 imply that for v > 0,
p > 0and v+ p > 0, H(C,p) has no eigenvalues in the imaginary axis
i{R. Thus, the number of eigenvalues counted with their multiplicity in
{Repu > 0} [resp. {Repu < 0}] is therefore constant for (¢, p) € ?‘i x [0, po]
with v+ p > 0. It is equal to N_ [resp. N.] the number of negative [resp.
positive] eigenvalues of Ag.
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Let us rephrase Theorem 7.5.2 in the new setting:

Theorem 8.1.5. Suppose that Assumptions 8.1.1 and 8.1.2 are satisfied.
For all ¢ € gi, there are spaces F satisfying

(8.1.4) CN=F_@F,, dimF, =Ny,

and such that for all k > 1 there are a neighborhood w of (¢,0) in Stx R, a
C* mapping S from w to the space of N X N matrices and a constant ¢ > 0
such that for all ((,p) € w,

S(¢.p) =8¢, p),
(S(¢, p)h,h) >[I, h|* — [IL_hJ?,

and for all ({,p) € w with p >0 and v > 0:

(8.1.7) Re (S(¢, pYH(C, p)hsh) = ey + p)|h]?.

In (8.1.6), I, denote the projectors on F. associated to the decomposition
(8.1.4).

Note that, it is sufficient to check (8.1.6) at (¢, 0), since it will extend by
continuity to a neighborhood, changing S to §/2 and decreasing x to /4.

8.1.2 Block reduction

Fix ¢ € ?d We split the eigenvalues of H := H((,0) into eigenvalues in
{£Rep > 0} and in {Rep = 0}. We denote by p, =i, the distinct eigen-
values located on the imaginary axis. By standard perturba‘mon arguments,
there are § > 0, a neighborhood wy of (¢,0) in S¢ x R and a smooth matrix
V(¢, p) on w such that B

HY ...0
(8.1.8) VIIHY = | o
0o --- HE
such that each block Hy((,p) has its spectrum either in {|Reyu| > 26} or
in the ball of radius ¢ centered at . Moreover, we can assume that the

balls of radius 20 centered at the Ky, do not intersect each other. This block
decomposition corresponds to a smooth decomposition

(8.1.9) C¥ =F'(¢,p) @ @ F X, p)
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into invariant subspaces of H((, p). In particular, when %k corresponds to a
purely imaginary eigenvalue By F* (¢,0) is the space spanned by the gener-
alized eigenvectors of H((,0) associated to this eigenvalue. We denote by
N;, = dimF* the dimension of the block H*. By Assumption 8.1.2, H and
thus the H* have no eigenvalues on the imaginary axis when p > 0, v > 0
and p 4 v > 0. Therefore, the number of eigenvalues of H* in {+Re u > 0}
is constant for p > 0, v > 0 and p + > 0. We denote it by N, 1. Because
the total number of eigenvalues of H in {£Reu > 0} is N+, we have

(8.1.10) > Nps =Nz

It is sufficient to construct symmetrizers Sy for each block Hj, separately.
With
St ... 0

S = (Vfl)* V*l
0o -.. Sk

Theorem 8.1.5 follows from the next result:

Proposition 8.1.6. With notations as above, for all k, there are spaces Ei
satisfying

(8.1.11) CNe =F* @ F* | dimF* = N, _,

and for all k large enough, symmetrizers S¥, C*> on a neighborhood of (¢,0),
such that

(8.1.12) SF = (SF)*
(8.1.13) (S*U,U)) > kU2 - IR U2,
(8.1.14) ReS*H* > ¢(y+ p)Id, for p>0, v>0.

In (8.1.13), S* = S*((,0) and X are the projectors associated to the de-

composition (8.1.11).

The construction of the S* depends on the nature of the spectrum of
H*. The easy case is when the spectrum is away from the imaginary axis
(elliptic modes). Next, we consider the case where the spectrum is purely
imaginary when v = p = 0 and semi-simple (hyperbolic modes). This case
is studied in the next section. The most difficult case, considered in sections
3 and 4, occurs when Jordan blocks are present (glancing modes).

172



8.1.3 Elliptic modes

We now prove Proposition 8.1.6 when the spectrum of H* lies in
(8.1.15) {Rep > 24} [resp. {Repu < —20} |.

In this case, there are self adjoint positive definite matrices S*(C, p), defined
and C* on a neighborhood w of (¢,0) and such that

Re S*H* > cId [resp. Re S*HF < —cId .
with ¢ > 0 independent of ({, p) € w. We set
F* = {0} [resp. F* =CMv ]

and
SF=kS*  [resp. SF = —5¥]
and properties (8.1.5) to (8.1.7) are satisfied.
Remark 8.1.7. When ( belongs to the open half sphere Si, that is when

7 >0, H(¢,0) has no eigenvalues on the imaginary axis, and all the blocks
H* satisfy (8.1.15). Thus Proposition 8.1.6 is proved when v > 0.

8.2 Hyperbolic modes

8.2.1 Preliminaries
a) Introduce the characteristic polynomial

d—1

(8.2.1) A(7,n,€) = det (TId + ) msA; + EAg) .
j=1

The Assumption 8.1.1 implies that there are functions Aj(n,£), smooth and

homogenenous of degree one in R4\ {0}, and fixed integers «; such that

J

(822) M <X<.., and Ar,n€) =[] (r+Nm8)".
j=1

The roots A; are real analytic and therefore extend to the complex domain.
In particular, there is 6 > 0 such that the A; are defined for complex £ such
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that [Im¢&| < 0(|n| 4+ |Re€|) and the factorization (8.2.2) extends to such &
and 7 € C.

In addition, since the eigenvalues are semi-simple, the eigenprojectors
I1;(n, €) are C* functions, homogeneous of degree zero, of (1, &) € (R4\{0}).
The dimension of the associated eigenspace is equal to the multiplicity «;.
By analytic continuation, the projectors II; extends analytically to £ in the
domain [Im¢| < §(|n| + |Re§]|) and AIl; = A\;I1; on this domain.

b) For p small enough and (7, &) in a compact of R%\{0}, the eigenvalues
of 1A(n,&) + pB(n, &) remain close to the i\; and the II;(n,§) extend to
smooth spectral projectors II;(n, &, p) of iA(n,§) + pB(n,&). Therefore, in
a neighborhood of a given point (1,£) € R?\{0} there is a smooth block
decomposition o

Dy - 0
(8.2.3) VT AME +pBm, )WV =| + . |,
0 --- Dl
with D; of dimension o X a; of the form
(8.2.4) Dj(n,&,p) =iXj(n,€) + pBj(n, &, p) .

By Assumption 8.1.1, the eigenvalues of D; satisfy Re u > cp(|n|* 4 £2) and
thus the spectrum of Bj is contained in {Re u > c(|n® + €2)}.

Introduce the determinant

(8.2.5) A(1,1,, p) := det (iTId 4+ iA(n,€) + pB(n,€)) .

Near any point (n,€) € R\{0}, the block decomposition (8.2.3) implies

(8.2.6) A(r,n,60) =[] A5(7.0.60)
with
(8.2.7) Aj(T,m,&, p) = det (Z(T +Xj(n,€))Id + pB}(n,f, p))

8.2.2 Symmetrizers for hyperbolic modes

Let ¢ € gi. In the block decomposition (8.1.8), we consider now the case
where the spectrum of ¥ is {i€;,} and the spectrum of H¥(¢, p) is contained
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in the ball of radius ¢ centered at p, = i, when (¢, p) remains in the
neighborhood w of (¢,0). Note that necessarily v = 0.

Since i§, is an eigenvalue of (¢, 0), T is an eigenvalue of A(n, §,)- Note
that (n,£,) # (0,0), since otherwise it would imply that 7 = 0 which is
impossible since ¢ # 0. Therefore the factorization (8.2.2), implies that
there is a unique eigenvalue Aj such that

(8.2.8) T+ Xi(n:§,)=0.
We assume in this section that § A is a simple root of this equation, that is
(8.2.9) l .= 85)\j(ﬂ, ék) 75 0.

Lemma 8.2.1. Suppose that (8.2.8) and (8.2.9) hold. Then, the dimension
Ny, of the block H* is equal to the multiplicity oy,. Moreover, there are a

smooth scalar function qp(C) and a smooth matriz R*((, p) on a neighbor-
hood w of (¢,0), such that

(8.2.10) H* (¢, p) = ¢*(O1d + pR*(C, p) -
Furthermore, q* is purely imaginary when v = 0, ¢* := &YReqk(C) does

not vanish and the spectrum of quk(g, 0) is contained in the half space
{Rep > 0}.

Proof. The eigenvalue \; is an analytic function of (7, ) and thus extends to
complex values of & with small imaginary part. By (8.2.9), for ¢ = (7,7,7)
close to ¢ the equation

(8.2.11) T—iy+Xj(n,§) =0

has a unique solution & (¢) close to §,- We define ¢"(¢) = i&(¢) so that
qk(g ) = ,, = 1§, . The implicit function theorem also implies that &k(Q) is
real when v = 0. Moreover, there holds

OeAj (0, €, )04Ek(C) =i
Thus, using (8.2.9) yields
(8.2.12) q" = 0,4"(Q) = -1/t #£0.

Using Assumption 8.1.2 and Remark 8.1.4 on one hand and the factor-
ization (8.2.6) on the other hand, we see that for (¢, ¢, p) close to (¢, &, 0),
there holds

A(r —iy,m,€,p) = e((, €, p) det (i€1d — H(C, p))
(8:2.13) = e1((, €, p) det (ig1d — H*(C, p))
= 62(C7 §, :O)Aj(T - i’% m, 57 :0)7
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where e, e; and ez do not vanish in a neighborhood of (¢, &0 0).

For p =0, Aj(7,1,£,0) = (T+ X;(n,£))*. Therefore, by (8.2.9), &(() is
a root of multiplicity o; of Aj(7 —iv,7n,&) and hence of det(i(Id — H(¢,0)).
This shows that ¢®(¢) is an eigenvalue of algebraic mulitplicity a; of H(¢,0).
Moreover, the kernel of £ (¢{)Id—H(¢, 0) is equal to the kernel of (7—iv)Id+
A(n, & (¢)), which is of dimension ;. This shows that the geometric mul-
tiplicity of the eigenvalue ¢*(() is equal to its algebraic multiplicity. Thus,
this eigenvalue is semi-simple, showing that the block H* has dimension
Ny = «; and that

(8.2.14) HE(n,0) = ¢"(n)Id.

This implies (8.2.10).
Moreover, by (8.2.9)

i+ A0, €, + NI+ pB(n, &, + ¢, p)) = il'1d + pB) + 0% + p?).
with B) = Bj(n,&, ). Thus,
Aj(r,m, &, + ¢, p) = det (it¢'Td + pBj) + O((|€'| + [p])* )
Similarly, with (8.2.10)
i€, + &N — HM (¢, p) = i€'Td — pR* + O(p?)
with R* = R¥({,0), hence
det (i(&, + &)1d — H¥(¢, p)) = det (i€'Td — pR¥) + O((|€'| + |p)* ™).
With (8.2.13), comparing the Taylor expansions implies
(8.2.15) det (i¢¢'1d + pB)) = det (i€'ld — pRF).

Thus, using (8.2.12), the spectrum of ¢*RF = —¢~'R* is equal to the spec-
trum of K*QB;- which is located in {Rep > 0}. The proof of the lemma is
now complete. O

Proof of Proposition 8.1.6 for hyperbolic modes.
When ¢ > 0 [resp. ¢ < 0], there is ¢ > 0 such that the eigenvalue g (¢)
satisfies for ¢ close to ¢ and v > 0 small:

(8.2.16) Regqy > ¢, [resp. Re g, < —cv]
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Thus, for v > 0 small, (8.2.15) implies that the number of eigenvalues in
{Repu < 0} of H¥(¢,0) is 0 [resp. Ni]. The spectrum of R*((,0) = R” is
contained in {Reu > 0} [resp. {Repu < 0}] and this property extends to
a neighborhood of ({,0). Therefore, there are self-adjoint positive definite

matrices S¥((, p) which depend smoothly on ({,p) in a neighborhood of
(¢,0), satisfying
(8.2.17) Re S*RF > cld, [resp. — Re S*R¥ > cld].
We set
F* = {0}, [resp. FF = CM¥].
Next we choose
SF=rS* k>1, [resp. S* = —5¥]

With this choice, properties (8.1.12) (8.1.13) are immediate. Moreover,
(8.2.16) (8.2.17) imply that there is ¢ > 0 such that for (¢, p) in a neighbor-
hood of (¢,0) with v > 0 and p > 0, there holds in both cases

ReS*HY > ¢(y + p)Id.
This means that (8.1.14) is satisfied. O

8.3 The block structure property

Consider again ¢ € §d+ with v = 0 and a purely imaginary eigenvalue Ky =
i€, of H((,0). In the previous section we have shown that (n,{,) # 0 and
that there is a unique eigenvalue A; of A(n,§) such that

(8.3.1) T+ Aj(n,€,)=0.
Since \; is real analytic in &, there is an integer v > 1 such that
(8.3.2) ONj=--=0"N=0, FN=vU#0 at(n,E,)

In section 2, we investigated the case v = 1, see (8.2.9). From now, on we
study the case v > 1, which corresponds to the so-called glancing modes.
Note that £ is real. We denote by «; the multiplicity of the eigenvalue A;
such that (8.3.1) holds.

In this section, we prove that, locally, the block H*(¢, p) can be put in
a special form, first when p = 0 and next for p # 0. We use this special
form in the next section to construct symmetrizers, finishing the proof of
Proposition 8.1.6.
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8.3.1 The hyperbolic case

The next result relies on the constant multiplicity hypothesis in Assumption
8.1.1.

Theorem 8.3.1. With assumptions as above, there is a neighborhood w of
¢ in R4 and there are matrices T({), C*™ on w such that

Q ... 0
(8.3.3) Q) =T "HM¢OTW)=| 0 . 0
0 - Q

with o diagonal blocks all equal to the same matriz Q(C) of size v X v.
Moreover, at the base point

0 1 0
. 0 0
(8.3.4) Q) =Q = z(§k1d+J), J =
1
0
where J s the Jordan’s matriz of size v.
In addition, @ has the form
@) 0---0
(8.3.5) Q) =Q+ :
() 0 -0

and the coefficients of QQ are purely imaginary when v = 0. Moreover,

(8.3.6) Q= 0m(O) =

In the strictly hyperbolic case, a; = 1 and there is one block @. In
the general case, the main difficulty is to show that there exists a smooth
block diagonal decomposition (8.3.3). Note that the theorem implies that
the dimension Ny, of the block H* is necessarily

(8.3.7) N =voy.

First we study the structure of the characteristic polynomial of H*(¢,0).
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Lemma 8.3.2. There is a neighborhood w of ¢ and there is a monic polyno-
mial in &, D(z,§), of degree v and with C™ coefficients in ( € w such that
for all ¢ € w,

(8.3.8) Dy(C,€) = det (€1d +H"(¢)) = (D((, €)™,

The coefficients of D are real when v =0 and

oD —i
(8.3.9) E(Q §)= -

Furthermore, the set w* of points ( € w such that D((,-) has only simple
roots is dense in w.

Proof. The eigenvalue A; is real analytic in ¢ and have an holomorphic
extension to a complex neighborhood of §, and the factorization (8.2.2)
extends to the complex domain. In partlcular there are neigborhood w of
¢and O CC of§]c such that for ( € w and £ € O, one has

A(T - 7’75 ’I’],f) = (T - 7”7 + )‘](naé))aj El(C7§) )

where the function E; does not vanish on w x O. By (8.1.1) (8.1.8), there
holds
A( —iy,n,€) = det Ag [ [ det (€Id + iH™(¢,0)) .
m

By definition of the H™, the roots of the D,,, with m # k, are away from
£ iy Thus, shrinking the neighborhoods if necessary, one obtains that for
(€. ewxO

(8.3.10) Di(C.€) = (7 — iy + Xi(0,€))V E(¢,€),

where F is smooth in ¢, holomorphic in £ and does not vanish on w x O.

By (8.3.2) we are in position to apply the Weirstrass preparation theorem
to the function 7+ \; : there is a monic polynomial of degree v in &, D((,§),
with C*° coefficients in ¢, and there is a nonvanishing function Fs((, &)
defined for ((,) in a neighborhood of (¢, €, ), holomorphic in §, C*° in ¢
and such that

(83.11) T —iv+Ai(n,€) = E2(¢,§) D(G,€), D€ =(E—¢)".

For the convenience of the reader we include a short proof, which allows the
introduction of parameters and non analytic regularity in (.
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Suppose that f(a,§) is holomorphic in &, C°° in the parameters a and
satisfies the analogue of (8.3.2) at a given root (a,§). Then, there is r > 0
and there is a neighborhood w of a such that for all z € w, f(a,-) has v roots
in the disc {|¢ — £| < r/2}. Thus, there is a unique decomposition

f(a,€) = p(a, &) M)

with p a polynomial of degree v, with v roots in the disc {|{ —&| < r/2} and
h holomorphic in {|£ — &| < 27} such that h(a,{) = 0. Thus necessarily, for
| —£| < r, one has

Och(a,€) = 5 w—gl=r fla,w) w—¢&°

This shows that J¢h and therefore h and p = f e " are C* in a. Factoring
out the coefficient of £ implies (8.3.11).

The Schwarz reflection principle implies that \;(n,€) = A;(n,€). Thus
the explicit formula above shows that when v = 0, D has real coefficients.

Combining (8.3.10) and (8.3.11) implies that Dy = D% E5 on a neighor-
bood w x O of (¢,§,) where E3 does not vanish. Moreover, shrinking O
if necessary, all the roots of the polynomials Di(z,-) and D(z,-) are in O.
This implies that F3(z,-) is a constant in £ and, since both polynomials are
monic (8.3.8) follows.

In (8.3.11), D and Ey are real when v = 0. Moreover, together with
(8.3.2), it implies that E»((, &, ) = £. Differentiating (8.3.11) in v yields

and the property (8.3.9) follows.

Shrinking the neighborhoods, one can assume that d,D does not vanish
on w x O. Suppose that (1 € w and D((1, ) and has a multiple root at & of
multiplicity v;. Since 0yD does not vanish, for ¢ = (71,m1,71 + $) € w, one
has D = ¢ (€ — &)t + O(€ — &) + cas + O(s?) with g # 0. Thus, for
s small enough, the multiple root splits into simple roots. This proves that
w* is dense in w. O

Next, we study the structure of H*(¢,0). Let II(n, &) denote the eigen-
projector associated to A;(n, §). It has constant rank o and is a C*° function
of (n,§) for (n,£) # 0. Denote by H = H((,0).
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Lemma 8.3.3. The operators P, = ( I0)(n,§) satisfy

(8.3.12) (H— Hk)BO =0,

(8.3.13) (H— Hk)Bl =P, for Il=1,...v—1.

Moreover, the generalized eigenspace of H associated to 1S the direct sum
v

1
K=@PPK,, K,:=PC".
=0

Proof. Freezing the coefficients at 7, (8.3.2) implies
A(ﬂ? g) + 7= O(f - ék)y‘

Moreover,

0= (¢2d+ A, (" n Ay = A, €)1d) ) ()
= (iH+ E1A)(1,€) + O((€ — €,)")

Evaluating at £ = ¢, yields (8.3.12), since §, = —ip,. Taking the Taylor
expansion at order v — 1 implies (8.3.13).

Introduce K, := P,CY and for [ = 1,...,v — 1, K, := PJK,. Then
(8.3.13) implies that

Note that Kq is the eigenspace of A(n,§ k) associated to the eigenvalue
Aj(n,€, ). Thus, dimK, = rankll; = a; and dimK; < rank@éﬂ(g) < aj.
On the other hand, (8.3.14) implies that for | > 1, dimK; > dimK,_;.
Therefore

(8.3.15) dimK; =«;, 1€{0,...,v—1}.

Suppose that for I € {0,...,v—1} there is u; € Ko, that is such that u; =
Pyu; and assume that > Pyu; = 0. Applying (H — Hk)l’*l to this equation,
implies that 0 = (H — By WP, ju,_1 = Pyu,_1 = u,_1. Inductively, one
shows that all the wu; vamsh Th1s proves that the sum K :=K;®... K, _;
is direct. In particular, dimK = va;.

By (8.3.15) (H — p,)"K = 0, thus K is contained in the generalized
eigenspace F* (¢,0) of H. By (8.3.8), the dimension N}, of this space, which
is the degree of Dy, is equal to va;. Therefore K is equal to F*(¢,0) and the
lemma is proved. ; ]
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Let (eg1,---,€0q,) be a basis of Kg. For [ = 1,...,v—1, and p =
1,...,qaj, introduce

1

(8316) Ql,p l' £l§07p .

Lemma 8.3.3 implies that
(8.3.17) (H—p)eop =0 and (K —p, e, =ie_1, forl>1.

The {¢;,} form a basis of K. We denote by H,, the space generated by
(€0.ps -+ +»€y_1p)- Thus

(8.3.18) K=H .. oH

=aj *

Taking this basis to write the conjugation (8.1.8), the relations (8.3.17) imply
that the matrix of H*({,0) has the following diagonal block structure

Q - 0

0 ... @

with @ = pld +iJ = i(§, + J) where J is the v x v nilpotent matrix
introduced in (8.3.4).

Our goal is to extend the splitting (8.3.14) to a neighborhood of ¢ with
spaces H,,(¢) invariant by H(z) and smooth in . B

The eigenprojector I1(n, £) extends analytically to a neighborhood wy x O
of (n,§ k); say that O contains the disc of radius 2r centered at ¢, . Since
D(¢, &) vanishes only at § = &, shrinking the neighborhood w of ¢ if
necessary, one can assume that for all ( € w, the v complex roots of
D((, &) = 0 satisty |, — &| < r/2. Therefore, we can define for ( € w
and 1 €{0,...,v -1},

(8.3.19) B(¢) =

l+1
l!(yll)!/“|: I( )85 D(“)d@

2imy! D(¢,¢)

They are C*° functions on w. Since D((, &) = (§ — ¢, )", Cauchy’s formula
implies that

(8.3.20) Pi(¢) = (9HI)(n, &) = Py
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Moreover, when ¢ € w*, the roots (1, ...,&,) of D((,-) are simple and

v

(8.3.21) P(Q) =) all,&m) TT(n, &m)

m=1

where

Ny —1—1)19 D¢ &)
cl(C?é.m) - o 8£D(C,§m) eC.

Recall that {e,}1<p<qa; is a basis of Ky. For I € {0,...,v — 1} and
p € {l,...,a;}, consider

(8322) el,p(C) = %B(C)Qo,p

and H,,(¢) the linear space spanned by (eg,(C),- .., ev—1,(C)).

Lemma 8.3.4. Shrinking the neighborhood w if necessary, for ( € w, the
vectors {ep(2)} are linearly independent. Their span K(¢) =Hi(2) ®... @
Ha, (¢) is equal to the invariant space F*((,0) of H((,0) associated to the
etgenvalues close to Hy -

Moreover, for all p, H,(C) is invariant by H((,0) and the matriz of
H(C, 0)jm, (¢) in the basis {e1(C) fo<i<y—1 is independent of p.

Proof. By (8.3.20), the definition (8.3.22) implies that e;,(¢) = ¢; ,- There-
fore, for ¢ close to (, the vectors e;,(() are linearly independent.

Suppose that { € w*. In this case, H’“(C ,0) has v pairwise different
eigenvalues in the disc |§ —§k| <r/2, (i&,...,i&). They satisfy D((,&1) =
... =D((,&n) =0 and 7 — 2y + X\j(n,&n) = 0. Therefore the kernel L,,(¢)
of iH(¢) + &mnld is the range of II(n, &,,) and

(8.3.23) H(C, 0)I(1, &m) = i&mIL(n,&m) -

In particular, the dimension of L, (¢) is «;. Since the &,, are pairwise distinct
the spaces L,,(¢) are in direct sum. Because, Nj = va;, this implies that
the eigenvalues i, of H((,0) are semi-simple and that

Li(¢)&...aL,(¢) =FFC,0).

For (¢,&) close to (¢, ék)’ II(n, £) is close to II(n, ék) and

- 1
ep(777£) = ﬁn(%f)ﬁo,p, 1 g p S Oéj
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form a basis of II(n,§)CY. In particular, {€,(n,&m}i1<p<a, i a basis of
L,,(¢). Since the Ly, are in direct sum the {€,(n,&m)}p,m are linearly inde-
pendent and form a basis of F¥(¢). The identity (8.3.21) implies that for all
[ and p,

(8'3'24) el,p(C) = Z Cl((»&n) gp(hvfm) .

m=1
Let ﬁp(() denote the space spanned by {€,(¢,&mn)}1<m<y. Then (8.3.24)

implies that H,(¢) € H,(¢). Since they have the same dimension, they are
equal and

Hi(Q)®... 0 Ho,(Q) = Hi(Q) @ ... © Hy, Q)
Li(¢)&...aL,(C) =FFC,0).

In addition, (8.3.23) implies that ]ﬁlp(() = H,(¢) is invariant by H(¢,0). The
matrix of H((,0)m,(¢) in the basis {€,(¢, &m) f1<m<y is diagonal with entries
{i&n}. It is independent of p. Since the coefficients ¢;(¢, &) in (8.3.24) are
also independent of p, it follows that the matrix of H((,0)jm,(¢) in the basis
{e1p(0) }o<i<v—1 is independent of p.

The e;,(¢) are smooth functions of ( and w* is dense in w. Therefore, it
remains true for all ¢ € w that H,(¢) is invariant by H((, 0), that Hy (¢)®. . .®
He, (¢) = F¥(¢) and the matrix of H(¢,0)jm, ¢y in the basis {e;,(¢) o<i<y—1
is independent of p. O

Using the bases {e; ,({)}, in the block decomposition

FF(¢) =Hi(Q) @ ... @ Ha,(C),

the lemma implies that the matrix of 7¥(¢,0) has the following diagonal
block structure
Q¢ -~ 0
(8.3.25) HAGO) = | o
0 ... QE
with Q(¢) = Q as in (8.3.4).
Lemma 8.3.5. Shrinking the neighborhood w if necessary, there are bases
in the spaces Hy,(¢) which are C*° in ¢ € w and such that

i) (8.3.25) holds and Q(¢) = Q,

ii) the matriz Q(C) has the special form (8.3.5) and its coefficients are
purely imaginary when v =0,

i) the lower hand corner entry of 0,Q(Q) is equal to —1/¢.
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Proof. Consider the canonical basis (e, ...,e,) of C¥. Using the notation
Q'(¢) = Q(¢) — @, define the matrix T' by T({)e, = e, and inductively
T(CQ)es = (J —iQ")T'({)ej41 for I < v. Because Q'(¢) = 0, there holds

T(()e; = ¢ for all I. Thus T(¢) = Id and T'(¢) is invertible for ¢ in a

neighborhood of . By contruction, (J—iQ'(C)Teg =Te_1 =TJe for | €
{2,...,v}. Therefore, the matrix Q'(¢) = T1QT — Q satisfies Q'(C)e; =0
for [ > 2. This shows that

ql(z) O --- 0

Q) =T()"QNT() =Q+ | & .
@w(z) 0 ... 0
Lemma 8.3.2 and (8.3.25) imply that

Qj

(D(¢, €))% = det (iH¥(¢) + €1d) = (det (iQ(C) + ad))

and therefore the monic polynomials of degree v det (ZQ(C) + &1 d) and
D(¢,€) are equal. Thus,

D(¢,€) = det (iQ(C) + ¢Id) = det (iQ(¢) + ¢1d)
=det (¢ — & )1d— J +iQ'(Q))

(8.3.26) )
=(E=&)"+ > ialQ) (-9
=1

Since D has real coefficients when = 0, this implies that the iq;(C) are real
and therefore that Q(¢) is purely imaginary when v = 0.
In addition, (8.3.26) and (8.3.9) imply that

oD Oqy, . —i
This implies (8.3.6) and the proof of Theorem 8.3.1 is complete. O

8.3.2 The generalized block structure condition

We now look for normal forms for H*(¢, p) for p # 0.

Theorem 8.3.6. There is a neighborhood w of (¢,0) in R x R and there

are invertible matrices V(¢, p) C*> on w such that

(8.3.27) VHE p)HF(C p)V(C, p) = Q(C) + pR(C, p) -
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where Q is given by Theorem 8.3.1 and
Ri1 -+ Rig,
(8.3.28) R = : - : )
Raj,l e R(ijéj

where the subblocks R, 4 are v xv matrices. Moreover, at p = 0, the matrices
R, 4 have the special form

* 0...0
(8.3.29) Rpg(GO)=1 * 0...0
rpq 0...0

In addition, denoting by R’ the o X oy matriz with entries rp 4, the matriz
GRe Rb(g, 0) is definite positive, where ¢ = 0yRe q,(¢) as in Theorem 8.3.1.

Remarks 8.3.7. a) Part of this result was originally established in [Zum],
under the additional assumption that A(n, ) and B(n, ) be simultaneously
symmetrizable, under which the matrices R’ may be chosen to be diagonal,
see Observations 4.11-4.12 and equations (4.102)—(4.103) of that reference.

b) In some cases, it may happen that the eigenvalues of iA(n,§) +
pB(n, &) have constant multiplicity in (n,£) and p. For instance, this is
the case of an artificial viscosity when B = —A, ;Id, in which case the
eigenvalues are i\;(n, &) + p(|n|* + €2). In this case, the analysis of the
previous section can be extended and one can put R in a block diagonal
form as well, that is R,, = 0 when p # ¢ and R,, = R. In, this case
R’ = r1d, where r is the lower left hand entry of R. However this extended
constant multiplicity condition is not always satisfied.

Proof of Theorem 8.3.6.
a) With 7 given by Theorem 8.3.1, we have

T HOH ¢ p)T(C) = Q) + pR(C, p)

for some matrix R((, p). Consider an additional change of basis is Id + pf'.
Then,

(Id+pT)"H(Q+ pR)Id+pT) =Q+pR, R=R+[Q,T]+O0(p).

Denoting by T}, , the blocks of ’j’(g, 0), the blocks Epg(g, 0) are R, 4(¢,0) +
[iJ,Tpq]. Consider the canonical basis (eq,...,e,) of C¥. Then Je; = 0
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and Je; = ¢;—1 for [ > 2. Define T}, ;, by T'e,, = 0 and inductively T}, ,e; =
JTp g€i+1 — iRp ge1+1 for | < v. Then [T}, 4, J]e; = —iRp 4e; for | =2,...v.
In this case, R, 4e; = 0 for [ > 2, showing that the blocks R, ; have the form
(8.3.29).

b) Thus, from now on we assume that (8.3.27) and (8.3.29) are satisfied.
We compute the Taylor expansion at (¢, & k) of the characteristic polynomial

of H* using Assumption 8.1.2 and the factorization (8.2.6). With ¢ = £-¢,
possibly complex, (8.3.2) implies

(it + Aj(n,£))1d + pB} = ite""1d + pB); + O(|¢'|"* + pl¢/| + %)
with B} = Bj(n,§,,0). Therefore, substituting in (8.2.7) yields

Aj(,n, €, p) = det (i€ 1d + pBj)
+O((ol + 1€ (€' + p)) -

Comparing (8.1.2) and (8.2.6) we see that

(8.3.30)

Ay —i7,m.& p) = E(C,€) det (i61d = HY(Q)
with £ # 0 near the (¢, £, ). We now compare the Taylor expansion (8.3.30)

of A; to the Taylor expansion of the right hand side. There we use the
following lemma, in which 7 is the block diagonal matrix

(8.3.31)

J ... 0
0 --- J

Lemma 8.3.8. Suppose that M(h) is a ojv x ojv matric with blocks My, 4(h)

depending smoothly on the parameter h, satisfying (8.3.29) and such that
M(0) = 0. Then there holds

det (€Id — J +iM(h)) = det(€”Id + ihdy, M°(0))
+O((Ih] + [€]) (I€]” + [R[)*),

where M” is the a; x o matriz with entries my,, which are the lower left
hand corner coefficient of Mp,,.
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We apply this lemma with parameter h = p and M = pR((, p). Recall-
ing that Q(¢) =4£, Id +iJ, it implies

det (i€1d — Q(¢)—pR(¢, p))

8.3.32
( ) = "% det (¢ Id + ipR’) + h.o.t.

where R is the aj X aij matrix with entries 7, , and E’ its value at the base
point. Thus, comparing the Taylor expansions (8.3.30) and (8.3.32), we find
that

det (B¢"1d — ipB’;) = E(¢)i" 1% det (¢"1d +iR’) .

Therefore, the eigenvalues of R’ are the eigenvalues of —¢~* ﬁ;-. With (8.3.6),
this implies

(8.3.33) Spectrum(¢R’) € {Rep > 0}.

c) As already used, see for instance (7.3.6), (8.3.33) implies that there is
a definite positive matrix ¥ such that Re ¢XR” is definite positive. Therefore,

(8.3.34) Re T '4R’T is definite positive,

where T =32"Y2. As R, T'is a a;j X a5 matrix. Consider 7 the va; x va;
matrix with blocks T}, ; = 1, ,Id of size v xv, where the ), ; are the coefficients
of T. Then S = 7! has blocks Sp,q = Sp,gld where the s, , are the entries
of S = T~!. Straightforward computations show that

7107 =0,
since the blocks of the first matrix in the left hand side are

Z SpnQlng = Qdpgq .

n

Next, the blocks of R =T 'RT are

(8.3.35) Ryg = spntmqBnm-

n,m

At the base point (¢,0) the columns 2 to v of R, ,, vanish and the same
property holds for Ep’q, showing that the form of the matrix R at the base
point is unchanged. Moreover, (8.3.35) implies that the matrix of the lower
left hand corner elements in R is B> = T~ R’T and thus Re -qINRb is positive

definite at the base point. O
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Proof of Lemma 8.3.8.
a) We start with a general remark. Consider a N x N matrix A with
entries a;;, depending on variables x. Assume that

aj,k<x) = ,j,k(x) + h.o.t.

where a; ;. is homogeneous of degree pj —vy and h.o.t denotes terms of higher
degree, here O(|z|[# 7+ +1). Then

(8.3.36) det A(x) = det A(z) + h.o.t.

and det A is homogeneous of degree p:= " pj — > 1. Indeed,

det A = Z €(0)aoy 1 Gy N

where the sum is extended over all the permutations ¢ of {1,..., N} and
€(o) is the signature of 0. Each monomial is equal to the corresponding one
with @ in place of a plus higher order terms, and the term with the a is
homogeneous of degree

Z(Hak — V) :Z,uok *Zl/k :Zﬂjle/k = H.

b) In our case, we consider the matrix A = £Id — J + ipM. Denote
by Ay 4 the blocks in A and by A, , 5 the entries of A, ,. Remember that
1<pg<aandl < ab < rv. We use a quasi-homogeneous version of
(8.3.36) with weight 1 on the variable £ and weight v on the variable p. To
be more specific, with £y and hq fixed, consider £ = t§y and h = t"hg with
t € [0,1]. Introduce the weights

Ppa =a+1, vgp=0>.

The diagonal terms in A are equal to &, homogeneous of degree 1 = f1,, . —Vp o
in ¢t. The entries N, 4 45 of N are zero or equal to —1 when p = g and b = a+1
which is homogeneous of degree 0 = p, o — Vp o+1. Introduce M = 9, M(0).
Then the form (8.3.29) of the blocks M, , of M implies that M, 4 q5(th)
vanishes when b > 1. When b=1

Mp,a,4.(th) = chOMp,mq,b + O<tzy) :
The leading term is homogeneous of degree v which is strictly larger than

Hpa — Vg1 = a if a < v, and exactly equal to pp, — vg1 = v if a = v. Thus,
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only the lower left hand corners of M, , have a non vanishing principal part
in the sense of a). Thus

det (t&old — T+iM(t"ho)) =

8.3.37
( ) det (t61d — J + it"hoM®) + Ot 1)

where the leading term is homogeneous in ¢ of degree ar and M’ is the

matrix with all entries equal to zero except M’ M, 01 =1y,

c) Grouping the indices the other way, i.e. considering the matrix A as
a block matrix with blocks Aa p with entries Ap a,q,b» We see that there is a
permutation matrix P such that

0 —Id 0
N—g+inmyp=1| 0 0 0Ky
0o - 0 -Id
ihMP 0 - 0

where M’ is the matrix with entries m,, .- Thus u € ker(§ld — J + ihM”)
if and only if v = P~lu € ker(¢Id + M), which means that the blocks
components v, of v satisfy v, = §’a_1v1 and v; € ker(hMb + {’”_1Id).
Therefore

det (€1d — J + ihM”) = det (€”1d + ih M) .
With (8.3.37) this implies that
det (t&old — T+iM(t"hg)) =

det ((t&)"Id + it"hoM’) + O(t**+1)

and the Lemma follows. O

(8.3.38)

8.4 Construction of symmetrizers near glancing
modes
8.4.1 Examples

We use examples to introduce the main three ingredients of the construction.
Consider the v x v matrix

00 0
841) Q=iJ4~yK, K= & ° Sl e {-1,+1),
(84.0) Lo (-1.+1)
o 0 0
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where J is the Jordan matrix in (8.3.4). The characteristic polynomial is
(8.4.2) det(uld — Q) = (1 — i 1v0).
When v > 0, the eigenvalues are

) 21
po=intet, g == 27
v 2v

There are no eigenvalues on the imaginary axis. The number of eigenvalues
in {Rep < 0} is

v/2 if v is even,

(8.4.3) v- =< (v—1)/2 if visodd and o = +1
(v+1)/2 ifvisodd and o = —1

Eigenvectors associated to py are ¢; := *(1, —ipy, ..., (—iw)""1). They all
converge to £(1,0,...,0) as v tends to zero.. Next, remark that (¢ —
$2)/(v"/*) tends to (0, e2im/v . .. .). Continuing the argument, one shows
that F_(v), the space generated by eigenvectors associated to eigenvalues in
{Ren < 0}, has a limit F_ as v tends to zero and that

(8.4.4) F_=C" x {0}

is the space generated by the first v_ elements of the canonical basis in C”.
This yields to define the space

(8.4.5) F, = {0}~ xC""-

the space generated by the last v —v_ elements of the canonical basis in C”.
In particular,

(8.4.6) C'=F_ oF,.

Remark 8.4.1. F, is not the limit of the space F(v), generated by
eigenvectors associated to eigenvalues in {Re u > 0}. This limit is the space
C¥7"= x {0}" generated by the first v — v_ vectors of the canonical basis.

We look for symmetrizers

(8.4.7) S=FE—iyF
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with

4.8) E = E! real,
F = —F"! real,

This implies that S = .S* is self adjoint. Moreover,
(8.4.10) SQ =iEJ+~(EK + FJ) —iv*FK .

Our goal is to construct F and F' such that

(8.4.11) (Sw,w) > k| w|* — I_w?,
(8.4.12) Re(iEJ) =0,
(8.4.13) Re(EK + FJ) > cld, withc¢>0,

where II, are the projectors on F, in the decomposition (8.4.6). The last
two properties imply that for « small enough

Re (SQ) > %Id.

Conditions (8.4.8) (8.4.12) are satisfied when E has the form

o - --. 0 el
. e
(8.4.14) E=| -
0
L (&) €9 €y ]

with coefficients e; € R. Moreover,

ocer Fii -+ Fiu
(8.4.15) EK + FJ =
o€y Fy,l s Fy,l/—l

In particular (8.4.13) requires that oe; > 0. Conversely, there holds:

Lemma 8.4.2. For all k > 1, there is a matriz E(k) of the form (8.4.14)
such that (8.4.11) holds and

1
(8.4.16) oer> .
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Next, the condition (8.4.16) implies that
1
(8.4.17) Re (EKw,w) > Z!wl\Z — Clw')?

where (w1, ws, ..., w,) are the components of w € C¥ and w’ = (wa, ..., w,).
Thus, for (8.4.13) to hold, it is sufficient that

1
(8.4.18) Re (FJw,w) > (C + 1)|w'|* — glwl\Q.

The existence of such an F' follows from the next lemma.

Lemma 8.4.3. For all C > 0, there is a matriz F satisfying (8.4.9) such
that

(8.4.19) Re (FJw,w) > Clw'|> — |wy |*.

Indeed, if F' satisfies (8.4.19) with the constant 8(C' + 1), F/8 satisfies
(8.4.18).

We now consider perturbations of (8.4.1):
(8.4.20) Q=1iJ +iQ'(n) +vK

where @)’ is a real matrix depending smoothly on the parameters n and
such that Q'(n) = 0. One look for symmetrizers which are perturbations of
(8.4.7):

(8.4.21) S=FE+FE(n) —iyF,
with E’(n) real and symmetric, vanishing at 7. In this case
(8.4.22) SQ = iEJ+iE' (J+Q)+EQ+y(E+E)K+F(J+Q"))—in’FK .

The real part of the term in 7 remains definite positive for 7 close to n. The
third ingredient in the construction of symmetrizers is the following result.

Lemma 8.4.4. For all real matrices Q' and Q" depending smoothly on the
parameters n and such that Q'(n) = Q" (n) = 0, there exists on a neighbor-
bood of 0, a real symmetric matriz E’(n)TCOO in n, vanishing at n and such
that E'(J + Q") + Q" is symmetric. a

Indeed, applying this lemma to Q” = EQ’, provides E’ such that
(8.4.23) Re (iE'(J + Q") +iEQ") =0.
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8.4.2 Proof of the main lemmas

Construction of E.
We start with examples and next consider the general case.
a) Consider the case v = 2. Then

o 0 €1 o 1 o 0
-8 2] eee[i]. neel]

One can choose e; = 0, and next es > k + 1 so that
(Fw,w) = eg\wg\g + 2e1Rewiws > /@]11)2\2 — \wl\g .

b) Consider the case v = 3. We look for

0 0 e
E=10 e 0
€1 0 €3

The reader can check that one can introduced a non vanishing term es in
the matrix F, to the price of modifying the specific choice of the parameters
below. There are two subcases:

b 1) o= +1. Then

1 0 0
F. =C|0]|, F,=C|1|@C|o0
0 0 1

Then we choose e; > k, so that ejoc > 1, since 0 = 1. Next we chose
e3 > Kk + €2 so that

(Bw,w) = e3|lws|*4+e1|ws|? + 2e1Re w13

> m\wg\z + /{\wg\z — |w1|2 )

b 2) o= —1. Then

1 0 0
F =C|0|eC|1 |, F, =C|O0
0 0 1
Then we choose e; = —1, so that e;jo0 = 1. Next we choose e3 > k 4+ 1 so

that
(Bw,w) = ez|ws|*—|wa|* — 2Re w, w3

> klws|* — Jwa|* — |wi|?.
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c) We now come to the general case v > 4.
With E of the form (8.4.14), consider

Op(w) = Y €jh Wi,
J:k<p

where it is agreed that e, = 0 when [ < 0. In particular, ®,(w) =0if 2p < v.
Note that
(Bw,w) = ®,(w).

Then

P
(8.4.24) Ppi1(w) = Pp(w) + €2p+2—u‘wp+1’2 —2Cy Z [wj|[wp1]
j=1
with

C, = .
p = nax e

Choose sequences «y, and 3, with o1 < @y, Bpr1 > Bp, 140 =2, b1 =
3/4 and o, = 5, = 1. With v_ given by (8.4.3) we show that one can choose
the coefficients e; so that (8.4.16) holds and for p > v_ + 1:

(8.4.25) Pp(w) = apk Z |wj|2 ﬁpZ‘wJP

J=vr_+1

We proceed by induction on p, getting (8.4.11) for p = v. Indeed, (8.4.24)
implies that

p 2
C
Opi(w) > apr Y |wy? + (eapray — ?p)|uhv+1|2
Jj=r_+1

—@JZ‘“’J’Q _52‘“@’

7=1
p+1

Z Qpi1k Z |w]| _5p+1Z’wJ|
Jj=r_+1

if € is small enough and ey 10—, — C’g /€ > aypk, which can be achieved since
C) depends only on the ¢; with [ < 2p 4+ 2 — v. Thus it remains to prove
(8.4.25) forp=1+wv_.
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cl) If v =2/ is even, v_ =1/ and
2 —
D, 1(w) = ea|wy 11| — 2e1Rew, Wy .

We proceed as in step a): choose e; such that e;o > 1/2 and next choose e
such that

1
O, p1(w) > 26|wyr 1] — 5\101/\2-
c2) If v =2/ +1is odd and o = +1, then v_ =/ and
Oyrp1(w) = erwyga[*

It is sufficient to choose e; > 2k.
c3) fvr=2V+4+1isodd and 0 = —1, then v_ =1/ + 1 and, if e5 = 0,

<I>,,/+2(w) = €3|’UJV/+1|2 + €1|’wl,/+1|2 + 2€1Re wV/+1@V/+2 .

Choose e; = —1/2 and next eg large enough, so that
2 3 2
(DV/_;’_Q('LU) Z 2/1"11}”/_;'_1‘ — Z|wl,/+1| .

The proof of Lemma 8.4.2 is now complete. O

Construction of F.
a) Start again with the case ¥ = 2. In this case,

o —f _To o
P[0 d] mer0 0]

Thus,
Re (FJw,w) = flws|?.

b) Consider the general case, v > 3. We look for F' as a tridiagonal
skew symmetric real matrix:

[0 —fi 0
fi 0 —f2 0
L 0 er . )
: 0
0 _fu—l
0 f 0
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with coefficients f; > 0. Then

v—2
Re (FJw,w) ij 1\w]| ZRefjwj""ij'
j=1

Thus, with a; = /4 and next a; = f]?/ij_l, there holds

14
Re (FJw,w) = —!w1!2+z Fitlwil> =~ ajaluwj|*.
=3

Since aj_p only depends of the f; for I < j — 1, one can choose the f;
inductively so that (8.4.19) is satisfied. O

Proof of Lemma 8.4.4.
With ¥ = 'Q"” — Q" skew symmetric, vanishing at 7, we have to solve
the equation

(84.26) E'(n)(J+Q'(n) =" (J+Qm)E'(n) =%(n), E'(n)="E'(n).

The first equation is a linear system of v(v — 1)/2 equation for v(v + 1)/2
unknowns because of the symmetry of E’. The linear operator J : E' —
E'J —'JE" maps the space of symmetric matrices to the space of skew
symmetric matrices. Its kernel is the space of matrices of the form (8.4.14),
thus its dimension is v. Hence, J has rank equal to v(v —1)/2 and therefore
it is onto.

More specifically, one can consider the space E' of symmetric matrices

of the form _
;| B0
=[5 ol

with E' real, symmetric of dimension (v—1)x (v—1). This space of dimension
v(v —1)/2 intersects the space of matrices (8.4.14) at E’ = 0. Therefore, J
is an isomorphism from E’ to the space of skew symmetric matrices. Hence,
for n close to n, the mapping E' — E'(J + Q'(n)) —'(J + Q'(n)) E' is still
an isomorphism from E’ to the space of skew symmetric matrices and the
lemma follows. O
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8.4.3 Proof of Proposition 8.1.6 near glancing modes

Consider ¢ € S¢ with v = 0 and a real root €, of (8.3.1) satisfying (8.3.2)
with v > 2. By Theorem 8.3.6, we know that there is a smooth matrix
V(¢, p) on a neighborhood of (¢,0) such that

HE(C, p) == V7HE ) HR(C, p)V(C, p) = QC) + RS, p).

O and R have the properties listed in Theorems 8.3.1 and 8.3.6 respectively.
It is sufficient to construct symmetrizers for ﬁk, since a symmetrizer S
for H* provides a symmetrizer (V=1)*SV~! for H*.
We construct S in the block decomposition (8.3.3) (8.3.28) of Q and R:

S 0
(8.4.27) S=10 . 0|
0o S
with v x v blocks S
(8.4.28) S, p)=E+ E'(n) —iyF —ipF’,

where F and FE are real and symmetric matrices, and F and F’ are real
and skew symmetric. The idea is that E + E' — ivF is a good symmetrizer
for Q, as suggested by the analysis above, and that —ipF” is a perturbation
analogous to —iyF which takes care of the perturbation pR.

With obvious notations we denote by £, £, F and F’ the block diagonal
matrices

E 0 F' 0
(8.4.29) E=1 0 o0l s F=1| 0 . 0
0 FE 0 F

By the analysis of the example (8.4.1), we have good candidates for the

limit of the negative space F¥. By (8.3.26), there holds

det(uld = Q(0)) = " (§” + Y iau(¢)e" ")
=1

with p =4(§ = ¢,). Atn=1n ¢ =7+ O(7?) and one checks that for
v > 0, the number v_ of eigenvalues of @ in {Reu < 0} is given by (8.4.3),
with o = sign ¢. Consider

(8.4.30) E =C" x{0}"", E, ={0} xC/ "
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Thus
C'=E_ oE,

In the block decomposition of CVt into a;j factors C¥, let
(8.4.31) F, =E;®---®E;.

Therefore, the splitting (8.1.11), CN* =F_ & F, holds and dimF_ = ajv_
is the number N, _ of eigenvalues of Q in {Re p < 0}, when v > 0, and thus
also the eigenvalues of H* in {Repu < 0} when v > 0 and p > 0.

The order of the construction is as follows.
1. First one chooses E real and symmetric, using Lemma 8.4.2. The
real coefficient e; satisfies (8.4.16) and adding up the estimates (8.4.11) in
each block C¥ yields:

(Ew,w) > k| w* — [I_w?,

where I, are now the projectors on F,. Thus (8.1.13) is satisfied.

2. Using (8.3.4), the Taylor expansion of @ at v = 0 reads

(8.4.32) QC) = Q +1iQ'(n) + vK(() -

By Theorem 8.3.1, (1) has real coefficients. Therefore, by Lemma 8.4.4,
there are real symmetric matrices, E’'(n), depending smoothly on 1 and such
that

E'(J+Q)+ EQ" is symmetric.

In the analysis of the example (8.4.1), we have seen that Re (iEJ) =
Thus, since @ = i(§,Id + J), we have

Re ((E+ E')(Q +iQ")) =
Therefore,
(8.4.33) Re SHY = 7®(C) + p@'(¢, p)
with
(8.4.34) ®(¢) = Re (EK(¢) + FT) ,
(8.4.35) ®'(¢,0) =Re (ER((,0) + F'J) .

Here, K [resp. J] is the block diagonal matrix with diagonal entries equal
to K [resp. J].
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3. The special form (8.3.5) of @ and (8.4.16) imply that

v v

Re (EK(Qw,w) =erdlur[* +Re > > ejsn—y0yqe(Q)un;
j=2 k=v—j+1
q
> lju 2 — cofur?,
with w’ = (wa,...,w,). Here, Cj is a constant which may depend on the

coefficients e;, thus on k.
Applying Lemma 8.4.3 with C' = 8(Cy+1)/|¢|, and multiplying by |¢|/8,
one obtains a skew symmetric matrix F' such that

Re (7w, w) > Colu' P+ L (/]2 — fun?)

Therefore,
4]

Re (EK({) + FJ) > S

hence )
Re (SIC(Q) —|—.7-"j) > ‘?Id.

Thus, for ¢ in a neighborhood of ¢, there holds:

(8.4.36) o(() > Mld.
10
4. Introduce a notation. In the decomposition CNt = C* @ ... & CV,
a vector w € CMk is broken into a;j blocks w, € C", and the components
of wy, are denoted by w,,. We denote by R, , the v x v blocks of R and
by Ry 44, their entries. The entries of E are denoted by E, ;. By (8.3.29),
Ry a,45(¢,0) = 0 when b > 1. Then

Re (ER(C,0)w,w) =Re Y Eq Ry a.q.1(C,0)wg 1Ty,
= Re Z €17p,¢(C, 0)wq1Wp1 + OJwi 1| [wl]),

where w,; € C% is the collection of the first components wy; and w)
denotes the other components. Moreover, 7, = R}, 4,1 the lower left hand
corner entry of R,,. By Theorem 8.3.6, qR (¢,0) is definite positive. By

(8.4.16), e1 and ¢ have the same sign. Therefore, the matrix Re (e1 R’(¢,0))
is definite positive. Hence, there are ¢ > 0 and C4 such that

Re (ER({, 0)w,w) > clw 1> — Crjwl .
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By Lemma 8.4.3, there is a skew symmetric matrix F’ such that
c
Re (F’pr,wp) > Cl‘wglo‘Q + 5(’“’;/7’2 - ’wp71|2)~
Hence, the block diagonal matrix F’ satisfies
c
Re (F'Jw,w) = Crlw,]* + 5 (wi]* = [we]).

Therefore,

Re (ER(,0) + F/J) > -1d

¢
2
and for (¢, p) in a neighborhood of (¢, 0):
(8.4.37) 3/ (¢, p) > ZId.

5. Summing up, we have constructed by definition (8.4.28) a self
adjoint matrix S(¢,p), which satisfies (8.1.13) and, by (8.4.33), (8.4.36)
(8.4.37), such that

ReSHF > (v 4 p)ld, ¢ >0,

for v > 0 and p > 0. This finishes the proof of Proposition 8.1.6, hence of
Theorems 8.1.5 and 7.5.2.

201



Chapter 9

Linear and nonlinear
stability of quasilinear
boundary layers

In this chapter, we briefly describe the main results of [MZ1]. They extend to
the multidimensional case the results obtained by E.Grenier and F.Rousset
([Gr-Ro]) in dimension one. They also extend the results of E.Grenier and

0O.Gues ([Gr-Gu]) and M.Gisclon and D.Serre ([Gi-Se]) which where ob-

tained under a smallness assumption.
9.1 Assumptions
We consider on ]R_lﬁd the hyperbolic system (5.1.1)
d
(9.1.1) L(u,0)u = dyu+ Y _ Aj(u)dju=F(u)+ f

=1

and a parabolic viscous perturbation (5.1.2)

(9.1.2) L(u,0)u — ¢ Z 9;(Bjk(u)0pu) = F(u) + f.

1<j,k<d
with Dirichlet boundary conditions:

(9.1.3) Ujpeo = 0.
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We suppose that the hyperbolicity-parabolicity Assumption 5.1.1 is satisfied.
Let us comment here the assumptions. The Assumption (H1) means that

the perturbation
B(u,0) = > 0;(Bjr(w)d - )

is uniformly parabolic. (H2) means that L is hyperbolic, at least when the
state u remains in the domain /. The important Assumption (H4) means
that the boundary {z = 0} is noncharacteristic for L. The Assumption
(H3) is a compatibility condition between L and B. For example, when
B = A, is the Laplacian, (H1) is trivial and (H3) follows immediately
from (H2). When (9.1.1) is a system of conservation laws which admits
a strictly convex entropy 7n(u), the system is symmetric hyperbolic. If in
addition, Re (n"(u) Y- &&kBjk(u)) is definite positive for all £ # 0, then the
assumptions (H1) and (H3) are satisfied.

The solutions of (9.1.2) are expected to be of the form
(9.1.4) ut(t,y,x) = Up(t,y,x,x/e) + Uy ...

where, for (¢,y) in the boundary, w(-) = Uy(t,y,0,-) is a solution of the
innerlayer ode (5.2.2), connecting 0 to

lim Uy(t,y,0,z) = uo(t,y,0)
zZ— 0

where ug(t,y,x) is the solution of the limiting hyperbolic boundary value
problem. Following [Gr-Gu], if ug(t,y,0) is small, there is a unique small
profile w connecting 0 and wg if and only if uy(t,y,0) € C, where C is
a smooth manifold of dimension N_, see Proposition 5.4.1. Similarly, if
uo(t,y,0) remains close to p and w connects 0 to p and is transversal in
the sense of Definition 5.5.4, there is a unique profile w connecting 0 and
up, close to w, for up(t,y,0) € C, a smooth piece of manifold of dimension
N_ near p, see Proposition 5.5.5. In general, we have to assume that the
connection w is given and this leads to the next assumption.

Assumption 9.1.1. We are given a smooth manifold C CU and a smooth
function W from C x [0,00[ to U*, such that for all p € C, w, = W (p,-) is
a solution of (5.2.2) and wy(2) converges to p when z tends to +o00, at an
exponential rate, which can be chosen uniform on compact subsets of C.

Assumption 9.1.1 is the natural analog of assumption (H4), [Zum]|, made
in the planar shock theory. For the limiting hyperbolic problem (9.1.1) one
considers the boundary conditions:

(915) U|m:0 € C .
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For all p € C, we can form the linearized equation (6.1.2) around w,, and
the corresponding Evans function D(p, () (6.3.14) or the scaled Evans func-
tion D(p,¢) (6.3.16). They are defined for ¢ # 0, ¢ € R = {(mym,7y) €
R*+1: 4 > 0}. Similarly, we can form the linearized hyperbolic equation
(6.1.6) around the constant solution p. Together with the linearized bound-
ary conditions

ﬂ|m:0 S TpC,

we can define the Lopatinski determinant D(p, Cv) (6.2.8), which is defined
for ¢ € 5% := { = (7,,7) e RP|C =1, 5 > 0).

According to Definition 6.3.5, the strong or uniform stability condition
reads:

Assumption 9.1.2 (Uniform stability condition). For all compact K C

C, there is a constant ¢ > 0 such that for all p € K and ¢ € Riﬂ\{()}, there

holds:

(9.1.6) ID(p,¢)| > ¢

Remarks 9.1.3. a) The stability conditions are conditions on the “frozen
coefficient” planar boundary value problems associated with the inner layer
solution. They are natural analogs of those defined in [Zum] for the planar
shock case. In the one-dimensional boundary layer case, Assumption 9.1.2
reduces to the condition imposed by Grenier and Rousset [Gr-Ro]. For
extensions to the multidimensional case, we refer to [GMWZ1], [GMWZ2].

b) The uniform stability conditions involves three regimes for ¢. For
medium frequencies, it just means that D(p, () does not vanish. For high
frequencies, the analysis of section 7.3, shows that is is equivalent to the well
posedness of the parabolic problem

Oyu — Z aj(Bng(O)aku) =f, Ujyeo = 0,
7.k

(see also [Zum], Lemma 4.28). In particular, by Remark 7.3.3 the condition
(9.1.6) is satisfied for large ( if the parabolic system is symmetric.

c¢) Theorem 6.4.1 gives equivalent conditions for the validity of the
uniform condition (9.1.6) for low frequencies: it holds, if and only if the
profile wy(-) is transversal for p € C and the limiting hyperbolic problem
(9.1.1) (9.1.5) satisfies the uniform Lopatinski condition (see [Rol] and also
25)).
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d) When the system is symmetric and the parabolic term is the Laplace
operator, it is proved in [Gr-Gu], that for then for small amplitude layers,
i.e., for p in a suitably small neighborhood of 0, there is a unique manifold C
and connection W having the properties above; moreover, the transversality
condition is satisfied. They also prove that the boundary conditions (9.1.5)
are maximally dissipative, when wu is small. In the large, we substitute
for maximal dissipativity the more general uniform Kreiss-Lopatinski-Evans
condition.

9.2 Linear stability

By Theorem 6.4.1, under Assumptions 5.1.1, 9.1.1 and 9.1.2, the mixed prob-
lem (9.1.1) (9.1.5) satisfies the uniform Lopatinski conditions, and therefore
the mixed initial boundary value problem can be solved for initial conditions
which satisfy sufficiently many compatibility conditions (see [Maj], [Ra-Ma],
[Mok], [Mé2]).

Consider a smooth enough function ug on [T, T] x R%, which is to be
thought as a solution of the hyperbolic boundary value problem. For the
moment, we only assume that ug satisfies the boundary condition (9.1.5).
By definition of the boundary condition, there are profiles

(921) U)()(t, Y, Z) = W(UO(tvyvo)’Z)

connecting 0 to ug(t,y,0). To extend the definition to x > 0, it is convenient
to extend the definition of W(p, z): consider a compact subset X C C and
assume that ug(t,y,0) € K for all (t,y) € [-T,T] x RI~1.

Lemma 9.2.1. There is a neighborhood 2 of K inU and a C*° function 1%
on  x Ry such that

i) W(p,0) =0,
it) for all all multi-indices (o, k), there are § > 0 and C such that

VpeQ,Vz>0: ‘(‘90‘81“( p)‘SC’e_‘SZ

iii) when p € C then W (p,z) = W (p, 2).

Proof. Near p € C, one can use coordinates p = (p,p”) such that C is given
by the equations p” = h(p’). Then one can extend locally the function W
as

W(p,2) =W, 2)+ (p" — h(p)) tanhz.

Gluing the pieces by a partition of unity yields the result. O

205



9.2.1 L? stability

Assume that
(9.2.2) ug € W*([-T,T) x RL), oo € K.

Introduce

(923)  ug(t,y, 2) = x(@)W(uo(t, y, ), p(x)/€) + (1 = x(2))uolt, y, ) ,

where x € C*°(R) is equal to one on a small neighborhood of 0, so that
ug(t,y,z) € Q for x in the support of x. By construction, it satisfies

(9.2.4) oioe = 0.
u§ — ug = O(e™0%/%),

Thus, vy is a perturbation of ug in the interior, that is for > 0. The claim
is that v is close to a solution of (9.1.2) if ug is a solution of the hyperbolic
problem. In this direction, the main step is to prove that the linearized
equations from (9.1.1) around uf are stable. For applications, we need a
little more. The BKW solutions will have the form ug,, = ug +euf + g2....
Since the term wuj depends on the rapid variable z/e, euj is bounded in
WL but is not a perturbation of ug is this space. To study the linear
stability of ug and ug,,, we suppose that we are given a family of functions
v® € W2([-T,T] x R%) such that

(9.2.5) sup (HUEHLOO + 1eVe0vf|| e + Hévﬁxvsum) < .
€€]0,1]

Consider,

(9.2.6) ug, = ug + v

and the linearized equation from (9.1.2) around ug,, reads

The differential operator P,s is first order in ¢ and second order in (y,x).
it is given by (6.1.2) when u(t,y,z) = w(w/e). In the general case, its
coefficients depend on the fast variable /¢ as in (6.1.2), but in addition on
the slow variables (¢,y, z).

The first result of [MZ1] is that, under the Assumptions 5.1.1, 9.1.1 and
9.1.2, the equations (9.2.7) are well posed in LZ.
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Theorem 9.2.2 (L? stability). There are C > 0 and ey such that for all
e €]0,e0] and f € L*([-T,T) x Q) wvanishing for t < 0, the equation (9.2.7)
has a unique solution which vanishes for t < 0. Moreover

(9.2.8) lullzz + VEIVyeul gz + 2|V qull2 < Ol fll2 -

The estimate (9.2.8) is the exact analogue of the basic uniform L? es-
timate of Theorem 3.3.2, see (3.3.16). However, the proof is much more
delicate, even in the case of symmetric operators. Let us point out where
the difficulty lies. The coefficients of P,: depend on the rapid variable z /e
and thus are not (uniformly) Lipschitzean. Moreover, the zero-th order co-
efficient of u in P,: has a factor % in front of it. Thus the usual energy
method using integration by parts yields singular and unsigned terms, and
therefore we get in the right hand side bad terms in

(9.2.9) g/a|ul2dtdyd:v

where the coefficient o depends on z-derivatives of the profile W. There is
no way to absorb this term by a zero-th order term of the left hand side.
However, on the left hand side there is a gain of

(9.2.10) cs/ |0y u|?dtdydz .

Because a depends on rapid derivatives of W, it is exponentially decaying:
(9.2.11) la(t,y,z)| < W*eb2/¢

for some 6 > 0. The bound W* is a measure of the strength of the boundary
layer W. Because © = 0 when = = 0, there holds a Poincaré estimate

1
g/e_ex/E\UIthdyda: < Cge/\é?wu]thdyda:.

Indeed, this estimate is clear when £ = 1 and follows for € €]0, 1] by scaling.
Therefore, the bad term (9.2.9) is estimated by

CCOW*s/ |0y u|?dtdydz .

It can be absorbed from the right to the left, that is controlled by the good

term (9.2.10) if
c

CCy’
This is exactly where the smallness assumption in [Gr-Gu] comes in. The
main objective of Theorem 9.2.2 is to replace the smallness condition by the
Assumption 9.1.2.

W* <
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By localization in time, which can be obtained along the lines developed
in Chapter two, the estimate (9.2.8) follows from a weighted estimates for
solutions on }Rfd. One can extend ug and the v¢ for ¢t > T and t < T, so
that (9.2.2) and (9.2.5) hold on led‘ We still denote by ug the extended
function defined by (9.2.3) and by ui, = u§+cv®. Similarly, P,: denotes the
linearized operator around the extended u;. The theorem follows from the
estimates:

Ve M2 + vETIeT " Vypullze +elle™ Vy Vy aul 2

9.2.12
( ) <C e Pusul| Lz -

When « is a profile w(z/¢), the linearized equation is studied in Chapter
seven and the estimate (9.2.12) is proved in Corollary 7.1.2. The proof is
based on the use of symmetrizers, which are Fourier multipliers

S(z, Dy, Dy, y)u = F* (S(w, 7,1,7)Fu(z, T, 77))

where F denotes the tangential Fourier transform. In general, the coef-
ficients of P,: depend on the slow variables (Z,y), so that the method of
Fourier multipliers does not apply directly. However, there are known sub-
stitutes for it: this is the role of pseudodifferential calculus to extend the
constant coefficients calculus of Fourier multipliers to the variable coeffi-
cients case. In short, after the analysis of Chapter seven provides us with
symbols S(t,y,x,() associated to planar layers obtained by freezing the
slowly varying coefficients of Py:. By the pseudodifferential calulus, oper-
ators are associated to these symbols. More precisely, since the coefficients
have a finite smoothness, we use the paradifferential calculus of J.M.Bony
([Bon])(see also [Mey], [Hor], [Tay| and [Mél] [Mok] [Mé2] for the calculus
with parameter «y). Indeed, because of the parabolic nature of the equation
in the high frequency regime, we need extensions of the classical culculus.
All the details are given in the Appendix B of [MZ1]. The main idea, is that
the properties (7.2.2), (7.2.3) (7.2.4) of the symmetrizers as operators in L?
follow from the similar properties of the symbols as matrices. We refer to
[MZ1] for the details.

9.2.2 Conormal stability

The next step is to prove estimates for the derivatives of the solution u. As
explained in Chapter three, one cannot expect uniform estimates in usual
anisotropic Sobolev spaces. Instead, as in Chapter three, we prove estimates
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in the spaces with conormal regularity. Such spaces have already been widely
used in the study of characteristic hyperbolic boundary value problems, see
e.g. [Rau2], [Gu2|. Introduce again the vector fields {Zy;k = 0,...,d} as in
(3.4.9) and the spaces HE,([-T,T] x R%) as in Definition 3.4.4:

HY ={uel?® :Zy ... Zuel?,

9.2.13
( ) Vp <m V(ki,... kp) €{0,...d}"}

In order to solve nonlinear problems, we need work in Banach algebras
which means here that we have to supplement the H;, estimates with L
estimates. Introduce the following norms

o
(9.2.14) lullwe @y = lullee +> > N Zky - Ziyull o~
p=10<ky,....kp<d

Reinforcing (9.2.2) and (9.2.5), we now assume that m is a positive
integer and that up and v° satisfy on [T, 7] x €2,

up € W2 U |p—o € K,
(9.2.15) sup o vz + £l Vee vz + e[ Vavellwe < oo
£€|0,1

Theorem 9.2.3. There are C > 0 and go such that all ¢ €]0,e0] and all
f € H([-T,T] x RL) vanishing for t < 0, the solution of equation (9.2.7)
which vanishes for t < 0, belongs to HI([-T,T] x Ri) and satisfies
(9.2.16) lullzz, + VEldzullaz + ¥ 105ull g < CI il

co —

If in addition m > 2 + L and f € L>®([~Tp, To) x ), then the solution u
also satisfies

(9217)  lullwz, + elldsullwy, + *10Zullze < C(Iflrem +ell fllz=) -

These estimates are parallel to the estimates (3.4.14) of Proposition 3.4.5.
Usually, one derives the Sobolev estimates by tangential differentiation of
the equations. This was used in Chapter three, as well as in Chapter two.
Here, this procedure leads to difficulties: due to the fact that there is an
e~ ! term in the equation, and the commutator of [Pus, Z%] leads to extra
singular terms which are not controlled. Instead, in [MZ1] we use again the
symmetrizer technics, and prove directly the H] estimates.

Knowing the H]} regularity, the L*° estimates follow as in Proposi-
tion 3.4.2.
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9.3 Nonlinear stability

These results can be used to solve the nonlinear equations (9.1.2). In order to
avoid technical discussions on compatibility conditions for the Cauchy data
and the boundary conditions, we consider here the simple case where the
Cauchy data for (9.1.1) and (9.1.2) are zero, but with a non trivial forcing
term, see [Gr-Gu]. More precisely, we consider F'(u) such that F'(0) = 0 and
a source term f which vanishes in the past. Consider indices m and sg such
that

d+1 d+1
(9.3.1) m > i, 50 >m—|—37+ .
2 2
Let
(9.3.2) f e H*([-Tp,To) x RL) with fi,.0=0.

Assume that the state © = 0 belongs the domain of hyperbolicity /. Since
the hyperbolic problem satisfies the uniform Lopatinski condition for states
u € U, there is T €]0,Tp] such that (9.1.1) (9.1.5) has a solution ug in
H*([-Ty,T] x R%) which vanishes for ¢ < 0. In this case, uf given by
(9.2.3) vanishes for ¢ < 0 and is an exact solution of (9.1.2) there. We show
that this solution can be continued to [0,7] x Ri and that ug is a good
approximation.

Theorem 9.3.1. There is g > 0 such that for all € €]0,g9] the problem
(9.1.2)(9.1.3) has a unique solution u¢ € H™ N L>®([-T,T] x R%) which
vanishes for t < 0. Moreover,

(9.3.3) lu — ugllmm + |lu—ug|lze = O(e).

As in [Gr-Gu], one can construct BKW solutions, thanks to Theorem
6.4.1 which implies that both the hyperbolic equations and the inner layer
o.d.e. are well posed. To prove the theorem, it is sufficient to construct
a first corrector u§ such that uj = 0 for ¢t < 0, i = 0 on {z = 0} and
u;, = ug+euj satisfies equation (9.1.2) up to an error e = O(¢). Indeed, when
one substitutes u§ in (9.1.2), the O(e™!) term is killed by the choice (9.2.3)
and because W satisfies (5.2.2) when the boundary condition is satisfied.
The interior term vanishes since wug is a solution of the hyperbolic equation.
However, it remains an O(e %%/¢) term (see the similar computations of
Chapter four). The corrector uj, given by a formula analogous to (9.2.3), can
be chosen to cancel this term (see the general discussion of BKW solutions in
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[Gr-Gu] and Chapter four). Then the solution u® is constructed as u + ev®,
where v® solves

(9.3.4) Pusv® +eQ(v°) = f = e te

and Q is at least quadratic in v. Denoting by ||-||xm [resp. [|-||ym=] the norm
given by adding the left [resp right] hand sides of (9.2.16) and (9.2.17) one
proves that

leQw)llym < et C(M),

(9.3.5)
le(Q(v5) — Q(v5))[lym < e/4C(M) [lvr — val|2em ,

provided that

ellvrflp~ <1, ellorflz <1

(9.3.6)
elorlam <M, elvrfam <M.

Together with Theorem 9.2.3, this shows that the equation (9.3.4) can be
solved in X, provided that ¢ is small enough. We refer to [MZ1] for a
detailed proof.

As a conclusion, we note that the results in Theorem 9.2.3 and 9.3.1 are
not quite satisfactory. Because (9.1.2) is parabolic, one should expect the
solutions to be smoother than the solutions of (9.1.1). Here we get a result
going the wrong way. We start from a very smooth solution ug of (9.1.1) and
we end up with less smooth solutions of (9.1.2). This is clearly related to the
method of proof, and a direct proof of existence with uniform estimates for
(9.1.2), without using the solution ug of (9.1.1) would be very interesting.
In any case, the stability analysis in Theorem 9.2.2 is a key point
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