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Introduction

These notes correspond to lectures and graduate courses given in Brescia,
Bordeaux and Toulouse. They are intended to serve as an introduction to
the stability analysis of small viscosity boundary layers which is developed
in [MZ1]. There is a huge literature concerning formal asymptotic analysis
or WKB expansions for boundary layers using multiple scale analyses, in-
cluding sophisticated multiple layers expansions and matched asymptotics.
Here we study the basic problem of a single layer, but focus on the stabil-
ity analysis, aiming to give rigorous justification of the approximation of the
exact solutions by the formal or asymptotic expansions. These notes are not
intended to give an hypothetic complete treatment of the problem. Instead
they aim to point out a few important features:

- existence of exact solutions of hyperbolic and parabolic problem, in-
cluding stability estimates allowing to estimate the difference between exact
and approximate solutions;

- analysis of the nonlinear inner layer o.d.e. which arises for quasi-
linear systems, making a link between its stability and a geometric transver-
sality condition;

- formulate almost necessary and sufficient conditions for the multi-
dimensional plane wave stability of the inner layer, in terms of an Evans
function;

- extend the Kreiss construction of multidimensional symmetrizers
to hyperbolic-parabolic problem, proving the basic L2 estimate for linear
stability.

To be more specific, consider a N ×N system

∂tu +
d∑

j=1

Aj(u)∂ju− ε
d∑

j,k=1

∂j
(
Bj,k(u)∂ku

)
= F (u) ,

The variables are (t, x) ∈ R × Rd. The equation is considered for x in a
smooth domain Ω ⊂ Rd and supplemented with boundary conditions. Here
we consider homogeneous Dirichlet boundary conditions:

u|∂Ω = 0 .
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We assume that the first order part is sufficiently hyperbolic, for states
u ∈ U ⊂ RN and that the second order singular perturbation is elliptic. A
major assumption in the analysis below is that ∂Ω is noncharacteristic for
the hyperbolic part:

∀u ∈ U ,∀x ∈ ∂Ω : det
( ∑

njAj(u)
) '= 0 ,

where n = (n1, . . . , nd) is the normal to the boundary. ε is a positive param-
eter which, in applications, measures the strength of the viscous or dissipa-
tive phenomena. The goal is to understand the behavior of solutions when
ε tends to zero. The limit is expected to satisfy the hyperbolic equation

∂tu +
d∑

j=1

Aj(u)∂ju = F (u) .

The main questions are:
1 - existence of solutions for t in an interval of time independent of ε.

This is not an easy consequence of know results for parabolic systems, since
the parabolic estimates break down as ε → 0;

2 - identification of the boundary conditions for the limiting hyperbolic
problem; well-posedness of this boundary value problem;

3 - convergence of the solutions of the viscous equation to the solution
of the inviscid problem.

A general approach to answer these questions is to proceed in two steps:
- first, one constructs approximate solutions by multiple scale ex-

pansions. This construction provides the good candidate for the limiting
boundary conditions of question 2; it relies on the well-posedness both of
the inner-layer equation and of the limiting hyperbolic boundary value prob-
lem;

- second, one studies the linear and nonlinear stability of the ap-
proximate solutions. The stability conditions are in general much stronger
than the conditions necessary for the construction of approximate solutions.
There are examples of strongly unstable approximate (or even exact) solu-
tions see for instance [Gr-Gu]. Indeed, the existence of unstable layers is a
well known occurrence in fluid dynamics. In the favorable cases when the
layers are linearly stable under multidimensional perturbations, they also
are nonlinearly stable and one can exhibit exact solutions which are small
perturbations of the approximate solutions, answering questions 1 and 3
above.
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These notes can be divided in two parts: the first one, Chapters one
to four is devoted to linear and semilinear systems. We present most of
the analysis in [Gu1] about noncharacteristic semilinear layers, including
a detailed exposition of the existence and regularity theory for symmetric
hyperbolic boundary value problems. The second part, from Chapter five to
the end concerns quasilinear systems. We focus on two important aspects of
the analysis: the study of the nonlinear inner layer equation, and the plane
wave stability analysis which yields to the stability estimates in [MZ1].

Part 1: semilinear layers.
For linear equations the analysis of boundary layers in a general setting

as above, is studied in [BBB], [Ba-Ra], [Lio]. Next we mention the important
work of O.Guès ([Gu1]) where the semilinear case is solved in great details.
He constructs and rigorously justifies high order approximations. Moreover,
his analysis includes the completely different case of characteristic equations.

In Chapter one we study the elementary example of viscous perturba-
tions of a transport equation:

∂tu + a∂xu− ε∂2
xu = f .

In this example, explicit computations are available and most of the phe-
nomena can be easily observed.

In Chapter two, we give a detailed analysis of the hyperbolic mixed
Cauchy problem for symmetric operators (see e.g. [Fr1], [Fr2], [Fr-La],
[Tar]). For simplicity, we restrict attention to constant coefficients equa-
tions, but, with the additional use of Friedrichs Lemma our presentation is
immediately adaptable to variable coefficients. We follow closely the presen-
tation in [Ch-Pi] to derive existence, uniqueness, smoothness, the causality
principle for linear equations, from weighted L2 estimates. Next, we carry
out the analysis of semi-linear equations, using Picard’s iterations. With one
more degree of smoothness, this method extends to quasilinear systems, as
shown, for instance, in [Maj],[Mok],[Mé2]. We also give a detailed account
of the compatibility conditions at the corner edge, which are necessary for
the existence of smooth solutions, both in the linear and nonlinear mixed
Cauchy problem (see [Ra-Ma], [Ch-Pi]).

In Chapter three, we first review the classical construction of smooth
solutions for parabolic systems, including the analysis of compatibility con-
ditions. The most important part is devoted to the proof of estimates which
are uniform with respect to the viscosity ε. Because of the layers, there
are no uniform estimates in the usual Sobolev spaces. At most, one can
expect tangential or conormal smoothness and we prove uniform estimates
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in spaces Hs
tg and Hs

co of functions possessing this tangential or conormal
regularity. Moreover, although these spaces are not imbedded in L∞, one
can prove L∞ bounds for the solutions of the equations in Hs

tg or in Hs
co.

This allows to use iterative scheme to solve nonlinear equations.
The analysis of semilinear boundary layers is done Chapter four, follow-

ing [Gu1]. First, one uses BK W multiple scale expansions, to find approx-
imate solutions

uε
app(t, x) =

m∑
n=0

εnUn(t, x, xd/ε) , Un(t, x, z) = U∗n(t, x, z) + un(t, x) .

Each profile Un is the sum of an inner term U∗n which is rapidly decreasing
in z and carries the rapid variations of uε

app in the layer 0 ≤ xd = 0(ε). The
outer part, un, describes the behavior of uε

app in the interior of the domain,
that is for xd ≥ δ, for all δ > 0. The Un are determined inductively. The
un are solutions of hyperbolic boundary value problems. There we use the
results of Chapter two. The U∗n are given by explicit integration. Next we
construct the exact solutions

uε = uε
app + εmvε

m .

We use the uniform estimates of Chapter three to solve the equation for vε,
proving in the same time the existence of uε on a uniform interval of time
[0, T ] and the estimate

uε − uε
app = O(εm) .

Note that the estimates of Chapter three are stronger than the estimates
used in [Gu1], so that the result given in Chapter four apply as soon as
m ≥ 1.

Part 2: quasilinear layers.
For quasilinear equations the analysis is much more delicate. A first

result is given in [Gi-Se] in one space dimension and in [Gr-Gu] for multi-
dimensional problems. Indeed, the analysis in [Gr-Gu] has two parts. In
the first part, approximate solutions are obtained using formal expansions
in power series of the the viscosity ε. In the second part, the authors prove
the stability of this approximate solution, proving that the exact solution
is actually close to the approximate one, using a smallness condition (as
in [Gi-Se]). By an example, they also show that some condition is needed.
However, the smallness condition is not natural and does not allow large
boundary layers.
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In the model case of planar layers (in analogy with planar shocks) that is
boundary layers created by viscous perturbations of constant state solutions
u of hyperbolic equations on a half space {xd > 0} :

uε(t, x) = w(xd/ε) with w(0) = 0 and lim
z→+∞ = u ,

rescaling the variables transforms the problem into a long time stability
analysis for parabolic systems. In the study of reaction–diffusion equations,
is has been shown that the accurate long time stability conditions are based
on the analysis of an Evans function, see, e.g. [Ev1]-[Ev4], [Jon], [AGJ],
[Pe-We], [Kap]. Evans functions have also been introduced in the study of
the stability of planar viscous shock and boundary layers (see, e.g., [Ga-Zu],
[ZH], [ZS], [Zum], [Ser], [Ro1], and references therein. They play the role
of the Lopatinski determinant for constant coefficient boundary value prob-
lems. When they vanish in the open left half plane, the problem is strongly
unstable and when they do not vanish in the closed half space, the problem
is expected to be strongly stable. This indicates that assumptions on the
Evans function should be the correct approach in the study of the stability
of boundary layers. This has been proved to be correct in space dimension
one [Gr-Ro] and in [MZ1] for multidimensional problems.

The one space dimensional analysis in [Gr-Ro] is based on integrations
along characteristics for the hyperbolic equations and on pointwise estimates
of the Green’s function for the parabolic part, which are then combined to
yield L1 bounds on the Green’s function for the linearized equations about
the full boundary layer expansion. In multi-dimensions, both ingredients
break down, due to more complicated geometry of characteristic surfaces. In
particular, the known estimates of the parabolic Green’s function [Zum] con-
sist of Lp bounds, p ≥ 2, and do not include pointwise behavior. Moreover,
it is known from study of the constant-coefficient case [Ho-Zu] that the L1

norm of the Green’s function is not necessarily bounded in multi-dimensions,
but in general may grow time-algebraically. This is a consequence of focus-
ing and spreading in the underlying hyperbolic propagation, the effects of
which are even more dramatic without parabolic regularization; indeed, as
pointed out by Rauch [Rau1], there is good reason to believe that L2 is
the only norm in which we can expect that multi-dimensional hyperbolic
problems be well-posed.

Thus, in multi-dimensions, the hyperbolic (or “outer”) part of the solu-
tion forces to seek L2 → L2 bounds. For hyperbolic equations satisfying a
“uniform Lopatinski condition”, this has been done by H.O. Kreiss ([Kre],
see also [Ch-Pi]) using symmetrizers. In [MZ1], it is shown that this method
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can be extended to the parabolic regularizations of the systems, under the
analogous “uniform Evans condition”. It provides us with maximal esti-
mates which are sharp for both hyperbolic and parabolic parts of the equa-
tions, as seen by comparison with explicit representations of the resolvant
in the planar case (see [Agm] and [Zum]).

In Chapter five, we study the inner-layer equation, that is the equation
satisfied by w(z) if w(xd/ε) is a stationary solution of the viscous equations.
Moreover, this analysis also gives the natural boundary conditions for the
limiting hyperbolic equation: the boundary value of the hyperbolic solution
must be a limit at z = +∞ of a solution of the inner-layer o.d.e..

Chapter six is mainly devoted to the definition of the Evans function,
starting from general considerations about the plane wave stability analysis
of boundary value problems. In particular, we also recall the definition of
the Lopatinski determinant. A key point of the analysis, due to [Ro1] (see
also [ZS] for an analogous result about viscous shocks), is that the uniform
Evans stability condition for the viscous problem implies, first, that the
natural boundary conditions are smooth and second, that the limiting invis-
cid hyperbolic problem satisfies the uniform Lopatinski conditions. These
are the two ingredients which are necessary to construct BKW solutions in
[Gr-Gu].

The basic L2 estimates for the linearized equations around a planar layer,
are given in Chapter seven. The method of symmetrizers is recalled, as well
as their construction for “large” and “medium” frequencies, which means
here that the space-time wave numbers ζ satisfy ε|ζ| + 1 and 0 < r ≤
ε|ζ| ≤ R < +∞ respectively.

The analysis of low frequencies, that is ε|ζ| , 1, is performed in Chapter
eight, where Kreiss’ construction of symmetrizers is extended to the viscous
equations.

Finally, in Chapter nine, we state (without proof) the main result of of
[MZ1], indicating where the key results of the previous chapters are used.

Further remarks
We end this introduction with a few remarks about applications and

further developments. There are many motivations for the analysis of small
viscosity perturbation of hyperbolic problems. For instance, for scalar con-
servation laws, there is the basic Krushkov analysis ([Kru], see also [Ole]).
In space dimension one, for systems there are analogous results in particu-
lar cases ([Go-Xi], [DiP]) and now in a general context by S.Bianchini and
A.Bressan [Bi-Br]. Boundary layers occur in many circumstances and appli-
cations, it is impossible to make a complete list here. Many examples come
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from fluid mechanics, starting with the analysis of Navier-Stokes equations
with small viscosity. However, it is important to note here that the frame-
work developed in these notes rules out the specific case of compressible
Navier-Stokes equations. For two reasons. First, for Navier-Stokes equa-
tions, the viscous part is only partially parabolic: there are no viscous term
in the equation of mass conservation. This is probably not fundamental, and
one can reasonably expect that the analysis of [MZ1] extends to partial vis-
cosity, with suitable assumptions on the kernel of the parabolic symbol. The
second reason, is much more serious: the boundary condition for the limiting
Euler equations usually include that the velocity is tangent to the boundary,
so that the boundary is characteristic. This is a dramatic change. In the
semi-linear case, the analysis of O.Guès shows that characteristic boundary
layers are of order

√
ε instead of ε in the noncharacteristic case and are not

governed by an o.d.e. but by a parabolic partial differential equation. When
applied to Navier-Stokes equations, this analysis yields Prandtl equations,
which have been shown to be strongly unstable at least in some cases, but
this is probably a general phenomenon, see the works by E.Grenier [Gr1]
[Gr2]. This reflects the well known fact that many layers in fluid dynamics
are unstable.

An important example of noncharacteristic boundary value problem, for
general system of conservation laws, is the equations of sock waves. It is
a transmission problem, with transmission conditions given by Rankine-
Hugoniot conditions. The main new difficulty is that it is a free bound-
ary value problem, but the analysis of classical multidimensional hyperbolic
boundary value problem has been successfully extended to the shock prob-
lem by A.Majda (see [Maj]). The analysis of viscous perturbations of shocks
has been done in dimension one, see [Go-Xi] for sufficiently weak shocks,
[Ro2] under an Evans function hypothesis. In higher dimension, O.Guès
and M.Williams, have constructed BKW approximate solutions to any or-
der [Gu-Wi]. Extending the stability analysis of [MZ1] which do not directly
apply due to a singularity of the Evans function at the origin, their stability
is studied in [GMWZ1] [GMWZ2], first in the context of long time stability
for fixed viscosity, and next in the small viscosity framework, using addi-
tional technical assumptions which are expected to be removed soon. This
work should extend to partial viscosity and thus should apply to the analysis
of multidimensional small viscosity shock waves for the real Navier-Stokes
equations.
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Chapter 1

An Example

This chapter is an introduction to the main topics developed in this course.
We consider a very simple example: the viscous perturbation of a transport
equation. The advantage is that we can perform explicit computations and
show when and how boundary layers occur.

1.1 The equation

We consider the equation

(1.1.1) ∂tu
ε + a∂xuε − ε∂2

xuε = f

The variables are t ∈ R (time) and x ∈ R (space). The unknown u is a real
(or complex) valued function. The parameter ε (viscosity) is “small” and
the main goal is to understand the behavior of uε as ε goes to zero. The
limit u is expected to be a solution of

(1.1.2) ∂tu + a∂xu = f .

We consider the equation (1.1.1) for x in R+ = {x > 0}. Then a bound-
ary condition must be added to (1.1.1):

(1.1.3) uε(t, 0) = 0 .

However, depending on a, this boundary condition may be incompatible
with the limit equation (1.1.2). Thus if uε converges to a solution u of
(1.1.2) which does not satisfy (1.1.3), uε must experience a rapid transition
between something close to u in the interior x > 0 and 0 on the boundary:
this transition is called a boundary layer.
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We may also consider the Cauchy problem, solving (1.1.1) for t > 0 with
an initial condition

(1.1.4) uε(0, x) = h(x) .

The goal of this chapter is to introduce on the toy model (1.1.1) dif-
ferent methods and tools which will be useful in the more general analysis
developed in the next chapters.

We first investigate the wellposedness of boundary value problems for
the transport equation (1.1.2). Next we study the viscous equation (1.1.1)
and, by explicit computations, we study the convergence of viscous solutions
to solutions of the inviscid equation, revealing when a < 0 the phenomenon
of boundary layers. Then, we will introduce on the example two methods de-
veloped later: the BKW asymptotic analysis and the use of Fourier-Laplace
transform in the analysis of boundary value problems.

1.2 Transport equation

In this section we consider the transport equation (1.1.2). We consider here
only classical solutions, that is C1 solutions, for which the equation has a
clear sense. The case of weak solutions could be considered too, see Chapter
two.

1.2.1 The Cauchy problem

Using the change of variables y = x− at and setting

(1.2.1) v(t, y) = u(t, x) = u(t, y + at) , g(t, y) = f(t, y + at)

the equation (1.1.2) is equivalent, for C1 functions, to ∂tv = g. Thus, for
C1 source term f and initial data u0, the Cauchy problem has a unique
solution:

v(t, y) = v(0, y) +
∫ t

0
g(s, y)ds

that is

(1.2.2) u(t, x) = h(x− at) +
∫ t

0
f(s, x− a(t− s))ds .
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1.2.2 The mixed Cauchy-boundary value problems

Consider the problem (1.1.2) on Ω = {(t, x) : t > 0, x > 0} with f ∈ C1(Ω)
and initial data h ∈ C1(R+).

1) When a ≤ 0, the formula (1.2.2) defines a solution of (1.1.2)
satisfying the initial condition u|t=0 = u0. (since x − a(t − s) ≥ 0 when
x ≥ 0, t ≥ s ≥ 0).

Proposition 1.2.1. When a ≤ 0, for f ∈ C1(Ω) and h ∈ C1(R+), the
Cauchy problem (1.1.2)(1.1.4) on Ω, without any boundary condition, has a
unique solution u ∈ C1(Ω) given by (1.2.2). If the data are Ck, with k ≥ 1,
the solution is Ck.

2 ) On the other hand, when a > 0 the formula (1.2.2) defines a
solution only for x ≥ at. For x < at, one has

(1.2.3) u(t, x) = u(t− x/a, 0) +
1
a

∫ x

0
f(t− y/a, x− y)dy .

Thus to determine the solution, one boundary condition

(1.2.4) u(t, 0) = %(t)

must be added. The solution is (uniquely) determined by f , u0 and %.

Remark 1.2.2. For the function u defined by (1.2.2) for x > at and by
(1.2.3) when x < at to be continuous on the half line {x = at ≥ 0}, the
Cauchy data h and the boundary data % must satisfy

(1.2.5) h(0) = %(0) (= u(0, 0)) .

For u to be C1, one has to impose the condition

(1.2.6) ∂t%(0) = f(0, 0)− a∂xh(0) ,

which is clearly necessary from the equation evaluated at the origin.
Exercise : show that these conditions are necessary and sufficient to

define a solution u ∈ C1(Ω).
This is an example of compatibility conditions to be discussed in Chap-

ter 2.

Proposition 1.2.3. When a > 0, for f ∈ C1(Ω), h ∈ C1(R+) and % ∈
C1(R+) satisfying (1.2.5)(1.2.6), the mixed Cauchy problem (1.1.2)(1.1.4)(1.2.4)
has a unique solution u ∈ C1(Ω) given by (1.2.2) for x ≥ at and by (1.2.3)
for x ≤ at.

If the data are Ck and vanish near the origin, then the solution is Ck.
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1.2.3 The boundary value problem

To avoid the problem of compatibility conditions, one can consider the prob-
lem (1.1.2) on the half space R2

+ = {t ∈ R, x > 0}, assuming that f vanishes
far in the past (say for t < T0). In this case there is a unique solution
vanishing for t ≤ T0, given as follows.

1) When a ≤ 0,

(1.2.7) u(t, x) =
∫ t

−∞
f(s, x− a(t− s))ds .

In this case, no boundary condition is required.
2 ) When a > 0, one boundary condition (1.2.4) must be added and

(1.2.8) u(t, x) = %(t− x/a) +
1
a

∫ x

0
f(t− (x− y)/a, y)dy .

Remark 1.2.4. In both cases, note that u = 0 for t < T0 if f (and %) vanish
for t < T0. More generally, the solutions defined by (1.2.7) and (1.2.8) satisfy
the causality principle: their value at time t only depend on f (and %) for
times less than or equal to t.

Remark 1.2.5. Above, we considered the cases a > 0 and a ≤ 0. Note that
the case a = 0 is very particular. When a < 0, the formula (1.2.7) shows
that classical solutions satisfy

u(t, 0) =
∫ t

−∞
f(s,−a(t− s))ds

thus

(1.2.9) ‖u(·, 0)‖L1(]−∞,T ]) ≤ 1
|a|‖f‖L1(]−∞,T ]×R+) .

This extends to weak solutions : one can show using (1.2.7) that they are
continuous in x with values in L1(] −∞, T ]) for all T . In particular their
trace on x = 0 is well defined.

In sharp contrast, when a = 0 the formula

u(t, x) =
∫ t

−∞
f(s, x)ds

shows that the value of u on x = 0 is not well defined when f ∈ L1.
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1.3 Viscous perturbation: existence of layers

We come back to the viscous equation (1.1.1)

1.3.1 The Cauchy problem

Perform the change of variables

y = x− at , u(t, x) = v(t, x− at) , f(t, x) = g(t, x− at) .

In these variables, the Cauchy problem for (1.1.1) reads

(1.3.1) ∂tv − ε∂2
yv = g , v|t=0 = v0.

The solution is given by the heat kernel:

(1.3.2)
v(t, y) =

1√
4πεt

∫
R

e−(y−y′)2/4εtv0(y′)dy′

+
∫ t

0

∫
R

1√
4πε(t− s)

e−(y−y′)2/4ε(t−s)f(s, y′)dy′ .

Exercise : show that (1.3.2) provides a solution vε to (1.3.1), for v0 and
f in various spaces. Moreover, when ε → 0, vε converges to the solution of
∂tv = g with the same initial condition.

1.3.2 The mixed Cauchy-problem

We consider here the mixed Cauchy problem on Ω = {t > 0, x > 0} and for
simplicity we assume here that there is no source term:

(1.3.3) (∂t + a∂x − ε∂2
x)uε = 0 , uε|x=0 = 0 , uε|t=0 = h .

When a = 0, the mixed Cauchy problem with initial data h ∈ C∞0 (R+) is
transformed into a Cauchy problem by considering odd extensions of h and
uε for negative x. This yields to the following formula for the solution:

uε(t, x) =
1√
4πεt

∫ ∞

0

(
e−(x−y)2/4εt − e−(x+y)2/4εt

)
h(y)dy

The case a '= 0 is reduced to the case a = 0 using the change of unknown

uε(t, x) = e−a2t/4ε+ax/2εũε(t, x) .
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Thus the solution is given explicitly by

(1.3.4) uε(t, x) =
1√
4πεt

∫ ∞

0

(
e−Φ/4εt − e−Ψ2/4εt

)
h(y)dy

with

Φ = (x− at− y)2 , Ψ = (x + y − at)2 + 4ayt = (x + y + at)2 − 4axt .

We can pass to the limit in (1.3.4) as ε tends to zero. Assuming for simplicity
that h = 0 near the origin, the stationary phase theorem implies that

1√
4πεt

∫ ∞

0
e−Φ/4εth(y)dy → h̃(x− at) := u0(t, x)

where h̃(y) is the extension of h by zero for y ≤ 0. The convergence is
uniform on compact sets, and since h is C∞, the stationary phase theorem
also gives complete expansion of the integral in powers series of ε.

Note that u0 is a solution of the limit equation ∂tu0 + a∂xu0 = 0, with
u0(0, x) = h(x). When a < 0, u0(t, x) = h(x − at) for t ≥ 0 and x ≥ 0
since then x− at ≥ 0. In this case, u0 is the unique solution of the (mixed)
Cauchy problem on Ω without boundary condition, see Proposition 1.2.1:

(1.3.5) (∂t + a∂x)u0 = 0 , u0|t=0 = h .

When a > 0, we find that u0(t, x) = h(x−at) for x > at and u0(t, x) = 0
for x ≤ at. Thus u0 is the unique solution of the mixed Cauchy problem
with homogeneous boundary condition, see Proposition 1.2.3:

(1.3.6) (∂t + a∂x)u0 = 0 , u0|x=0 = 0 , u0|t=0 = h .

The behavior of the second term depends on the sign of a. When a > 0,
the phase Ψ is strictly positive for y > 0 in the support of h and (t, x) ∈ Ω.
In this case the second integral is O(e−δ/ε) for some δ > 0, proving that

(1.3.7) uε(t, x) = u0(t, x) + O(ε) .

When a < 0, we write the second term

−eax/εvε(t, x) with vε(t, x) :=
1√
4πεt

∫ ∞

0
e−(x+y+at)2/4εth(y)dy

By the stationary phase theorem

vε(t, x) → h̃(−x− at) := v0(t, x) .
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Note that the limit is different from zero when −(x+ at) > 0 belongs to the
support of h. Since a < 0, this occurs for points (t, x) ∈ Ω. In this case, we
have

uε(t, x) = u0(t, x)− eax/εv0(t, x) + O(ε) .

Note that e−ax/εv0(t, x) = e−ax/εv0(t, 0)+O(ε), and v0(t, 0) = u0(t, 0). Thus

(1.3.8) uε(t, x) = u0(t, x)− eax/εu0(t, 0) + O(ε) .

Summing up we have proved that for h ∈ C∞0 (]0,+∞[):

Conclusion 1.3.1. i) When x > 0, the solution uε(t, x) of (1.3.3) converges
to the solution u0 of the limit problem, which is (1.3.5) when a < 0 and
(1.3.6) when a > 0.

ii) When a > 0, the convergence is uniform on Ω and (1.3.7) holds.
iii) When a < 0, the convergence is not uniform on Ω. Near the

boundary, a corrector must be added, and the uniform behavior is given by
(1.3.8).

When a > 0, the limit u0 satisfies the boundary condition, and therefore
it is natural to get that u0 is a good approximation of uε. When a < 0,
the solution u0 of (1.3.6) has no reason to satisfy the boundary condition,
and thus there must be a corrector of order O(1) near the boundary. The
computation above shows that this corrector is −eax/εu0(t, 0), revealing the
scale x/ε and the exponential decay in the fast variable z = x/ε. The
boundary layer is this rapid variation of uε near the boundary.

1.4 BKW expansions

This section is an introduction to the general method developed in Chapter
four. We construct formal asymptotic expansions in power series of ε for
the solutions of (1.1.1). They provide approximate solutions. We always
assume that a '= 0.

Inspired by (1.3.8), we look for solutions of the initial boundary value
problem (1.1.1) (1.1.3) (1.1.4) such that

(1.4.1) uε(t, x) ∼
∑
n≥0

εnUn(t, x,
x

ε
)

with Un(t, x, z) having limits un(t, x) at z = +∞ such that Un → un rapidly
as z →∞. At this stage, the expansion is to be understood in the sense of
formal series in powers of ε.
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Introduce the space P(T ) of functions of the form

(1.4.2) V (t, x, z) = v(t, x) + V ∗(t, z)

with v ∈ C∞([0, T ] × R+), V ∗ ∈ C∞b ([0, T ] × R+)1 and such that for all
indices (j, k), there are C and δ > 0 such that

|∂j
t ∂

k
z V ∗(t, z)| ≤ Ce−δz .

The splitting (1.4.2) is unique since

v(t, x) = lim
z→∞V t, x, z) .

For V ∈ P, we also use the notation V (t, x) for this limit. We denote by P∗
the class of V ∈ P such that V = 0. Note that for all V ∈ P, ∂zV ∈ P∗.

The profiles Un are sought in the class P. The boundary condition for
uε leads to impose that for all n,

(1.4.3) Un(t, 0, 0) = 0

Similarly, the initial condition (1.1.4) reads:

(1.4.4) U0(0, x, z) = h(x) , Un(0, x, z) = 0 for n ≥ 1 .

In the sense of formal series, (1.4.1) implies that

(∂t + a∂x − ε∂2
x)uε − f ∼

∑
n≥−1

εnFn(t, x,
x

ε
) ,

with
F−1 = −LU0 ,

F0 = −LU1 + L0U0 − f

Fn = −LUn+1 + L0Un − ∂2
xUn−1 , n ≥ 1 ,

with
L := ∂2

z − a∂z , L0 = ∂t + a∂x .

There is an unessential simplification here: there are no cross term ∂x∂zUn,
since the decomposition (1.4.2) of profiles implies that they all vanish.

Definition 1.4.1. We say that
∑

εnUn is a formal solution of (1.1.1) if
all the Fn, n ≥ −1, vanish. It is a formal solution of the boundary value
problem (1.1.1) (1.1.3) if in addition the conditions (1.4.3) hold for n ≥ 0.
It is a formal solution of the mixed Cauchy problem (1.1.1) (1.1.3) (1.1.4) if
in addition (1.4.4) holds.

1C∞
b (Ω) denotes the space of C∞ functions on Ω which are bounded as well as all their

derivative
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Theorem 1.4.2. Given f ∈ C∞b ([0, T ]× R+) and h ∈ C∞b (R+) which both
vanish near the origin, there is a unique formal solution of the mixed Cauchy
problem (1.1.1) (1.1.3) (1.1.4).

Proof. a) Analysis of F−1 = 0. The equation LU0 = 0 reads a∂zU∗0 = ∂2
zU∗0 .

Thus the solutions are

U0(t, x, z) = β0(t, x) + α0(t, x)eaz .

1) When a > 0, the bounded solutions in P are

(1.4.5) U0(t, x, z) = u0(t, x) .

In particular, the boundary condition (1.4.3) for n = 0 and the initial con-
dition (1.4.4) imply that necessarily

(1.4.6) u0(t, 0) = 0 , u0(0, x) = h(x) .

2) When a < 0, the solutions in P are

(1.4.7) U0(t, x, z) = u0(t, x) + α0(t)eaz

The boundary condition (1.4.3) for n = 0 reads

(1.4.8) α0(t) = −u0(t, 0) .

while the initial condition is

(1.4.9) u0(0, x) = h(x) , α0(0) = 0 .

Next, we split the equations Fn = 0 into Fn = 0 and F ∗n = 0, where
Fn = limz→∞ Fn and F ∗n = Fn − Fn.

b) Analysis of F 0 = 0. The equation reduces to

L0u0 = (∂t + a∂x)u0 = f

When a < 0, this equation coupled with the initial condition has a unique
solution by Proposition 1.2.1. Therefore, α0 ∈ C∞b ([0, T ]) is determined by
(1.4.8) . With (1.4.5) and (1.4.7) this determines U0. Note that, because the
data vanish near the origin, the solution u0 also vanishes near the origin, so
that α0 also vanishes near t = 0 and the second equation in (1.4.9) is also
satisfied.

When a > 0, by Proposition 1.2.3, there is a unique solution of the mixed
Cauchy problem defined by the equation coupled with (1.4.6),
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Remark 1.4.3. In both cases, u0 ∈ C∞b ([0, T ] × R+) is determined as the
solution of the inviscid problem (1.1.2) (1.1.4) augmented with the boundary
condition u0(t, 0) = 0 when a > 0. In both case, the leading term U0 given
by this formal computation is equal to the leading term rigorously derived
in section 3.

c) Analysis of F ∗0 = 0. The equation reduces to

LU1 = ∂2
zU1 − a∂zU1 = ∂tU

∗
0 .

When a > 0, the right has side vanishes and the only bounded solution in
P are

U1(t, x, z) = u1(t, x) , with u1(t, 0) = 0 .

The initial-boundary conditions imply that

u1(0, x) = 0 , u1(t, 0) = 0 .

When a < 0, the right hand side is ∂tα0(t)eaz. The solutions in P are

U1(t, x, z) = u1(t, x) + α1(t)eaz +
1
a
∂tα0(t)zeaz .

The boundary condition (1.4.3) for n = 1 reads

(1.4.10) α1(t) = −u1(t, 0) .

and, because α0 vanishes for t near the origin, the initial condition reduces
to

(1.4.11) u1(0, x) = 0 , α1(0) = 0 .

d) Analysis of F 1 = f . The equation reads

(∂t + a∂x)u1 = ∂2
xu0 ,

Together with the Cauchy data u1(0, x) = 0 and the boundary condition
u1(t, 0) = 0 when a > 0, there is a unique solution u1. It vanishes near the
origin. When a < 0, we determine α1 by (1.4.10) and the second equation
in (1.4.11) is satisfied.

e) The analysis of the other terms is similar. The equations F−1 =
0, . . . , Fn−1 = 0 and Fn = 0 determine U0, . . . , Un. Then, F ∗n = 0 determines
U∗n+1 in terms of un+1, plus a boundary condition on un+1 when a > 0 and a
choice of a function αn+1(t) such that un+1 = −αn+1 on the boundary when
a < 0. Next, Fn+1 is a transport equation for un+1 which, together with
the Cauchy conditions and the boundary condition when a > 0, determines
un+1. The details are left as an exercise.
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Remark 1.4.4. The leading term U0 is equal to the leading term rigor-
ously derived in section 3. More generally, using complete stationary phase
expansions in section 3 provides rigorous expansions (1.4.1) for the exact
solutions. We leave as an exercise to check that both method provide the
same result.

Remark 1.4.5. If
∑

εnUn is a formal solution, then the partial sums

uε
app(t, x) =

∑
n≤N

εnUn(t, x, x/ε)

provide approximate solutions: they satisfy{
(∂t + a∂x − ε∂2

x)uε
app = f + εNrε ,

uε
app(t, 0) = 0 , uε

app(0, x) = h ,

with rε uniformly bounded.

1.5 Laplace Fourier transform

The Laplace transform is a classical tool in the analysis of evolution equa-
tions, starting with ordinary differential equations. In this section, as an
introduction to Chapters 6 and 7, we sketch an application of this trans-
formation to the analysis of the boundary value problem (1.1.1) (1.1.3) on
R2

+ = {(t, x) : x > 0}.
Suppose that the source term f vanishes for t ≤ 0 and has a controlled ex-

ponential growth when t → +∞: assume for instance that e−γ0tf ∈ L2(R2
+).

Then the time-Laplace transform f̃ of f is defined and holomorphic for
Re λ ≥ γ0. The Laplace transform of the equation is

(1.5.1) (λ + a∂x − ε∂2
x)ũ = f̃

If one can solve this equation, by inverse Laplace transform one can get a
solution of the original equation (1.1.1). Moreover, with good control of ũ
for Re λ ≥ γ0, one can expect that the solution u vanishes for t ≤ 0. More
generally, this construction agrees with the causality principle.

1.5.1 Definitions

We first recall several definitions and known properties. Consider first
functions of one variable t. The Fourier transform û = Fu is defined for
u ∈ L1(R) by

û(τ) =
∫

e−iτtu(t)dt .
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and then extended to temperate distributions u ∈ S ′. F is an isomorphism
from S ′ to S ′ and for û ∈ L1,

u(t) =
1
2π

∫
eiτtû(τ)dτ

If e−γtu ∈ L1, the Laplace transform

ũ(λ) =
∫

e−λtu(t)dt

is defined for Re λ = γ, where we use the notation λ = γ + iτ . This extends
to u ∈ eγtS ′ as

ũ(γ + iτ) = F(e−γtu)(τ) .

In this case, u = eγtF−1
{
ũ(γ + i · )}. When ũ(γ + i · ) ∈ L1 :

u(t) =
1

2iπ

∫
Re λ=γ

eλtũ(λ)dλ .

Lemma 1.5.1. i) (Plancherel) u ∈ eγtL2 if and only if ũ(γ + i · ) ∈ L2 and

‖e−γtu‖L2(R) =
1√
2π
‖ũ‖L2({Re λ=γ})

ii) If u ∈ eγtS ′ and u = 0 for t ≤ T0, then ũ is defined and holomorphic
for Re λ ≥ γ.

For u(t, x) defined on R × R+, we define (when possible) the Laplace
transform in t for fixed x. For instance, for u ∈ eγtL1(R × R+), we can
define

ũ(λ, x) =
∫

R
e−λtu(t, x) dt

when Re λ = γ, and ũ(λ, · ) ∈ L1(R+) for all λ = γ + iτ .
Similarly, using Plancherel’s theorem, one obtains the next result:

Proposition 1.5.2. The time Laplace transform is an isomorphism from
eγtL2(R× R+) to L2({Re λ = γ} × R+) and

‖e−γtu‖L2(R×R+) =
1√
2π
‖ũ‖L2({Re λ=γ}×R+)

Introduce the space W of functions u ∈ L2(R× R+) such that ∂tu, ∂xu
and ∂2

xu belong to L2(R×R+). This space, and the weighted spaces eγtW ,
are natural spaces for solutions of (1.1.1).
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Proposition 1.5.3. For u ∈ eγtW , the Laplace transform is defined for
Re λ = γ and belong to the space W̃γ of functions v ∈ L2({Re λ = γ} ×R+)
such that λv, ∂xv and ∂2

xv belong to L2({Re λ = γ} × R+).
Conversely, if v ∈ W̃γ, its inverse Laplace transform belongs to eγtW .
Moreover, for u ∈ eγtW the trace u|x=0 belongs to eγtL2 and its Laplace

transform is the restriction of ũ to x = 0.

We can now perform the Laplace transform of the equation (1.1.1):

Lemma 1.5.4. Consider f ∈ eγtL2. Then u ∈ W is a solution of (1.1.1) if
and only if its Laplace transform ũ ∈ W̃γ satisfies

(1.5.2) −ε∂2
xũ + a∂xũ + λũ = f̃ .

In addition, u satisfies the homogeneous Dirichlet boundary condition
(1.1.3), if and only if the Laplace transform satisfies

(1.5.3) ũ(λ, 0) = 0 .

1.5.2 Green’s functions

We consider here the Laplace transformed equations (1.5.2) (1.5.3), for a
fixed λ. Dropping the tildes, the o.d.e. on R+ reads:

(1.5.4) −ε∂2
xu + a∂xu + λu = f , u(0) = 0 , u ∈ L2(R+) .

We assume that ε > 0, a ∈ R, a '= 0, λ ∈ C, λ '= 0 and γ = Re λ ≥ 0.
This is a constant coefficient second order equation. The indicial equa-

tion
−εr2 + ar + λ = 0

has two solutions

(1.5.5) r1 =
a

ε
+ µ , r2 = −µ

where

µ =
a

2ε

(√
1 +

4ελ

a2
− 1

)
=

λ

a
− ελ2

2a3
+ λO

(
(ελ)2

)
as ελ → 0 .

Here,
√

z is the principal determination of the square root in C\] − ∞, 0]
(Re

√
z > 0).
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Lemma 1.5.5. The indicial equation has one root r− such that Re r− < 0
and one root r+ such that Re r+ > 0. Namely:

(1.5.6)
if a > 0 : r− = r2 and r+ = r1 ,

if a < 0 : r− = r1 and r+ = r2 .

Proof. Consider

Λ =
ελ

a2
.

Then (
Re
√

1 + 4Λ
)2 =

1
2

{
1 + 4Re Λ +

(
(1 + 4Re Λ)2 + (4Im Λ)2

) 1
2
}

≥ 1 + 4Re Λ +
|Im Λ|2
1 + |Λ| .

Thus

(1.5.7) Re
√

1 + 4Λ ≥ 1 + c
{ Re Λ√

1 + |Λ| +
|Im Λ|2

(1 + |Λ|)3/2

}
.

for some c > 0. In particular, Re
(√

1 + Λ− 1
)

> 0 for Λ '= 0, Re Λ ≥ 0 and
Re µ '= 0 and has the sign of a. With (1.5.5) the lemma follows.

Definition 1.5.6 (Green’s functions). For λ '= 0, Re λ ≥ 0, define

Gε
λ(x, y) =


1

ε(r+ − r−)
ϕ(x)ψ(y)e−ay/ε for x < y ,

1
ε(r+ − r−)

ψ(x)ϕ(y)e−ay/ε for y < x ,

with
ϕ(x) = er+x − er−x , ψ(x) = er−x ,

where r± are the solutions of the indicial equations given by (1.5.6).

Proposition 1.5.7. For λ '= 0, Re λ ≥ 0 and f ∈ L2(R+) the equation
(1.5.4) has a unique solution u ∈ H2(R+) given by

(1.5.8) u(x) =
∫ ∞

0
Gε

λ(x, y)f(y)dy
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Sketch of proof. First check that (1.5.8) gives a solution when f is contin-
uous with compact support, and that u is exponentially decaying at +∞.
The Lemma 1.5.5 implies that the homogeneous equation has no nontrivial
solution in L2. Thus the solution is unique in L2. The explicit form of the
definition reads

(1.5.9)
u(x) =

1
ε(r+ − r−)

( ∫ x

0
er−(x−y)f(y)dy

+
∫ ∞

x
er+(x−y)f(y)dy − er−x

∫ ∞

0
e−r+yf(y)dy

)
.

Next use the explicit form of Gε
λ to check that

sup
x
‖Gε

λ(x, · )‖L1 < +∞ , sup
y
‖Gε

λ( · , y)‖L1 < +∞ .

Using Schur’s lemma, this implies that (1.5.8) defines a bounded mapping
Gε

λ from L2(R+) to L2(R+). Similarly, ∂xGε
λ and ∂2

xGε
λ are shown to map

L2 to L2. Thus Gε
λ maps L2 to H2. Because Gε

λf is a classical solution of
(1.5.4) when f is continuous with compact support, by density, Gε

λf is a
weak solution of (1.5.4) when f ∈ L2.

1.5.3 The inviscid limit: layers

We now pass to the limit in (1.5.4) as ε tends to zero. More precisely,
we consider the limits of the solutions uε given by (1.5.8). Assume that
f ∈ L1 ∩ L∞. In this section, we also assume that

(1.5.10) γ = Re λ > 0 .

Proposition 1.5.8 (Case 1 : a > 0). One has

(1.5.11) ‖uε(x)− u0(x)‖L∞ = O(ε)

where u0 is the unique bounded solution of

(1.5.12) a∂xu0 + λu0 = f , u(0) = 0 .

Proof. There holds ε(r+ − r−) → a, r− → −λ/a and r+ ∼ a/ε. Thus∫ ∞

0
e−r+y|f(y)|dy ! ε‖f‖L∞ ,

∫ ∞

x
er+(x−y)|f(y)|dy ! ε‖f‖L∞∫ x

0
er−(x−y)f(y)dy →

∫ x

0
e−λ(x−y)/af(y)dy .
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Therefore,
‖uε − u0‖L∞ = O(ε)

with
u0(x) =

1
a

∫ x

0
e−λ(x−y)/af(y)dy

which is the unique solution of (1.5.12).

Proposition 1.5.9 (Case 2 : a < 0). There holds

(1.5.13) uε(x) = u0(x)− eax/εu0(0) + O(ε) in L∞([0,∞[)

where u0 is the unique bounded solution of

(1.5.14) a∂xu0 + λu0 = f , u ∈ L∞ .

Proof. When a < 0, ε(r+ − r−) → −a, r+ → −λ/a, r− ∼ a/ε and thus∫ x

0
er−(x−y)|f(y)|dy ! ε‖f‖L∞ ,∫ ∞

x
er+(x−y)f(y)dy →

∫ ∞

x
eλ(y−x)/af(y)dy .

Hence
‖uε − u0 − eax/εu0(0)‖L∞ = O(ε)

where
u0(x) = −1

a

∫ ∞

x
eλ(y−x)/af(y)dy .

Note that u0 is the unique bounded solution of (1.5.14).

Comment. The analysis above is quite similar to the time dependent anal-
ysis of section 3. More precisely, (1.5.11) (1.5.13) can be seen as the Laplace
transform of (1.3.7)(1.3.8)

When a < 0, u0 does not satisfy in general the boundary condition
u0(0) = 0. This is why a boundary layer appears: the solution of the
singular perturbation (1.5.4) is u0 plus a corrector −eax/εα.

28



1.5.4 Estimates

The Propositions above provide solutions ũ(λ, · ) to the Laplace transformed
equations (1.5.2). To construct solutions of (1.1.1) we need to apply the
inverse Laplace transform to ũ. In order to apply Proposition 1.5.3 and
Lemma 1.5.4, we want to show that ũ belongs to a space W̃γ . This means
that we need estimates for the solutions of (1.5.4).

One can use the explicit formulas (1.5.8) to find the suitable estimates.
To prepare the multidimensional analysis, we will prove them using the
method of symmetrizers.

Theorem 1.5.10. For λ = γ + iτ '= 0 with γ ≥ 0 and f ∈ L2(R+), the
solution u ∈ H2(R+) of (1.5.4) satisfies

(1.5.15) ρ‖u‖L2(R+) +
√

ρ
√

ε‖∂xu‖L2(R+) ≤ C‖f‖L2(R+) .

with C independent of λ, ε and f and

(1.5.16) ρ ≈
{

γ + ετ2 when ε|λ| ≤ 1
|λ| when ε|λ| ≥ 1

According to Proposition 1.5.7, for f ∈ L2(R+), λ '= 0 with Re λ ≥ 0,
the boundary value problem (1.5.4) has a unique solution u ∈ H2(R+). We
first give the easy estimates.

Lemma 1.5.11. For f ∈ L2(R+), λ '= 0 with Re λ ≥ 0, the solution u ∈
H2(R+) of (1.5.4) satisfies

(1.5.17) γ‖u‖2L2(R+) + 2ε‖∂xu‖2L2(R+) ≤
1
γ
‖f‖2L2(R+) .

Proof. Multiply (1.5.4) by u, integrate over R+ and take the real part. This
yields

γ‖u‖2L2(R+) + ε‖∂xu‖2L2(R+) = Re
∫ ∞

0
f(x)u(x)dx ≤ ‖f‖L2(R+)‖u‖L2(R+) .

Proof of Theorem 1.5.10. To get the sharp estimates (1.5.15) we consider
(1.5.4) as a first order system: with

U =
(

u
v

)
, v = ε∂xu , F =

(
0
f

)
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the equation (1.5.4) reads

(1.5.18) ∂xU =
1
ε

GU + F , ΓU(0) = 0

with
G =

(
0 1
ελ a

)
, Γ

(
u
v

)
= u .

The eigenvalues of G are εr± thus a + εµ and −εµ. Thus G can be diago-
nalized. Consider

Ω =
(

1 1
εr+ εr−

)
, Ω−1 =

1
ε(r− − r+)

(
εr− −1
−εr+ 1

)
.

Thus U is solution to (1.5.18) if and only if

V =
(

v+

v−

)
:= Ω−1U

satisfies

∂xv+ = r+v+ + f+ on R+ ,(1.5.19)
∂xv− = r−v− + f− on R+ ,(1.5.20)
v+(0) + v−(0) = 0 ,(1.5.21)

with

(1.5.22) f+ = −f− =
1

ε(r+ − r−)
f .

Multiplying (1.5.19) by v+ and integrating over R+ yields:

1
2
|v+(0)|2 + Re r+‖v+‖2 ≤ ‖f+‖ ‖v+‖

where the norms are taken in L2(R+). Thus

(1.5.23) |v+(0)|2 + Re r+‖v+‖2 ≤ 1
Re r+

‖f+‖2 .

Similarly, multiplying (1.5.20) by −v− and integrating by parts yields

(1.5.24) −|v−(0)|2 + |Re r−|‖v−‖2 ≤ 1
|Re r−|‖f−‖

2 .
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Using the boundary condition (1.5.21), the definition (1.5.22) of f±, adding
2× (1.5.23) and (1.5.24) yields

1
2
|V (0)|2 + Re r+‖v+‖2+|Re r−| ‖v−‖2

≤ 2
ε2|r+ − r−|2

( 1
Re r+

+
1

|Re r−|
)
‖f‖2 .

Denoting by r1 and r2 the roots as in subsection 1.3.1 and labeling accord-
ingly (v1, v2) the components of v, we also get

1
2
|V (0)|2 + |Re r1|‖v1‖2+|Re r2|‖v2‖2

≤ 2
ε2|r1 − r2|2

( 1
|Re r1| +

1
|Re r2|

)
‖f‖2 .

Forgetting the traces, we get the following estimates for u = v1 + v2 and
∂xu = r1v1 + r2v2 :

(1.5.25) ‖u‖ ≤ 2
ε|r1 − r2|

( 1
|Re r1| +

1
|Re r2|

)
‖f‖ ,

(1.5.26) ‖∂xu‖ ≤ 2
ε|r1 − r2|

( 1
|Re r1| +

1
|Re r2|

) 1
2
( |r1|2
|Re r1| +

|r2|2
|Re r2|

) 1
2 ‖f‖

Introduce the weight ρ such that ρ ≈ γ + ετ2 when ε|λ| ≤ 1 and ρ ≈ |λ|
when ε|λ| ≥ 1 as indicated in (1.5.16). Note that both definitions agree
when ε|λ| ≈ 1, in which case ρ ≈ ε−1. The goal is to prove that there is
a constant C such that for all λ '= 0 with Re λ ≥ 0 and all u ∈ H2(R+)
solution of (1.5.4)

ρ‖u‖ ≤ C‖f‖ ,(1.5.27) √
ε
√

ρ‖∂xu‖ ≤ C‖f‖ .(1.5.28)

a) The LF regime. Suppose that ε|λ| , 1.
In this case, εr1 ∼ a, r2 = −λ/a + ελ2/(2a3) + O(ε2|λ|3. Thus, with

λ = γ − iτ :

|Re r1| ∼ |a|
ε

, |Re r2| = 1
|a|

(
γ + ε(τ2 − γ2) + O(ε2|λ3|) ≥ cρ ,

and
ε|r1 − r2| ∼ |a| , 1

|Re r1| +
1

|Re r2| ≤
1
cρ

.
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This yields (1.5.27). Moreover,

|r1|2
|Re r1| ≤

C

ε
,

|r2|2
|Re r2| ≤

C|λ|2
ρ

≤ C ′

ε
.

Thus (1.5.28) follows.

b) The HF regime : |ελ| + 1.
In this case,

r± ∼ ±
√

ελ

ε
, Re r± ≈ ±

√
ελ

ε

thus |r1|, |r2, Re r1, Re r2 and |r1 − r2| are of order √ρ/ε. Hence (1.5.25)
and (1.5.26) imply the estimates (1.5.27) and (1.5.28)

c) The MF regime : 0 < c ≤ |ελ| ≤ C < +∞.
In this case, |r±|, r+ − r−, Re r± and ρ are of order 1/ε and (1.5.27)

(1.5.28) follow from (1.5.25) and (1.5.26).

1.5.5 Solutions of the BVP

With the estimates, one can perform the inverse Laplace transform to get
a solution of (1.1.1) on R × R+. We do not give the details here, most of
them can be found in the next chapter.
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Chapter 2

Hyperbolic Mixed Problems

In this chapter, we discuss the classical theory of mixed Cauchy boundary
value problem for symmetric hyperbolic systems see [Fr1], [Fr2], [Fr-La] and
also [Tar], [Ra-Ma]. We follow closely the presentation in [Ch-Pi]. For
simplicity, we consider here only constant coefficients equations, and flat
boundaries, but all the technics can be adapted to variable coefficients and
general smooth domains.

2.1 The equations

Consider a N ×N system

(2.1.1) Lu := ∂tu +
d∑

j=1

Aj∂ju = F (u) + f

For simplicity, we assume that the coefficients Aj are constant. F is a C∞
mapping from RN to RN . The variables are t ∈ R, y = (y1, . . . , yd−1) ∈ Rd−1

and x ∈ R. The derivations are ∂j = ∂yj for j ∈ {1, . . . , d− 1} and ∂d = ∂x.
For simplicity, we work in the class of symmetric hyperbolic operators:

Assumption 2.1.1.
(H1) There is a positive definite symmetric matrix S = tS + 0 such that

for all j, SAj is symmetric.
(H2) detAd '= 0

The assumption (H2) means that the boundary is not characteristic for
L. The eigenvalues of Ad are real and different from zero. We denote by N+

[resp. N−] the number of positive [resp. negative] eigenvalues of Ad. Then
N = N+ + N−.
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Lemma 2.1.2. The matrix SAd has only real eigenvalues. Counted with
their multiplicities, N+ are positive and N− are negative.

Proof. Dropping the subscript d, SA = S1/2
(
S1/2AS1/2

)
S−1/2 is conjugated

to the symmetric matrix A′ := S1/2AS1/2. Therefore the eigenvalues of
SA are those of A′, thus are real. In addition, A′ has the same signature
(N+, N−) as A.

We consider the equations (2.1.1) on the half space {x ≥ 0} together
with boundary conditions:

(2.1.2) Mu|x=0 = Mg .

where M is a N ′ ×N matrix.
In the theory of hyperbolic boundary problems, the simplest case occurs

when the boundary conditions are maximal dissipative:

Definition 2.1.3. The boundary condition (2.1.2) is maximal dissipative for
L if and only if dim ker M = N− and the symmetric matrix SAd is definite
negative on ker M .

In this Chapter we study the well-posedness of the hyperbolic boundary
value problem (2.1.1) (2.1.2). We always assume that Assumption 2.1.1
holds and that the boundary condition is maximal dissipative. Restricting
attention to the image of M , there is no loss of generality in assuming that
N ′ = N+, so that M is a N+ ×N matrix.

Remark 2.1.4. The number of boundary conditions is N ′ = N+, and there
is an easy way to see that is the correct number of conditions. In space di-
mension one, consider a diagonal system ∂t+A∂x with A = diag(a1, . . . , aN ).
The diagonal entries are real, and N+ are positive, N− are negative. We
have seen in the first chapter, that a boundary condition is needed for
∂t + aj∂x for positive aj . So, the total number of boundary conditions
must be N+.

Remark 2.1.5. The dissipativity condition is satisfied in many physical ex-
amples (wave equations with Dirichlet boundary conditions, Maxwell equa-
tions with usual boundary conditions, etc). However, it is far from being
necessary (see the discussion in Chapter 6 for an approach to necessary
conditions). In the analysis below, it appears as a trick to warranty good
energy estimates, but in applications these computations mean dissipation
of a physical energy.
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2.2 Hyperbolic boundary value problems

In this section we consider the problem

(2.2.1)

{
Lu = f on R× Rd

+

Mu|x=0 = g on R× Rd−1

We use the notation Rd
+ = {(y, x) ∈ Rd : x > 0}. We assume that the

Assumptions (H1) and (H2) are satisfied, that M is a N+ ×N matrix and
that the boundary condition is maximal dissipative.

We first solve this equation in weighted spaces: we look for solutions
u = eγtũ, assuming that f = eγtf̃ and g = eγtg̃, with ũ, f̃ and g̃ at least in
L2. This yields the equations

(2.2.2)

{
(L + γ)ũ = f̃ on R× Rd

+

Mũ|x=0 = g̃ on R× Rd−1 .

The choice γ > 0 corresponds to the idea that the functions u, f and g
vanish at t = −∞ and thus to an orientation of time.

We first study (2.2.2), dropping the tildes. We denote by Hs the usual
Sobolev spaces. We also use the notation R1+d

+ = R× Rd
+.

2.2.1 The adjoint problem

The adjoint of L (in the sense of distributions) is L∗ := −∂t−
∑

A∗j∂j . Thus
−L∗ has the same form as L.

Lemma 2.2.1. S−1 is a symmetrizer for −L∗.

Proof. Since S is symmetric definite positive, S−1 is also definite positive.
Moreover, S−1A∗j = S−1A∗jSS−1 = S−1SAjS−1 = AjS−1 is symmetric.

For C1 functions with compact support in R1+d
+ , one has

(2.2.3)
(
Lu, v

)
L2 =

(
u, L∗v)L2 − (

Adu|x=0, v|x=0

)
L2

where (·, ·)L2 denotes the scalar product in L2. Consider a space of dimension
N+ on which SAd is definite positive. There is a N− ×N matrix M1 such
that this space is kerM1. Since M is maximal dissipative, SAd is definite
negative on kerM and therefore

(2.2.4) RN = kerM ⊕ ker M1
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Lemma 2.2.2. There are matrices R and R1 of size N− ×N and N+ ×N
respectively, such that for all vectors u and v in RN :

(2.2.5)
(
Adu, v) = (Mu,R1v) + (M1u, Rv) .

Moreover, ker R = (Ad ker M)⊥ has dimension N+ and S−1A∗d is definite
positive on ker R.

Proof. The identity (2.2.5) is equivalent to

(Adu, v) = (Mu,R1v), ∀u ∈ ker M1

(Adu, v) = (M1u, Rv), ∀u ∈ ker M .

Since M is an isomorphism from kerM1 to RN+ , the first equation deter-
mines R1v ∈ RN+ . Similarly, the second equation determines Rv ∈ RN− .

The identity (2.2.5) implies that (Adu, v) = 0 when u ∈ ker M and
v ∈ ker R, thus kerR ⊂ (Ad ker M)⊥. Because the two spaces have the same
dimension, they are equal.

Suppose that (S−1A∗dv, v) ≤ 0 for some v ∈ ker R. Then for all u ∈
ker M , (SAdu, S−1v) = 0 by (2.2.5) and for all α ∈ R(

SAd(u + αS−1v), u + αS−1v
)

= (SAdu, u) + α2(AdS
−1v, v) ≤ 0 .

Since kerM has maximal dimension among spaces on which SAd is non
positive, this implies that S−1v ∈ ker M . Because kerR and Ad ker M are
orthogonal, one has (AdS−1v, v) = (SAdS−1v, S−1v) = 0. Since SAd is
definite negative on ker M , this shows that S−1v = 0, hence v = 0.

Definition 2.2.3. The system L∗ with boundary condition R is the adjoint
problem of (L,M).

Note that R is not unique, but the key object ker R = (Ad ker M)⊥ is
uniquely determined from L and M .

With (2.2.3), the lemma implies that for all u and v in C1
0 (R1+d

+ )(
(L + γ)u, v

)
L2 =

(
u, (L∗ + γ)v)L2 − (

Mu|x=0, R1v|x=0

)
L2

− (
M1u|x=0, Rv|x=0

)
L2 .

In particular, if u is a solution of (2.2.2) and Rv = 0 on {x = 0}, one has(
f, v

)
L2 =

(
u, (L∗ + γ)v)L2 − (

g,R1v|x=0

)
L2

This motivates the following definition of weak solutions.
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Definition 2.2.4. Given f ∈ L2(R1+d
+ ) and g ∈ L2(Rd), u ∈ L2(R1+d

+ ) is
a weak solution of (2.2.2), if and only if for all Φ ∈ C∞0 (R1+d

+ ) such that
RΦ|x=0 = 0 one has

(2.2.6)
(
u, (L∗ + γ)Φ

)
L2 =

(
f,Φ

)
L2 +

(
g,R1Φ|x=0

)
L2 .

We now discuss in which sense weak solutions are indeed solutions of
(2.2.2) Introduce the spaces H0,s(R1+d) of temperate distributions such that
their Fourier transform satisfy

(2.2.7)
∫ (

1 + τ2 + |η|2)s|û(τ, η, ξ)|2dτdηdξ < +∞ .

For s ∈ N, this is the space of functions u ∈ L2 such that the tangential
derivatives Dα

t,y of order |α| ≤ s belong to L2. When s is a negative integer,
this is the space of

u =
∑

|α|≤−s

∂α
t,yuα , uα ∈ L2 .

The space H0,s(R1+d
+ ) is the set of restrictions to {x > 0} of functions in

H0,s(R1+d). When s is a positive or negative integer, there are equivalent
definitions analogous to those given on the whole space.

Lemma 2.2.5. For all s ∈ R:
i) the space C∞0 (R1+d

+ ) is dense in the space H1,s(R1+d
+ ) of functions

u ∈ H0,s+1(R1+d
+ ) such that Dxu ∈ H0,s(R1+d

+ );
ii) the mapping u 4→ u|x=0 extends continuously from H1,s(R1+d

+ ) to
Hs+ 1

2 (Rd).

Proof. The first part is proved by usual smoothing arguments. The details
are left as an exercise.

Consider next u ∈ C∞0 (R1+d
+ ) and denote by û(τ, η, x) its partial Fourier

transform with respect to the tangential variables (t, y). Integrating ∂x|û|2
on R+, yields

|û(τ, η, 0)|2 ≤ 2
∫ ∞

0
|∂xû(τ, η, x)||û(τ, η, x|dx,

Thus, with Λ = (1 + τ2 + |η|2)1/2,

Λ2s+1|û(·, 0)|2 ≤ Λ2s
∫ ∞

0
|∂xû(·, x)|2dx + Λ2s+2

∫ ∞

0
|û(·, x)|2dx
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Integrating in (τ, η) implies

‖u(·, 0)‖2Hs+1/2(Rd) ≤ ‖∂xu‖2
H0,s(R1+d

+ )
+ ‖u‖2

H0,s+1(R1+d
+ )

= ‖u‖2
H1,s(R1+d

+ )
.

Thus the mapping u 4→ u|x=0 extends by density continuity to H1,s(R1+d
+ )

with values in Hs+1/2(Rd).

We apply this lemma to the space

(2.2.8) D(L) =
{
u ∈ L2(R1+d

+ ) : Lu ∈ L2(R1+d
+ )

}
.

Here Lu is computed in the sense of distributions on {x > 0}. This space
is equipped with the norm ‖u‖L2 + ‖Lu‖L2 . Because Ad is invertible, for
u ∈ D(L) one has

(2.2.9) ∂xu = A−1
d Lu−A−1

d ∂tu−
d−1∑
j=1

A−1
d Aj∂yju

and therefore D(L) ⊂ H1,−1(R1+d
+ ). This shows that all u ∈ D(L) has a

trace in H− 1
2 .

Proposition 2.2.6. i) C∞0 (R1+d
+ ) is dense in D(L)

ii) For all u ∈ D(L) and v ∈ H1(R1+d
+ ), there holds

(2.2.10)
(
Lu, v

)
L2 =

(
u, L∗v)L2 − 〈

Adu|x=0, v|x=0

〉
H−1/2×H1/2

Proof. Consider a tangential mollifier  ∈ C∞0 (R × Rd−1), with  ≥ 0 and
such that

∫
(t, y)dtdy = 1. For ε > 0, let

(2.2.11) ε(t, y) =
1
εd

(
t

ε
,
y

ε
) , t ∈ R , y ∈ Rd−1 .

Denote by Jε the convolution operator ε∗.
If u ∈ D(L) and Φ ∈ C∞0 (R1+d) then JεΦ ∈ C∞0 (R1+d) and in the sense

of distributions (
u, L∗JεΦ

)
L2 =

(
Lu, JεΦ

)
L2 .

Note that we assume here that the support of Φ is contained in the open
half space {x > 0}. Because Jε commutes with differentiation and with
multiplication by constants, L∗JεΦ = JεL∗Φ. Moreover, for all u and v in
L2(R1+d

+ ), one has (
u, Jεv

)
L2 =

(
Jεu, v

)
L2
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Thus, there holds in the sense of distributions on {x > 0}:
LJεu = JεLu .

In particular uε = Jεu ∈ D(L). Moreover, for all v in L2(R1+d
+ ), Jεv con-

verges to v in L2 when ε tends to zero. Thus, for u ∈ D(L), uε converges to
u in D(L).

Next we note that for all v in L2, Jεv ∈ H0,s for all s ∈ N, since for all
α ∂α

t,y(Jεv) = (∂α
t,yε) ∗ v ∈ L2. Thus, uε ∈ H0,s for all s. Using (2.2.9) we

see that uε ∈ H1,s for all s. In particular, uε ∈ H1(R1+d
+ ) and this shows

that H1(R1+d
+ ) is dense in D(L). Since C∞0 (R1+d

+ ) is dense in H1(R1+d
+ ) this

implies i).
By (2.2.9), we see that D(L) ⊂ H1,−1 and

‖u‖H1,−1 ! ‖u‖L2 + ‖Lu‖L2 .

Thus by the trace lemma, the trace u|x=0 is well defined on D(L) and

‖u|x=0‖H−1/2 ! ‖u‖L2 + ‖Lu‖L2 .

The identity (2.2.10) holds when u and v belong to C∞0 (R1+d
+ ). Both side

are continuous for the norms of u in D(L) and v in H1. Thus, the identity
extends by density to D(L)×H1.

Corollary 2.2.7. Given f ∈ L2(R1+d
+ ) and g ∈ L2(Rd), u ∈ L2(R1+d

+ ) is a
weak solution of (2.2.2) if and only if

i) u ∈ D(L) and Lu = f − γu in the sense of distributions on {x > 0},
ii) the trace u|x=0 which is defined in H−1/2 by i) satisfies Mu|x=0 = g.

Proof. If u is a weak solution, taking Φ with compact support in the open
half space implies that Lu + γu = f in the sense of distributions. Thus
u ∈ D(L).

Comparing (2.2.10) and (2.2.6) we see that for all Φ ∈ C∞0 (R1+d
+ ) such

that RΦ = 0 on the boundary, there holds(
g,R1Φ|x=0

)
L2 =

〈
Adu|x=0,Φ|x=0

〉
H−1/2×H1/2

Next we use Lemma 2.2.2, which means that Ad = (R1)∗M + R∗M1 to see
that the right hand side is equal to〈

Mu|x=0, R1Φ|x=0

〉
H−1/2×H1/2 .
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For all φ ∈ C∞0 (Rd) there is Φ ∈ C∞0 (R1+d
+ ) such that Φ|x=0 = φ. Thus, for

all φ ∈ C∞0 (Rd) such that Rφ = 0,(
g,R1φ

)
0

=
〈
Mu|x=0, R1φ

〉
H−1/2×H1/2 .

Similar to (2.2.4), there is a splitting

RN = kerR⊕ ker R1

Therefore, for all ϕ ∈ C∞0 (Rd) with values in RN+ , there is φ ∈ C∞0 (Rd)
such that Rφ = 0 and R1φ = ϕ. Thus for all ϕ ∈ C∞0 (Rd):(

g, ϕ
)
0

=
〈
Mu|x=0, ϕ

〉
H−1/2×H1/2 .

This means that Mu|x=0 = g.
Conversely, if u ∈ D(L) and Lu + γu = f , for all test function Φ, one

has (
u, (L∗ + γ)Φ

)
0
− (

f,Φ
)
0

=
〈
Mu|x=0, R1φ

〉
H−1/2×H1/2

+
〈
M1u|x=0, Rφ

〉
H−1/2×H1/2 .

with φ = Φ|x=0. Taking Φ such that Rφ = 0, we see that if Mu|x=0 = g
then u is a weak solution of (2.2.2).

2.2.2 Energy estimates. Existence of weak solutions

Lemma 2.2.8. The symmetric matrix SAd is definite negative on ker M if
and only if there are constants c > 0 and C such that for all vector h ∈ CN :

−(SAdh, h) ≥ c|h|2 − C|Mh|2 .

Proof. Since SAd is definite negative on kerM , there is c > 0 such that

∀h ∈ ker M : −(SAdh, h) ≥ c|h|2 .

Since SAd is invertible, dim(SAd ker M) = dim kerM = N−, thus K =
(SAd ker M)⊥ has dimension N − N− = N+. In addition since SAd is
definite negative on kerM , K ∩ ker M = {0} and RN = K ⊕ ker M . In
particular, there is C0 such that for all v ∈ K, |v| ≤ C0|Mv|. By definition
of K, if h = v + w with v ∈ K and w ∈ ker M , there holds

−(SAdh, h) = −(SAdv, v)−(SAdw,w) ≥ c|w|2 − C|v|2
≥ c(|w|2 + |v|2)− (C + c)C2

0 |Mv|2 .

≥ c

2
|h|2 − (C + c)C2

0 |Mh|2 .

The converse statement is clear.
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Proposition 2.2.9 (Energy estimates). There is C such that for all
γ > 0 and all test function u ∈ H1(R× Rd

+), one has

(2.2.12) γ‖u‖2L2 + ‖u|x=0‖2L2 ≤ C
(1
γ
‖(L + γ)u‖2L2 + ‖Mu|x=0‖2L2

)
(2.2.13) γ‖v‖2L2 + ‖v|x=0‖2L2 ≤ C

(1
γ
‖(L∗ + γ)v‖2L2 + ‖Ru|x=0‖2L2

)
Proof. Both side of the estimates are continuous for the H1 norm. Since
C∞0 (R1+d

+ ) is dense in H1(R1+d
+ ) it is sufficient to make the proof when

u ∈ C∞0 . Then, using that the SAj are self adjoint and integrating by parts
yields

2Re
(
S(L + γ)u, u

)
L2 = γ

(
Su, u

)
L2 −

(
SAdu|x=0, u|x=0

)
L2

By Lemma 2.2.8, there are c > 0 and C ≥ 0 such that

−(
SAdu|x=0, u|x=0

)
L2 ≥ c‖u|x=0‖2L2 − C‖Mu|x=0‖2L2 .

Because S is definite positive, there is c1 > 0 such that(
Su, u

)
L2 ≥ c1‖u‖2L2 .

Therefore

c1γ‖u‖2L2 + c‖u|x=0‖2L2 ≤ 2|S|‖(L + γ)u‖L2‖u‖L2 + C‖Mu|x=0‖2L2 .

This implies (2.2.12). The proof of (2.2.13) is similar.

Proposition 2.2.10. For all γ > 0, f and g in L2, the problem (2.2.2) has
a weak solution in L2.

Proof. Consider the space H of Φ ∈ H1(R×Rd
+) such that RΦ|x=0 = 0. Let

H1 = (L∗ + γ)H ⊂ L2. By (2.2.13), the mapping L∗ + γ is one to one from
H to H1 and the reciprocal mapping F satisfies

γ‖Fϕ‖L2 +
√

γ‖R1Fϕ|x=0‖L2 ≤ C‖ϕ‖L2 .

Thus the linear form

ϕ 4→ %(ϕ) :=
(
f,Fϕ

)
L2 +

(
g,R1Fϕ|x=0

)
L2

is continuous on H1 equipped with the norm ‖ · ‖L2 . Therefore it extends as
a continuous linear form on L2 and there is u ∈ L2 such that %(ϕ) = (u, ϕ)0.
The definition of % implies that u is a weak solution.
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2.2.3 Strong solutions

Definition 2.2.11. Given f and g in L2, u ∈ L2 is a strong solution of
(2.2.2) if there exists sequences (un, fn) in H1(R1+d

+ ), and gn in H1(Rd)
solutions of (2.2.2) and converging to (u, f) in L2(R1+d

+ ). and to g in L2(Rd)
respectively.

By the density of C∞0 (R1+d
+ ) in H1(R1+d

+ ) and continuity from H1 to
L2 of L and the traces, one obtains an equivalent definition if one requires
that there is a sequence (un, fn, gn) in C∞0 (R1+d

+ ) solutions of (2.2.2) and
converging to (u, f, g) in L2.

Proposition 2.2.12 (Weak= strong). For all γ > 0, f and g in L2, any
weak solution of (2.2.2) in L2 is a strong solution and

(2.2.14) γ‖u‖2L2 + ‖u|x=0‖2L2 ≤ C
(1
γ
‖f‖2L2 + ‖g‖2L2

)
In particular the weak=strong solution is unique.

Proof. Consider again the mollifiers  (2.2.11) and the convolution operator
Jεu = ε ∗ u.

Suppose that u ∈ L2 is a weak solution of (2.2.2). For all test function
Φ, JεΦ is also a test function and RJεΦ = 0. Therefore,(

u, (L∗ + γ)JεΦ
)
L2 =

(
f, JεΦ

)
L2 +

(
g,R1JεΦ|x=0

)
L2 .

As in the proof of Proposition 2.2.6 this implies that(
Jεu, (L∗ + γ)Φ

)
L2 =

(
Jεf,Φ

)
L2 +

(
Jεg,R1Φ|x=0

)
L2 .

This means that uε = Jεu is a weak solution of

(2.2.15)

{
(L + γ)uε = fε ,

Muε|x=0 = gε .

with fε = Jεf and gε = Jεg.
The proof of Proposition 2.2.6 shows that for all ε > 0, uε ∈ H1(R1+d)

and by Corollary 2.2.7 the equations (2.2.15) hold in L2.
Since uε, fε and gε converge in L2 to (u, f, g) respectively, this shows

that u is a strong solution.
In addition, the energy estimates (2.2.12) hold for uε. Passing to the

limit, we obtain that u satisfies (2.2.14).
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2.2.4 Regularity of solutions

We prove that if the data are regular, then the solution is regular. It is con-
venient to equip the spaces Hs(R1+d

+ ) with a family of parameter dependent
norms:

(2.2.16) ‖u‖s,γ =
∑
|α|≤s

γs−|α|‖∂α
t,y,xu‖L2 .

We define similar norms on the spaces Hs(Rd), using only tangential deriva-
tives ∂α

t,y.

Proposition 2.2.13. Let s be a non negative integer. For γ > 0, f ∈ Hs

and g ∈ Hs the solution of (2.2.2) belongs to Hs and

(2.2.17) γ‖u‖2s,γ + ‖u|x=0‖2s,γ ≤ C
(1
γ
‖f‖2s,γ + ‖g‖2s,γ

)
Proof. First prove the tangential regularity. We use the mollified equation
(2.2.15). Since uε ∈ H1,s for all s, we can differentiate this equation as many
times as we want in (t, y) and ∂α

t,yuε ∈ H1(R1+d
+ ) satisfies{

(L + γ)∂α
t,yuε = ∂α

t,yfε ,

M∂α
t,yuε|x=0 = ∂α

t,ygε .

Proposition 2.2.12 implies that

γ‖uε‖2H0,s + ‖uε|x=0‖2H0,s ≤ C
(1
γ
‖fε‖2H0,s + ‖gε‖2H0,s

)
with C independent of ε.

Next we use the equation to recover the normal derivatives. We start
from (2.2.9) which implies that

‖∂xuε‖H0,s−1 ! ‖fε‖H0,s−1 + ‖uε‖H0,s .

In addition, since fε can be differentiated s times in x, we see by induction
on k ≤ s that ∂k

xuε ∈ H0,s′ for all s′ with

∂k
xuε = A−1

d ∂k−1
x fε −A−1

d ∂k−1
x ∂tuε −

d−1∑
j=1

A−1
d Aj∂

k−1
x ∂juε .

Thus
‖∂k

xuε‖H0,s−k ! ‖∂k−1
x fε‖H0,s−k + ‖∂k−1

x uε‖H0,s−k+1
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Adding up, we see that uε ∈ Hs+1 and that there is C independent of ε and
γ such that

γ‖uε‖2s,γ + ‖uε|x=0‖2s,γ ≤ C
(1
γ
‖fε‖2s,γ + ‖gε‖2s,γ

)
This means that the uε satisfy (2.2.17). Similarly, the differences uε − uε′

satisfy (2.2.17). Hence the family uε is a Cauchy sequence in Hs, so that
the limit u belongs to Hs and satisfy (2.2.17).

2.2.5 Solutions of the boundary value problem (2.2.1)

We now turn to the original equation (2.2.1). Propositions 2.2.10, 2.2.12
and 2.2.13 imply the next result.

Theorem 2.2.14. Suppose that γ > 0, s ∈ N, f ∈ eγtHs and g ∈ eγtHs.
Then the problem (2.2.1) has a unique strong solution u ∈ eγtHs and

(2.2.18) γ‖e−γtu‖2s,γ + ‖e−γtu|x=0‖2s,γ ≤ C
(1
γ
‖e−γtf‖2s,γ + ‖e−γtg‖2s,γ

)
where C is independent of γ and u, f , g.

2.3 Solutions on ]−∞, T ] and the causality princi-
ple

In this section, we show that if the data of (2.2.1) vanish in the past, then
the solution also does, and we solve the boundary value problem on {t ≤ T}.

First we note that we have a strong uniqueness result:

Lemma 2.3.1. Assume that f ∈ eγ0tL2∩eγ1tL2 and g ∈ eγ0tL2∩eγ1tL2with
0 < γ0 < γ1. Then the solutions uγ0 and uγ1 given by Proposition 2.2.13
applied to γ = γ0 and γ = γ1 are equal.

Proof. Note that f ∈ eγtL2 for all γ ∈ [γ0, γ1]. Therefore, for such γ (2.2.1)
has a unique strong solution uγ ∈ eγtL2.

Introduce a function θ ∈ C∞(R) such that θ(t) = 1 for t ≤ 0 and
θ(t) = e−t for t ≥ 1. Thus ∂tθ = hθ with h ∈ L∞. With δ = γ − γ0,
introduce

v = θ(δt)
(
uγ − uγ0

)
.
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The properties of θ imply that v ∈ eγ0tL2 and

Lv = δ∂tθ(δt)
(
uγ − uγ0

)
= δh(δt)v , Mv|x=0 = 0 .

Thus, by uniqueness in eγ0tL2, Theorem 2.2.14 applied to γ = γ0, implies
that there is a constant C, independent of the γ’s, such that

γ0‖e−γ0tv‖L2 ≤ Cδ‖e−γ0tv‖L2

If Cδ < γ0, this implies that v = 0. Summing up, we have proved that
for γ ≤ (1 + 1/2C)γ0 and γ0 ≤ γ ≤ γ1, one has uγ = uγ0 . By induction,
this implies that for all integer k ≥ 1, uγ = uγ0 for γ ∈ [γ0, γ1] with γ ≤
(1 + 1/2C)kγ0. Hence, uγ = uγ0 for γ ∈ [γ0, γ1].

This implies local uniqueness:

Proposition 2.3.2. If f ∈ eγtL2(R1+d
+ ) and g ∈ eγtL2(Rd) with γ > 0

vanish for t < T , then the solution u ∈ eγtL2(R1+d
+ ) of (2.2.1) vanishes for

t < T .

Proof. Since f and g vanish for t < T , f and g belong to eγ′tL2 for all γ′ ≥ γ.
Thus, by the lemma above, u ∈ eγ′tL2 for all γ′ large and by Theorem 2.2.14
there is C such that for all γ′ ≥ γ:

γ′‖e−γ′tu‖2L2 ≤ C
1
γ′
‖e−γ′tf‖2L2 + C‖e−γ′tg‖2L2 .

Thus

γ′‖u‖2L2({t≤T}) ≤ γ′‖eγ′(T−t)u‖2L2 ≤ C

γ′
‖eγ′(T−t)f‖2L2 + C‖eγ′(T−t)f‖2L2

≤ C

γ′
‖eγ(T−t)f‖2L2 + C‖eγ(T−t)f‖2L2 .

The right hand side is bounded as γ′ tends to infinity, thus u|{t≤T} = 0.

We now consider solutions of (2.2.1) on ] −∞, T ] × Rd
+. First, we note

that the trace makes sense.

Lemma 2.3.3. Suppose that u ∈ L2(]T1, T2[×Rd
+) satisfies Lu ∈ L2(]T1, T2[×Rd

+).
Then the trace u|x=0 is well defined in H−1/2

loc (]T1, T2[×Rd−1).

Proof. Consider χ ∈ C∞0 (]T1, T2[). Then χu, extended by 0 belongs to
L2(R1+d

+ ) and L(χu), which is the extension by 0 of χLu+∂tχu, also belongs
to L2(R1+d

+ ). Thus, by Lemma 2.2.5, χu has a trace in H−1/2 and the lemma
follows.

45



Therefore, for u ∈ L2(]T1, T2[×Rd
+) such that Lu = f ∈ L2(]T1, T2[×Rd

+)
the equation Mu|x=0 = g ∈ L2 makes sense.

Corollary 2.3.4. Suppose that γ > 0 and u ∈ eγtL2(]−∞, T ]×Rd
+) satisfies{

Lu = 0 on ]−∞, T ]× R+)
Mu|x=0 = 0 on ]−∞, T ] .

Then u = 0.

Proof. For δ > 0 choose χ ∈ C∞(R) such that

χ(t) = 1 for t < T − δ and χ(t) = 0 for t ≥ T − δ/2 .

Extend v = χ(t)u by 0 for t ≥ T . Then v ∈ eγtL2, Mv vanishes on the
boundary, and f := Lv which is the extension of (∂tχ)u by 0 for t ≥ T
vanishes for t ≤ T − δ and belongs to eγtL2. Thus, by Proposition 2.3.2
v and hence u vanish for t ≤ T − δ. Since δ is arbitrary, this implies that
u = 0.

Remark 2.3.5. If u and u1 are two solutions in eγtL2 of (2.2.1) on ] −
∞, T1] × Rd

+ associated to L2 data (f, g) and (f1, g1) respectively, and if
f = f1 and g = g1 for t ≤ T , then u = u1 for t ≤ T . Thus the values of u for
times t ≤ T only depend on the values of the data f and g for t ≤ T . This
means that the solutions constructed above satisfy the causality principle.

Theorem 2.3.6. Suppose that f ∈ eγtHs(]−∞, T ]×Rd
+) and g ∈ eγtHs(]−

∞, T ] × Rd−1), for some γ > 0 and s ∈ N. Then the problem (2.2.1) has a
unique solution u ∈ eγtHs(]−∞, T ]× Rd

+).
If f and g vanish for t ≤ T1, then the solution u also vanishes for t ≤ T1.
Moreover, estimates similar to (2.2.18) are satisfied.

Proof. Extend f and g for t ≥ T as f̃ ∈ Hs(R×Rd
+) and g̃ ∈ Hs(R×Rd−1).

We can choose the extension such that they vanish for t ≥ T + 1. For
instance, when s = 0, we can extend them by 0. Because f̃ = f and g̃ = g
for t ≤ T and vanish for t ≥ T + 1, f̃ and g̃ belong to eγtHs. Therefore, by
Theorem 2.2.14 the problem

(2.3.1) Lũ = f , Mũ|x=0 = g̃

has a unique solution ũ ∈ eγtHs. Its restriction to {t ≤ T} satisfies (2.2.1).
This proves the existence part of the statement.

The uniqueness follows from Corollary 2.3.4.
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2.4 The mixed Cauchy problem

We now consider the mixed Cauchy-boundary value problem:

(2.4.1)


Lu = f on [0, T ]× Rd

+

Mu|x=0 = g on [0, T ]× Rd−1

u|t=0 = u0 on Rd
+

We first solve the problem in L2 and next study the existence of smooth
solutions.

When u ∈ L2([0, T ] × Rd
+) and Lu ∈ L2([0, T ] × Rd

+), the trace u|x=0

is defined in H−1/2
loc (]0, T [×Rd−1) thus the boundary condition makes sense.

We will construct solution in the space C0([0, T ];L2(Rd
+)) identified with a

subspace of L2([0, T ]×Rd
+) and for such u the initial condition is meaningful.

2.4.1 L2 solutions

The starting point is an energy estimate. Note that, by standard trace theo-
rems (see also Lemma 2.2.5) all u ∈ H1([0, T ] × Rd

+) belongs to
C0([0, T ];H1/2(Rd

+)) ⊂ C0([0, T ];L2(Rd
+)). In particular, for such u, the

value of u at time t ∈ [0, T ], denoted by u(t), is well defined in L2(Rd
+).

Proposition 2.4.1. There is a constant C such that for all T > 0, all
u ∈ H1([0, T ]× Rd

+) and all t ∈ [0, T ], the following inequality holds:

(2.4.2)
‖u(t)‖L2(Rd

+) + ‖u|x=0‖L2([0,t]×Rd−1) ≤ C
(
‖u0‖L2(Rd

+)

+
∫ t

0
‖f(s)‖L2(Rd

+)ds + ‖g‖L2([0,t]×Rd−1)

)
.

where u0 = u(0), f := Lu and g := Mu|x=0.

Since u ∈ H1, f = Lu belongs to L2, thus

‖f(t)‖L2(Rd
+) =

( ∫
|f(t, y, x)|2dydx

)1/2

is well defined in L2([0, T ]), thus in L1([0, T ]).

Proof. By integration by parts, as in Proposition 2.2.9, there holds:

2Re
(
Sf, u

)
L2([0,t]×Rd

+)
=

(
Su(t), u(t)

)
L2(Rd

+)
− (

Su(0), u(0)
)
L2(Rd

+)

− (
SAdu|x=0, u|x=0

)
L2([0,T ]×Rd−1)

.
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Since S is definite positive and using Lemma 2.2.8, this implies

‖u(t)‖2L2(Rd
+) + ‖u|x=0‖2L2([0,t]×Rd−1) ≤ C

(
‖u(0)‖2L2(Rd

+)

+ ‖g‖2L2([0,t]×Rd−1) +
∫ t

0
‖f(s)‖L2(Rd

+)‖u(s)‖L2(Rd
+)ds

)
.

Taking the supremum of these estimates for t′ ∈ [0, t], we can replace in
the left hand side ‖u‖2

L2(Rd
+)

by n2(t) where n(t) := supt′∈[0,t] ‖u(t′)‖L2(Rd
+).

Moreover, the integral in the right hand side is smaller than

n(t)
∫ t

0
‖f(s)‖L2(Rd

+)ds ≤ εn2(t) + ε−1
( ∫ t

0
‖f(s)‖L2(Rd

+)ds
)2

.

Choosing ε small enough to absorb Cεn2 from the right to the left, yields,
with a new constant C:

n2(t) + ‖u|x=0‖2L2([0,t]×Rd−1) ≤ C
(
‖u(0)‖2L2(Rd

+)

+ ‖g‖2L2([0,t]×Rd−1) +
( ∫ t

0
‖f(s)‖L2(Rd

+)

)2
ds

)
and (2.4.2) follows.

This estimate has consequences for strong solutions of (2.4.1).

Definition 2.4.2. Given f ∈ L2([0, T ] × Rd
+), g ∈ L2([0, T ] × Rd−1) and

u0 ∈ L2(Rd
+), we say that u ∈ L2([0, T ] × Rd

+) is a strong L2-solution of
(2.4.1) if there is a sequence un ∈ L2([0, T ]×Rd

+) such that un → u, Lun →
f , Mun|x=0 → g and un(0) → u0 in L2.

Proposition 2.4.3. If u ∈ L2([0, T ]×Rd
+) is a strong L2-solution of (2.4.1),

then u satisfies the equations (2.4.1), u ∈ C0([0, T ];L2(Rd
+)), its trace u|x=0

belongs to L2([0, T ]×Rd−1) and the energy inequalities (2.4.2) are satisfied.

Proof. Suppose that un is a sequence in H1 such that un → u, Lun → f ,
Mun|x=0 → g and un(0) → u0 in L2.

Applying the estimate (2.4.2) to differences un − um, we conclude that
un is a Cauchy sequence in C0([0, T ];L2(Rd

+)) and that the traces un|x=0

form a Cauchy sequence in L2([0, T ] × Rd−1). Hence un converges to a
limit v ∈ C0([0, T ];L2(Rd

+)) and the traces un|x=0 converge to a limit h ∈
L2([0, T ]×Rd−1). Since un → u in L2, by uniqueness of the limit in the sense
of distributions, v = u. Moreover, Lun → Lu in the sense of distributions,
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thus Lu = f . Using Lemmas 2.3.3 and 2.2.5, we get that the traces un|x=0

converge to u|x=0 in H−1/2
loc (]0, T [×Rd−1), and since the traces converge to

h in L2, this implies that u|x=0 = h ∈ L2([0, T ] × Rd−1). In particular,
Mu|x=0 = lim Mun|x=0 = g. Since un → u in C0([0, T ];L2), there holds
un(0) → u(0) and thus u(0) = u0 in L2. This shows that u is a solution of
(2.4.1) and that the trace on {x = 0} is in L2.

Knowing the convergences un → u in C0([0, T ];L2), Lun → f , un
|x=0 →

u|x=0 in L2, we can pass to the limit in the energy estimates for un, and so
obtain that u satisfies (2.4.2).

Remark 2.4.4. This statement applies to solutions of (2.2.1). Suppose that
f ∈ L2(]−∞, T ]×Rd

+) and g ∈ L2(]−∞, T ]×Rd−1) vanish for t < 0. The
unique solution u ∈ L2(]−∞, T ]×Rd

+) of (2.2.1) which vanishes when t < 0,
given by Theorem 2.3.6 is a strong solution by Proposition 2.2.12, or as seen
by writing f = lim fn, g = lim gn with fn ∈ H1, gn ∈ H1 vanishing when
t ≤ 0. Then, by Theorem 2.3.6, the solution un of (2.2.1) with data (fn, gn)
belongs to H1 and converge in L2 to u. Since un vanishes for t < 0 and
un ∈ H1, the trace of un on {t = T0} vanishes, i.e. un(T0) = 0 for all T0 ≤ 0.
This shows that u, restricted to {t ≥ T0} is a strong solution of (2.4.1) with
vanishing initial data at time T0. Thus, u ∈ C0(]−∞, T ];L2(Rd

+)) and the
estimates (2.4.2) hold.

We can now state the main theorem.

Theorem 2.4.5. For all u0 ∈ L2(Rd
+), f ∈ L2([0, T ] × Rd

+) and g ∈
L2([0, T ]×Rd−1), there is a unique solution u ∈ C0([0, T ], L2(Rd

+)) of (2.4.1).
It is a strong solution, its trace on {x = 0} belongs to L2([0, T ]×Rd−1) and
the energy estimate (2.4.2) is satisfied.

Proof. a) Existence.
Denote by H1

0 (Rd
+) the space of functions in v ∈ H1(Rd

+) such that
v|x=0 = 0. Since H1

0 (Rd
+) is dense in L2(Rd

+), there is a sequence un
0 such

that:
un

0 ∈ H1
0 (Rd

+) , ‖un
0 − u0‖L2 → 0 .

Considered as a function independent of t, un
0 belongs to H1([0, T ]×Rd

+), its
trace on x = 0 vanishes and Lun

0 ∈ L2([0, T ]× Rd+). By density of smooth
functions with compact support in L2, there is a function fn such that

fn ∈ H1(]−∞, T ]×Rd
+) , fn

|t<0 = 0 , ‖fn− (f −Lun
0 )‖L2([0,T ]×Rd

+) ≤
1
n

.
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Similarly, there is gn such that

gn ∈ H1(]−∞, T ]× Rd−1) , gn
|t<0 = 0 , ‖gn − g‖L2([0,T ]×Rd−1) ≤

1
n

.

By Theorem 2.2.14, there is a unique function vn, such that

vn ∈ H1(]−∞, T ]× Rd
+) , Lvn = fn , vn|t<0 = 0 , Mvn|x=0 = gn .

In particular, since vn ∈ H1, vn ∈ C0(]−∞, T ];L2(Rd
+)), and since vn = 0

when t < 0, this implies that vn(0) = 0.
Consider un the restriction on [0, T ] × Rd

+ of vn + un
0 . It belongs to

H1(] −∞, T ] × Rd
+), its trace on {x = 0} is equal to the trace of vn, thus

Mun|x=0 = gn → g in L2. Moreover, un(0) = un
0 → u0 in L2 and Lun =

fn + Lun
0 → f . Thus, applying the estimate (2.4.2) to differences un − um,

we conclude that un is a Cauchy sequence in C0([0, T ];L2(Rd
+)). Thus un

converges to a limit u in C0([0, T ];L2(Rd
+)), thus in L2([0, T ] × Rd

+). The
properties listed above show that u is a strong solution of (2.4.1), thus a
solution which satisfies the estimates (2.4.2).

b) Uniqueness.
Suppose that u ∈ C0([0, T ];L2(Rd

+)) satisfies Lu = 0, Mu|x=0 = 0 and
u(0) = 0. Consider a C∞ non decreasing function χ(t) such that χ = 0
for t < 1 and χ(t) = 1 for t > 2. For δ > 0, let χδ(t) = χ(t/δ). Consider
uδ the extension by 0 for t ≤ 0 of χδu. Thus Luδ is the extension by 0 of
(∂tχδ)u and thus belongs to L2. Moreover, the trace of uδ is the extension
of χδu|x=0. Thus Muδ |x=0 = 0. Therefore, uδ is a solution of (2.2.1) which
vanishes in the past. By Remark 2.4.4, it is a strong solution and the energy
estimates (2.4.2) are satisfied. Hence, for t ≥ 2δ

‖u(t)‖L2 ≤ C

∫ t

0
(∂tχδ)(s)‖u(s)‖L2ds = C

∫ 2

1
(∂tχ(s)‖u(δs)‖L2ds .

Since u ∈ C0([0, T ];L2) and u(0) = 0, the right hand side converges to zero
as δ tends to zero, implying that u = 0.

2.4.2 Compatibility conditions

In order to solve the mixed Cauchy problem in Sobolev spaces, compatibility
conditions are needed. For instance, the initial and boundary conditions
imply that necessarily

(2.4.3) Mu0|x=0 = g|t=0 = Mu|t=0,x=0 ,
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provided that the traces are defined. Next, denote by A the operator

Au =
d∑

j=1

Aj∂j .

Thus, if Lu = f , ∂tu = f −Au and therefore

u1 := ∂tu|t=0 = −Au0 + f0

if f0 = f|t=0. Thus, provided that the traces are defined,

(2.4.4) Mu1|x=0 = M(f0 −Au0)|x=0 = g1 := ∂tg|t=0 = M∂tu|t=0,x=0 .

These conditions are necessary for the existence of a smooth solution. Con-
tinuing the Taylor expansions to higher order yields higher order condition
as we now explain.

For u smooth enough denote by uj = ∂j
t u|t=0 the traces at t = 0 of

the derivatives of u. For instance, if u ∈ Hs, s ≥ 1, they are defined for
j ≤ s − 1. Similarly, we note fj = ∂j

t f|t=0 and gj = ∂j
t g|t=0 when they are

defined. If u is a solution of Lu = f , then for j ≥ 1:

uj = fj−1 −Auj−1

By induction, this implies that

(2.4.5) uj = (−A)ju0 +
j−1∑
l=0

(−A)j−l−1fl .

The boundary condition Mu|x=0 = g implies that

Muj |x=0 = gj

Thus necessarily, for smooth enough functions, solutions of (2.4.1) must
satisfy on the edge {t = 0, x = 0}:

(2.4.6) M
(
(−A)ju0 +

j−1∑
l=0

M(−A)j−l−1fl

)
|x=0

= gj .

Lemma 2.4.6. For s ≥ 1, u0 ∈ Hs(Rd
+), f ∈ Hs([0, T ] × Rd

+) and g ∈
Hs([0, T ] × Rd−1), the left and right hand sides of (2.4.6) are defined for
j ∈ {0, . . . , s− 1} and belong to Hs−j−1/2(Rd−1).
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Proof. For u0 ∈ Hs, Aju0 ∈ Hs−j and the trace (Aju0)|x=0 is defined for j <

s and belongs to Hs−j−1/2(Rd−1). For f ∈ Hs, the traces fl are defined for
l ≤ s−1 and belong to Hs−l−1/2. Thus, Aj−l−1fl ∈ Hs−j+1/2 and the traces
(Aj−l−1fl)|x=0 are defined for j < s and belong to Hs−j(Rd−1). For g ∈ Hs,
the traces gj are defined for j < s and belong to Hs−j−1/2(Rd−1).

The lemma shows that the following definition makes sense.

Definition 2.4.7. The data u0 ∈ Hs(Rd
+), f ∈ Hs([0, T ] × Rd

+) and g ∈
Hs([0, T ] × Rd−1) satisfy the compatibility conditions to order σ ≤ s − 1 if
the equations (2.4.6) hold for all j ∈ {0, . . . , σ}.

For instance, the first two conditions, given by (2.4.3) and (2.4.4) are

Mu0|x=0 = g|t=0 ,(2.4.7)
(MAu0)|x=0 = f0|x=0 − g1 .(2.4.8)

When s = 0, there are no compatibility condition. When s = 1, there is
only one, (2.4.7). When s = 2, there are two conditions, (2.4.7) and (2.4.8),
etc.

Remark 2.4.8. Suppose that f = 0 and g = 0. In this case, the com-
patibility conditions read M(Aju0)|x=0 = 0. Considering the operator A

with domain D(A) = {u ∈ L2(Rd
+);Au ∈ L2(Rd

+) andMu|x=0 = 0}, the
compatibility conditions of order s reads u0 ∈ D(As).

The next result is useful in the construction of smooth solutions.

Proposition 2.4.9. Suppose that u0 ∈ Hs(Rd
+), f ∈ Hs([0, T ] × Rd

+) and
g ∈ Hs([0, T ]×Rd−1) are compatible to order s−1. Then there are sequences
un

0 ∈ Hs+1(Rd
+), fn ∈ Hs+1([0, T ] × Rd

+) and gn ∈ Hs+1([0, T ] × Rd−1),
compatible to order s, such that un

0 → u0, fn → f and gn → g in Hs.

Proof. a) Consider first the case s = 0. Then u0, f and g are arbitrary data
in L2. One easily construct approximating sequences un

0 , fn, gn arbitrarily
smooth and compatible to any order, by approximating the data by C∞
functions which vanish near t = 0, x = 0.

b) Suppose now that s = 1, u0, f and g are data in H1 which satisfy
the first compatibility condition (2.4.7). Consider sequences un

0 , fn, gn in
H2, which converge in H1 to u0, f and g respectively. By (2.4.7) and the
continuity of the traces, rn

0 := gn
|t=0 −Mun

0 |x=0 satisfies

rn
0 ∈ H3/2(Rd−1) , ‖rn

0 ‖H1/2(Rd−1) → 0 .
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To construct H2 data (un
0 + vn, fn, gn) which are compatible to first order,

it is sufficient to construct vn such that:

vn ∈ H2(Rd
+) , ‖vn‖H1 → 0 , Mvn

|x=0 = rn
0 , M(Avn)|x=0 = rn

1 ,

with rn
1 = M(Aun

0 )|x=0 − fn
|x=t=0 − ∂tgn

|t=0 ∈ H1/2(Rd−1). Since M is onto,
there is a N ×N+ matrix, M ′, such that MM ′ = Id. Thus is is sufficient to
find vn such that

(2.4.9) vn ∈ H2(Rd
+) , ‖vn‖H1 → 0 , vn

|x=0 = hn
0 , (Avn)|x=0 = hn

1 ,

with hn
0 = M ′rn ∈ H3/2, hn

1 = M ′rn
1 ∈ H1/2. Moreover, hn

0 → 0 in H1/2.
Note that (2.4.9) concerns only functions of (y, x) ∈ Rd and their traces

on {x = 0}. We recall the classical construction of Poisson operators. Con-
sider φ ∈ C∞0 (R), φ ≥ 0, such that φ(x) = 1 for |x| ≤ 1 Denoting here by v̂
the Fourier transform with respect to y, consider the operator

K : h 4→ Kh , K̂h(η, x) = φ(x〈η〉)ĥ(η)

with 〈η〉 = (1 + |η|2)1/2. Then, K is bounded from H1/2(Rd−1) to H1(Rd
+)

and from H3/2(Rd−1) to H2(Rd
+). Moreover, (Kh)|x=0 = h. Consider vn

0 =
Khn. Then, vn

0 ∈ H2, vn
0 |x=0 = hn

0 and vn
0 → 0 in H1. Therefore, to find a

solution vn = vn
0 + wn of (2.4.9), it is sufficient to find wn which satisfy the

same properties with hn
0 = 0 and hn

1 replaced by kn
1 = hn

1−(Avn
0 )|x=0 ∈ H1/2.

In addition, A = Ad∂x + A′ where A′ =
∑

j<d Aj∂j . Thus, is is sufficient to
find wn such that

(2.4.10) wn ∈ H2(Rd
+) , ‖wn‖H1 → 0 , wn

|x=0 = 0 , ∂xwn|x=0 = kn ,

with kn = A−1
d kn

1 ∈ H1/2.
We use a Poisson operator Pn defined by

P̂nh(η, x) = xφ(λnx〈η〉)ĥ(η)

where λn ≥ 1 is to be chosen. We note that Pn maps H1/2(Rd−1) to H2(Rd
+),

that (Pnh)|x=0 = 0 and (∂xPnh)|x=0 = h. Thus, wn = Pnkn satisfies the
first, third and fourth property in (2.4.10). It remains to show that one can
choose the sequence λn such that wn → 0 in H1.

Elementary computations using Plancherel’s theorem, show that

‖Pnh‖2H1(Rd
+) ≤ C

∫
ψn(η)|ĥ(η)|2dη
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with C independent of n and h and

ψn(η) =
∫ ∞

0

(
(x2〈η〉2 + 1)|φ(λnx〈η〉)|2 + λ2

nx4〈η〉2|φ′(λnx〈η〉)|2
)
dx .

For λn ≥ 1, there holds

ψn(η) ≤ C

λn〈η〉
with C independent of n. Therefore

‖wn‖H1(Rd
+) ≤

C√
λn
‖kn‖H−1/2(Rd−1) .

One can now choose λn such that the right hand side converges to zero,
showing that wn satisfies (2.4.10). This finishes the proof of the proposition
when s = 1.

c) When s ≥ 2, the proof is similar. One is reduced to find vn ∈
Hs+1(Rd

+) such that vn → 0 in Hn and (Ajvn)|x=0 = hn
j where the hn

j are
given in Hs−j+1/2(Rd−1) for j ≤ s and converge to zero in Hs−j−1/2(Rd−1)
for j ≤ s−1. We first lift up the s−1 first traces by a fixed Poisson operator,
and reduce the problem to find wn ∈ Hs+1(Rd

+) such that wn → 0 in Hn

and (∂j
xwn)|x=0 = 0 when j ≤ s−1 and (∂s

xwn)|x=0 = kn ∈ H1/2(Rd−1). We
lift up the traces using a Poisson operator

(2.4.11) P̂nh(η, x) =
xj

j!
φ(λnx〈η〉)ĥ(η) ,

and show that if the sequence λn is properly chosen wn = Pnkn has the
desired properties. The details are left as an exercise.

2.4.3 Smooth solutions

Definition 2.4.10. W s(T ) denotes the space of functions u ∈ C0([0, T ],Hs(Rd
+))

such that for all j ≤ s, ∂j
t u ∈ C0([0, T ],Hs−j(Rd

+)).

W s(T ) is considered as a subspace of Hs([0, T ]×Rd
+) and Hs+1([0, T ]×

Rd
+) ⊂ W s(T ). We also use the notation

(2.4.12) |||u(t)|||s =
s∑

j=0

‖∂j
t u(t)‖Hs−j(Rd

+) .

This function is bounded (and continuous) in time when u ∈ W s and in L2

when u ∈ Hs.
We first state an a-priori estimate for smooth solutions.
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Proposition 2.4.11. There is a constant C such that for all T > 0, all
u ∈ Hs+1([0, T ]× Rd

+) and all t ∈ [0, T ], the following inequality holds:

(2.4.13)
|||u(t)|||s + ‖u|x=0‖Hs([0,t]×Rd−1) ≤ C

(
|||u(0)|||s+

+
∫ t

0
|||f(t′)|||sdt′ + ‖g‖Hs([0,t]×Rd−1)

)
.

where f := Lu and g := Mu|x=0.

Proof. Consider the tangential derivatives uα := ∂α
t,yu for α ∈ Nd, |α| ≤ s.

Since u ∈ Hs+1, they satisfy

Luα = fα := ∂α
t,yf , Muα|x=0 = gα := ∂α

t,yg .

Introduce the tangential norm

|||u(t)|||′s :=
∑
|α|≤s

‖∂α
t,yu(t)‖L2 .

The L2 estimates (2.4.2) imply that

|||u(t)|||′s + ‖u|x=0‖Hs([0,t]×Rd−1) ≤ C
(
|||u(0)|||′s

+
∫ t

0
|||f(t′)|||′sdt′ + ‖g‖Hs([0,t]×Rd−1)

)
which is dominated by the right hand side of (2.4.13). It remains to estimate
the normal derivatives by tangential ones, using the equation (2.2.9). By
induction, one proves that

|||u(t)|||s ≤ C
(|||u(t)|||′s + |||f(t)|||s−1

)
.

Since

|||f(t)|||s−1 ≤ |||f(0)|||s−1 +
∫ t

0
|||∂tf(t′)|||s−1dt′

and
|||f(0)|||s−1 ≤ |||u(0)|||s , |||∂tf(t′)|||s−1 ≤ |||f(t′)|||s ,

the estimate (2.4.13) follows.
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We can now prove the main theorem of this chapter.

Theorem 2.4.12. For all u0 ∈ Hs(Rd
+), f ∈ Hs([0, T ] × Rd

+) and g ∈
Hs([0, T ] × Rd−1) satisfying the compatibility conditions up to order s − 1,
there is a unique solution u ∈ W s(T ) of (2.4.1). Moreover, the trace of the
solution u on {x = 0} is in Hs([0, T ] × Rd−1) and u satisfies the estimates
(2.4.13).

Proof. When s = 0, this is Theorem 2.4.5. We suppose now that s ≥ 1.
Step 1. Solve the equation with a loss of smoothness.

We prove that when u0, f and g belong to Hs+2 and satisfy the compat-
ibility condition up to order s, there is a solution in Hs+1([0, T ] × Rd+) ⊂
W s+1(T ).

With fl = ∂l
tf|t=0 ∈ Hs+1−l(Rd

+), consider the functions uj ∈ Hs+2−j(Rd
+)

defined by (2.4.5) for j ≤ s+2. Then, there is ua ∈ Hs+2+1/2(R×Rd
+) such

that

(2.4.14) ∂j
t u

a|t=0 = uj , for j ≤ s + 2 .

We look for a solution as u = u′ + ua. The equation for u′ reads

Lu′ = f ′ := f − Lua , Mu′|x=0 = g′ := g −Mua|x=0 , u′|t=0 = 0 .

We have f ′ ∈ Hs+2 − Hs+3/2 ⊂ Hs+1 and comparing (2.4.14) and (2.4.5)
we see that

(2.4.15) ∂j
t f
′|t=0 = 0 for j ≤ s .

Moreover, g′ ∈ Hs+2 and the compatibility conditions imply that

(2.4.16) ∂j
t g
′|t=0 = 0 for j ≤ s .

Denote by f̃ ′ and g̃′ the extensions of f ′ and g′ by 0 for t < 0. Then, the
trace conditions (2.4.15) and (2.4.16) imply that f̃ ′ ∈ Hs+1(]−∞, T ]×Rd

+)
and g̃′ ∈ Hs+1(] −∞, T ] × Rd−1). Thus, by Theorem 2.3.6, the boundary
value problem

Lũ′ = f̃ ′ , Mũ′|x=0 = g̃′

has a unique solution ũ′ ∈ Hs+1(]−∞, T ]×Rd
+) which vanishes when t ≤ 0.

Thus ũ′(0) = 0 and denoting by u′ the restriction of ũ′ to t ≥ 0, u = u′+ ua

is a solution of (2.4.1).
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Step 2. Hs data.
Given u0 ∈ Hs(Rd

+), f ∈ Hs([0, T ] × Rd
+) and g ∈ Hs([0, T ] × Rd−1)

satisfying the compatibility conditions up to order s − 1, by repeated ap-
plications of Proposition 2.4.9, there is a sequence uν

0 ∈ Hs+2(Rd
+), fν ∈

Hs+2([0, T ]×Rd
+) and gν ∈ Hs+2([0, T ]×Rd−1) satisfying the compatibility

conditions up to order s+1 and converging in Hs to u0, f and g respectively.
We note that for solutions of (2.4.1),

|||u(0)|||s =
∑
j≤s

‖uj‖Hs−j

where the uj are defined at (2.4.5). Thus |||uν(0)− uµ(0)|||s tends to zero as
µ and ν tend to infinity. Therefore, the energy estimates (2.4.13) imply that
the sequence uν is a Cauchy sequence in W s(T ) and therefore converges
to u ∈ W s(T ). Since s ≥ 1, the limit u is clearly a solution of (2.4.1).
The uniqueness follows from the L2 uniqueness of Theorem 2.4.5. passing
to the limit in the energy estimates for the uν implies that u also satisfies
(2.4.13).

2.5 Nonlinear mixed problems

Consider the equation

(2.5.1)


Lu = F (u) + f on [0, T ]× Rd

+

Mu|xd=0 = g on [0, T ]× Rd−1

u|t=0 = u0 on Rd
+

We assume that F (0) = 0, so that it makes sense to look for solutions
vanishing at infinity and in Sobolev spaces Hs.

Theorem 2.5.1. Let s be and integer s > d/2.
i) Suppose that f ∈ Hs([0, T0] × Rd

+), g ∈ Hs([0, T0] × Rd−1) and
u0 ∈ Hs(Rd

+). Suppose that the compatibility conditions of section 2.5.2
below are satisfied up to the order s− 1. Then there is T ∈]0, T0] such that
the problem (2.5.1) has a unique solution u ∈ W s(T ).

ii) If σ > s and the data (f, g, u0) belong to Hσ([0, T ]×Rd
+), Hσ([0, T ]×

Rd−1) and Hσ(Rd
+) respectively and satisfy the compatibility conditions to

order σ − 1, then the solution u given by i) belongs to W σ(T ).
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2.5.1 Nonlinear estimates

Recall the following multiplicative properties of Sobolev spaces.

Proposition 2.5.2. For non negative integers s > d/2 and j, k such that
j + k ≤ s there is C such that for u ∈ Hs−j(Rd

+) and v ∈ Hs−k(Rd
+) the

product uv ∈ Hs−j−k(Rd
+) and

(2.5.2) ‖uv‖Hs−j−k ≤ C‖u‖Hs−j‖v‖Hs−k .

Corollary 2.5.3. Let F be a C∞ function such that F (0) = 0. For all
s > d/2, there is a nondecreasing function C(·) on [0,+∞[ such that for all
T > 0 and u ∈ W s(T ), F (u) ∈ W s(T ) and for all t ∈ [0, T ]:

(2.5.3) |||u(t)|||s ≤ R ⇒ |||F (u)(t)|||s ≤ C(R) .

Moreover, for all u ∈ W s(T ) and v ∈ W s(T ) with |||u(t)|||s ≤ R and
|||v(t)|||s ≤ R:

(2.5.4) |||{F (u)− F (v)}(t)|||s ≤ C(R)|||{u− v}(t)|||s .

Proof. Since F (0) = 0, there holds

‖F (u)(t)‖L2 ≤ ‖∇uF‖L∞(BR)‖u(t)‖L2 , with R = ‖u(t)‖L∞ ≤ |||u(t)|||s ,

where BR denotes the ball of radius R in the space of states u. The last
inequality follows from Sobolev embedding Hs(Rd

+) ⊂ L∞(Rd
+).

Next we estimate derivatives. For smooth functions u, there holds

(2.5.5) ∂αF (u) =
|α|∑
k=1

∑
α1+...+αk=α

c(k, α1, . . . , αk)F k(u)
(
∂α1

u, . . . , ∂αk
u
)

where the c(k, α1, . . . , αk) are numerical coefficients. Since ∂αj
u(t) ∈ Hs−|αj |(Rd

+)
with

‖∂αj
u(t)‖

Hs−|αj | ≤ |||u(t)|||s ,

by Proposition 2.5.2 we see that each term in the right hand side of (2.5.5)
belongs to C0(L2) and the estimate (2.5.3) follows.

The estimate of differences is similar.

Recall next the Gagliardo-Nirenberg-Moser’s inequalities, which hold
with Ω equal to an Euclidian space Rn or a half space of Rn, or a quad-
rant :
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Proposition 2.5.4. For all s ∈ N, there is C such that for all α of length
|α| ≤ s, all p ∈ [2, 2s/|α|] and all u ∈ L∞(Ω) ∩ Hs(Ω), the derivative ∂αu
belongs to Lp(Ω), and

(2.5.6) ‖∂αu‖Lp ≤ C‖u‖1−2/p
L∞ ‖u‖2/p

Hs .

The condition on p reads |α|
s ≤ 2

p ≤ 1. Recall that the the proof when
Ω = Rn relies on the identity

0 =
∫

∂j(u|∂ju|p−2∂ju) =
∫
|∂ju|p + (p− 1)

∫
u∂2

j u|∂ju|p−2 .

With Hölder inequality, this implies that

‖∂ju‖Lp ! ‖u‖1/2

Lp′‖∂2
j u‖1/2

Lp′′ ,
2
p

=
1
p′

+
1
p′′

.

The estimate (2.5.6) follows by induction on s. Note that the proof applies
not only to the ∂j but also to any vector field.

Using extension operators, the estimate holds on any smooth domain Ω,
but the constant depends on the domain. For instance, if Ω = [0, T ]×Rd

+, the
constant are unbounded as T → 0. However, splitting u = χ(t)u+(1−χ(t))u
with χ ∈ C∞, χ = 0 for t ≥ 2T/3 and χ = 1 for t ≤ T/3, reduces the problem
to functions χ(t)u and (1 − χ(t))u which can be extended in Hs by 0 for
t ≥ T and t ≤ 0 respectively, hence reducing the problem on quadrants
[0,+∞[×Rd

+ or ]−∞, T ]× Rd
+ . Therefore:

Lemma 2.5.5. Given T0 > 0, there is C such that for all T ≥ T0 the
estimates (2.5.6) are satisfied on Ω = [0, T ]× Rd

+

Corollary 2.5.6. Let F be a C∞ function such that F (0) = 0. For all
s ∈ N, and T0 > 0, there is a non decreasing function CF (·) on [0,∞[ such
that for all T ≥ T0, for all u ∈ L∞(Ω) ∩Hs(Ω) where Ω = [0, T ]× Rd

+, one
has F (u) ∈ Hs(Ω) and

(2.5.7) ‖F (u)‖Hs ≤ CF (‖u‖L∞)‖u‖Hs .

Proof. We estimate the L2 norm as above :

‖F (u)‖L2 ≤ ‖∇uF‖L∞(BR)‖u‖L2 , with R = ‖u‖L∞ ,

where BR denotes the ball of radius R in the space of states u. Next we
estimate derivatives using (2.5.5) which is valid at least for smooth u. Using
the estimate (2.5.6) for ∂αj

u with 2/pj = |αj |/s, we see that each term in
the right hand side of (2.5.5) has an L2 norm bounded by the right hand
side of (2.5.7). The formula and the estimates extend to u ∈ L∞ ∩Hs by
density (Exercise).
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2.5.2 Compatibility conditions

For (2.5.1), the definition of traces uj is modified as follows. First, with
uj = ∂j

t u|t=0, there holds

(2.5.8) ∂j
t F (u)|t=0 = Fj(u0, . . . , uj)

with Fj of the form

Fj(u0, . . . , uj) =
j∑

k=1

∑
j1+...+jk=j

c(k, j1, . . . , jk)F k(u0)
(
uj1 , . . . , ujk

)
The definition (2.4.5) is modified as follows: by induction let

(2.5.9) uj = −Auj−1 + fj−1 + Fj−1(u0, . . . , uj−1) .

Then, for u0 ∈ Hs and f ∈ Hs with s > d/2, using Proposition 2.5.2, we
see that uj ∈ Hs−j(Rd

+) for j ≤ s.

Definition 2.5.7. The data u0 ∈ Hs(Rd
+), f ∈ Hs([0, T ] × Rd

+) and g ∈
Hs([0, T ] × Rd−1) satisfy the compatibility conditions to order σ ≤ s − 1 if
the uj given by (2.5.9) satisfy

Muj |x=0 = ∂j
t g|t=0 , j ∈ {0, . . . , σ} .

2.5.3 Existence and uniqueness

We prove here the first part of Theorem 2.5.1. Below, it is always assumed
that s > d/2, f ∈ Hs([0, T0]×Rd

+), g ∈ Hs([0, T0]×Rd−1) and u0 ∈ Hs(Rd
+).

Proposition 2.5.8. Suppose that the compatibility conditions are satisfied
up to the order s− 1. Then there is T ∈]0, T0] such that the problem (2.5.1)
has a solution u ∈ W s(T ).

Proof. a) The iterative scheme.
Let u0 ∈ Hs(Rd

+), f ∈ Hs([0, T ]×Rd
+) and g ∈ Hs([0, T ]×Rd−1). Define

the uj ∈ Hs−j(Rd
+) by (2.5.9). Let u0 ∈ Hs+1/2(R× Rd

+) such that

(2.5.10) ∂j
t u

0|t=0 = uj , 0 ≤ j ≤ s .

We can assume that u0 vanishes for |t| ≥ 1 and thus u0 ∈ W s(T ) for all T .
There is C0 depending only on the data such that∑

j≤s

‖uj‖Hs−j ≤ C0 , |||u0(t)|||s ≤ C0 .
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For future use, we note that C0 depends only on the data: there is a uniform
constant C such that

(2.5.11) C0 ≤ C‖u0‖Hs + |||f(0)|||s−1 .

For n ≥ 1, we solve by induction the linear mixed problems

(2.5.12) Lun = f + F (un−1) , Mun|x=0 = g , un|t=0 = u0 .

Suppose that un−1 is constructed in W s(T0) and satisfies

(2.5.13) ∂j
t u

n−1|t=0 = uj , j ≤ s .

This is true for n = 1. Then, by definition of the Fj and by (2.5.13),
∂j

t F (un−1)|t=0 = Fj(u0, . . . , uj). Next, for the linear problem (2.5.12) we
compute the un

j by (2.4.5). Comparing with the definition (2.5.9), we see
that un

j = uj . Thus, the compatibility conditions Muj |x=0 = gj imply
that the data (f + F (un−1), g, u0) are compatible for the linear problem.
Therefore, Theorem 2.4.12 implies that (2.5.12) has a unique solution un ∈
W s(T0) and that

∂j
t u

n|t=0 = un
j = uj .

This shows that the construction can be carried on and thus defines a se-
quence un ∈ W s(T0) satisfying (2.5.12)

b) Uniform bounds
We show that we can choose R and T ∈]0, T0] such that for all n:

(2.5.14) ∀t ∈ [0, T ] : |||un(t)|||s ≤ R .

By (2.5.10), this estimate is satisfied for n = 0 if R ≥ C0.
Assume that (2.5.14) is satisfied at order n−1. Next, the energy estimate

(2.4.13) and Corollary 2.5.3 imply that there is a constant C and a function
CF (·) such that for t ≤ T

|||un(t)|||s ≤ C
(|||un(0)|||s + TCF (R) + C1

)
with

(2.5.15) C1 = ‖g‖Hs([0,T0]×Rd−1) +
∫ T0

0
|||f(t′)|||sdt′ .

By (2.5.13) at order n and (2.5.10):

|||un(0)||| =
∑
j≤s

‖uj‖Hs−j ≤ C0 .
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Thus, (2.5.14) holds provided that

(2.5.16) R ≥ C0 , R ≥ C(C0 + C1 + 1) and TC(R) ≤ 1 .

This can be achieved, choosing R first and next T . For such a choice, by
induction, (2.5.14) is satisfied for all n.

c) Convergence
Write the equation satisfied by wn = un+1 − un for n ≥ 1. By (2.5.13),

there holds |||wn(0)|||s = 0. Knowing the uniform bounds (2.5.14), estimating
the nonlinear terms by Corollary 2.5.3 and using the energy estimate (2.4.13)
one obtains that for n ≥ 2 and t ≤ T :

|||wn(t)|||s ≤ CCF (R)
∫ t

0
|||wn−1(t′)|||sdt′

Thus there is K such that for all n ≥ 1 and t ∈ [0, T ]:

|||wn(t)|||s ≤ Kn+1tn−1/(n− 1)! .

This implies that the sequence un converges in W s(T ), thus in the uniform
norm and the limit is clearly a solution of (2.5.1).

Next we prove uniqueness.

Proposition 2.5.9. If T ∈]0, T0] and u1 and u2 are two solutions of (2.5.1)
in W s(T ), then u1 = u2.

Proof. The traces at {t = 0} necessarily satisfy

∂j
t u

1|t=0 = ∂j
t u

2|t=0 = uj .

Thus w = u2 − u1 satisfies |||w(0)|||s = 0. Write the equation for w. Using
bounds for the norms of u1 and u2 in W s, the energy estimates and Corollary
2.5.3 to estimate the nonlinear terms, imply that there is C such that for all
t ∈ [0, T ]:

|||w(t)|||s ≤ C

∫ t

0
|||w(t′)|||sdt′ .

Thus w = 0.
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2.5.4 A criterion for blow-up

Suppose that f ∈ Hs([0, T0]×Rd
+), g ∈ Hs([0, T0]×Rd−1) and u0 ∈ Hs(Rd

+),
with s > d/2. Suppose that the compatibility conditions are satisfied at or-
der s − 1. We have proved that there is a local solution in W s(T ). The
question is how long can the solution be extended. Let T∗ denote the supre-
mum of the set of T ∈]0, T0] such that the problem (2.5.1) has a solution
in W s(T ). By uniqueness, there is a unique maximal solution u on [0, T∗[.
The proof of Proposition 2.5.8 above gives an estimate from below of T ∗:
since by (2.5.11), (2.5.15) and (2.5.16), there is a function C(·) such that
the solution is W s(T ) for

(2.5.17) T = min{T0, C(K)}
with

(2.5.18) K = ‖u0‖Hs + |||f(0)|||s−1 + ‖g‖Hs([0,T0]×Rd−1) +
∫ T0

0
|||f(t′)|||sdt′ .

Proposition 2.5.10. If T ∗ < T0 or if T ∗ = T0 but u /∈ W s(T0), then

(2.5.19) lim sup
t→T ∗

‖u(t)‖L∞ = +∞ .

Proof. Suppose that (2.5.19) is not true. This means that u ∈ L∞([0, T ∗[×Rd
+).

From Proposition 2.5.8 we know that T ∗ > T1 for some T1 depending only
on the data. Thus, by Corollary 2.5.6 there is a constant C1, depending only
on the L∞ norm of u such that for all T ∈ [T1, T ∗[:

‖F (u)‖Hs([0,T ]×Rd
+) ≤ C1‖u‖Hs([0,T ]×Rd

+) .

The energy estimate (2.4.13) implies that

|||u(t)|||2s ≤ C0 + C
( ∫ t

0
|||F (u)(t′)|||sdt′

)2
,

where C0 only depends on the data and C depends only on the operator L.
Thus, using Cauchy-Schwarz inequality, we get that there is C such that for
all t ∈ [T1, T ∗[

|||u(t)|||2s ≤ C0 + C‖F (u)‖2Hs([0,t]×Rd
+) ≤ C0 + CC1‖u‖2Hs([0,t]×Rd

+)

≤ C0 + CC1

∫ t

0
|||u(t′)|||2sdt′ .
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This implies that there is a constant C3, depending only on C0, C, C1 and
the norm of u in W s(T1), such that

(2.5.20) sup
t<T ∗

|||u(t)|||s ≤ C3 .

Next we consider the Cauchy problem for (2.5.1) with initial data u(T ∗− δ)
at time T ∗−δ. Because u ∈ W s(T ∗−δ/2) is a solution, computing the traces
from the equation we see that the compatibility conditions are satisfied up
to order s − 1. Therefore, by Proposition 2.5.8 there is a solution ũ in W s

on the interval [T ∗− δ, T2]. By (2.5.17), we have an estimate from below for
T2:

T2 = min{T0, T
∗ − δ + C(K)}

with

K = ‖u(T ∗− δ)‖Hs + |||f(T ∗− δ)|||s−1 + ‖g‖Hs([0,T0]×Rd−1) +
∫ T0

0
|||f(t′)|||sdt′ .

Since f and g are given in Hs, the last three terms are bounded indepen-
dently of T ∗ − δ. By (2.5.20), the first term is bounded independently of
T ∗ and δ. This shows that the increment C(K) is bounded from below
independently of T ∗ and δ.

If T ∗ were strictly smaller that T0, we could choose δ = C(K)/2 so that
T2 > T ∗. By uniqueness, ũ would be an extension of u, contradicting the
definition of T ∗. If T∗ = T0, choosing again δ = C(K)/2, we see that T2 = T0

and thus u ∈ W (T0).

2.5.5 Regularity of solutions

Suppose that T > 0 is given, f ∈ Hs([0, T ] × Rd
+), g ∈ Hs([0, T ] × Rd−1)

and u0 ∈ Hs(Rd
+), with s > d/2. Suppose that the compatibility conditions

are satisfied at order s− 1 and u ∈ W s(T ) is a solution of (2.5.1). The next
result finishes the proof of Theorem 2.5.1.

Proposition 2.5.11. Suppose that σ > s and (f, g, u0) belong to Hσ([0, T ]×
Rd

+), Hσ([0, T ]×Rd−1) and Hσ(Rd
+) respectively and satisfy the compatibility

conditions to order σ − 1, then the solution u belongs to W σ(T ).

Proof. By Proposition 2.5.8 there is T1 ∈]0, T ] such that the problem has
a solution ũ ∈ W σ(T1). Denote by T ∗ the maximal time of existence of
solutions in W σ. By uniqueness in W s(T ′) for T ′ < T ∗, u = ũ for t <
T ∗. Since u ∈ W s(T ) and s > d/2, u ∈ L∞([0, T ] × Rd

+) and thus ũ ∈
L∞([0, T ∗[×Rd

+). Therefore Proposition 2.5.10 implies that T ∗ = T and
u = ũ ∈ W σ(T ).
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Chapter 3

Hyperbolic-Parabolic
Problems

In this Chapter, we first recall the classical existence and uniqueness results
for parabolic systems. Next we look for uniform estimates, independent of
the viscosity, in spaces with tangential or conormal smoothness.

3.1 The equations

With notations as in Chapter 2, consider an “hyperbolic” N ×N system

(3.1.1) Lu := ∂tu +
d∑

j=1

Aj∂ju = F (u) + f

and a “parabolic” viscous perturbation

(3.1.2) (L− εP )u := Lu− ε
d∑

j,k=1

Bj,k∂j∂ku = F (u) + f .

For simplicity, we assume that the coefficients Aj and Bj,k are constant. F
is a C∞ mapping from RN to RN .

We consider the equation (3.1.2) on the half space {x ≥ 0} together with
homogeneous Dirichlet boundary conditions:

(3.1.3) u|x=0 = 0 .

For simplicity, we work in the class of symmetric operators. The next
assumption implies that L is hyperbolic and that P is elliptic.
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Assumption 3.1.1. There is a positive definite symmetric matrix S =
tS + 0 such that for all j the matrix SAj is symmetric. Moreover, for all
ξ '= 0 the matrix

∑
ξjξkRe SBj,k is symmetric definite positive.

Recall that for a matrix M , Re M = 1
2(M + M∗) is always symmetric. .

In this chapter, we fist solve the equations for fixed ε. This is much
easier than the hyperbolic theory, since we can rely on classical variational
methods. The results are classical, but we sketch proofs as they will serve for
the ε dependent analysis. Because the equation is nonlinear and the viscous
regularization depends on ε, the life span is expected to depend strongly
on ε. The main question is to prove the existence of solutions on domains
independent of ε. This relies on uniform estimates, in suitable spaces. This
analysis is performed in the second part of the chapter and will be used in
the next chapter to prove the convergence of asymptotic expansions.

3.2 Linear existence theory

In this section we prove the existence of solutions to the linear equations for
a fixed ε. Thus, changing P into εP , we assume in this section that ε = 1.
In this section, we do not use the full strength of Assumption 3.1.1, we only
assume that there is c > 0 such that

(3.2.1) ∀ξ ∈ Rd :
∑
j,k

ξjξkRe (SBj,k) ≥ c|ξ|2Id

With G = P −A, A =
∑

Aj∂j , consider the problem

(3.2.2)


∂tu−Gu = f on [0, T ]× Rd

+

u|x=0 = 0 on [0, T ]× Rd−1

u|t=0 = u0 on Rd
+

Recall that Rd
+ = {(y, x) ∈ Rd : x > 0}.

3.2.1 Variational methods

As usual, C∞0 (U) denotes the space of C∞ functions u on U ⊂ Rm with
compact support contained in U : this means that there is compact set
K ⊂ Rm, such that K is contained in U and u vanishes on U \K. We use
this notation when U is open, but also when U is closed (typically a closed
half space, or o closed strip) or for instance when U = [0, T [×Rd.
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Definition 3.2.1. i) V := L2([0, T ];H1(Rd
+)) denotes the space of functions

u ∈ L2([0, T ] × Rd
+) such that the spaces derivatives ∂ju for j = 1, . . . , d,

belong to L2([0, T ]× Rd
+) .

ii) V0 := L2([0, T ];H1
0 (Rd

+)) is the closure in L2([0, T ];H1(Rd
+) of

C∞0 (]0, T [×Rd
+).

iii) L2([0, T ];H−1(Rd
+)) is the set of distributions f on ]0, T [×Rd

+ such
that there exist functions gj ∈ L2([0, T ]× Rd

+) for j = 0, . . . , d such that

(3.2.3) f = g0 +
d∑

j=1

∂jgj .

We collect here a few properties satisfied by theses spaces.
• They are Hilbert spaces. L2([0, T ];H−1(Rd

+)) is equipped with the
norm

min
( ∑

‖gj‖2L2

)1/2

where the minimum is taken over all the decompositions (3.2.3) of f . They
are the spaces of restrictions to Rd

+ of analogous spaces on Rd, which can be
characterized using the spatial Fourier transform. C∞0 ([0;T ]×Rd

+) is dense
in V.

• The functions in V = L2([0, T ];H1(Rd
+)) satisfy v ∈ L2 and ∂xv ∈ L2.

Therefore they have a trace on {x = 0} which belongs to L2([0, T ]×Rd−1).
V0 is the set of v ∈ V such that v|x=0 = 0. Below, the trace condition in
equation (3.2.2) is encoded in the condition u ∈ V0.

• Because H−1 is the dual space of H1
0 , the spaces L2([0, T ];H1

0 (Rd
+))

and L2([0, T ];H−1(Rd
+)) are in duality: if f is given by (3.2.3) and u ∈

C∞0 (]0, T [×Rd
+) then, in the distribution sense:

(3.2.4) 〈f, u〉 = (g0, u)L2 −
d∑

j=1

(gj , ∂ju)L2

where (·, ·)L2 denotes the scalar product in L2. By density continuity, this
formula extends to u ∈ L2([0, T ];H1

0 (Rd
+)) and uniquely defines f̃ in the dual

space of L2([0, T ];H1
0 (Rd

+)). In particular, the right hand side of (3.2.4) does
not depend on the particular decomposition (3.2.3) of f .

Conversely, suppose that f̃ is a linear form on L2([0, T ];H1
0 (Rd

+)). Con-
sider the space K1 of the U = (u0, u1, . . . , ud) with uj = ∂ju0 and u0 ∈
L2([0, T ];H1

0 (Rd
+)). This is a closed subspace of K =

(
L2([0, T ]× Rd

+)
)1+d,

and the linear form U 4→ 〈f̃ , u0〉 is continuous on K1 for the norm of K.
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Thus it extends to K and by Riesz theorem, there are (g0, g1, . . . , gd) such
that the extension f∗ satisfies

〈f∗, U〉 = (g0, u0)L2 −
d∑

j=1

(gj , uj)L2

Comparing with (3.2.4), this shows that f̃ coincide with the linear form
associated to f = g0 +

∑
∂jgj ∈ L2([0, T ];H−1(Rd

+)).
Thus we identify L2([0, T ];H−1(Rd

+)) with the dual space V ′0 of V0 =
L2([0, T ];H1

0 (Rd
+)) and the duality (u, v)L2 for smooth functions extends to

(u, v) ∈ V ′0 × V0 or to (u, v) ∈ V0 × V ′0. We denote it by 〈u, v〉.
Proposition 3.2.2 (Coerciveness). G is bounded from L2([0, T ];H1(Rd

+))
into L2([0, T ];H−1(Rd

+)). Moreover, there are γ0 > 0 and c > 0 such that
for all u ∈ L2([0, T ];H1

0 (Rd
+)) and γ ≥ γ0:

(3.2.5) Re 〈S(γ −G)u, u〉 ≥ c‖u‖2L2([0,T ];H1(Rd
+)) .

Proof. By definition, ∂j maps L2([0, T ];H1(Rd
+)) into L2([0, T ] × Rd

+) and
L2([0, T ] × Rd

+) to L2([0, T ];H−1(Rd
+)). Thus G maps L2([0, T ];H1(Rd

+))
into L2([0, T ];H−1(Rd

+)).
Moreover, (3.2.4) implies that for u ∈ L2([0, T ];H1

0 (Rd
+))

Re 〈S(γ −G)u, u〉 =γ(Su, u)L2

+Re
∑

j

(SAj∂ju, u)L2 +
∑
j,k

Re (SBj,k∂ku, ∂ju)L2

By density continuity, it is sufficient to prove (3.2.5) for u ∈ C∞0 ([0, T ]×Rd
+).

In this case, extending u by 0 for negative x and denoting by û(t, ξ) its spatial
Fourier transform, (3.2.1) implies that

Re
∑
j,k

(ξjξkSBj,kû, û)L2 ≥ c
d∑

j=1

‖ξj û‖2L2 .

where the L2 norm is now taken for (t, ξ) ∈]0, T [×Rd. By Plancherel’s
theorem, this implies that for all u ∈ C∞0 ([0, T ]× Rd):

(3.2.6) Re
∑
j,k

(SBj,k∂ku, ∂ju)L2 ≥ c
d∑

j=1

‖∂ju‖2L2
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Since
|(SAj∂ju, u)L2 | ≤ C‖∂ju‖L2‖u‖L2

Thus (3.2.5) follows for γ large enough.

Definition 3.2.3. Let H denote the space of functions u ∈ L2([0, T ];H1(Rd
+))

such that the time derivative in the sense of distribution, ∂tu, belongs to
L2([0, T ];H−1(Rd

+)).
H0 denotes the subspace of functions u ∈ L2([0, T ];H1

0 (Rd
+)) such that

∂tu ∈ L2([0, T ];H−1(Rd
+)).

Proposition 3.2.4. i) H is an Hilbert space and C∞0 ([0, T ]×Rd
+) is dense

in H.
ii) H0 = {v ∈ H; v|x=0 = 0} is a closed subspace of H.
iii) H is continuously imbedded in C0([0, T ];L2(Rd

+)). Moreover, for
all u ∈ H0

(3.2.7) 2Re 〈S∂tu, u〉 =
(
Su(T ), u(T )

)
L2(Rd

+)
− (

Su(0), u(0)
)
L2(Rd

+)
.

Proof. Using cut-off function in time it is sufficient to prove the results for
functions on [0,+∞[×Rd

+ and functions on ]−∞, T ]×Rd
+. We consider the

former case. We leave the proof of the density as as exercise, which can be
solved by standard cut-off and mollification. We also leave the characteri-
zation of H0 to the reader.

There is an extension operator E continuous from H1(Rd
+) to H1(Rd) and

from H−1(Rd
+) to H−1(Rd). Extending trivially this operator to functions of

(t, x) reduces the analysis of analogous spaces on [0,∞[×Rd. Using Lemma
2.2.5 with t and x interchanged, yields:

‖u(t, ·)‖2L2(Rd) ≤ ‖u‖L2(H1)‖∂tu‖L2(H−1)

Since H1 is a subspace of C0(L2), this implies by density and continuity,
that H ⊂ C0(L2).

For u ∈ C∞0 ([0, T ] × Rd
+), ∂tu is smooth and the duality 〈S∂tu, u〉 is

simply (S∂tu, u)L2 and the identity (3.2.7) holds. It extends to u ∈ H0,
using in the left hand side the duality V ′0 × V0.

Theorem 3.2.5. For all f ∈ L2([0, T ];H−1(Rd
+)) and u0 ∈ L2(Rd

+), the
equation (3.2.2) has a unique solution u ∈ H0.
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Proof. a) Introducing weights. The mapping v 4→ eγtv is an isomorphism
both in V0 and in V ′0. Moreover, ∂teγtv = eγt(∂t +γ)v. Thus, solving (3.2.2)
in H0 is equivalent to solving for γ large enough

(3.2.8) u ∈ H0 , (∂t −G + γ)u = f , uγ(0) = u0 .

From now on, we fix γ ≥ γ0, where γ0 is as in Proposition 3.2.2.

b) Uniqueness.
By Propositions 3.2.2 and 3.2.4, for u ∈ H0 the following estimate holds(

Su(T ), u(T )
)
L2 + c‖∇y,xu‖2L2(L2)

≤ (
Su(0), u(0)

)
L2 + 2Re 〈S(∂t −G + γ)u, u〉 ,

thus

(3.2.9) ‖u(T )‖2L2 + c‖u‖2L2(H1) ≤ C
(‖u(0)‖2L2 + 2Re 〈S(∂t −G + γ)u, u〉) .

This immediately implies uniqueness for (3.2.8).

b) The adjoint equation.
The adjoint operator of J := ∂t − G + γ is J∗ = −∂t − G∗ + γ with

G∗ =
∑

B∗
k,j∂k∂j +

∑
A∗j∂j . It maps H to L2([0, T ];H−1(Rd

+)). S−1 is a
symmetrizer for the B∗

k,j since S−1B∗ = S−1(SB)∗S−1 and Re S−1B∗ =
S−1Re (SB)S−1. Thus G∗ satisfies the assumption (3.2.1). Due to the
change of ∂t into −∂t, the analogue of (3.2.9) is

(3.2.10) ‖v(0)‖2L2 + c‖v‖2L2(H1) ≤ ‖v(T )‖2L2 + 2Re 〈S−1J∗v, v〉
which holds for all v ∈ H0.

Moreover, by density continuity, for all u and v in H0:

(3.2.11)
Re 〈Ju, v〉 − Re 〈u,J∗v〉

=
(
u(T ), v(T )

)
L2 −

(
u(0), v(0)

)
L2 .

c) Existence
Let E denote the subspace of v ∈ H0 such that v(T ) = 0. By (3.2.10),

there is C such that for all v ∈ E :

‖v(0)‖L2 + ‖v‖V0 ≤ C‖J∗v‖V ′0 .

Consider the space F = J∗E ⊂ V ′0. The estimate above implies that there
is a linear operator R from F to E such that

(3.2.12) ∀g ∈ F : ‖Rg(0)‖L2 + ‖Rg‖V0 ≤ C‖g‖V ′0 .
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Given f ∈ V ′0 and u0 ∈ L2, consider the anti-linear form on F

%(g) = 〈f,Rg〉+
(
u0, Rg(0)

)
L2 .

By (3.2.12), % is continuous on F for the V ′0-norm. Thus % extends to V ′0
and there is u in V0 such that

%(g) = 〈u, g〉 .

Tracing back the definition, this means that for all v ∈ H0,

〈u, (−∂t −G∗ + γ)v〉 = 〈f, v〉+
(
u0, v(0)

)
L2 .

Comparing with (3.2.11) yields

〈(∂t −G + γ)u, v〉+
(
u(0), v(0)

)
L2 = 〈f, v〉+

(
u0, v(0)

)
L2 .

Choosing test functions with compact support in ]0, T [×Rd
+ implies that

(∂t−G+γ)u = f . Thus for all v ∈ E we are left with
(
u(0)−u0, v(0)

)
L2 = 0.

Since v(0) can be chosen arbitrarily in C∞0 (Rd
+), this implies that u(0) = u0.

Therefore we have solved the equation (3.2.8).

3.2.2 Regularity estimates

We show that for smooth data satisfying compatibility conditions the so-
lution given by Theorem 3.2.5 is smooth. The form of the equation shows
that the time derivative and the spatial derivatives have not the same weight.
This leads to introduce nonisotropic spaces.

Definition 3.2.6. For s ∈ Z, s ≥ −1, denote by Hs the space of functions
u ∈ L2([0, T ];Hs(Rd

+)) such that for all nonnegative integer j ≤ (s + 1)/2,
∂j

t u ∈ L2([0, T ];Hs−2j(Rd
+))

H−1 is simply L2([0, T ];H−1(Rd
+) and H0 = L2([0, T ] × Rd

+). H1 is the
space introduced in Definition 3.2.3. Similarly we note

(3.2.13) H1
0 = {u ∈ H1 ; u|x=0 = 0} .

For further use, we note the following result which extends Proposition 3.2.4:
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Proposition 3.2.7. i) For s ≥ −1, C∞0 ([0, T ]× Rd
+) is dense in Hs.

ii) For s ≥ 0, the spatial derivatives ∂yj and ∂x map Hs into Hs−1.
For s ≥ 1, ∂t maps Hs into Hs−2.

iii) For s ≥ 2, the tangential spatial derivatives ∂yj map Hs ∩H1
0 into

Hs−1 ∩H1
0. For s ≥ 3, ∂t maps Hs ∩H1

0 into Hs−2 ∩H1
0.

iv) For s ≥ 1, Hs is embedded in the space of u ∈ C0([0, T ];Hs−1(Rd
+))

such that ∂j
t u ∈ C0([0, T ];Hs−2j−1(Rd

+)) for j ≤ s/2.

Before proving smoothness of solution, we prove a-priori estimates. As
in the previous subsection, we consider the equation (3.2.8).

Theorem 3.2.8. For all s ≥ 0 and γ > 0 large enough, there is a constant
C such that all u ∈ Hs+1 ∩H1

0 satisfies the following estimate

(3.2.14) ‖u‖Hs+1 ≤ C‖u(0)‖Hs(Rd
+) + C‖(∂t −G + γ)u‖Hs−1 .

By (3.2.9), there is C such that for γ large enough and u ∈ H1
0 :

‖u‖L2(H1) ≤ C‖u(0)‖L2(Rd
+) + C‖(∂t −G + γ)u‖L2(H−1) .

Since
‖(G− γ)u‖L2(H−1) ≤ C‖u‖L2(H1),

this implies

(3.2.15)
‖u‖L2(H1) + ‖∂tu‖L2(H−1) ≤C‖u(0)‖L2(Rd

+)

+ C‖(∂t −G + γ)u‖L2(H−1) .

Thus the estimate (3.2.14) is proved when s = 0. We prove it for s = 1 and
next conclude by induction on s.

Lemma 3.2.9. The estimate (3.2.14) holds for s = 1.

Proof. a) By (3.2.15), we already have an L2 estimate of u and of the first
(y, x) derivatives.

When u ∈ H2 ∩ H1
0, the tangential derivatives ∂yj belong to H1

0 and
(∂t −G + γ)∂yju = ∂yj (∂t −G + γ)u. Thus

‖(∂t −G + γ)∂yju‖L2(H−1) ≤ ‖(∂t −G + γ)u‖L2 .

Therefore the estimate (3.2.15) implies that

(3.2.16) ‖∂y∂y,xu‖L2 ≤ C‖∂yu(0)‖L2(Rd
+) + C‖(∂t −G + γ)u‖L2 .
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b) Hence, to prove the lemma it remains to estimate the second normal
derivative of u. We cannot use the differentiated equation for ∂xu since
∂xu does not satisfy the boundary condition. Instead, we deduce from the
equation and (3.2.15) (3.2.16) that

∂tu−Bd,d∂
2
xu = f

where

‖f‖L2 ≤ C‖u(0)‖H1
0 (Rd

+) + C‖(∂t −G + γ)u‖L2([0,T ]×Rd
+) .

We multiply this equation by S∂2
xu and integrate by parts in the term

(S∂tu, ∂2
xu)L2 . For smooth functions v vanishing on the boundary, there

holds

2(S∂tv, ∂2
xv)L2 = −(S∂xv(T ), ∂xv(T )

)
L2 + (S∂xv(0), ∂xv(0)

)
L2

By density continuity, this identity extends to u ∈ H2 ∩H1
0 and thus

−2Re
(
Sf, ∂2

xu
)
L2 =2

(
SBd,d∂

2
xu, ∂2

xu
)
L2

+ (S∂xu(T ), ∂xu(T )
)
L2 − (S∂xu(0), ∂xu(0)

)
L2

Since SBd,d is definite positive, using the Cauchy Schwarz inequality in the
left hand side yields:

‖∂2
xu‖L2 ≤ C‖∂xu(0)‖L2 + C‖f‖L2 .

Together with the estimates above, this finishes the proof of the lemma.

Proof of Theorem 3.2.8. We proceed by induction on s. The estimate is
proved for s = 0 and s = 1. So, consider s ≥ 2 and assume that the theorem
is proved up to order s− 1.

Since s ≥ 2 and u ∈ Hs+1 ∩ H1
0, the tangential spatial derivatives ∂yju

belong to Hs ∩ H1
0 and (∂t − G + γ)∂yju = ∂yjf with f := (∂t − G + γ)u.

Similarly, ∂tu ∈ Hs−1 ∩ H1
0 and (∂t − G + γ)∂tu = ∂tf . Therefore the

induction hypothesis implies that

‖∂yju‖Hs + ‖∂tu‖Hs−1 ! ‖u(0)‖Hs + ‖∂tu(0)‖Hs−2 + ‖f‖Hs−1

Thus, to control the Hs+1 norm of u, only the L2 norm of ∂s+1
x u is missing :

all the norms of derivatives with at least one ∂t are controlled by the Hs−1

norm ∂tu, and all the purely spatial derivatives with at least one ∂yj are
controlled by the Hs norm ∂yu. Using the equation, we write −Bd,d∂s+1

x
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as the sum of ∂s−2
x fu plus ∂s−2

x ∂tu and spatial derivatives with at least one
tangential. Therefore, we obtain

‖u‖Hs+1 ! ‖u(0)‖Hs + ‖∂tu(0)‖Hs−2 + ‖f‖Hs−1

To finish the proof, we note that ∂tu = (G − γ)u + f ∈ Hs−1, and since
s− 1 ≥ 1 we can take the trace at t = 0 to obtain

‖∂tu(0)‖Hs−2 ! ‖u(0)‖Hs + ‖f(0)‖Hs−2 ! ‖u(0)‖Hs + ‖f‖Hs−1 .

Adding up, this implies (3.2.14) at the order s.

3.2.3 Smooth solutions

We first discuss the compatibility conditions. With s ≥ 1, let u ∈ Hs+1

and f = (∂tu − Gu) ∈ Hs−1. Then ∂j
t u ∈ C0(Hs−2j) for j ≤ s/2 and

∂k
t f ∈ C0(Hs−2−2k) for k ≤ s/2 − 1 when s ≥ 2. Thus one can define the

traces uj = ∂j
t u(0) for j ≤ s/2 and fj = ∂j

t f(0) for j ≤ s/2 − 1. Moreover,
when s ≥ 2, one has uj = Guj−1 + fj−1 and thus,

(3.2.17) uj = Gju0 +
j−1∑
k=0

Gj−1−kfk , when 1 ≤ j ≤ s/2 .

We use the following remark:

Lemma 3.2.10. If u ∈ H2 ∩ H1
0, which means that u ∈ L2([0, T ];H2 ∩

H1
0 (Rd

+)) and ∂tu ∈ L2([0, T ]× Rd
+), then u ∈ C0([0, T ];H1

0 (Rd
+)).

When u ∈ Hs+1 ∩ H1
0, then ∂j

t u ∈ Hs+1−2j ∩ H1
0 when j < s/2. Thus

∂j
t u ∈ C0([0, T ];H1

0 (Rd
+)). This leads to the following definition:

Definition 3.2.11. Given s ≥ 1, the data u0 ∈ Hs(Rd
+) and f ∈ Hs−1

satisfy the compatibility conditions up to order σ ≤ s − 1 if u0 and the
uj ∈ Hs−2j(Rd

+) defined by (3.2.17) when s ≥ 2, satisfy

(3.2.18) uj |x=0 = 0 , for j ≤ σ/2 .

When s = 0, there are no compatibility conditions, as indicated by
Theorem 3.2.5. When s = 1, there is one compatibility condition, which
reads

(3.2.19) u0 ∈ H1
0 (Rd

+) .
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When s = 2, u0 ∈ H2 and u1 ∈ L2 are defined, but there is still only one
compatibility condition, (3.2.19). When s = 3, u0 ∈ H3 and u1 ∈ H1 and
there are two compatibility conditions

(3.2.20) u0 ∈ H3 ∩H1
0 (Rd

+) u1 ∈ H1
0 (Rd

+) .

The computations before Definition 3.2.11 show that the compatibility
conditions are necessary:

Lemma 3.2.12. Suppose that u ∈ Hs+1∩H1
0 with s ≥ 1. Then u0 = u(0) ∈

Hs(Rd
+) and f = (∂t − G)u ∈ Hs−1 satisfy the compatibility conditions to

order s− 1.

Theorem 3.2.13. Given s ≥ 1, u0 ∈ Hs(Rd
+) and f ∈ Hs−1 satisfying the

compatibility conditions up to order s− 1, the solution u of (3.2.2) given by
Theorem 3.2.5 belongs to Hs+1 ∩H1

0.

In particular, when s = 1, this implies :

Corollary 3.2.14. Suppose that f ∈ L2([0, T ] × Rd
+) and u0 ∈ H1

0 (Rd
+).

Then the solution u ∈ H1
0 of (3.2.2) belongs to H2.

As in the previous section we write u = eγtũ, f = eγtf̃ so that ũ and f̃
satisfy

(3.2.21) (∂t −G + γ)ũ = f̃ , ũ|t=0 = u0 .

The traces ũj and f̃k of ũ and f̃ are related to those of u and f . The
definition (3.2.17) is modified as follows

(3.2.22) ũj = (G− γ)ju0 +
j−1∑
k=0

(G− γ)j−1−kf̃k ,

and the compatibility conditions read

(3.2.23) ũj ∈ Hs−2j ∩H1
0 , for j ≤ (s− 1)/2 .

We prove that for f̃ ∈ Hs−1 and u0 ∈ Hs satisfying the compatibility
conditions to order s − 1, the solution ũ ∈ H1

0 of (3.2.21) belongs to Hs+1.
For simplicity of notations, below we drop the tildes. We first consider
special data.

Proposition 3.2.15. Suppose s ≥ 1 and f ∈ Hs−1. When s ≥ 2, assume
in addition that ∂k

t f(0) = 0 for k ≤ (s− 2)/2. Then the solution u ∈ H1
0 of

(3.2.2) with initial data u0 = 0 belongs to Hs+1.
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Proof. Denote by ve the extension of v by 0 for t < 0. Since u ∈ H1

and u(0) = 0, ∂tue = (∂tu)e and ue ∈ H1 ∩ H1
0(] − ∞, T ]). Moreover,

(∂t −G + γ)ue = fe. Since f ∈ Hs−1 and ∂k
t f(0) = 0 for k ≤ (s− 2)/2, we

have ∂k
t fe = (∂k

t f)e for k ≤ (s− 1)/2 and fe ∈ Hs−1(]−∞, T ]).
Consider tangential mollifiers ε(t, y) = ε−d(t/ε, y/ε) with  ∈ C∞0 (Rd),

 ≥ 0,
∫

(t, y)dtdy = 1 and  supported in t > 0. Consider then uε = ε ∗ ue

and fε = ε ∗ fe. The convolution is well defined thanks to the support
condition on  and uε and fε vanish for t < 0. The convolution commutes
with derivatives and uε → u in H1 and fε → f in Hs−1. Moreover, uε|x=0 =
ε ∗ (ue

|x=0) = 0. Thus

uε ∈ H1 ∩H1
0 , (∂t −G + γ)uε = fε , uε(0) = 0 .

In addition, uε and fε are infinitely smooth in (t, y). In particular, we
know that ∂k

t ∂α
y u, ∂k

t ∂α
y ∂xu, ∂k

t ∂α
y ∂n

xf belong to L2([0, T ] × Rd
+) for all k,

α and n ≤ s − 1. Using the equation, we get that ∂k
t ∂α

y ∂n
xu belongs to

L2([0, T ]× Rd
+) for all k, α and n ≤ s + 1 and therefore uε ∈ Hs+1.

Thus we can apply Theorem 3.2.8 to uε and to differences uε− uε′ . The
estimate (3.2.14) and the convergence fε → f in Hs−1 imply that uε is a
Cauchy sequence and hence converges in Hs+1. Since uε → u in H1, this
implies that u ∈ Hs+1.

Next, we need an approximation lemma for compatible data.

Lemma 3.2.16. Given s ≥ 1, u0 ∈ Hs(Rd
+) and f ∈ Hs−1 satisfying the

compatibility conditions up to order s−1, there are sequences un
0 ∈ H∞ and

fn ∈ H∞ 1 satisfying the compatibility conditions up to order s and such
that un

0 → u0 in Hs(Rd
+) and fn → f in Hs−1.

Proof. Consider a sequence fn ∈ H∞ such that fn → f in Hs−1. The traces
fn

k = ∂k
t fn(0) converge to fk = ∂k

t f(0) in Hs−1−2k(Rd
+) for k ≤ (s − 1)/2.

Consider next a sequence un
0 ∈ H∞ such that un

0 → u0 in Hs(Rd
+). Thus,

the un
j associated to un

0 and fn by (3.2.22) satisfy for j ≤ s/2:

un
j ∈ Hs+2−2j(Rn

+) , un
j → uj in Hs−2j

The compatibility conditions mean that uj |x=0 = 0 when j < s/2. The
convergence above implies that

(3.2.24)
{

hn
j := un

j |x=0 ∈ H∞(Rd−1) when j ≤ s/2 ,

hn
j → 0 in Hs−2j−1/2(Rd−1) when j < s/2 .

1H∞ or H∞ denotes the intersection ∩Hs, ∩Hs of all spaces Hs or Hs.
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To prove the lemma, we look for modified initial data un
0 − vn

0 . By (3.2.22),
this modifies the traces un

j into un
j − vn

j with vn
j = (G− γ)jvn

0 . Therefore, it
is sufficient to construct a sequence vn

0 such that

(3.2.25)

{
vn
0 ∈ H∞(Rd

+) , vn
0 → 0 in Hs ,{

(G− γ)jvn
0

}
|x=0

= hn
j for j ≤ s/2 .

We see that the equations on {x = 0} determine by induction ∂2j
x vn

0 |x=0

knowing ∂k
xvn

0 |x=0 for k < 2j. We can choose arbitrarily the odd traces, for
instance to be zero, and (3.2.25) is implied by

(3.2.26)


vn
0 ∈ H∞(Rd

+) , vn
0 → 0 in Hs ,

∂2j
x vn

0 |x=0 = h̃n
j for 2j ≤ s ,

∂2k+1
x vn

0 |x=0 = 0 for 2k + 1 < s ,

where the h̃n
j are determined from the hn

j and satisfy (3.2.24).
When s is odd, there are no h̃j with 2j = s and all the h̃j tend to zero

in the appropriate space. In this case, the problem (3.2.26) is solved lifting
the traces by standard operators.

When s is even, the term h̃n
j for j = s/2 is not controlled but we want

to prove the convergence of vn
0 in Hs where the trace v 4→ ∂s

xv|x=0 is not
defined. Using classical Poisson operators to lift up the 2s − 1 first traces,
one is reduced to solve (3.2.26) with h̃j = 0 for j < s/2. To lift up the
last trace, keeping the first s − 1 equal to zero, we use a modified Poisson
operator as in the proof of Proposition 2.4.9 of Chapter 2, see (2.4.11)

Proof of Theorem 3.2.13. Consider u0 ∈ Hs(Rd
+) and f ∈ Hs−1 satisfying

the compatibility conditions up to order s − 1, with s ≥ 1. Introduce se-
quences un

0 ∈ H2s+1 and fn ∈ H2s as indicated in Lemma 3.2.16. We show
that the equation

(3.2.27) (∂t −G + γ)un = fn , un|t=0 = un
0

has a solution un ∈ Hs+1 ∩ H1
0. By Theorem 3.2.8, applying (3.2.14) to

un − un′ , we see that un is a Cauchy sequence in Hs+1 ∩ H1
0 and therefore

converge to u ∈ Hs+1 ∩ H1
0 which is solution of (3.2.21). By uniqueness in

H1
0, this is the solution given by Theorem 3.2.5.

Thus it only remains to solve (3.2.27) in Hs+1 ∩H1
0. For j ≤ s/2, define

the un
j ∈ H2s+1−2j ⊂ Hs+1 by (3.2.22). The compatibility conditions to
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order s imply that un
j ∈ H1

0 for j ≤ s/2. Introduce

un,a(t, x) =
∑
j≤2s

tj

j!
un

j (x) ∈ Hs+1 ∩H1
0 .

The traces of fn,a = (∂t −G + γ)ua ∈ Hs−1 satisfy

∂k
t fn,a|t=0 = un,a

k+1 − (G− γ)un
k = fn

k

when k + 1 ≤ s/2. Thus, by Proposition 3.2.15 the problem

(∂t −G + γ)vn = fn − fn,a , vn|t=0 = 0 ,

has a solution vn ∈ Hs+1 ∩ H1
0. Thus un = un,a + vn ∈ Hs+1 ∩ H1

0 is a
solution of (3.2.27), and the proof of the theorem is complete.

3.3 Uniform estimates

The estimates given in the previous section depend strongly on the ellipticity
constant c of (3.2.1), thus on the viscosity ε when one considers (3.1.2). In
this section, we give the precise dependence of the constants with respect to
ε. From now on, we suppose that Assumption 3.1.1 is satisfied.

3.3.1 Long time estimates

We start with giving estimates independent of time T for the solutions of
(3.2.2) with G =

∑
Aj∂j −

∑
Bj,k∂j∂k, i.e. when ε = 1.

We denote by Hs([0, T ]) the spaces Hs of the previous section on [0, T ]×
Rd

+. For s > 0, we introduce the following notations for u ∈ H2s([0, T ]),

(3.3.1)

ns(u;T ) =
∑

2j+|α|≤2s−1

‖∂j
t ∂

α
y,xu(T )‖L2(Rd

+)

N′s(u;T ) =
∑

0<2j+|α|≤2s

‖∂j
t ∂

α
y,xu‖L2([0,T ]×Rd

+) .

For the source terms f ∈ H2s([0, T ]), we use the norms

(3.3.2)

Ns(f ;T ) =
∑

0≤2j+|α|≤2s

‖∂j
t ∂

α
y,xf‖L2([0,T ]×Rd

+) .

Ms(f ;T ) =
∑

0≤2j+|α|≤2s

‖∂j
t ∂

α
y,xf‖L1([0,T ];L2(Rd

+) .

The slight difference between N and N ′ is that the case j = |α| = 0 is
allowed in the former case.
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Theorem 3.3.1. For all s ≥ 0, there is a constant C such that for all
T ≥ 0, all f ∈ H2s([0, T ]) and u0 ∈ H2s+1(Rd

+) satisfying the compatibility
conditions up to order 2s, the solution u ∈ H2s+2 of (3.2.2) satisfies for all
t ∈ [0, T ]:

(3.3.3) ns+1(u; t) + N′s+1(u; t) ≤ C
(
ns+1(u; 0) + Ns(f ; t) + Ms(f ; t)

)
.

Remark 1. Integrating ∂t|∂y,xv|2, and using Plancherel’s theorem, one
obtains the estimate

(3.3.4) ‖∂y,xv(t)‖2L2 ≤ ‖∂y,xv(0)‖2L2 + 2‖∂tv‖L2([0,t];L2)‖∂2
y,xv‖L2[0,t];L2) ,

for v ∈ C∞0 ([0, t] × Rd). Using an extension theorem, one proves that this
estimate also holds on [0, t] × Rd

+ and for functions in H2. Easier is the
estimate

(3.3.5) ‖v(t)‖2L2 ≤ ‖v(0)‖2L2 + 2‖∂tv‖L2([0,t];L2)‖v‖L2[0,t];L2) ,

Suppose that u ∈ H2s+2 with s ≥ 0. Consider j and α such that 2j + |α| ≤
2s + 1. If α '= 0, we can write ∂α = ∂β∂k for some k. Consider v = ∂j

t ∂
β
y,xu.

The L2 norms of ∂tv and ∂2
y,xv appear in N ′

s+1(u). Thus we can use (3.3.4)
to estimate the L2 norm of Dkv(t) = ∂j

t ∂
α
y,xu(t). If α = 0, then j ≤ s. If

j > 0, the L2 norms of v = ∂j
t u and ∂tv appear in N ′

s+1. In this case we
apply (3.3.5). Adding up, we have the uniform estimate

(3.3.6) n′s+1(u; t) ≤ C
(
n′s(u; 0) + N′s+1(u; t)

)
.

where n′s is the sum of terms in ns, except the first one ‖u(t)‖L2 . Therefore,
it is sufficient to prove (3.3.3) with ns(u; t) replaced by ‖u(t)‖L2 in the left
hand side.

However, as it is stated, the estimate (3.3.3) has the nice feature to give
the same norm ns+1 at time t and at time zero.

One can also eliminate this last term, using an L1([0, t];L2) norm of
∂tu. What we have in N ′

s+1(u; t) is an L2(L2) norm of ∂tu. For a fixed T ,
the L1(L2) norm is controlled by the L2(L2) norm, but the control is not
uniform in T .

Remark 2. The right hand side can be made explicit in terms of the data
u0 and f . When s = 0, this is immediate:

(3.3.7) n1(u; 0) = ‖u0‖H1(Rd
+) .

When s ≥ 1, using the equation, the traces ∂j
t u(0) are given by (3.2.17),

and therefore

(3.3.8) ns+1(u; 0) ≤ C
(‖u0‖H2s+1(Rd

+) + ns(f ; 0)
)
.
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Proof of Theorem 3.3.1. a) The case s = 0.
Since the matrices SAj are symmetric, for u ∈ H1

0 there holds

Re (SAj∂ju, u)L2 = 0 .

By (3.2.6) and Proposition 3.2.4, we deduce that

‖u(t)‖2L2 + ‖∂y,xu‖2L2([0,t]×Rd
+) ! ‖u0‖2L2 +

∫ t

0
‖f(t′)‖L2‖u(t′)‖L2dt′ .

where a ! b means that there is a constant C, independent of T , such that
a ≤ Cb. As in the proof of Proposition 2.4.1 this implies

(3.3.9)
‖u(t)‖L2(Rd

+) + ‖∂y,xu‖L2([0,t]×Rd
+)

! ‖u0‖L2 +
∫ t

0
‖f(t′)‖L2(Rd

+)dt′ .

When u0 ∈ H1
0 , that is when the first compatibility condition is satisfied,

one can also estimate the second derivatives as in the proof of Lemma 3.2.9.
Differentiating the equation in y, multiplying by S∂yu and integrating over
[0, t]× Rd

+ yields

‖∂yu(t)‖2L2 +‖∂y,x∂yu‖2L2([0,t]×Rd
+) ! ‖∂yu0‖2L2 +

∫ t

0
‖f(t′)‖L2‖∂2

yu(t′)‖L2dt′ .

With Cauchy-Schwarz inequality, this implies

‖∂yu(t)‖2L2 + ‖∂y,x∂yu‖2L2([0,t]×Rd
+) ! ‖∂yu0‖2L2 + ‖f‖2L2([0,t]×Rd

+) ,

thus

(3.3.10) ‖∂yu(t)‖L2 + ‖∂y,x∂yu‖L2([0,t]×Rd
+) ! ‖∂yu0‖L2 + ‖f‖L2([0,t]×Rd

+) .

Next, we multiply the equation by S∂2
xu and integrate over [0, t]× Rd

+. We
get

‖∂xu(t)‖2L2 + ‖∂2
xu‖2L2([0,t]×Rd

+) ! ‖∂xu0‖2L2 +
∫ t

0
‖g‖L2‖∂2

xu(t′)‖L2dt′ .

thus

(3.3.11) ‖∂xu(t)‖L2 + ‖∂2
xu‖L2([0,t]×Rd

+) ! ‖∂xu0‖L2 + ‖g‖L2([0,t]×Rd
+) ,
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where g = f −∑
Aj∂ju + ε

∑
Bj,k∂2

j,ku with (j, k) '= (d, d) in the last sum.
The terms in ∂y,x∂y are controlled in L2 by the previous estimate (3.3.10).
The terms in ∂y,xu are controlled by (3.3.9). Hence ‖g‖L2 is dominated by
the sum of the right hand sides of (3.3.9) and (3.3.10). Adding up, we have
proved that

‖u(t)‖L2+‖∂y,xu(t)‖L2 + ‖∂y,xu‖L2([0,t];L2) + ‖∂2
y,xu‖L2([0,t];L2)

! ‖u0‖L2 + ‖∂y,xu0‖L2 + ‖f‖L1([0,t];L2) + ‖f‖L2([0,t];L2) .

Since ∂tu = f + Gu, we can add ‖∂tu‖L2(L2) in the left hand side. This
yields (3.3.3) for s = 0.

b) The general case.
We proceed by induction as in the proof of Theorem 3.2.8. Given f ∈ H2s

and u0 ∈ H2s+1, compatible to order 2s, we know that there is a unique
solution u ∈ H2s+2.

We consider s ≥ 1 and assume that the estimate is proved at the order
s−1. Thus we have L2 bounds for u(j,α) := ∂j

t ∂
α
y,xu for 2j+|α| ≤ 2s. Thanks

to (3.3.6), we only need bounds for the u(j,α) when 2s+1 ≤ 2j+ |α| ≤ 2s+2.
Differentiating the equations with respect to ∂t, ∂y and ∂2

y , the induction
hypothesis implies that the L2 norm of the derivatives ∂j

t ∂
β
y ∂k

xu is bounded
by the right hand side of (3.3.3) for 2j + |β| + k ≤ 2s + 2 except for j = 0
and k = 2s + 1 or k = 2s + 2. Because s ≥ 1, we can use the equation to
express these derivatives as linear combinations of ∂2s−1

x f , ∂y∂2s−1
x f , ∂2s

x f

and derivatives ∂j
t ∂

β
y ∂k

xu with j ∈ {0, 1}, |β| ≤ 3, k ≤ 2s and 2j + |β|+ k ≤
2s + 2, which are already estimated.

3.3.2 Small viscosity estimates

We now consider the equations with small viscosity ε:

(3.3.12)


Lu− εPu = f on [0, T ]× Rd

+

u|x=0 = 0 on [0, T ]× Rd−1

u|t=0 = u0 on Rd
+

For fixed ε, the existence and uniqueness of solutions follows from the analy-
sis of section 2. In this section we discuss uniform estimates for the solutions.

Because of the boundary layers, the right hand side (and the solutions)
are not uniformly smooth in the normal variable. For instance, we have
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seen in Chapter one, that solutions of the form u0(t, x) + e−ax/εα(t) must
be expected. For these solutions, the normal derivatives satisfy for k > 0:

(3.3.13) ‖∂k
xu‖L2 ≈ ε−k+1/2 .

The solutions of (3.3.12) are related to the solutions of (3.2.2): u is a
solution of (3.3.12) on [0, T ]× Rd

+, if and only if

ũ(t̃, ỹ, x̃) = u(εt̃, εỹ, εx̃)

is a solution of (3.2.2) on [0, T/ε]×Rd
+, with initial data ũ0 and source term

f̃ given by:

ũ0(ỹ, x̃) = u0(εt̃, εỹ, εx̃) , f̃(ỹ, x̃) = εf(εt̃, εỹ, εx̃) .

Thus the estimates for ũ are immediately transposed for u. Up to a factor
ε−d/2, the norms (3.3.1) and (3.3.2) for ũ and f̃ are equal to:

(3.3.14)

ns,ε(u; T ) =
∑

2j+|α|≤2s−1

εj+|α|‖∂j
t ∂

α
y,xu(T )‖L2(Rd

+)

N′s,ε(u; T ) =
∑

0<2j+|α|≤2s

εj+|α|−1/2‖∂j
t ∂

α
y,xu‖L2([0,T ]×Rd

+) ,

Ns,ε(f ; T ) =
∑

0≤2j+|α|≤2s

εj+|α|+1/2‖∂j
t ∂

α
y,xf‖L2([0,T ]×Rd

+) ,

Ms,ε(f ; T ) =
∑

0≤2j+|α|≤2s

εj+|α|‖∂j
t ∂

α
y,xf‖L1([0,T ];L2(Rd

+) .

Theorem 3.3.1, immediately implies:

Theorem 3.3.2. For all s ≥ 0, there is a constant C such that for all
T ≥ 0, all f ∈ H2s([0, T ]) and u0 ∈ H2s+1(Rd

+) satisfying the compatibility
conditions up to order 2s for the problem (3.3.12), the solution u ∈ H2s+2

of (3.3.12) satisfies for all t ∈ [0, T ]:

(3.3.15) ns+1,ε(u; t)+N′s+1,ε(u; t) ≤ C
(
ns+1,ε(u; 0)+Ns,ε(f ; t)+Ms,ε(f ; t)

)
.

For instance, for s = 0, f ∈ L2([0, T ] × Rd
+) and u0 ∈ H1

0 (Rd
+), the

solution u ∈ H2 satisfies

(3.3.16)

‖u(t)‖L2 + ε‖∂y,xu(t)‖L2 +
√

ε‖∂t,y,xu‖L2([0,t],L2)

+ε3/2‖∂2
y,xu‖L2([0,t],L2) ! ‖u0‖L2 + ε‖∂y,xu0‖L2

+‖f‖L1([0,t],L2) +
√

ε‖f‖L2([0,t],L2) .

By (3.3.13), the factors ε1/2 and ε3/2 in front of the first and second normal
derivatives are optimal.
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3.4 Tangential and conormal estimates.

The estimates (3.3.15) are not suitable for nonlinear equations, since they
do not provide uniform L∞ estimates. Moreover, the boundary layer solu-
tions are expected to be smooth in the tangential variables. This leads to
introduce norms measuring the tangential smoothness.

3.4.1 Tangential regularity

For functions u on Rd
+ define

(3.4.1) ‖u‖Hs
tg

=
∑
|α|≤s

‖∂α
y u‖L2(Rd

+) .

For functions on [0, T ]× Rd
+, introduce

(3.4.2) ‖u‖Hs
tg([0,T ]) =

∑
j+|α|≤s

‖∂j
t ∂

α
y u‖L2([0,T ]×Rd

+) =
s∑

j=0

‖∂j
t u‖Hs−j

tg
.

The importance of these spaces is apparent in the next lemma:

Lemma 3.4.1. For s > d
2 , there is C such that for all u ∈ Hs

tg such that
∂xu ∈ Hs−1

tg :

(3.4.3) ‖u‖L∞(Rd
+) ≤ ‖u‖1/2

Hs
tg
‖∂xu‖1/2

Hs−1
tg

.

Proof. Extend u for negative x as an even function. The extended function
belongs to the Hs

tg space on Rd with derivative in Hs−1
tg .

Denoting by and û(η, ξ) the Fourier transform of u(y, x), the L∞ estimate
on R× Rd follows from the Hölder’s inequality:

‖û‖2L1 ≤ ‖µ‖L2‖λsû‖L2‖λs−1(1 + |ξ|)û‖L2 .

with λ = (1 + |η|), µ = (1 + |η|)−s(1 + |ξ|)−1/2.

There are easy a priori estimate in Hs
tg spaces. Introduce the notation

(3.4.4) ntg,s,ε(u; t) =
∑
|α|≤s

‖∂α
t,yu(t)‖L2(Rd

+) + ε‖∂α
t,y∂y,xu(t)‖L2(Rd

+) .

For simplicity, we fix T0 > 0 and restrict attention to T ≤ T0.
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Proposition 3.4.2. Given s and T0 > 0, there is C such that for all T ∈
[0, T0], all ε ∈]0, 1] and all u ∈ C∞0 ([0, T ]×Rd

+) with u|x=0 = 0, all t ∈ [0, T ]

(3.4.5)
ntg,s,ε(u, t) + ε1/2‖∂t,y,xu‖Hs

tg([0,t]) + ε3/2‖∂2
y,xu‖Hs

tg([0,t])

≤ C
(
ntg,s,ε(u; 0) + ‖f‖Hs

tg([0,t])

)
.

with f = (L− εP )u.
Moreover, if s ≥ d

2 + 1, then

(3.4.6)
‖u‖L∞([0,T ]×Rd

+) ≤ C
(
‖u(0)‖L∞(Rd

+)

+ ntg,s,ε(u; 0) + ‖f‖Hs
tg([0,t])

)
.

Proof. The estimate for s = 0 follows immediately from (3.3.16), estimating
the L1([0, t];L2) norm of f by its L2([0, t];L2) norm for t ≤ T ≤ T0.

Differentiating the equation with respect to (t, y) immediately implies
the estimate (3.4.5) for the tangential derivatives.

Consider v = ε∂xu. Then,

‖v‖Hs
tg([0,T ]) ≤ ε1/2R and ‖∂xv‖Hs

tg([0,T ]) ≤ ε−1/2R

where R is the right hand side of (3.4.5). Thus a1(t) := ‖v(t)‖Hs
tg(Rd

+) and
a2(t) := ‖∂xv‖Hs

tg(Rd
+) satisfy

ε−1/2‖a1‖L2([0,T ]) + ε1/2‖a2‖L2([0,T ]) ≤ R

When s > d/2, we deduce from Lemma 3.4.1:

a(t) := ‖v(t)‖L∞(Rd
+) ≤

(
a1(t)a2(t)

)1/2
.

Hence, ‖a‖L2([0,T ]) ! R.
The equation for u reads:

−ε∂2
xu + A+∂xu = g

where A+ = B−1
d,dAd and g is a linear combination of f , ∂t,yu, ε∂2

yu and
ε∂x∂yu. Thus,

‖g‖Hs−1
tg ([0,T ]) ! ‖f‖Hs−1

tg ([0,T ]) + ‖u‖Hs
tg([0,T ]) + ε‖∂y,xu‖Hs

tg([0,T ]) ! R .
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Consider w = A+u− ε∂xu. Then

‖w‖Hs
tg([0,T ]) ≤ R .

Since ∂xw = g, Lemma 3.4.1 applied for fixed t as above, implies that
b(t) := ‖w(t)‖L∞(Rd

+) satisfies ‖b‖L2([0,T ]) ! R. Since u = (A+)−1(w + v), we
have proved that for s > d/2, c(t) := ‖u(t)‖L∞(Rd

+) satisfies ‖c‖L2([0,T ]) ! R.
When s > 1 + d/2, we can apply the same analysis to ∂tu and conclude

that c1(t) := ‖∂tu(t)‖L∞(Rd
+) satisfies ‖c1‖L2([0,T ] ! R. Since

‖u‖L∞([0,T ]×Rd
+) ≤ ‖u(0)‖L∞(Rd

+) +
∫ T

0
‖∂tu(t)‖L∞(Rd

+)dt,

the estimate (3.4.6) follows.

There are difficulties to convert the estimates above into existence the-
orems in the corresponding spaces. This come from the fact that the initial
value ntg,s(u, 0) cannot be expressed in terms of the data when they only
belong to tangential spaces. Indeed, by (3.2.17) ntg,s(u, 0) involves high or-
der ∂x derivatives of u0 and of the traces ∂j

t f(0). However, there is an easy
case: when u0 = 0 and the traces ∂j

t f(0) vanish.

Theorem 3.4.3. Assume that f ∈ Hs
tg([0, T ]) and

(3.4.7) ∂j
t f|t=0 = 0 , for j ≤ s− 1 .

The solution u ∈ H2 of (3.3.12) with initial data u0 = 0 belongs to Hs
tg([0, T ])

as well as ∂t,y,xu and ∂2
y,xu. Moreover, u satisfies the estimates (3.4.5) and,

when s > 1 + d/2, (3.4.6).

Proof. Fix ε > 0. Thanks to (3.4.7), we can approximate f in Hs
tg([0, T ])

by functions fn ∈ C∞0 (]0, T ] × Rd
+). In this case, the fn and u0 = 0 are

compatible at any order and the unique solution of (3.3.12) given by Theo-
rem 3.2.5 is infinitely smooth. The estimates (3.4.5) show that the un form
a Cauchy sequence in Hs

tg([0, T ]) as well as ∂t,y,xun and ∂2
y,xun, thus in H2.

Therefore the limit u which is the unique solution of (3.3.12) in H2 has the
tangential regularity as claimed.

3.4.2 Conormal regularity

The analysis above is simple but its application to variable coefficients or
curved boundary leads to difficulties because it relies on good commutation
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properties of the fields ∂t, ∂yj with the equation. Note that this set of fields
is not preserved by all the changes of variables which leave the boundary
invariant. The boundary layer solutions we construct in Chapter four (see
also Chapter one) are smooth functions of x for x > 0, with singularity only
on {x = 0}. Typically, we expect solutions of the form

uε(t, y, x) = U(t, y, x, x/ε)

with U(t, y, x, z) converging at an exponential rate when z tends to +∞.
So one can expect uε be tangentially smooth. But, the form above shows
that one can also expect to apply vector fields x∂x tu uε. In particular,
away from the boundary, this allows to recover the usual isotropic Sobolev
smoothness. To take care of this additional regularity, one introduces an
extra vector field which is tangent to the boundary but independent of the
∂t, ∂yj when x > 0:

(3.4.8) X =
x

1 + x
∂x .

The choice of the function in front of ∂x is far from unique: we ask it to be
positive, to converge to a positive constant at infinity, and to be equivalent
to x for small x. X behaves like ∂x for x ≥ 1 and like x∂x for x ≤ 1. We
also introduce the notations

(3.4.9) Z0 = ∂t , Zj = ∂yj for j ∈ {1, . . . , d− 1} , Zd = X .

For a multi-index α = (α0, . . . , αd) ∈ Nd+1, Zα = Zα0
0 · · ·Zαd

d .

Definition 3.4.4. For s ∈ N, and T ≥ 0, Hs
co([0, T ]) denotes the space

of functions u ∈ L2([0, T ] × Rd
+) such that Zαu ∈ L2([0, T ] × Rd

+) for all
α ∈ Nd+1 with |α| ≤ s.

As expected, for all δ > 0, the function in Hs
co are in Hs on {x > δ}.

Moreover, this space is invariant by any change of variables which preserves
the boundary.

The new difficulty is that X does not commute exactly to the equation.
We use the following facts:

∂xX = X ′∂x , with X ′ = X +
1

(1 + x)2
,(3.4.10)

(X ′)k = Xk +
k−1∑
l=0

ck,lX
l ,(3.4.11)
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where the ck,l(x) are bounded C∞ functions with bounded derivatives. In
commuting X with the operator L − εP , the difficult term is [X, ∂x]. This
is why we compute X ′(L− εP )− (L− εP )X. There holds

(3.4.12)

(X ′)k(L− εP )− (L−εP )Xk =
k−1∑
l=0

(
c∂t,yX

l + cε∂2
yX l + ε∂x(cX l∂x)

)
where c denotes various functions of x, bounded as well as all their deriva-
tives.

Parallel to Proposition 3.4.2, there are a priori estimates in the conormal
spaces. Introduce

(3.4.13) nco,s,ε(u; t) =
∑
|α|≤s

‖Zαu(t)‖L2(Rd
+) + ε‖∂y,xZαu(t)‖L2(Rd

+) ,

Proposition 3.4.5. Given s and T0 > 0, there is C such that for all T ∈
[0, T0], all ε ∈]0, 1] and all u ∈ C∞0 ([0, T ]×Rd

+) with u|x=0 = 0, all t ∈ [0, T ]

(3.4.14)
nco,s,ε(u, t) + ε1/2‖∂t,y,xu‖Hs

co([0,t]) + ε3/2‖∂2
y,xu‖Hs

co([0,t])

≤ C
(
nco,s,ε(u; 0) + ‖f‖Hs

co(t)

)
.

with f = (L− εP )u.

We need a modification of the basic L2-estimate (3.3.16).

Proposition 3.4.6. There is C such that for all T ∈ [0, T0], all ε ∈]0, 1]
and all u ∈ C∞0 ([0, T ]× Rd

+) such that u|x=0 = 0 and

(3.4.15) (L− εP )u = f +
d∑

j=0

ε∂jgj ,

the following energy estimate is satisfied

(3.4.16)

‖u(t)‖L2 + ε‖∂y,xu(t)‖L2 +
√

ε‖∂t,y,xu‖L2([0,t],L2)

+ε3/2‖∂2
y,xu‖L2([0,t],L2) ≤ C

(
‖u0‖L2 + ε‖∂y,xu0‖L2+

‖f‖L2([0,t],L2) +
∑

j

√
ε‖gj‖L2([0,t],L2) + ε3/2‖∂jgj‖L2([0,t],L2)

)
.
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Proof. First, we multiply the equation by Su. We estimate (f, Su)L2 as
before by the L2 norm of f and the L∞(L2) norm of u. Since u vanishes on
the boundary,

ε(∂jgj , Su)L2 = −ε(gj , ∂jSu)L2 = O
(
‖√εgj‖L2‖√ε∂ju‖L2

)
.

This implies

‖u(t)‖L2 +
√

ε‖∂y,xu‖L2 ! ‖u0‖L2 + ‖f‖L2 +
∑

j

√
ε‖gj‖L2 .

Next, we differentiate the equation in ∂yj and multiply by ε2S∂yju. Since u
vanishes on the boundary,(

∂yj (f + ε∂kgk), S∂yju
)
L2 = −(

f + ε∂kgk, S∂2
yj

u
)
L2

and thus

ε‖∂yu(t)‖L2 + ε3/2‖∂y,x∂yu‖L2 ! ε‖∂yu0‖L2 + ε1/2‖f‖L2 +
∑

j

ε3/2‖∂jgj‖L2 .

To get control of ∂2
xu, we multiply the equation by ε2S∂2

xu, and obtain

ε‖∂xu(t)‖L2 + ε3/2‖∂2
xu‖L2 ! ε‖∂xu0‖L2 + ‖h‖L2

with
h =

√
ε
(
f − ∂tu−

∑
j≤d

Aj∂ju + ε
∑

j+k<2d

Bj,k∂j∂ku
)
.

The norm ‖h‖L2 is estimated by the previous steps. At last,
√

ε∂tu is esti-
mated using the equation and the proposition follows.

Proof of Proposition 3.4.5. We have to bound the norms

(3.4.17)
‖uj,β,k‖L∞(L2) ε‖∂y,xuj,β,k‖L∞(L2)√
ε‖∂t,y,xuj,β,k‖L2 ε3/2‖∂2

y,xuj,β,k‖L2

of uj,β,k := ∂j
t ∂

β
y Xku, for j + |β|+ k ≤ s, by the right hand side of (3.4.14)

We proceed by induction on k. For s = 0, the estimate is true by
(3.3.16) or by the proposition above. Differentiating in (t, y), we can bound
the norms in (3.4.17) by the right hand side of (3.4.14) for k = 0 and
j + |β| ≤ s.
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Suppose that we have bounded the norms (3.4.17) up to the order k−1.
We use the commutation relation (3.4.12) to write an equation for uj,β,k:

(L− εP )uj,β,k =∂j
t ∂

β
y (X ′)kf

+
∑

cuj′,β′,l + ε∂y,x(c∂y,xuj′,β′,l) + ε∂y,x(cuj′,β′,l)

where the sum runs over indices (j′, β′, l) such that j′ + |β′| + l ≤ s and
l < k. With Proposition 3.4.6, we can bound the norms in (3.4.17) at the
order k by by the norms at order l < k and the right hand side (3.4.14).

Parallel to Theorem 3.4.3, the energy estimates imply regularity of the
solution when u0 = 0 and the source term f vanishes at high order at t = 0.

Theorem 3.4.7. Assume that f ∈ Hs
co([0, T ]) and

(3.4.18) ∂j
t f|t=0 = 0 , for j ≤ s− 1 .

The solution u ∈ H2 of (3.3.12) with initial data u0 = 0 belongs to Hs
co([0, T ])

as well as ∂t,y,xu and ∂2
y,xu. Moreover, u satisfies the estimates (3.4.14) and,

when s > 1 + d/2, (3.4.6).

3.5 Nonlinear problems

In this section we consider the semilinear problem (3.1.2). We always sup-
pose that Assumption 3.1.1 is satisfied and that F is a C∞ function from
RN to RN such that F (0) = 0.

3.5.1 Existence for fixed viscosity

We consider the semilinear equation

(3.5.1) (L− εP )u = f + F (u) , u|x=0 = 0 , u|t=0 = u0 .

We also use the notation, L = ∂t + A. The compatibility conditions must
be modified as follows: first we define the functions Fj(u0, . . . , uj) of the
form

Fj(u0, . . . , uj) =
∑
k=1

∑
j1+...+jk=j

cF k(u0)
(
uj1 , . . . , ujk

)
such that

∂j
t F (u)|t=0 = Fj(u0, . . . , uj) , uj = ∂j

t u|t=0 .
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Next, the definition (3.2.17) is modified as follows

(3.5.2) uj = (εP −A)uj−1 + fj−1 + Fj−1(u0, . . . , uj−1) .

The multiplicative properties of Sobolev spaces in Proposition 2.5.2, im-
ply the following result.

Lemma 3.5.1. For u0 ∈ H2s+1 and f ∈ H2s with s > d/4, (3.5.2) defines
by induction functions uj ∈ H2s+1−2j(Rd

+) for j ≤ s.

Definition 3.5.2. The data u0 ∈ H2s+1(Rd
+) and f ∈ H2s([0, T ]) satisfy the

compatibility conditions to order σ ≤ 2s if the uj given by (3.5.12) satisfy

uj |x=0 = 0 , j ∈ {0, . . . , σ/2} .

We first state a local in time existence theorem for a fixed ε.

Theorem 3.5.3. Given u0 ∈ H2s+1(Rd
+) and f ∈ H2s([0, T ]) compatible to

order 2s with s > d/4, there is T ′ ∈]0, T ] such that the equation (3.5.1) has
a unique solution u ∈ H2s+2([0, T ′]).

Note that, in this theorem, T ′ may depend on ε.

Proof. We only sketch the argument since it is quite parallel to the proof of
Theorem 2.5.1. We consider the iterative scheme

(3.5.3) (L− εP )un = f + F (un−1) , un|x=0 = 0 , un|t=0 = u0 .

a) Define the uj ∈ H2s+1−2j(Rd
+) by (3.5.2). Consider extensions in

H2s+1−2j(Rd) of the uj . Then, denoting by ·̂ the spatial Fourier transform
define

û0(t, η, ξ) =
∑ tj

j!
χ(tΛ2)ûj(η, ξ) , Λ = (1 + |η|+ |ξ|) .

This function u0 belongs to H2s+2 and ∂j
t u

0|t=0 = uj for j ≤ s.
Starting with this u0, we check by induction that for all n ≥ 0, the data

u0 and source terms f +F (un−1) are compatible to order 2s and thus (3.5.3)
has a solution un ∈ H2s+2 with satisfies ∂j

t u
n|t=0 = uj for j ≤ s.

b) We use the norms ns with ε = 1 defined in (3.3.14). Using the mul-
tiplicative properties of Sobolev spaces as in Proposition 2.5.2, we see that
for 2s > d/2

(3.5.4) ns(F (u); t) ≤ C
(
ns(u; t)

)
.
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Thus the energy estimate (3.3.3), one shows that there are T ′ > 0 and R such
that for all n and t ∈ [0, T ′], ns+1(un; t) ≤ R and Ns+1(un;T ′) is bounded.

Next, one shows that the sequence un is a Cauchy sequence inH2s+2([0, T ′])
and thus converge to a solution of (3.5.1).

The uniqueness follows form the L2 energy estimate applied to a differ-
ence of solutions.

Next we state a continuation theorem, parallel to Proposition 2.5.10.
The proof is based on Gagliardo-Nirenberg-Moser’s inequalities. With Ω
denoting Rd, Rd

+ or a strip [0, T ] × Rd
+, with T ≥ T1 > 0, there holds ( see

the discussion after Proposition 2.5.4):

Proposition 3.5.4. For all s ∈ N, there is C such that for all j ∈ N and
α ∈ Nd with 2j + |α| ≤ 2s and all u ∈ L∞(Ω) ∩Hs(Ω), ∂j

t ∂
α
y,xu ∈ Lp(Ω) for

2 ≤ p ≤ 4s/(2j + |α|) and

(3.5.5) ‖∂j
t ∂

α
y,xu‖Lp ≤ C‖u‖1−2/p

L∞ ‖u‖2/p
H2s ,

2j + |α|
2s

≤ 2
p
≤ 1

Corollary 3.5.5. Given T1 > 0 and s ∈ N, there is a non decreasing
function CF (·) on [0,∞[ such that for all T ≥ T1, for all u ∈ L∞(Ω) ∩
H2s([0, T ]), one has F (u) ∈ H2s(Ω) and

(3.5.6) ‖F (u)‖H2s([0,T ]) ≤ CF (‖u‖L∞)‖u‖H2s([0,T ]) .

Suppose that f ∈ H2s([0, T0]× Rd
+) and u0 ∈ H2s+1(Rd

+), with s > d/4,
satisfy the compatibility conditions are satisfied at order 2s. Let T ∗ denote
the supremum of the set of T ∈]0;T0] such that the problem (3.5.1) has a
solution in H2s+2([0, T ]). By uniqueness, there is a unique maximal solution
u on [0, T ∗[. Repeating the proof of Proposition 2.5.10, one obtains the
following criterion for blow up:

Theorem 3.5.6. If

(3.5.7) lim sup
t→T ∗

‖u(t)‖L∞ < +∞ ,

then T ∗ = T0 and u ∈ H2s+2([0, T0]).

3.5.2 Uniform existence theorem I

Our goal is now to prove the existence of solutions on interval of time in-
dependent of ε. Consider bounded families of initial data {uε

0}ε∈]0,1] ⊂
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H2s+1(Rd
+) and source terms {fε}ε∈]0,1] ⊂ H2s([0, T ]). By Theorems 3.5.3

and 3.5.6 we know that there are solutions uε ∈ H2s+2([0, T (ε)[) where
T (ε) > 0 and T (ε) = T or uε /∈ L∞([0, T (ε)] × Rd

+). The strategy is to use
the L∞ bounds of Proposition 3.4.2 to show that there is T ′ > 0 such that
for all ε ∈]0, 1], T (ε) ≥ T ′.

Toward this end, we need uniform estimate on the norm ntg,s,ε(u; 0) of
the traces uj = ∂j

t u|t=0. We also need a good control of the source term

(3.5.8) ‖F (u)‖Hs
tg([0,t]) ! CF

(‖u‖L∞ + ntg,s,ε(u; t)
)
.

with CF (·) independent of time t. It turns out that theses estimates are
delicate to prove: for instance application of Corollary 2.5.6 for fixed x,
yields estimate with constants which blow up as t → 0.

Consider initial data uε
0 ∈ H2s+1(Rd

+) and source terms fε ∈ H2s([0, T ]).
For j ≤ s, define the uε

j ∈ H2s+1−2j by (3.5.2). We make the following
assumption: there is C1 such that for all ε ∈]0, 1]:∑

j+|α|≤s

(
‖∂α

y uε
j‖L2(Rd

+) +
√

ε‖∂α
y ∂y,xuε

j‖L2(Rd
+)

)
≤ C1 ,(3.5.9)

‖fε‖Hs
tg([0,T ]) ≤ C1 .(3.5.10)

We further assume that there are C2 and a family ũε ∈ H2s+2([−1, 0]) such
that

(3.5.11)

{ ‖ũε‖Hs
tg([−1,T ]) + ‖ũε‖L∞([−1,T ]×Rd

+) ≤ C2 ,

∂j
t ũ

ε|t=0 = uj , for j ≤ s .

Example 3.5.7. The difficult part is to check the condition (3.5.9). Com-
puting the uj involves ∂x derivatives, while the assumption on u0 involves
only ∂y derivatives. However, there are several cases where the assumptions
are easy to check. A first example, already occurs when uε

0 = 0 and fε

satisfies

(3.5.12) ∂j
t f

ε
|t=0 = 0 , for j ≤ s− 1 .

In this case, all the uε
j vanish and the data are compatible to order 2s.

Example 3.5.8. Another interesting example occurs when fε is bounded
in H2s([0, T ] × Rd

+) and the uε
0 are bounded in H2s+1(Rd

+). In this case,
the uε

j are bounded in H2s+1−2j(Rd
+). Moreover, there are ũε, bounded
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in H2s+2(] − ∞,+∞[), such that ∂j
t ũ

ε|t=0 = uε
j . In particular, they are

bounded in Hs
tg. If in addition one assumes that uε

0 and fε vanish for x < r
and x+t ≤ r respectively, then the uj vanish for x ≤ r and the compatibility
conditions are satisfied.

Remark 3.5.9. The assumptions (3.5.9) (3.5.11) are well suited for contin-
uation results : they are satisfied if solutions uε are given on [−T1, 0], such
that they are bounded in L∞ and the norms ntg,sε(uε, t)) for t ∈ [−T1, 0] are
bounded.

Note that one obtains equivalent conditions if one replaces in (3.5.11)
the interval [−1, T ] by any interval [−T1, 0] or on [0, T1], for any T1 > 0,
since one can extend the ũε to t ∈ R.

Theorem 3.5.10. Assume that s > 1 + d
2 and consider families of initial

data uε
0 ∈ H2s+1(Rd

+) and source terms fε ∈ H2s([0, T ]) satisfying the com-
patibility conditions to order 2s. Assume that (3.5.9)(3.5.10)(3.5.11) hold.
There is T ′ ∈]0, T ] such that for all ε ∈]0, 1] the problem (3.5.1) has a
unique solution uε ∈ H2s+1([0, T ′]). Moreover, the family uε is bounded
in Hs

tg([0, T ]) ∩ L∞([0, T ]× Rd
+).

Denote by Kε([0, T ′]) the set of functions u ∈ H2s+2([0, T ′]) such that
∂j

t u = uε
j for j ≤ s. We use the following estimate:

Lemma 3.5.11. For s > d/2, there is constant C3 and a function CF (·)
such that for all t ∈ [0, T ], all ε ∈]0, 1] and all u ∈ Kε([0, t]), there holds

(3.5.13) ‖F (u)‖Hs
tg([0,t]) ≤ C3 + CF

(‖u‖L∞([0,t]×Rd
+)

)(
1 + ‖u‖Hs

tg([0,t])

)
.

Proof. For u ∈ Kε([0, T ′]) consider the function ũ defined to be equal to
ũε for t ∈ [−1, 0] and equal to u for t ∈ [0, T ′]. Since ũε and u have the
same traces at t = 0, the extended function belongs to H2s+2([−1, T ]) ⊂
Hs

tg ∩ L∞([−1, T ′]× Rd
+). Moreover,

‖ũ‖L∞([−1,T ′]×Rd) ≤ C2 + ‖u‖L∞([0,T ′]×Rd
+) ,

‖ũ‖Hs
tg([−1,T ′]) ≤ C2 + ‖u‖Hs

tg([0,T ′]) .

Applying Corollary 2.5.6 on [−1, T ′] × Rd−1 with x as a parameter, and
integrating in x, yields the estimate:

(3.5.14) ‖F (ũ)‖Hs
tg([−1,T ′]) ≤ CF

(‖ũ‖L∞([−1,T ′]×Rd
+)

)‖ũ‖Hs
tg([−1,T ′]) .

The lemma follows.
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Proof of Theorem 3.5.10. By Theorems 3.5.3 and 3.5.6 we know that there
are solutions uε ∈ H2s+2([0, T (ε)[) where T (ε) > 0 and T (ε) = T or uε /∈
L∞([0, T (ε)]× Rd

+).
Theorem 3.4.3 implies that for t ∈ [0, T (ε)]

nε(t) = ntg,s,ε(u; t) and mn(t) = ‖uε‖L∞([0,t]×Rd
+)

satisfy

nε(t) ≤ C4 + CF (mε(t))
( ∫ t

0

(
1 + nε(t′)

)2
dt′

)1/2
,

mε(t) ≤ C5 + CF (mε(t))
( ∫ t

0

(
1 + nε(t′)

)2
dt′

)1/2
,

where C4 and C5 are independent of t ∈ [0, T and ε ∈]0, 1]. There is T ′ > 0
such that

2C4CF (2C5)
√

T ′ ≤ min{C4, C5} .

The estimates above imply that

∀t ≤ min{T (ε), T ′} : nε(t) ≤ 2C4 and mε(t) ≤ 2C5 .

By Theorem 3.5.6, this implies that T (ε) ≥ T ′. In addition, this shows that
the uε are uniformly bounded in L∞ and Hs

tg on [0, T ′]× Rd
+.

3.5.3 Uniform existence theorem II

There are analogous results in spaces Hs
co. We make the following assump-

tion: there is C1 such that for all ε ∈]0, 1]:∑
j+|α|+k≤s

(
‖∂α

y Xkuε
j‖L2(Rd

+) +
√

ε‖∂α
y ∂y,xXkuε

j‖L2(Rd
+)

)
≤ C1 ,(3.5.15)

‖fε‖Hs
co([0,T ]) ≤ C1 .(3.5.16)

We further assume that there are C2 and a family ũε ∈ H2s+2([−1, 0]) such
that

(3.5.17)

{ ‖ũε‖Hs
co([−1,T ]) + ‖ũε‖L∞([−1,T ]×Rd

+) ≤ C2 ,

∂j
t ũ

ε|t=0 = uj , for j ≤ s .
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Examples 3.5.12. The assumptions (3.5.15) and (3.5.17) are satisfied when
uε

0 = 0 and fε satisfies (3.5.12). In this case, all the uε
j vanish and the data

are compatible to order 2s.
As in Example 3.5.8, the assumptions are satisfied when the fε are

bounded in H2s([0, T ] × Rd
+) and the uε

0 are bounded in H2s+1(Rd
+). In

this case, the uε
j are bounded in H2s+1−2j(Rd

+). If in addition uε
0 and fε

vanish for x < r and x+ t ≤ r respectively, then the uj vanish for x ≤ r and
the data are compatible to order 2s.

Theorem 3.5.13. Assume that s > 1 + d
2 and consider families of ini-

tial data uε
0 ∈ H2s+1(Rd

+) and source terms fε ∈ H2s([0, T ]) satisfying the
compatibility conditions to order 2s. Assume that (3.5.15)(3.5.16)(3.5.17)
hold. There is T ′ ∈]0, T ] such that for all ε ∈]0, 1] the problem (3.5.1) has a
unique solution uε ∈ H2s+1([0, T ′]). Moreover, the family uε is bounded in
Hs

co([0, T ]) ∩ L∞([0, T ]× Rd
+).

The proof is similar to the proof of Theorem 3.5.10. The analogue of
(3.5.14) is

(3.5.18) ‖F (u)‖Hs
co([−1,T ′]) ≤ CF

(‖u‖L∞([−1,T ′]×Rd
+)

)‖u‖Hs
co([−1,T ′])

)
.

It is a consequence of the following estimates on [−1, T ′]× Rd
+:

(3.5.19) ‖Zαu‖Lp ≤ C‖u‖1−2/p
L∞ ‖u‖2/p

Hs
co

,
|α|
s
≤ 2

p
≤ 1 .
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Chapter 4

Semilinear boundary layers

In this Chapter, we present the analysis of O.Guès ([Gu1]) in the case of
constant coefficients systems, with noncharacteristic flat boundary. We first
construct approximate solutions, using the existence theory of Chapter two.
Next, we use the uniform estimates of Chapter three to solve the equation
for the remainder.

4.1 Statement of the problem

In this Chapter we study the existence and the asymptotic behavior of so-
lutions of the equations

(4.1.1)


(L− εP )uε = F (u) + f ,

uε|x=0 = 0 ,

uε|t=0 = hε ,

with

Lu := ∂tu +
d∑

j=1

Aj∂ju , Pu :=
d∑

j,k=1

Bj,k∂j∂ku .

The goal is twofold : first, prove the existence of the solutions uε on an
interval of time [0, T ] independent of ε and second, give the asymptotic
behavior of uε as ε tends to zero. In particular, it is expected that

(4.1.2) uε − u = O(ε)
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where u satisfies

(4.1.3)


Lu = F (u) + f ,

Mu|x=0 = 0 ,

u|t=0 = h ,

provided that hε − h = O(ε). Part of the analysis is to determine the
boundary conditions M . Throughout the chapter, we suppose that the
following Assumption is satisfied:

Assumption 4.1.1. i) There is a positive definite symmetric matrix S =
tS + 0 such that for all j the matrix SAj is symmetric. Moreover, for all
ξ '= 0 the symmetric matrix

∑
ξjξkRe SBj,k is definite positive.

ii) The matrix Ad is invertible.
iii) F is a C∞ mapping from RN to RN , such that F (0) = 0.

To avoid the difficult questions of compatibility conditions, which are dif-
ferent for (4.1.1) and (4.1.3), we also assume that f vanishes on a neighbor-
hood of the edge {t = x = 0} and that the hε vanish on a fixed neighborhood
of {x = 0}.

We first construct asymptotic and approximate solutions of (4.1.1) as
power series of ε. This leads to solve ordinary differential equations for
the inner layers and hyperbolic boundary values problems for the interior
terms in {x > 0}. Next, we look for correctors to get exact solutions of the
equations. There we use the analysis and estimates of Chapter three.

4.2 Asymptotic boundary layers

We look for solutions of (4.1.1) as formal series in powers of ε:

(4.2.1) uε(t, y, x) ∼
∑
n≥0

εnUn
(
t, y, x,

x

ε

)
.

We look for the profiles Un in the class P(T ) of functions

(4.2.2) U(t, y, x, z) = u(t, y, x) + U∗(t, y, x, z)

with u ∈ H∞([0, T ] × Rd
+) and U∗ ∈ e−δzH∞([0, T ] × Rd

+ × R+) for some
δ > 0 (depending on U∗). Here, H∞(Ω) = ∩Hs(Ω). In particular, functions
in H∞ are C∞, bounded as well as all their derivatives.
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For uε as in (4.2.1), the left hand side of (4.1.1) is (formally)

(4.2.3) Luε − εPuε ∼
∑

n≥−1

εnLn(t, y, x,
x

ε
) , Ln ∈ P

with

(4.2.4) L−1 = −Bd,d∂
2
zU0 + Ad∂zU0

and, for n > 0:

(4.2.5)
Ln−1 = −Bd,d∂

2
zUn + Ad∂zUn − P ′(∂y,x)∂zUn−1

+ L(∂t,y,x)Un−1 − P (∂y,x)Un−2

with P ′(∂y,x) =
∑

(Bd,j + Bj,d)∂j and Un = 0 for n < 0. Formal series
expansions yield

(4.2.6) f + F
( ∑

n≥0

εnUn

)
∼

∑
n≥0

εnFn Fn ∈ P

with F0 = F (U0) + f , F1 = F ′(U0)U1 etc. Thus for uε given by (4.2.1) the
right hand side of (4.1.1) reads

(4.2.7) F (uε) + f ∼
∑
n≥0

εnFn(t, y, x,
x

ε
) .

The boundary condition is easily interpreted for formal series (4.2.1) since

(4.2.8) uε|x=0 ∼
∑
n≥0

εnUn|x=0,z=0 .

Definition 4.2.1. We say that
∑

εnUn is a formal or a BKW solution of
(L− εP )uε = f + F (uε) if and only if L−1 = 0 and Ln = Fn for all n ≥ 0.
It is a formal solution of the boundary conditions uε|x=0 if and only if for
all n ≥ 0:

(4.2.9) Un|x=0,z=0 = 0 .

Remark 4.2.2. The expansion (4.2.1) is not unique. For instance, one
can perform a Taylor expansion with respect to the slow variable x in
U∗(t, y, x, z):

U∗(t, y, x, z) = U∗(t, y, 0, z) + xV ∗(t, y, x, z) .
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The function V ∗ is rapidly decaying in z, as well as W ∗ = zV ∗. In this case

U∗(t, y, x,
x

ε
) = U∗(t, y, 0,

x

ε
) + εW ∗(t, y, x,

x

ε
) .

This means that, at first order, U∗(t, y, x, z) and U∗(t, y, 0, z) define the same
function. To fix the indeterminacy, one could restrict the class of profiles,
as in Chapter one, to profiles of the form

(4.2.10) Un(t, y, x, z) = u(t, y, x) + U∗(t, y, z) .

The lack of uniqueness is not a difficulty. On the contrary it gives some
flexibility. However, it implies that the expansions (4.2.3) (4.2.7) are not
unique. Above we have made an explicit choice for the Ln and Fn given by
(4.2.5) and (4.2.6). Note that the computation of profiles Fn of the form
(4.2.10) for (4.2.7) is more complicated.

The aim of this section is to construct formal solutions of the mixed
Cauchy problem (4.1.1) with initial condition

(4.2.11) uε|t=0 = hε .

In this analysis, the initial data should also be given by formal series:

hε(y, x) ∼
∑
n≥0

εnHn(y, x,
x

ε
)

However, to avoid the difficult question of compatibility conditions, we as-
sume that the initial data has no rapid dependence on z:

(4.2.12) hε(y, x) ∼
∑
n≥0

εnhn(y, x)

with hn ∈ H∞(Rd
+). Moreover, we assume that that there is r > 0 such that

(4.2.13)
∀n ≥ 0 , : hn(y, x) = 0 for x ≤ r ,

f(t, y, x) = 0 for x + t ≤ r .

This implies that the data are compatible at infinite order.
We say that

∑
εnUn is a formal solution of the Cauchy condition (4.2.11)

if

(4.2.14) ∀n ≥ 0 , : Un|t=0(y, x, z) = hn(y, x) ,

that is

∀n ≥ 0 , : un|t=0(y, x) = hn(y, x) and U∗n |t=0(y, x, z) = 0 .

Theorem 4.2.3. For f ∈ H∞([0, T ]×Rd
+) and a formal initial data

∑
εnhn

satisfying (4.2.13), there are T ′ ∈]0, T ] and formal solutions
∑

εnUn of
(4.1.1).
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When U(t, y, x, z) is a profile in P(T ), we denote by

U(t, y, x) = lim
z→∞U(t, y, x, z)

its limit at z = +∞ and by U∗ = U − U the exponentially decaying part.
In the decomposition (4.2.2), U = u. We use this notation for the profiles
the Ln and Fn and write:

Ln = Ln + L∗n , Fn = Fn + F ∗n .

By (4.2.4), L−1 is rapidly decaying and the limit L−1 vanishes. There-
fore, it is equivalent to solve inductively for n ≥ 0 the equations L∗n−1 and
Ln together with the boundary condition (4.2.9) and the initial condition
Un|t = 0 = hn. Thus,

∑
εnUn is a formal solution if and only if

(4.2.15)


Bd,d∂

2
zU0 + Ad∂zU0 = 0 ,

L(∂t,y,x)U0 = F 0 = F (U0) + f ,

U0|x=z=0 = 0 ,

U0|t=0 = h0 ,

and for all n > 0

(4.2.16)


L∗n−1 = F ∗n−1 ,

Ln = Fn ,

Un|x=z=0 = 0 ,

Un|t=0 = hn .

4.3 The boundary layer ode and the hyperbolic
boundary conditions

4.3.1 The inner layer o.d.e.

The first equation in (4.2.15) is a constant coefficient differential equation
in z. More generally, consider the equation on [0,∞[:

(4.3.1) −Bd,d∂
2
zU + Ad∂zU = F ∈ P∗ , U = U + U∗ ∈ P .

Here, P∗ denotes the space of exponentially decaying C∞ functions on R+

and P the space generated by constants and P∗. We add the boundary
condition

(4.3.2) U(0) = 0 .
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Notation. For a N×N matrix G, E+(G) [resp E−(G)] denotes the invari-
ant subspace of CN generated by the generalized eigenvectors associated to
eigenvalues with positive [resp. negative] real part. Denote by Π±(G) the
spectral projectors on E±(G).

Note that Assumption 4.1.1 implies that Bd,d and Ad are invertible. The
next lemma is crucial in the analysis of (4.3.1).

Lemma 4.3.1. The matrix Gd = (Bd,d)−1Ad has no eigenvalues on the
imaginary axis, thus CN = E−(Gd)⊕E+(Gd). Moreover, dim E−(Gd) = N−,
the number of negative eigenvalues of Ad, and the matrix SAd is negative
definite on E−(Gd).

Proof. a) Suppose that λ is an eigenvalue of Gd and h '= 0 satisfies Gdh =
λh. Thus, (

SBd,dλh, λh
)

CN = λ
(
SAdh, h

)
CN

Assumption 4.1.1 implies that Re SBd,d is definite positive and that SAd is
symmetric. Moreover, λ '= 0 since Gd is invertible. Therefore

Re λ
(
SAdh, h

)
CN > 0 .

In particular, Re λ '= 0 and therefore CN = E−(Gd)⊕ E+(Gd).
b) Suppose that h ∈ E−(Gd) \ {0}. Thus u(z) = ezGdh is exponentially
decaying at +∞ and Bd,d∂zu = Adu. Therefore

0 < 2Re
∫ ∞

0

(
SBd,d∂zu(z), ∂zu

)
CN dz = −(

SAdh, h
)

CN .

This shows that SAd is definite negative on E−(Gd). In particular, dim E−(Gd) ≤
N−, where N− is the number of negative eigenvalues of SAd, which is the
number of negative eigenvalues of Ad as seen in Chapter two.

Similarly, for h ∈ E+(Gd) \ {0}, there holds

0 < 2Re
∫ 0

−∞

(
SBd,d∂zu(z), ∂zu

)
CN dz =

(
SAdh, h

)
CN .

Thus SAd is definite positive on E+(Gd) and dim E+(Gd) ≤ N+ = N −N−.
Since CN = E−(Gd)⊕E+(Gd), the two inequalities imply that dim E−(Gd) =
N−.
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4.3.2 Layers profiles

Lemma 4.3.2. For F ∈ P∗ the bounded solutions of equation (4.3.1) belong
to P. They are given by

(4.3.3) U(z) = U + ezGdU + + I(F )(z) , U ∈ RN , U + ∈ E−(Gd)

where I(F ) is an integral operator described below.
In this case, the boundary condition (4.3.2) is equivalent to

(4.3.4)

{
Π+(Gd)U = −Π+(Gd)I(F )(0) ,

U + = −Π−(Gd)
(
U + I(F )(0)

)
.

Proof. The equation for V = ∂zU reads

(4.3.5) ∂zV = GdV −B−1
b,b F .

Dropping the indices d and setting Π± = Π±(Gd), there is δ0 > 0 such that
for z ≥ 0:

(4.3.6) |ezGΠ−| ! e−δ0z , |e−zGΠ+| ! e−δ0z .

Therefore, the solutions of (4.3.5) are

V (z) = ezGV +−
∫ z

0
e(z−z′)GΠ−B−1F (z′)dz′

+
∫ ∞

z
e(z−z′)GΠ+B−1F (z′)dz′ .

Thus

(4.3.7) U(z) = U + ezGdU + + I(F )(z) .

with U + = G−1V + and U arbitrary and

(4.3.8)

I(F )(z) = −
∫ z

0
e(z−z′)GdΠ−(Gd)G−1

d B−1
d,dF (z′)dz′

+
∫ ∞

z
e(z−z′)GdΠ+(Gd)G−1

d B−1
d,dF (z′)dz′

−
∫ ∞

z
G−1

d B−1
d,dF (z′)dz′ .

We note that the integrals are well defined thanks to (4.3.6) and that
I(F ) is exponentially decaying if F ∈ P∗. Thus the solution is bounded if
and only if U + ∈ E−(Gd). In this case U ∈ P.

By (4.3.7), U(0) = U+Π−(Gd)U ++I(F )(0) and (4.3.4) follows projecting
by Π+ and Π−.

102



4.3.3 The hyperbolic boundary conditions.

From Lemma 4.3.2 the first equation in (4.2.15) is equivalent to

(4.3.9) U∗0 (t, y, x, z) = ezGdU +
0(t, y, x) with U +

0(t, y, x) ∈ E−(Gd) .

and the boundary condition to

(4.3.10) Π+(Gd)U0|x=0 = 0 , U +
0 |x=0 = −Π−(Gd)U0|x=0

Thus, see that U0 must satisfy the boundary value problem

(4.3.11)

{
L(∂t,y,x)U0 = F (U0) + f ,

Π+(Gd)U0|x=0 = 0

By Lemma 4.3.1, the invariant space E−(Gd) = ker Π+(Gd) is of di-
mension N−. To match the notations of Chapter two, it is convenient to
introduce a N− ×N matrix M such that

(4.3.12) ker M = E−(Gd) .

Thus, M is an isomorphism from E+(Gd), the range of Π+(Gd), to RN+ . In
particular, the first equation in (4.3.4) can be replaced by

(4.3.13) MU = −MI(F )(0) .

A key observation is that the limiting problem is well posed: Lemma 4.3.1
immediately implies

Proposition 4.3.3. The boundary condition M is maximal dissipative for
L.

4.4 Solving the BKW equations

4.4.1 The leading term

We first solve (4.2.15). We have seen that u0 = U0 must satisfy

(4.4.1)


L(∂t,y,x)u0 = F (u0) + f ,

Mu0|x=0 = 0 ,

u0|t=0 = h0
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Proposition 4.4.1. There is T ′ ∈]0, T ] and a unique solution of (4.4.1),
u0 ∈ H∞([0, T ′] × Rd

+). Moreover, there is c > 0 such that u0 = 0 on
∆ := [0, T ]× Rd

+ ∩ {x + ct ≤ r}.
Proof. By (4.2.13) the initial data are compatible to any order. Thus The-
orem 2.5.1 implies that there is T ′ > 0 and for s > d/2 a unique solution
u ∈ W s(T ′), which belongs to W σ(T ′) for all σ.

That u vanishes near the edge x = t = 0 is a consequence of the finite
speed of propagation. For the sake of completeness we sketch a proof.

Fix c ≥ 1 such that the symmetric matrix Σ := S(cId+Ad) is nonnegative
For C1 functions, integration by parts over the domain ∆ = [0, T ] × Rd

+ ∩
{x + ct ≤ r} yields

γ‖e−γtu‖2L2(∆) +
∫

∂∆

(
e−2γtΣu, u

)
! ‖u(0)‖2L2({x≤r}) +

1
γ
‖e−γtLu‖2L2(∆)

where ∂∆ = [0, T ] × Rd
+ ∩ {x + ct = r}. Since Σ is nonnegative the second

term on the left hand side can be dropped.
Since u0 is smooth, there is a constant C such that |F (u0)| ≤ C|u0|. In

addition f = 0 on ∆ and u0(0) = 0 for {x ≤ r}. Thus there is C such that
for all γ > 0:

γ‖e−γtu0‖2L2(∆) ≤
C

γ
‖e−γtu0‖2L2(∆) .

Thus, for γ large enough, ‖e−γtu0‖2L2(∆) = 0, hence u = 0 on ∆.

Next, we choose U +
0 ∈ H∞([0, T ′]× Rd

+) such that (4.3.10) holds:

(4.4.2) U +
0 |x=0 = −Π−(Gd)u0|x=0 , U +

0(t, y, x) = 0 for ct ≤ r .

Note that the second condition can be fulfilled since u0|x=0 = 0 for ct ≤ r.
Then we define

(4.4.3)
U0(t, y, x, z) = u0(t, y, x) + ezGdU +

0(t, y, x)
= u0(t, y, x) + U∗0 (t, y, x, z) .

Because U +
0 vanishes for t = 0, there holds U0(0, y, x, z) = h0(y, x). Adding

up, we have proved:

Proposition 4.4.2. There is T ′ > 0 such that the problem (4.2.15) has a
solution U0 ∈ P(T ′), given by (4.4.3). Moreover, U0 vanishes on ∆ and U∗0
vanishes for ct ≤ r.

Note that only the trace of U +
0 |x=0 is uniquely determined. The lifting

of U +
0 to x > 0 is arbitrary. This reflects the lack of uniqueness mentioned

in Remark 4.2.2.
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4.4.2 The full expansion

Next we solve (4.2.16) by induction on n. Suppose that (U0, . . . , Un−1) are
known such that the equations are solved up to order n − 1. Suppose in
addition that the Uk vanish on ∆ and the U∗k vanishes for ct ≤ r. The n-th
equation reads

(4.4.4)


−Bd,d∂

2
zUn + Ad∂zUn = Φ∗n ,

L(∂t,y,x)Un = Φn ,

Un|x=z=0 = 0 ,

Un|t=0 = hn .

where Φ∗n and Φn are given by (U0, . . . , Un−1). They belong to P∗(T ′) and
to H∞([0, T ′]× Rd+) respectively and vanish for (t, x, y) ∈ ∆.

By Proposition 4.3.2 the first equation is equivalent to

(4.4.5) U∗n(t, y, x, z) = ezGdU +
n(t, y, x) + I(Φ∗n) , U +

n(t, y, x) ∈ E−(Gd) ,

and the boundary condition to

(4.4.6)
MUn|x=0 = gn := −MI(Φ∗n)|x=z=0 ,

U +
0 |x=0 = −Π−(Gd)U0|x=0 −Π−(Gd)I(Φ∗n)|x=z=0

Thus, un = Un must satisfy the boundary value problem

(4.4.7)


L(∂t,y,xx)un = Φn ,

Mun|x=0 = gn ,

un|t=0 = hn .

The computation of Φ∗n shows that it involves the Uk and at least one U∗k .
Thus Φ∗n and gn vanish for ct ≤ r. Similarly, Φn vanishes on ∆, and hn = 0
for x ≤ r. Hence the data (Φn, gn, hn) satisfy the compatibility condi-
tions to any order. Therefore, by Theorem 2.4.12 there is a unique solution
un ∈ H∞([0, T ′] × Rd

+). Moreover, repeating the argument in the proof of
Proposition 4.4.1, one shows that un vanishes on ∆.

Next, we choose U +
n ∈ H∞([0, T ′]× Rd

+) such that

(4.4.8) U +
n|x=0 = −Π−(Gd)un|x=0 , U +

n(t, y, x) = 0 for ct ≤ r .

Then we define
(4.4.9)
Un(t, y, x, z) = un(t, y, x)+ezGdU +

n(t, y, x)+I(Φ∗n) = un(t, y, x)+U∗n(t, y, x, z) ∈ P(T ′) .
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Since Φ∗n vanishes for ct ≤ r, I(Φ∗n) and hence U∗n vanish on this set. In
particular, Un(0, y, x, z) = hn(y, x).

By construction, Un ∈ P(T ′) is a solution of (4.4.4), Un vanishes on ∆
and U∗n vanishes for ct ≤ r. This finishes the induction and the proof of
Theorem 4.2.3 is complete.

4.5 Convergence and approximation theorems

Assume that
∑

εnUn is a formal solution of the equations. The series is not
likely to converge, and the question is to know what kind of information it
gives on the existence and approximation of exact solutions of (4.1.1).

4.5.1 Approximate solutions

Given a formal solution
∑

εnUn and a positive integer m, consider

(4.5.1) uε
app =

m∑
n=0

εnUn
(
t, y, x,

x

ε

)
.

For all ε, uε
app is in H∞([0, T ] × Rd

+), but of course, the estimates are not
uniform in ε. However, the uε

app satisfy for all α ∈ Zd+1 and k ∈ N:

(4.5.2) sup
ε∈]0,1]

‖εkZα∂k
xuε

app‖L∞∩L2([0,T ]×Rd
+) < +∞ .

When (4.5.1) is substituted in the equation, we see that

(4.5.3) rε
app := (L− εP )uε

app − f − F (uε
app)

is a function of the form ε−1R(ε, t, y, x, x/ε) where R(ε, t, y, x, z) is a smooth
function of its arguments. Moreover, in the Taylor expansion R(ε, ·) ∼
εnRn(·), the first m + 1 terms R0, . . . , Rm vanish. Therefore,

rε
app = εmφε , φε(t, y, x) = Φ

(
ε, t, y, x,

x

ε

)
with {Φ(ε, ·)} bounded in P(T ). Therefore, the φε satisfy

(4.5.4) sup
ε∈]0,1]

‖εkZα∂k
xφε‖L∞∩L2([0,T ]×Rd

+) < +∞ .

The uε
app satisfy

(4.5.5) uε
app|x=0 = 0 , uε

app|t=0 = hε
app :=

m∑
n=0

εnhn .
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Moreover, if one assume that Un = Un + U∗n ∈ P(T ), Un = 0 on a domain
∆ = [0, T ] × Rd

+ ∩ {x + ct ≤ r} and U∗n = 0 for ct ≤ r, for some c > 0 and
r > 0, then uε

app and φε also vanish on ∆.

Comment. uε
app is an approximate solution of the equation, in the sense

that it satisfies the boundary condition and also satisfies the equation up to
an error term which is O(εm). The question is to know wether there exists
an exact solution uε close to uε

app. Typically, one expects that uε − uε
app =

O(εm).

4.5.2 An equation for the remainder

We look for exact solutions of (4.1.1) with initial condition

(4.5.6) uε|t=0 = hε = hε
app + εm%ε .

We look for uε as a perturbation of uε
app:

(4.5.7) uε = uε
app + εmvε .

Introduce the notation

F (u + v) = F (u) + F ′(u)v + Q(u, v; v)

with Q(u, v;w) quadratic in w. The equation for vε reads

(4.5.8)


(L− εP )vε = Eεvε + εmGε(vε) + φε ,

vε|x=0 = 0 ,

vε|t=0 = %ε ,

with

(4.5.9) Eε = F ′(uε
app) , Gε(v) = Q(uε

app, ε
mv; v) .

We use the notations Hs, Hs
co of Chapter three and we fix s > 1 + d

2 . By
(4.5.4), the φε belong to H2s and are bounded in Hs

co([0;T ]).
We consider initial data %ε such that

(4.5.10) sup
ε∈]0,1]

‖%ε‖H2s+1(Rd
+) < +∞ , %ε|{x≤r} = 0 .

Since φε = 0 for x + ct ≤ r, the data φε and %ε are compatible to order 2s.
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Theorem 4.5.1. If m > 0, there is ε0 > 0, such that for all ε ∈]0, ε0], the
problem (4.5.8) has a solution vε ∈ H2s+2([0, T ]) and the vε are uniformly
bounded in Hs

co([0, T ] ∩ L∞([0, T ]× Rd
+).

Consider the Taylor expansion at time t = 0 of the solutions. Using the
notation L = ∂t + A, the traces vε

j for j ∈ {1, . . . , s} are given by induction
by vε

0 = %ε and for j ≥ 1:

(4.5.11) vε
j = (εP −A)vε

j−1 + φj−1 +
j−1∑
k=0

Eε
kv

ε
j−k−1 + Gj−1(vε

0, . . . , v
ε
j−1)

where Gj is a linear combination of terms of the form

εκQ̃(aε
0, ε

mvε
0) aε

k1
. . . aε

kp
vε
j1 . . . vε

jq

where Q̃(a, v) is a multi-linear function depending smoothly on (a, v) and
κ ≥ 0, p + q ≤ j, k1 + · · ·+ kp + j1 + · · ·+ jq = j and

φε
j = ∂j

t φ
ε|t=0 , Eε

j = ∂j
t E

ε|t=0 , aε
j = ∂j

t u
ε
app|t=0 , 0 ≤ j ≤ s− 1 .

Lemma 4.5.2. i) For j ≤ s, the vε
j are uniformly bounded in to H2s+1−2j

and vanish for x ≤ r.
ii) There is a bounded family {vε,0}ε∈]0,1] ⊂ H2s+2 such that for all

ε ∈]0, 1] and j ∈ {0, . . . , s}, ∂j
t v

ε,0|t=0 = vε
j .

Proof. The first statement immediately follows from (4.5.2), (4.5.4) and
(4.5.10).

Next, since the vε
j vanish for x < r, their extension by 0 for x ≤ 0 belong

and are bounded in H2s+1−2j(Rd). The traces can be lifted up to H2s+2 as
in the proof of Theorem 3.5.3: denoting by ·̂ the spatial Fourier transform
define

v̂ε,0(t, η, ξ) =
s∑

j=0

tj

j!
χ(tΛ2)v̂ε

j (η, ξ) , Λ = (1 + |η|+ |ξ|) .

Starting from vε,0, we consider for ν ≥ 1 the iterative scheme

(4.5.12)

{
(L− εP )vε,ν = φε + Eεvε,ν−1 + Gε(vε,ν−1) ,

vε,ν |x=0 = 0 , vε,ν |t=0 = %ε .

Theorem 4.5.1 follows from the next statement:
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Proposition 4.5.3. There is ε0 > 0, such that for all ε ∈]0, 1], the equations
(4.5.12) define a Cauchy sequence vε,ν in H2s+2([0, T ]) such that for all
j ∈ {0, . . . , s}, ∂j

t v
ε,ν |t=0 = vε

j .
Moreover, the family {vε,ν : ε ∈]0, ε0] , ν ∈ N} is bounded in L∞ ∩

Hs
co([0, T ]× Rd

+).

Proof. a) We use the following notations, inspired with minor modifications
from Chapter three:

(4.5.13)

nε(u; t) =
∑

2j+|α|≤2s+1

εj+|α|‖∂j
t ∂

α
y,xu(T )‖L2(Rd

+)

N′ε(u; t) =
∑

0<2j+|α|≤2s+2

εj+|α|−1/2‖∂j
t ∂

α
y,xu‖L2([0,T ]×Rd

+) ,

Nε(f ;T ) =
∑

0≤2j+|α|≤2s

εj+|α|‖∂j
t ∂

α
y,xf‖L2([0,T ]×Rd

+) ,

nco(u; t) =
∑
|α|≤s

‖Zαu(t)‖L2(Rd
+) .

By (4.5.2), Eε satisfies for all k and α

sup
ε∈]0,1]

εk‖Zα∂k
xEε‖L∞([0,T ]×Rd

+) < +∞ .

Therefore, there is a constant C such that for all v ∈ H2s([0, T ]), Eεv ∈
H2s([0, T ]) and for all t ≤ T

(4.5.14)


Nε(Eεv; t) ≤ CNε(v; t) ,

‖Eεv‖Hs
co([0,t]) ≤ C‖v‖Hs

co([0,t]) ≤ C
( ∫ t

0
nco(v; t′)dt′

)1/2
.

Using the estimates (4.5.2) for uε
app and Corollary 3.5.5 on one hand and

(3.5.18) on the other hand, one obtains that for v ∈ H2s([0, T ]), Qε(v) ∈
H2s([0, T ]) and there is a function CG(·) such that

(4.5.15)

{
Nε(Qε(v);T ) ≤ CG(R)

(
1 + Nε(v;T )

)
,

‖Qε(v)‖Hs
co([0,T ]) ≤ CG(R)

(
1 + ‖v‖Hs

co([0,T ])

)
with R := ‖v‖L∞([0,T ]×Rd

+).
b) Suppose that vε,ν−1 ∈ H2s+2([0, T ]) is defined and satisfies the trace

conditions ∂j
t v

ε,ν−1|t=0 = vε
j for j ≤ s. By definition (4.5.11), we see that the
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traces associated to the equation (4.5.12) are vε,ν
j = vε

j . Thus they vanish
for x < r and the compatibility conditions are satisfied. Moreover, the right
hand side belongs to H2s([0, T ]). Therefore, by Theorem 3.3.2 there is a
unique solution vε,ν ∈ H2s+2([0, T ]) which satisfies the trace conditions.

Moreover, Proposition 3.4.5 and the estimate above imply that there are
constants C0 and C1 and a function CG(·), depending only on the data, such
that for all ε ∈]0, 1], ν ≥ 1 and t ∈ [0, T ]:

(4.5.16)
nco(vε,ν ; t) ≤ C0+C1‖vε,ν−1‖Hs

co([0,t])

+ εmCG(Rε,ν−1)
(
1 + ‖vε,ν−1‖Hs

co([0,T ])

)
,

(4.5.17)
Rε,ν ≤ C0+C1‖vε,ν−1‖Hs

co([0,T ])

+ εmCG(Rε,ν−1)
(
1 + ‖vε,ν−1‖Hs

co([0,T ])

)
,

with Rε,ν := ‖vε,ν‖L∞([0,T ]×Rd
+). We show by induction that there are con-

stants ε0 > 0, C2, R and K such that ε ∈]0, 1], ν ≥ 1 and t ∈ [0, T ]:

(4.5.18)

{
nco(vε,ν ; t) ≤ C2e

Kt ,

Rε,ν ≤ R .

The estimates are clearly satisfied for ν = 0, provided that

(4.5.19) C2 ≥ sup
t∈[0,T ]

nco(vε,0; t) , R ≥ ‖vε,0‖L∞([0,T ]×Rd
+) .

These conditions only depend on the data. We choose successively C2, K,
R and ε0 such that in addition to (4.5.19) there holds

(4.5.20)
C2 ≥ 3C0 ,

√
2K ≥ 3C1 , R ≥ 2C0 + C2e

KT ,

εm
0 CG(R)

(
1 + C2(2K)−1/2eKT

) ≤ C0 .

Suppose that the estimate (4.5.18) is satisfied up to the order ν − 1. Then

‖vε,ν−1‖Hs
co([0,t]) =

( ∫ t

0

(
nco(vε,ν−1; t′)

)2
dt′

)1/2 ≤ C2√
2K

eKt .

Therefore (4.5.16) implies:

nco(vε,ν ; t) ≤ C0 + C1
C2√
2K

eKt + εmCG(R)
(
1 + C2(2K)−1/2eKT

)
.
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If ε ≤ ε0, this implies that

nco(vε,ν ; t) ≤ 2C0 +
C2

3
eKt ≤ C2e

Kt .

Similarly, (4.5.17) implies for ε ≤ ε0:

Rε,ν ≤ C0 +
C2

3
eKT + εmCG(R)

(
1 + C2(2K)−1/2eKT

) ≤ R .

This shows that (4.5.18) holds at the order ν and the proof of Theorem 4.5.1
is complete.

4.5.3 Exact solutions and their asymptotic expansions

We can now gather the different results obtained above. Suppose that f ∈
H∞([0, T0] × Rd

+). Suppose that hε is a bounded family in H∞(Rd
+) with

asymptotic expansion (4.2.12) in the sense that for all integer m

ε−m
(
hε −

m∑
n=0

εnhn
)

is bounded in H∞(Rd
+). Assume in addition that the support conditions

(4.2.13) are satisfied.
By Theorem 4.2.3, we construct a formal solution

∑
εmUn on [0, T ]×Rd

+,
for some T ∈]0, T0].

Theorem 4.5.4. There is ε0 > 0 such that for all ε ∈]0, ε0], the problem
(4.1.1) has a solution uε in H∞([0, T ]× Rd

+). Moreover, for all m ≥ 0 and
s ≥ 0,

rε,m(t, y, x) := uε(t, y, x)−
m∑

n=0

εnUn(t, y, x, x/ε)

satisfies

(4.5.21) ‖vε,m‖L∞∩Hs
co([0,T ]×Rd

+) = O(εm+1) .

Proof. Applying Theorem 4.5.1 with m = 1 and s0 large enough, gives a
solution uε ∈ H2s0+2 for ε ≤ ε0. These solutions are bounded in L∞([0, T ]×
Rd

+). Since the data are infinitely smooth and infinitely compatible, Theo-
rem 3.5.6 implies that uε ∈ H∞ = H∞.

By uniqueness, Theorem 4.5.1 applied to any m and s large enough,
implies that for ε small enough, rε,m = uε − uε

app satisfies:

‖rε,m‖L∞∩Hs
co

= O(εm) ,
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Since the last term in uε
app is O(εm), this implies that rε,m−1 = O(εm) and

the theorem follows.

Remark 4.5.5. One can consider finite expansions and in particular restrict
attention to uε(t, y, x)−U0(t, y, x, x/ε). One could also consider profiles with
finite smoothness, but the precise count of derivatives to get m terms in the
expansion and to prove the approximation in Hs

co is delicate.
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Chapter 5

Quasilinear boundary layers:
the inner layer o.d.e.

In this Chapter, we start the analysis of quasilinear equations. We study the
ordinary differential equation satisfied by stationary solutions which depend
only on the normal variable. The admissible solutions w connect 0 at z = 0
to a bounded end state at z = +∞. The set C of those reachable end states
is given by a central manifold theorem. It determines the boundary condi-
tions associated to the limiting hyperbolic system. The local structure of C,
depends on transversality conditions or equivalently on stability conditions
of the o.d.e.

5.1 The equations

Consider a first order quasilinear system

(5.1.1) L(u, ∂)u := ∂tu +
d∑

j=1

Aj(u)∂ju = F (u)

The equation holds on R×Rd
+. The unknown u is valued in RN . The space

time variables are (t, y, x) as in Chapter 2.
Next, we consider a parabolic viscous perturbation of (5.1.1)

(5.1.2) L(u, ∂)u− ε
∑

1≤j,k≤d

∂j
(
Bj,k(u)∂ku

)
= F (u) .

with Dirichlet boundary conditions:

(5.1.3) u |x=0 = 0 .
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The parabolic solutions take values in U∗ ⊂ RN while the hyperbolic
solutions take values in U ⊂ U∗. It is assumed that 0 ∈ U∗.

Assumption 5.1.1.
(H0) The Aj and Bj,k are N ×N real matrices, C∞ for u in U∗; F is

a smooth function from U∗ to RN .

(H1) There is c > 0 such that for all u ∈ U∗ and all ξ ∈ Rd the eigen-
values of

∑d
j,k=1 ξjξkBj,k(u) satisfy Re µ ≥ |ξ|2.

(H2) For all u ∈ U , the eigenvalues of
∑

ξjAj(u) are real and semi-
simple. Moreover, the multiplicities are constant for u ∈ U and ξ ∈ Rd\{0}.

(H3) There is c > 0 such that for all u ∈ U and ξ ∈ Rd the eigenvalues
of

∑d
j=1 iξjAj(u) +

∑d
j,k=1 ξjξkBj,k(u) satisfy Re µ ≥ |ξ|2.

(H4) For all u ∈ U , there holds det Ad(u) '= 0.

Remarks 5.1.2. 1) The assumption (H1) means that for all ε > 0 the
equation (5.1.2) is parabolic, for all state u in the large set U∗. The first
role of (H2) is to ensure that the first order equation (5.1.1) is hyperbolic for
all state u in the domain u ∈ U . It is important for applications to consider
situations where the domain of hyperbolicity U is strictly smaller than the
domain of definition U∗ of the equation; for instance this occurs for Euler’s
equation with non monotone state laws.

The theory of hyperbolic boundary value problems is well developed in
two cases: first in the case of dissipative boundary conditions for symmet-
ric systems, as explained in Chapter two; second in the case of hyperbolic
systems with constant multiplicity and boundary conditions satisfying a uni-
form Lopatinski condition (see [Kre], [Ch-Pi], [Maj], [Mé3]). In the second
part of this book we have chosen to consider the second framework, first to
give a new approach, and second to introduce to the sharp stability condi-
tions which involve Lopatinski determinants. With (H4), we assume again
that the boundary is noncharacteristic.

(H3) is a compatibility condition between the hyperbolic part and the
parabolic singular perturbation. On one hand, letting ξ tend to zero, it
implies that L is hyperbolic, but does not say anything about the multi-
plicities. On the other hand, letting ξ tend to infinity it implies that the
condition in (H1) holds, but only for u ∈ U .

2) For instance, if L satisfies (H2), then the assumptions (H1) (H2) are
satisfied for the artificial viscosity perturbations:

L(u, ∂)u− ε∆u .
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3) In the symmetric case, that is when there is a symmetric definite
positive matrix S(u) for u ∈ U∗, such that SAj and SBj,k are symmetric
and

∑
ξjξkSBj,k is definite positive for ξ '= 0 (see Assumption 3.1.1 of

Chapter three), the assumptions (H1) and (H3) satisfied, as well as the
first part of (H2). The full assumption (H2) requires that in addition the
eigenvalues have constant multiplicity. On the other hand, in the analysis
below, the assumptions on the boundary conditions are not restricted to the
dissipative case. This is important because, in contrast with the linear or
semilinear case, for large amplitude quasilinear layers, there is no analogue of
Proposition 4.3.3, and for symmetric systems, the limiting inviscid boundary
conditions are not necessarily maximal dissipative.

We denote by N+ [resp. N−] the number of positive [resp. negative]
eigenvalues of Ad(u) counted with their multiplicity. Then, by (H4), N =
N+ + N−.

Lemma 5.1.3. For u ∈ U ,
i) The matrix Bd,d(u) is invertible with eigenvalues in Re µ ≥ c.
ii) The matrix Gd(u) := Bd,d(u)−1Ad(u) has no eigenvalue on the imag-

inary axis. N+ of them, counted with their multiplicity, have positive real
part and N− have negative real part.

Proof. Taking ξ = (0, . . . , 1/δ), (H3) implies that for δ '= 0, the spectrum of
Bd,d(u) + iδAd(u) is contained in Re µ ≥ c. Letting δ tend to zero implies
i).

If µ is an eigenvalue of Gd(u), then µ '= 0 and 0 is an eigenvalue of
−µ−1Ad(u) + Bd,d(u). Thus, µ /∈ iR.

Similarly, for t ∈ [0, 1], the spectrum of tBd,d(u) + (1 − t)Id + iδAd(u)
is contained in Re µ > 0 and G(t) :=

(
tBd,d(u) + (1 − t)Id

)−1
Ad(u) has no

eigenvalue on the imaginary axis. Thus the number of eigenvalues of G(t)
in Re µ > 0 is constant for t ∈ [0, 1] and equal to N+ when t = 0.

We use the following notation from Chapter four: given a matrix G,
E±(G) denotes the invariant space generated by the generalized eigenvectors
of G associated to eigenvalues µ lying in {±Re µ > 0}. We denote by Π±(G)
the corresponding spectral projectors. When G is real, then Π± are real so
that the spaces E± are real. In particular, for all u ∈ U , we have

RN = E+(Gd(u))⊕ E−(Gd(u))

and E−(Gd) =
⊔

u∈U E−(Gd(u)) form a fiber bundle over U .
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5.2 The inner-layer ode, and the hyperbolic bound-
ary conditions

There are exact stationary solutions which depend only on the normal vari-
able, scaled to describe the inner layer:

(5.2.1) uε(t, y, x) = u(x/ε) .

In this case, the equation for uε is equivalent to the ordinary differential
system:

(5.2.2) Ad(u)∂zu− ∂z
(
Bd,d(u)∂zu

)
= 0 .

One can also consider approximate solutions, using BKW expansions

uε(t, y, x) = U0(t, y, x, x/ε) + εU1(t, y, x, x/ε) + ε2 . . .

with Un(t, y, x, z) = un(t, y, x) + U∗n(t, y, z) and U∗n rapidly decreasing when
z → +∞. Plugging this expansion in the equation, the singular term in
ε−1 yields the same equation (5.2.2) for z 4→ U0(t, y, x, z). The boundary
condition (5.1.3) reads

Un(t, y, 0, 0) = 0

and the convergence at infinity implies that w(z) = U0(t, y, 0, z) must also
satisfy the boundary conditions

w(0) = 0 , lim
z→+∞w(z) = u0(t, y, 0) .

In particular, we see that the supposed interior limit u0 must satisfy the
boundary condition

(5.2.3) u0(t, y, 0) ∈ C̃

where

Definition 5.2.1. C̃ is the set of p ∈ U such that there exists a solution u
on [0,+∞[ of the profile equation

(5.2.4) Ad(u)∂zu− ∂z
(
Bd,d(u)∂zu

)
= 0 , u(0) = 0 , lim

z→+∞u(z) = p .

This section is devoted to the analysis of (5.2.4) and to the construction
of smooth pieces C of C̃.
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5.2.1 Example: Burgers equation

Consider in space dimension one, the Burgers-Hopf equation:

(5.2.5) ∂tu + u∂xu− ε∂2
xu = 0 .

In this case, the inner-layer o.d.e is

(5.2.6) ∂2
zu = u∂zu , u(0) = 0 .

The equation can be integrated once yielding

∂zu =
1
2
u2 + k , u(0) = 0 .

Depending on the sign of the constant k, there are two families of solutions

1) u(z) = −λ tanh
(
λz/2)

2) u(z) = µ tan
(
µz/2) .

Changing λ into −λ or µ into −µ does not change the solution, so we can
assume that the parameters are nonnegative. The two families intersect only
on the trivial solution u = 0.

Solutions of the second family, have a finite time of existence: they do
not provide solutions of (5.2.5) on the half line.

Thus, we have to restrict attention to solutions of the first family, which
are globally defined. In this case, we have

lim
z→+∞u(z) = −λ ≤ 0 .

The end state −λ is non characteristic (i.e. satisfies (H4)) if λ '= 0. Thus
we have shown:

for the Burgers equation (5.2.5), the set of end states p which satisfy (H4)
and which can be connected to 0 by a solution of (5.2.6) is C̃ =]−∞, 0[.

5.2.2 Example: the linear case.

Suppose that Ad and Bd,d are constant (independent of u). This situation
has been analyzed in Chapter 2. The o.d.e. reads

(5.2.7) ∂2
zu−Gd∂zu .

The solutions of the o.d.e are

u(z) = p + ezGda ,
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with Gd = (Bb,d)−1Ad and arbitrary constants p and a. Because the eigen-
values of Gd are real and different from zero, the explicit formula implies
the following results.

1. The solution is bounded if and only if a ∈ E−(Gd).
2. Bounded solutions of (5.2.7) converge at an exponential rate at

infinity.
3. The bounded solutions of (5.2.7) form a manifold of dimension

N + N−.
If we now add the initial condition u(0) = 0, we obtain

4. The set of end states p which can be connected to 0 by a solution
of (5.2.4) is equal to E−(Gd). In particular, the set of bounded solutions of
the boundary value problem form a manifold of dimension N−.

Remember that p ∈ E−(Gd) appeared as the limiting boundary condition
for the hyperbolic problem in Chapter four.

5.3 Solutions of the inner layer o.d.e.

We come back to the equation (5.2.2). Our goal is to extend the analysis
performed in the linear example. First, we note that the constants are
solutions of the o.d.e. We study solutions which converge at infinity.

Lemma 5.3.1. Suppose that u satisfies the equation (5.2.2) on the interval
[z0,+∞[ and u(z) → p ∈ U as z → +∞. Then, ∂zu(z) tends to zero when
z tends to infinity.

Proof. With v = Bd,d∂zu, (5.2.2) implies that

(5.3.1) ∂zv = H(u)v .

with H(u) := Ad(u)
(
Bd,d(u)

)−1. Therefore,

|∂zv(z)| ≤ C|v(z)| , C = max
[z0,+∞[

|H(u(z))| .

|∂zu(z)| ≤ C1|v(z)| , C1 = max
[z0,+∞[

|B−1
d,d(u(z))| .

For z1 ≥ z0, consider the interval I = [z1, z1 + 1] and z2 ∈ I such that

m := max
I
|v(z)| = |v(z2)| .

There is a unit vector % such that % · v(z2) = m. Since |∂zv| ≤ Cm on I,
there holds % · v(z) ≥ m/2 for z ∈ I1 := {z ∈ I : |z − z2| ≤ 1/(2C)}. Let
δ = min{1, 1/(2C)}. Then I1 contains an interval [z3, z3 + δ] and

% ·Bd,d(u)∂zu ≥ m/2 on [z3, z3 + δ] .
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Since u tends to p at infinity and Bd,d is invertible, write

tBd,d(u)% = %′ + %′(z)

with %′ '= 0 and %′(z) → 0 at infinity. Since % is unitary, one has

|%′| ≥ |tB−1
d,d(p)|−1 , |%′(z)| ≤ |tBd,d(p)− tBd,d(u(z))|

In particular, if z1 is large enough, one has |%′(z)| ≤ 1/4C1 and therefore

%′ · ∂zu ≥ m/2− |%′(z)||∂zu| ≥ m/4 on [z3, z3 + δ] .

Therefore, we have shown that there are c > 0 and δ > 0 such that for all
z1 large enough, there is %′ with |%′| ≥ c and there is z3 ∈ I = [z1, z1 + 1]
such that

%′ · (u(z3 + δ)− u(z3)) ≥ mδ/4 .

Since u has a limit at infinity, the left hand side tends to zero as z3 tends to
infinity and therefore m must tend to zero as z1 tends to infinity.

We continue the analysis of bounded solutions of (5.2.2). With U =
(u, v), v = ∂zu, the equation is equivalent to the first order system

(5.3.2)

{
∂zu = v ,

∂zv = Gd(u)v −B−1
d,d(u)

(
v · ∇uBd,d(u)

)
v .

We look for solutions such that

(5.3.3) lim
z→∞u(z) = p ∈ U .

We consider (5.3.2) as a quadratic perturbation of{
∂zu = v ,

∂zv = Gd(p)v .

Set
F (u, v) =

(
Gd(u)−Gd(p)

)
v −B−1

d,d(u)
(
v · ∇uBd,d(u)

)
v

which is quadratic in (u− p, v). More precisely, there holds

(5.3.4) F (u, v) = O
(|u− p||v|+ |v|2) .

Suppose that v satisfies on [z0,+∞[

(5.3.5) ∂zv = Gd(p)v + F ,
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then, denoting by Π±(p) the spectral projectors on E±(Gd(p)), one has for
all z and z1 in [z0,+∞[:

Π−(p)v(z) = e(z−z0)Gd(p)Π−(p)v(z0) +
∫ z

z0

e(z−s)Gd(p)Π−(p)F (s)ds ,

Π+(p)v(z) = e(z−z1)Gd(p)Π+(p)v(z1)−
∫ z1

z
e(z−s)Gd(p)Π+(p)F (s)ds .

Note that there is θ > 0 such that

(5.3.6)

∣∣e(z−s)GΠ−
∣∣ ≤ C0e

−θ(z−s) , s ≤ z ,∣∣e(z−s)GΠ+

∣∣ ≤ C0e
−θ(s−z) , s ≥ z .

Therefore, the operator

Iz0(F )(z) =
∫ z

z0

e(z−y)Gd(p)Π−(p)F (y)dy

−
∫ ∞

z
e(z−y)Gd(p)Π+(p)F (y)dy .

is bounded from Lr([z0,+∞[) to itself for all r ∈ [1,∞]. Thus, if F ∈ Lr

and v is a solution of (5.3.5) which tends to zero at infinity, letting z1 tend
to +∞ in the representation of Π+(p)v(z) above, implies that v satisfies

v(z) = e(z−z0)Gd(p)Π−(p)v(0) + Iz0(F )(z) .

In particular, together with Lemma 5.3.1, this implies the following result.

Lemma 5.3.2. If u is a solution of (5.2.2) on [z0,+∞[ satisfying (5.3.3),
then v = ∂zu tends to zero at infinity and satisfies the integral equation

(5.3.7) v(z) = e(z−z0)Gd(p)Π−(p)v(0) + Iz0(F (u, v))(z) .

Next, we show that the solutions of (5.3.7) have exponential decay at
infinity.

Lemma 5.3.3. If u is a solution of (5.2.2) on [z0,+∞[ satisfying (5.3.3),
then for all δ < θ, eδz∂zu is bounded.

Proof. For δ ∈ [0, θ[, denote by ‖ · ‖δ the norm

‖v‖δ = sup
z≥0

∣∣eδzv(z)
∣∣ ≥ ‖v‖0 = ‖v‖L∞ .
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Consider the mapping w 4→ f(w) = F (u, w). From (5.3.4), we deduce that
for all w ∈ e−δzL∞:

‖f(w)‖δ ≤ C(‖u− p‖L∞ + ‖w‖L∞)‖w‖δ .

Similarly,

‖f(w1)− f(w2))‖δ ≤ C(‖u− p‖L∞ + ‖w1‖L∞ + ‖w2‖L∞)‖w1 − w2‖δ

Next, we note that for all δ ∈ [0, θ[, there is a constant Cδ such that for all
y ≥ 0 the integral operator Iy satisfies:

‖Iy(f)‖δ ≤ Cδ‖f‖δ .

Thus, the convergence (5.3.3) and the fixed point theorem imply that for all
δ1 < θ, there are R, r > 0 and z1 such that for δ ∈ [0, δ1], all y ≥ z1 and all
|a| ≤ r, the equation

(5.3.8) w = e(z−y)Gd(p)Π−(p)a + Iy(f(w))

has a unique solution in e−δzL∞ such that ‖w‖δ ≤ R. The uniqueness in
L∞ implies that the solutions in L∞ and e−δzL∞ coincide. Therefore, the
bounded solution belongs to e−δ1zL∞.

Since ∂zu → 0, for y large enough there holds ‖∂zu‖L∞([y,+∞[) ≤ R and
|∂zu(y)| ≤ r. Since ∂zu is a solution of the integral equation (5.3.8) with
a = ∂zu(y), we can apply the result above and conclude that ∂zu coincide
with the exponentially decaying solution.

Corollary 5.3.4. u is a solution of (5.2.2) on [z0,+∞[ satisfying (5.3.3),
if and only if v = ∂zu ∈ L1([z0,+∞[) and there is a ∈ E−(Gd(p)) such that

(5.3.9)

 u(z) = p−
∫ ∞

z
v(y)dy := p− I(v)(z) ,

v(z) = e(z−z0)Gd(p)a + Iz0

(
F (u, v)

)
(z) .

In addition, a = Π−(p)v(z0) = Π−(p)∂zu(z0).

Proof. The direct part follows from the two lemmas above. Conversely, if
(u, v) solves (5.3.9) and v ∈ L1, then u satisfies (5.3.3), u and v are smooth,
v = ∂zu and the definition of Iz0 shows that u is a solution of the o.d.e.
(5.2.2). The definition of Iz0 also implies that Π−(p)v(z0) = a.
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We now construct solutions of (5.2.2)(5.3.3) on [0,∞[. According to
Corollary 5.3.4, we add the boundary condition

(5.3.10) Π−(p)∂zu(0) = a ,

and solve (5.3.9) with z0 = 0.

Proposition 5.3.5. Given ω a relatively compact open set in U , there are
R > 0 and r > 0 such that for all p ∈ ω, all a ∈ E−(Gd(p)) with |a| ≤ r, the
equation (5.2.2) has a unique solution u = Φ(·, p, a) satisfying (5.3.3) and
(5.3.10) and

(5.3.11) ‖∂zu‖L1 ≤ R and ‖∂zu‖L∞ ≤ R .

The function Φ is a C∞ function on [0,+∞[×Ω, where Ω is the set of
(p, a) with p ∈ ω and a ∈ E−(Gd(p)) with |a| ≤ r. It satisfies

Φ(z, p, a) = p + ezGd(p)G−1
d (p)a + O(|a|2) .

Moreover, there are δ > 0 and C such that for all z and (p, a) ∈ Ω:

|∂zΦ(z, p, a)|+ |Φ(z, p, a)− p| ≤ Ce−δz ,

Proof. Choose R0 > 0 such that for all p ∈ ω, the closed ball of radius R0

centered at p is contained in U∗. For R ≤ R0, denote by BR the set of
(u, v) such that ‖u − p‖L∞ ≤ R, ‖v‖L1 ≤ R and ‖v‖L∞ ≤ R. Note that if
(u, v) ∈ BR, then u takes its values in U∗. Then, for (u, v) ∈ BR, one has

‖I(v)‖L∞ ≤ R , ‖F (u, v)‖L1∩L∞ ≤ CR2

With (5.3.6), this implies that

‖I0
(
F (u, v)

)‖L1∩L∞ ≤ C1‖F (u, v)‖L1∩L∞ ≤ C1CR2 .

In addition, for a ∈ E−(p), one has

‖ezGd(p)a‖L1∩L∞ ≤ C2|a| .
Therefore, for R and r small enough and |a| ≤ r, the mapping

T : (u, v) 4→
(
p + I(v), ezGd(p)a + I0

(
F (u, v)

))
maps BR into itself. Similarly, for (u1, v1) and (u2, v2) in BR, there holds

‖I(v1 − v2)‖L∞ ≤ ‖I(v1 − v2)‖L1 ,

‖F (u1, v1)− F (u2, v2)‖L1∩L∞ ≤ C ′R(‖u1 − u2‖L∞ + ‖v1 − v2‖L∞) .
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Thus, decreasing R if necessary, the mapping T is a contraction in BR

equipped with the distance ‖u1 − u2‖L∞ + 2‖v1 − v2‖L1∩L∞ . Therefore, the
fixed point theorem implies that the equation (5.3.9) has a unique solution
in BR, and the first part of the proposition follows.

The fixed point theorem also implies that the solution depends smoothly
on the parameters p and a ∈ E−(p).

By construction, the solution satisfies ‖v‖L1 = O(|a|), thus ‖u− p‖L∞ =
O(|a|). Hence ‖v−ezGd(p)a‖L1∩L∞ = O(|a|2) and ‖u−p−ezGd(p)G−1

d (p)a‖L∞ =
O(|a|2).

The exponential decay of ∂zu follows from Corollary 5.3.4 and Lemma
5.3.3, choosing a decay rate θ in (5.3.6) uniform in p ∈ ω. One can also
apply the fixed point theorem to construct solutions in spaces e−δzL∞.

Next, we note that the proposition above allows to find all the solutions
of (5.2.2) (5.3.3). Below, we assume that ω ⊂ U is given and that the
solutions Φ(z, p, a) are defined by Proposition 5.3.5 for p ∈ ω, a ∈ E−(p)
with |a| ≤ r and z ≥ 0. We still denote by Φ(z, p, a) their maximal extension
for z ≤ 0 as solutions of the o.d.e. (5.2.2).

Proposition 5.3.6. u is a solution of (5.2.2), (5.3.3) with p ∈ ω, if and
only if there are a ∈ E−(p) with norm |a| ≤ r and z0 ∈ R such that u(z) =
Φ(z − z0, p, a).

In this case, for all z0 large enough, one has

u(z) = Φ(z − z0, p, a) , with a = Π−(p)∂zu(z0) .

Proof. Since the equation is invariant by translation, for all z0 ∈ R, u(z) =
Φ(z − z0, p, a) is a solution which converges to p at infinity. It is defined on
]z∗+z0,+∞[ where ]z∗,+∞[ is the maximal interval of existence of Φ(·, p, a).

Conversely, by Lemma 5.3.3, if u is a solution of (5.2.2) (5.3.3) on
[z1,+∞[, then for all z0 ≥ z1 large enough, there holds

‖∂zu‖L1([z0,+∞[) ≤ R , |Π−(p)Dzu(z0)| ≤ r ,

where R > 0 and r > 0 are the constants determined at Proposition 5.3.5.
The equation is invariant by translation, thus u(z + z0) is another solution
with the same end point. By Corollary 5.3.4 and uniqueness in Proposition
5.3.5, one has

u(z + z0) = Φ(z, p, a) for z ≥ 0

with a = Π−(p)∂zu(z0). By uniqueness of the Cauchy problem for (5.2.2),
the identity extends to negative values of z, as long as z + z0 remains in the
domain of definition of u, and hence of Φ(·, p, a).
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5.4 Smooth hyperbolic boundary conditions

With now turn to the the boundary value problem (5.2.4) and construct
smooth pieces of C̃. We first consider small values of p, assuming that 0 is
an hyperbolic state.

5.4.1 Small amplitude layers

Proposition 5.4.1. If 0 ∈ U , there are a neighborhood ω ⊂ U of 0, a
manifold C ⊂ ω of dimension N− and a smooth mapping W from [0,+∞[×C
to U such that for all p ∈ C, W (·, p) is a solution of (5.2.4) which converges
at an exponential rate to p as z tends to infinity.

Proof. We apply Proposition 5.3.5 to find Φ on a neighborhood of p =
0, a = 0. Next we use the implicit function theorem to solve the equation
Φ(0, p, a) = 0. The proposition implies

Φ(0, p, a) = p + G−1
d (p)a + O(|a|2) .

Thus,
∇p,aΦ(0, 0, 0)(ṗ, ȧ) = ṗ + G−1

d (0)ȧ

and∇p,aΦ(0, 0, 0) is an isomorphism from the space of (ṗ, ȧ) ∈ E+(0)×E−(0)
to RN . Therefore, the implicit function theorem implies that, locally near
the origin, the equation Φ(0, p, a) = 0 defines a manifold parametrized by
p− = Π−(0)p, as p = P (p−), a = A(p−). We define locally the manifold C
as p = P (p−), and for p ∈ C, the profile W (z, p) as Φ(z, p,A(p−).

5.4.2 Large amplitude layers

Below, we assume that ω ⊂ U is given and that the solutions Φ(z, p, a) are
defined by Proposition 5.3.5 for p ∈ ω, a ∈ E−(p) with |a| ≤ r and z ≥ 0.
We still denote by Φ(z, p, a) their maximal extension for z ≤ 0 as solutions
of the o.d.e. (5.2.2).

Remark 5.4.2. The boundary value problem (5.2.4) reduces to the equa-
tion

(5.4.1) Φ(z0, p, a) = 0

Indeed, if Φ(z, p, a) vanishes at z0, then z 4→ Φ(z+z0, a, p) is a solution of the
boundary value problem (5.2.4). Proposition 5.3.6 implies that conversely,
if u is a solution of (5.2.4), then there is a ∈ E−(p) with norm |a| ≤ r
and z0 ∈ R such that Φ(·, p, a) is defined for z ≥ z0, Φ(z0, p, a) = 0 and
u(z) = Φ(z + z0, p, a).
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To solve (5.2.4) , that is (5.4.1), with large data, the analysis is much
more delicate and depends on global properties of the differential system.
There might be no solutions (see the example of Burgers equations with end
states p > 0), there might be multiple solutions. What we study next is the
structure of the set of solutions near a given solution u.

Consider a particular solution w of (5.2.4) with end point p. Then, by
Proposition 5.3.6 there are a and z such that:

(5.4.2) w(z) = Φ(z + z, p, a) ,

with Φ(z, p, a) = 0. To apply the implicit function theorem to the equation

(5.4.3) Φ(z, p, a) = 0

we differentiate Φ and introduce

(5.4.4) Φ′(z, ṗ, ȧ) = ṗ∇pΦ(z, p, a) + ȧ∇aΦ(z, p, a)

Proposition 5.4.3. Suppose that

rank∇aΦ(z, p, a) = N− ,(5.4.5)
rank∇a,pΦ(z, p, a) = N .(5.4.6)

Then, in a neighborhood of p, there is a smooth manifold C ⊂ U of dimension
N− and a smooth mapping W from [0,+∞[×C to U such that for all p ∈ C,
W (·, p) is a solution of (5.2.4) which converges at an exponential rate to p
as z tends to infinity.

Proof. The assumptions implies that there are coordinates p = (p−, p+) ∈
RN− × RN+ such that ∇a,p+Φ(z, p, a) is an isomorphism. Therefore, the
implicit function theorem implies that (5.4.3) defines near (p, a) a manifold
of dimension N− parametrized by p− = Π−(0)p, as p = P (p−), a = A(p−).
We define locally the manifold C as p = P (p−), and for p ∈ C, the profile
W (z, p) as Φ(z, p,A(p−).

5.5 The linearized profile equation

In this subsection we study the linearized equations from (5.2.2) at w. We
assume that there are p ∈ U and δ > 0 such that

(5.5.1) w(z)− p = O(e−δz) , ∂zw(z) = O(e−δz) , ∂2
zw(z) = O(e−δz) .
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The linearized equation reads

(5.5.2) Ṗ u̇ := −∂2
z u̇ + G.(z)∂zu̇ + E.(z)u̇ = ḟ .

where G.(z)−Gd(w(z)) and E. involve first and second order derivatives of
w. In particular:

(5.5.3) G.(z) = Gd(p) + O(e−δz) , E.(z) = O(e−δz)

As a first order system, (5.5.2) reads, with v̇ = ∂zu̇:

(5.5.4) ∂zU = G.(z)U + F , G.(z) =
(

0 Id
E. G.

)

U =
(

u̇
v̇

)
, F =

(
0
ḟ

)
We note that

(5.5.5) G.(z) = Gd + O(e−δz) ,

with
Gd =

(
0 Id
0 Gd(p)

)
.

5.5.1 Conjugation to constant coefficients

An important idea is that variable coefficient systems like (5.5.4) with co-
efficients which converge at an exponential rate, are conjugated to constant
systems.

Lemma 5.5.1. There is a matrix W(z) such that
i) W and W−1 are C∞ and bounded with bounded derivatives,
ii) there are C and δ′ > 0 such that

(5.5.6) |W(z)− Id|+ |∂zW(z)| ≤ Ce−δ′z ,

iii) W satisfies

(5.5.7) ∂zW = G.W −WGd .

Moreover, if G. depends smoothly on parameters, one can choose locally
W depending smoothly on those parameters.
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Proof. Consider (5.5.7) as an ordinary (linear) differential equation in the
space of matrices. Because G converges exponentially to Gd, it has the form

∂zW = LW + G′(z)W ,

where L is the constant coefficient operator adGd(W) := [Gd, W ], and G′(z)
is the left multiplication by G(z) − Gd = O(e−δz). W is obtained as the
solution of

W(z) = Id+
∫ z

z0

e(z−s)LΠ−(s)G′(s)W(s)ds

−
∫ ∞

z
e(z−s)LΠ+G′(s)W(s)ds

where Π+ [resp Π−] is the spectral projector on the sum of the generalized
eigenspaces of L associated with eigenvalues in Re µ > −κ [resp. Re µ < −κ]
where κ is chosen in ]0, δ[ such that L has no eigenvalues on {Re µ = κ}.
Arguing as in Proposition 5.3.5, using the fixed point theorem, we prove the
existence of a solution on [z0,+∞[ such that W − Id = O(e−θz) for some
θ < κ and z0 large enough. The solution of the linear equation (5.5.7) is next
extended to z ∈ [0,+∞[. This construction shows that one can choose W
depending smoothly on parameters, as long as the eigenvalues of L, which
are differences of eigenvalues of Gd, remain separated by a line Re µ = κ for
some κ ∈]0, δ[.

Consider D(z) := detW(z). Then

(5.5.8) ∂zD(z) = tr(G(z)− Gd) D(z) .

This clearly implies that D(z) never vanishes on [0,∞[. In addition, since
D(z) = 1+O(e−θz), this also provides uniform bounds for D(z) and 1/D(z).
To prove (5.5.8), denote by (W1, . . . ,W2N ) [resp denote by (G1, . . . , G2N )]
the columns of W [resp. G]. Then (5.5.7) implies that

∂zD =
∑

j

det
[
W1, . . . ,G(z)Wj , . . . W2N

]
−

∑
j

det
[
W1, . . . ,WGj(∞), . . . W2N

]
.

Next use the following algebraic identities for matricesW and G with columns
(W1, . . . ,W2N ) and (G1, . . . , G2N ):∑

j

det
[
W1, . . . ,GWj , . . . W2N

]
= (trG) detW ,

∑
j

det
[
W1, . . . ,WGj , . . . W2N

]
= (trG) detW ,
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which are quite clear when (W1, . . . ,W2N ) is a basis, and extend alge-
braically to general W.

The Lemma 5.5.1 means that the variable coefficients equation (5.5.4) is
conjugated to the constant coefficients equation

(5.5.9) ∂zU1 = GdU1 + F1 .

Indeed, U satisfies (5.5.4) if and only if U1 = W−1U satisfies (5.5.9) with
F1 = W−1F . In particular, the solutions of the homogeneous equation
∂zU = GU are

U(z) = W(z)U1(z) , U1(z) = ezGdU1(0) , U1(0) = W−1(0)U(0) .

and

U1 =
(

u1

v1

)
=

(
u1(0) +

(
ezGd(p) − Id

)
G−1

d (p)v1(0)
ezGd(p)v1(0)

)
.

The solution U , or equivalently U1, is bounded if and only if v1(0) ∈
E−(Gd(p)). In this case, v1 and v are exponentially decaying and

lim
z→+∞u(z) = lim

z→+∞u1(z) = u1(0)−G−1
d (p)v1(0) .

This immediately implies the following result.

Lemma 5.5.2. The space S of bounded solutions of the homogeneous equa-
tion Ṗ u̇ = 0 has dimension equal to N + N−. The subspace S0 of solutions
which tend to zero at infinity has dimension equal to N−.

5.5.2 Transversality and the tangent space to C
We suppose now that w is a particular solution of (5.2.4) with end point
p ∈ U . Then, by Proposition 5.3.6 there are a and z such that: w(z) =
Φ(z + z, p, a). We now give equivalent formulations of conditions (5.4.5)
(5.4.6).

Proposition 5.5.3. If w is a particular solution of (5.2.4) with end point
p ∈ U , the condition (5.4.5) is satisfied if and only if the problem

(5.5.10) Ṗ u̇ = 0 , u(0) = 0 , lim
z→+∞u(z) = 0

has no nontrivial solution.
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The condition (5.4.6) is satisfied if and only if for all u0 ∈ RN , the
problem

(5.5.11) Ṗ u̇ = 0 , u(0) = u0

has a bounded solution.

Proof. For all (p, a) close to (p, a), Φ(· + z, p, a) is a solution of (5.2.2).
Differentiating the equation in (p, a) implies that for all (ṗ, ȧ) ∈ RN×E−(p),
Φ′(· + z, ṗ, ȧ) is a solution of the homogeneous linearized equation. Next,
Proposition 5.3.5 implies that

(5.5.12) lim
z→∞Φ′(z, ṗ, ȧ) = ṗ

and the convergence holds at an exponential rate. Moreover,

ȧ∇aΦ(0, p, a) = ȧ .

Therefore, the mapping (ṗ, ȧ) 4→ Φ′(· + z, ṗ, ȧ) from RN × E−(p) into the
space S of bounded solutions of the homogeneous equation, is injective.
Since both space have dimension N + N−, the mapping is an isomorphism
and therefore

(5.5.13) S =
{
Φ′(·+ z, ṗ, ȧ) : (ṗ, ȧ) ∈ RN × E−(p)

}
.

By (5.5.12), the function u(z) = Φ′(z + z, ṗ, ȧ) in S tends to zero at infinity
if and only if ṗ = 0. Therefore, the dimension of the space of solutions of
(5.5.10) is equal to the dimension of the space {ȧ : ȧ∇aΦ(z, p, a) = 0}. It
is equal to zero if and only if ∇aΦ(z, p, a) has maximal rank N−.

Similarly, ∇p,aΦ(z, p, a) has maximal rank N , if and only if the mapping
u 4→ u(0) from S to RN is onto.

Definition 5.5.4. We say that the the profile w solution of (5.2.4) is transver-
sal if and only if the conditions (5.4.5), (5.4.6), or their equivalent formula-
tions given in Proposition 5.5.3, are satisfied.

In analogy with the previous subsection, let Ċ denote the space of ṗ such
that there is a solution u̇ of Ṗ u̇ = 0 with u̇(z) → ṗ as z → +∞.

Proposition 5.5.5. Suppose that w is a transversal solution of (5.2.4).
Then dim Ċ = N− and Ċ is the tangent space to C at p, where C denotes the
local manifold constructed in Proposition 5.4.3.
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Proof. Recall from the proof of Proposition 5.4.3 that there are coordinates
(p−, p+) ∈ RN−×RN+ for p such that the manifold C is defined by p = π(p−).
Moreover, the manifold of solutions (p, a) of Φ(z, p, a) = 0 is given by p =
π(p−) and a = α(p−). Therefore, the tangent space to C at p is determined
by the differentiated equation ṗ∇pΦ(z, p, a) + ȧ∇aΦ(z, p, a) = 0, which by
the transversality assumption determines ṗ = π′(p−)ṗ− and ȧ = α′(p−)ṗ−.
By (5.5.13), this corresponds to end points ṗ of solutions in u ∈ S such that
u(0) = 0.

We now consider the inhomogeneous equation (5.5.2).

Proposition 5.5.6. Suppose that w is a transversal solution of (5.2.4) and
f ∈ e−δzL∞, with δ > 0 small enough. Then the equation (5.5.2) has
solutions in e−δzW 2,∞.

Furthermore, for all u0 ∈ RN , the equation (5.5.2) has bounded solutions
u such that u(0) = u0, u has a limit ṗ at infinity, and u− ṗ ∈ e−δzW 2,∞ for
some δ′ > 0.

Proof. Consider F = t(0, f) and F1 = t(f1, g1) = W−1F . A solution of
(5.5.9) is

v1(z) =
∫ z

0
e(z−s)Gd(p)Π−(p)g1(s)ds−

∫ ∞

z
e(z−s)Gd(p)Π+(p)g1(s)ds ,

u1(z) = −
∫ ∞

z

(
v1(s) + f1(s)

)
ds .

Thanks to the exponential estimates (5.3.6), for δ < θ, one has

‖eδzU1‖L∞ + ‖eδz∂zU1‖L∞ ≤ C‖eδzF1‖L∞ ,

Thus the solution U = WU1 of (5.2.4) satisfies similar estimates. This
provides us with an exponentially decaying solution u of (5.5.2).

To prove the second part of the proposition, it is sufficient to find a
bounded solution u̇ of Ṗ u̇ = 0 such that u̇(0) = u0 − u(0). By Proposition
5.5.3, the transversality conditions imply that this problem is solvable. The
analysis before Lemma 5.5.2 shows that u̇ has a limit ṗ at infinity and that
u̇− ṗ is exponentially decaying.
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Chapter 6

Plane wave stability

In this chapter we analyze the plane wave stability of profiles w(x). We
start with general remarks about plane wave stability, deriving necessary
conditions for energy estimates. These conditions are expressed in terms of
a Lopatinski determinant in the constant coefficient case, and of an Evans
function when the coefficients depend on the normal variable. We refer to
the introduction for references concerning these notions. A key point in
this Chapter is the theorem of F.Rousset ([Ro1]) asserting that the uniform
Evans condition implies that the limiting hyperbolic boundary value problem
satisfies the uniform Lopatinski condition (see also [ZS] for viscous shocks).

6.1 Statement of the problem

Consider a C∞ profile w on R+ and an end state p such that for all k ∈ N

(6.1.1) |∂k
z (w(z)− p)| = O(e−δz)

for some δ > 0. It can be (and it will be in applications) a solution of (5.1.2),
but we do not use this property here. In this Chapter, we always suppose
that the equation (5.1.2) satisfies Assumption 5.1.1 of Chapter five and that
p ∈ U . The linearized equations of (5.1.2) (5.1.3) around w(x/ε) read

(6.1.2)


∂tu +

d∑
j=1

A.
j∂ju− ε

d∑
j,k=1

B.
j,k∂

2
j,ku +

1
ε
E.u = f , x > 0 ,

u|x=0 = 0 .
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with

(6.1.3)

A.
jv = Ãjv − (v · ∇uB̃j,d)∂zw − (∂zw · ∇uB̃d,j)v ,

B.
j,k = B̃j,k ,

E.v = (v · ∇uÃd)∂zw − (v · ∇uB̃d,d · v)∂2
zw −∇2

uB̃d,d(v, ∂zw)∂zw ,

where Ã denotes the function A(u) evaluated at u = w(x/ε)). Note that
all the coefficients A.

j , B.
j,k and E. are C∞ functions of z = x/ε. Moreover,

they converge with an exponential rate when z tends to +∞. The limits are
denoted by A∞j , B∞

j,k and E∞. They are given by

(6.1.4) A∞j = Aj(p) , B∞
j,k = Bj,k(p) , E∞ = 0 .

There are C and δ > 0, such that for all indices j and k:

(6.1.5) |A.
j(z)−A∞|+ |B.

j,k(z)−A∞|+ |E.(z)| ≤ Ce−δz .

In this chapter we investigate the uniform (with respect to ε) well posedness
of (6.1.2). Typically, we look for uniform a priori estimates for (6.1.2).

We also have to study the stability of the limiting hyperbolic problem.
In this case, the unperturbed solution is the constant p, and the linearized
operator reads

(6.1.6)


∂tu +

d∑
j=1

Aj(p)∂ju = f ,

Mu|x=0 = g ,

where Mṗ = 0 is an equation of the tangent space Ċ at p of the manifold C,
see Proposition 5.5.5. .

To avoid repetitions, we consider the general setting

(6.1.7)

{
∂tu + Gε(x/ε, ∂y, ∂x)u = f , for x ≥ 0 ,

Γu = g , for x = 0 ,

where Gε is a differential operator in (∂y, ∂x) with coefficients depending
only on z = x/ε and the boundary operator Γ is constant.

We have two examples in mind: first, the hyperbolic case

(6.1.8) G =
d∑

j=1

Aj(p)∂j ,

132



and second, the hyperbolic-parabolic case

(6.1.9) G =
d∑

j=1

A.
j(z)∂j − ε

d∑
j,k=1

B.
j,k(z)∂j∂k .

Performing a Laplace-Fourier transform in (t, y), or applying the equa-
tions to the plane waves

(6.1.10) u(t, y, x) = e(iτ+γ)t+iηyû(x),

the equation (6.1.7) becomes

(6.1.11)

{
(iτ + γ)û + Gε(x/ε, iη, ∂x)û = f̂ , for x ≥ 0 ,

Γû = ĝ , for x = 0 ,

This is a first order system of ordinary differential equations in x, depending
on the parameters ζ = (τ, η, γ). The main goal of the chapter is to link the
well posedness of (6.1.7) to the well posedness of (6.1.11) and next to give
“explicit” criteria for the later problem. In the constant coefficient case, i.e.
when G is independent of z, the stability condition is naturally expressed in
terms of a Lopatinski determinant. In the variable coefficient case, assuming
that the coefficients converge at an exponential rate when z → +∞, the
Lopatinski determinant is replaced by an Evans function.

6.2 Necessary conditions

6.2.1 General discussion

Definition 6.2.1. We say that the equation (6.1.7) is uniformly stable if,
for T > 0, there is a constant C such that for all ε ∈]0, 1] and all u ∈
H∞(]−∞, T ]× Rd

+) vanishing for t < 0, there holds

(6.2.1)
‖u‖L2([0,T ]×Rd

+)+‖u|x=0‖L2([0,T ]×Rd−1)

≤ C
(
‖f‖L2([0,T ]×R1+d

+ ) + ‖g‖L2([0,T ]×Rd−1)

)
.

with f = ∂tu + Gε(x/ε, ∂y, ∂x)u and g = Γu|x=0.

We denote by ζ the frequency variables (τ, η, γ) and by Sζ,ε the set of
solutions in H∞ of the equation

(6.2.2) (iτ + γ)φ + Gε(x/ε, iη, ∂x)φ = 0 .
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Proposition 6.2.2. If the equation (6.1.7) is uniformly stable, then there
are constants c ≥ 0 and C such that for all ζ ∈ Rd+1 with γ > c, and all
ε ∈]0, 1], the solutions φ of (6.2.2) satisfy

(6.2.3) |φ(0)| ≤ C|Γφ(0)| .
Proof. Introduce χ ∈ C∞(R) such that χ(t) = 0 for t ≤ 0 and χ(t) = 1 for
t ≥ T/2. Suppose that φ ∈ Sζ,ε, and introduce

φ̃(t, y, x) = e(iτ+γ)t+iηyφ(x) , u(t, y, x) = χ(t)e−δ|y|2 φ̃(t, y, x) .

Then u ∈ H∞ and vanishes for t ≤ 0. There holds

(∂t + Gε)u = φ̃
(
∂tχe−δ|y|2 + χ[Gε, e−δ|y|2 ]

)
.

Therefore

‖u‖L2([0,T ]×Rd
+) = c0δ

−(d−1)/2‖φ‖L2‖eγtχ‖L2([0,T ]) ,

‖(∂t + Gε)u‖L2 =c0δ
−(d−1)/2‖φ‖L2‖eγt∂tχ‖L2([0,T ])

+ δ−(d−1)/2O
(√

δ
)‖φ‖H2‖eγtχ‖L2([0,T ]) .

In addition, ‖eγtχ‖L2([0,T ]) ≥ c1eγ3T/4 and ‖eγt∂tχ‖L2([0,T ]) ≤ c2eγT/2. Hence,
there is γ0 such that for γ ≥ γ0, one has

‖eγt∂tχ‖L2([0,T ]) ≤ 1
4C
‖eγtχ‖L2([0,T ])

where C is the constant in (6.2.1). Note that γ0 depends only on the choice
of χ and C. This implies that for δ small enough (depending on φ), there
holds

‖(∂t + Gε)u‖L2 ≤ 1
2C
‖u‖L2([0,T ]) .

Thus, (6.2.1) implies that for γ ≥ γ0 and δ small, there holds

‖u|x=0‖L2 ≤ C‖Γu|x=0‖L2 .

We have

‖u|x=0‖L2 = c0δ
−(d−1)/2|φ(0)|L2‖eγtχ‖L2([0,T ]) ,

‖Γu|x=0‖L2 = c0δ
−(d−1)/2|Γφ(0)|L2‖eγtχ‖L2([0,T ]) .

This implies (6.2.3).
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6.2.2 The hyperbolic case: the Lopatinski Determinant

In the hyperbolic case (6.1.8), the equation and the space Sζ are independent
of ε. The equation (6.2.2) reads

(6.2.4) ∂xφ + A−1
d (p)

(
(iτ + γ)Id +

d−1∑
j=1

iηjAj(p)
)
φ := ∂xφ−H(ζ)φ = 0 .

We use here that the boundary is non characteristic for p ∈ U , i.e. that Ad(p)
is invertible. We introduce the sign minus in front of H to be coherent
with notations used in the sequel. Moreover, µ = iξ is an eigenvalue of
H(ζ) if and only if τ − iγ is an eigenvalue of

∑
ηjAj + ξAd. Therefore,

the hyperbolicity assumption (H2) implies that for γ '= 0, the matrix H(ζ)
has no eigenvalue on the imaginary axis. Thus, for γ > 0, the space of
L2 or H∞ solutions of (6.2.4) is the space of functions exH(ζ)φ(0) with
φ(0) ∈ E−

(
H(ζ)

)
, the invariant space generated by generalized eigenvectors

associated to eigenvalues in {Re µ < 0}. By homogeneity, E−(H(λζ)) =
E−(H(ζ)) for λ > 0, and the condition (6.2.3) is equivalent to

(6.2.5) ∀ζ ∈ Sd with γ > 0 , ∀φ ∈ E−(H(ζ)) : |φ| ≤ C|Γφ| .
where Sd = {ζ ∈ Rd+1 : |ζ| = 1}. In particular, for all γ > 0:

(6.2.6) ker Γ ∩ E−(H(ζ)) = {0} .

For a given ζ, the geometric property (6.2.6) implies the estimate in (6.2.5)
with a constant Cζ depending on ζ. The point in (6.2.5) is that one can
choose a uniform constant C. By homogeneity, one can always restrict
attention to ζ in the unit sphere.

Lemma 6.2.3. For γ > 0, dim E−(H(ζ)) = N+.

Proof. The Assumption (H2) implies that for γ '= 0, H(ζ) has no eigenvalues
on the pure imaginary axis. Thus the dimension of E−(H(ζ)) is constant
for γ > 0. Taking τ = 0 and η = 0, we see that this dimension is equal to
N+, the number of positive eigenvalues of Ad(p).

Suppose that we have

(6.2.7) dim ker Γ = N− = N −N+ .

Then, the condition (6.2.6) can be expressed using the determinant

(6.2.8) D(ζ) = det(E−(H(ζ)), ker Γ)
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where det(E,F ) denotes the determinant formed by taking orthonormal
bases in E end F , when E and F are subspaces of CD with dim E+dim F =
D. This determinant is independent of the choice of the bases. It vanishes
if and only if E ∩ F '= {0}. It measures the angle between the two spaces:

Lemma 6.2.4. Consider E ⊂ CD with dim E = D+ and a D+ ×D matrix
Γ such that dim E + dim ker Γ = D. If

(6.2.9) |det(E, ker Γ)| ≥ c > 0 ,

then

(6.2.10) ∀e ∈ E : |e| ≤ C|Γe|
with C = c−1|Γ∗(Γγ∗)−1|.

Conversely, if (6.2.10) holds, then (6.2.9) is satisfied with c = (C|Γ|)−D+.

Proof. Consider the orthogonal projection π on F := (ker Γ)⊥. Diagonaliz-
ing the hermitian form (πe, πe) on E, one obtains orthonormal bases {ej}
and {fj} on E and F respectively such that πej = λjfj with 0 < λj ≤ 1. In
this case,

det(ker Γ, E) = det(F⊥, E) = det(ej , fk) =
∏

λj .

If this determinant is larger than or equal to c, since λk ≤ 1 for all k, then
minλj ≥ c and

c|e| ≤ |πe| ≤ |Γ∗(Γγ∗)−1||Γe|
since π = Γ∗(Γγ∗)−1Γ.

Conversely, if (6.2.10) is satisfied, then

|e| ≤ C|Γ| |πe|
since Γe = Γπe. Therefore, λjC|Γ| ≥ 1 for all j and the determinant is at
least equal to (C|Γ|)−D+ .

Definition 6.2.5. The function D is called the Lopatinski determinant of
the hyperbolic boundary value problem.

The uniform Lopatinski condition holds if and only if

(6.2.11) ∀ζ ∈ Sd with γ > 0 : |D(ζ)| ≥ c .

Proposition 6.2.2 and Lemma 6.2.4 imply:

Proposition 6.2.6. In the hyperbolic case and assuming (6.2.7), if the prob-
lem (6.1.7) is uniformly stable then the uniform Loptinski condition is sat-
isfied.
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The definition of the determinant depends on the choice of a scalar prod-
uct on CN . The uniform Lopatinski condition does not depend on this
choice. In particular, we note for future use the following result.

Lemma 6.2.7. Suppose that W is an invertible D×D matrix. Then there
is a constant C such that for all subspaces E and F of CD such that dim E+
dim F = D there holds

1
C

det(E,F ) ≤ det(WE, WF ) ≤ C det(E,F ) .

Proof. Consider orthonormal bases {ej} and {fk} in E and F which is also
orthogonal for the scalar product (Wh,Wh′). Then, ẽj = αjWej and f̃k =
βkWfk are orthonormal bases of WE and WF respectively if αj = |Wej |−1

and βk = |Wfk|−1. Then

det(WE, WF ) =
∏

αj

∏
βk det(Wej ,Wfk)

=
∏

αj

∏
βk det W det(E,F ) .

Since
|W |−1 ≤ αj , βk ≤ |W−1|

the lemma follows.

There are equivalent formulations of the uniform Lopatinski condition.
For instance, one can show

Lemma 6.2.8. Under Assumption (H2), for all p ∈ U , the spaces E−(H(ζ))
defined for γ > 0 have a continous extension Ẽ−(ζ) to the set Sd

+ of ζ =
(τ, η, γ) in the unit sphere Sd with γ ≥ 0.

In particular, the Lopatinski determinant has a continuous extension D̃
to Sd

+.

By homogeneity, continuity and compactness this implies:

Proposition 6.2.9. The uniform Lopatinski condition condition (6.2.5) is
equivalent to

(6.2.12) ∀ζ ∈ Sd with γ ≥ 0 : ker Γ ∩ Ẽ−(ζ) = {0} .

It holds if and only if

(6.2.13) ∀ζ ∈ Sd with γ ≥ 0 : D(ζ) '= 0 .
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6.3 Evans functions

In the hyperbolic-parabolic case, the analysis is similar but not identical.

6.3.1 Reduction to first order and rescaling

The equation (6.1.11) reads

(6.3.1) −ε∂2
xû +A(

x

ε
, εζ)∂xû +

1
ε
M(

x

ε
, εζ)û = f̂ , û|x=0 = 0 ,

with
A(z, ζ) = (B.

d,d)
−1

(
A.

1 −
d−1∑
j=1

iηj(B.
j,d + B.

d,j)
)

M(z, ζ) = (B.
d,d)

−1
(
(iτ + γ) +

d−1∑
j=1

iηjA
.
j +

d−1∑
j,k=1

ηjηkB
.
j,k + E.

)
.

where the coefficients A.
j , B.

j,k and E. are functions of z defined at (6.1.3).

Write (6.3.1) as a first order system for Û =
(

û
ε∂xû

)
(6.3.2) ∂xÛ =

1
ε
G(

x

ε
, εζ)Û + F , ΓÛ|x=0 = û|x=0 = 0 .

where
G(z, ζ) =

(
0 Id
M A

)
.

It is convenient to eliminate the ε in (6.3.2) by setting

(6.3.3) Ũ(z) = Û(εz) , F̃ (z) = εF̂ (εz) , ζ̃ = εζ .

Then, (6.3.2) is transformed into

(6.3.4) ∂zŨ = G(z, ζ̃)Ũ + F̃ , ΓŨ(0) = 0 .

We recall from (6.1.5) that G(z, ζ) converge at an exponential rate at
infinity: with obvious notations, for ζ in any compact set, there holds

(6.3.5) |G(z, ζ)− G∞(ζ)| ≤ Ce−δz

To take care of large frequencies, we have to take into account the
parabolic homogeneity: We note that A is first order in η and M is first
order in (τ, γ) and second order in η. This leads to introduce the weight:

(6.3.6) 〈ζ〉 =
(
τ2 + γ2 + |η|4

) 1
4
.
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6.3.2 Spectral analysis of the symbol

Lemma 6.3.1. i) There are c > 0 and ρ1 > 0 such that for |ζ| ≥ ρ1

with γ ≥ 0, and z ∈ [0,∞[, G(z, ζ) has N eigenvalues, counted with their
multiplicities, in Re µ > 0 and N eigenvalues in Re µ < 0. They satisfy
|Re µ| ≥ c〈ζ〉.

ii) When ζ '= 0 and γ ≥ 0, G∞(ζ) has N eigenvalues, counted with
their multiplicities, in Re µ > 0 and N eigenvalues in Re µ < 0.

iii) When ζ = 0, G∞(0) has 0 as a semi-simple eigenvalue, of multi-
plicity N . The nonvanishing eigenvalues are those of Gd(p) = (Bd,d(p))−1Ad(p).

Proof. a) When ζ is large, we use the quasi-homogeneity to write

M = 〈ζ〉2M̂ + O(〈ζ〉) , A = 〈ζ〉Â + O(1),

where

(6.3.7)


M̂ = (B.

d,d)
−1

(
(iτ̂ + γ̂)Id +

d−1∑
j,k≥1

η̂j η̂kB
.
j,k

)

Â = −i
d−1∑
k=1

η̂k(B
.
d,d)

−1(B.
k,d + B.

d,k)

with
τ̂ =

τ

〈ζ〉2 , γ̂ =
γ

〈ζ〉2 , η̂ =
η

〈ζ〉 .

Thus ( 〈ζ〉Id 0
0 Id

)
G

( 〈ζ〉−1Id 0
0 Id

)
= 〈ζ〉Ĝ + O(1).

with

Ĝ :=
(

0 Id
M̂ Â

)
Tracing back the definitions, µ̂ is an eigenvalue Ĝ if and only if −(iτ̂ + γ̂) is
an eigenvalue of

d∑
j,k=1

ξjξkBj,k(w(z))

with ξd = −iµ̂ and (ξ1, . . . , ξd−1) = η̂. If µ̂ belongs to imaginary axis, ξd

is real and by (H1) one must have γ̂ ≤ −c|ξ|2. For γ̂ ≥ 0, this implies
that ξ = 0, and therefore that τ̂ − iγ̂ = 0, which contradicts that 〈ζ̂〉 = 1.
Thus Ĝ has no eigenvalues on the imaginary axis. Therefore, the number of
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eigenvalues in Re µ > 0 and in Re µ < 0 is independent of ζ̂ when γ̂ ≥ 0.
Moreover, when η̂ = 0, τ̂ = 0 and γ̂ = 1 , Ĝ reduces to(

0 Id(
Bd,d(w(z)

)−1 0

)
.

In this case, the eigenvalues of Ĝ are the square roots of the eigenvalues of
B−1

d,d, and therefore N of them are in Re µ > 0 and N in Re µ < 0.
By a standard perturbation argument, for 〈ζ〉 large, the eigenvalues of

G are µ = 〈ζ〉µ̂ + O(1), where µ̂ is an eigenvalue of Ĝ, and i) of the lemma
follows.

b) Similarly, tracing back the definitions and using (6.1.4), µ is an
eigenvalue of G∞(ζ) if and only if −τ + iγ is an eigenvalue of

d∑
j=1

ηjAj(p)− i
d∑

j,k=1

ξjξkBj,k(p)

with ξd = −iµ and (ξ1, . . . , ξd−1) = η. Since p ∈ U , (H3) implies that if
Re µ = 0 then ξ is real and γ ≤ −c(|µ|2 + |η|2). For γ ≥ 0, this implies that
γ = 0, µ = 0 and η = 0. Thus the matrix above vanishes, the eigenvalue −τ
must be zero and therefore, ζ = 0. This shows that G∞ has no eigenvalues
on the imaginary axis when ζ '= 0 and γ ≥ 0.

The number of eigenvalues in Re µ > 0 and in Re µ < 0 is independent
of (p, ζ) when ζ '= 0 and γ ≥ 0. Letting z tend to ∞, i) implies that for ζ
large, N eigenvalues lie on each half plane.

c) When ζ = 0, one has

G∞(0) =
(

0 Id
0 Gd(p)

)
.

By Lemma 5.1.3, Gd is invertible when p ∈ U . Thus the eigenvalues of G∞
are zero with multiplicity N , and the eigenvalues of B−1

d,dAd.

6.3.3 Conjugation to constant coefficients

Lemma 6.3.2. For all ζ ∈ Rd+1 with γ ≥ 0, there is a neighborhood ω of ζ
and there is a matrix W defined and C∞ on [0,∞[×ω such that

i) W−1 is uniformly bounded and there is θ > 0 such that

(6.3.8) |W(z, ζ)− Id| ≤ Ce−θz
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ii) W satisfies

(6.3.9) ∂zW(z, ζ) = G(z, ζ)W(z, ζ)−W(z, ζ)G∞(ζ) .

Proof. This is a parameter dependent version of Lemma 5.5.1.

The substitution Ũ = WU1 transforms the equation (6.3.4) into

(6.3.10) ∂zU1 = G∞(ζ)U1 + F1 , Γ1(ζ)U1(0) = 0

with F1 = W−1F and

(6.3.11) Γ1(ζ) = ΓW(0, ζ) .

We have won that (6.3.10) has constant coefficients, but the boundary con-
dition now depends on the frequency ζ.

We introduce the following notations.

Definition 6.3.3. We denote by E−(ζ) [resp. F−(ζ)] the space of initial
data U(0) [resp. U1(0)] such that the corresponding solution of ∂zU =
G(z, ζ)U [resp. ∂zU1 = G∞(ζ)U1] is bounded as z tends to infinity.

Since the two equations are conjugated by W, the two spaces are related
and:

(6.3.12) E−(ζ) = W(0, ζ)F−(ζ) .

Corollary 6.3.4. E−(ζ) and F−(ζ) have dimension N and vary smoothly
with ζ when ζ '= 0 and γ ≥ 0.

Proof. Since F− is the spectral subspace for G∞ associated to eigenvalues
lying in Re µ < 0, it has dimension N by Lemma 6.3.1 and varies smoothly
with ζ when ζ '= 0.

6.3.4 Stability conditions

According to the general discussion of section 6.2, necessary stability condi-
tions are that there hold estimates

(6.3.13) ∀U ∈ E−(ζ) : |U | ≤ C|ΓU | ,
In order to measure the angle between the spaces E− and ker Γ, which
are subspaces of dimension N in a space of dimension 2N , we form the
determinant

(6.3.14) D(ζ) = det
(
E−(ζ), ker Γ

)
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obtained by taking orthonormal bases in each space. The result is inde-
pendent of the choice of the bases. This is the Evans’ function (see [Zum],
[Ser]). D vanishes if and only if E− ∩ ker Γ is not reduced to {0}.

To deal properly with the high frequencies, some appropriate scaling is
required to recover the maximal parabolic estimates. With

(6.3.15) Λ(ζ) =
(
1 + τ2 + γ2 + |η|4

) 1
4

introduce the space Ẽ−(ζ) = JΛE−(ζ) where JΛ is the mapping (u, v) 4→
(u, Λ−1v) in CN × CN and the “scaled” Evans’ function

(6.3.16) D̃(ζ) = det
(
Ẽ−(ζ), ker Γ

)
.

Note that ker Γ is invariant by JΛ so that D vanishes if and only if D̃ vanishes.
Moreover, for bounded values of ζ, there is C such that 1

C |D| ≤ |D̃| ≤ C|D|,
since, in the computation of the Evans’ functions, the introduction of JΛ

only amounts to a change of scalar product in C2N .
The weak stability condition requires that D '= 0 for ζ '= 0 with γ ≥ 0.

The strong or uniform reads

Definition 6.3.5 (Uniform Evans’ condition). We say that the lin-
earized problem (6.1.2) satisfies the Uniform Evans condition, if there is a
constant c > 0 such that for all for all ζ = (τ, γ, η) '= 0 with γ ≥ 0

(6.3.17) |D̃(ζ)| ≥ c

For a fixed ζ, the condition D̃(ζ) '= 0 is equivalent to the condition
D(ζ) '= 0. It holds if and only if

(6.3.18) Ẽ−(ζ) ∩ ker Γ = {0} or E−(ζ) ∩ ker Γ = {0} .

Other equivalent conditions are: there are constants Cζ or C ′ζ such that

∀U ∈ E−(ζ) : |U | ≤ Cζ |ΓU | or ∀U ∈ Ẽ−(ζ) : |U | ≤ C ′ζ |ΓU |
The uniform condition (6.3.17) is equivalent to the fact that one can choose
a uniform constant C ′ζ independent of ζ. Lemma 6.2.4 implies:

Lemma 6.3.6. The uniform Evans’ condition holds if and only if there is
a constant C > 0 such that that for all for all ζ = (τ, γ, η) '= 0 with γ ≥ 0,
there holds

(6.3.19) ∀U ∈ Ẽ−(ζ) : |U | ≤ C|ΓU | .
Using the definition of Ẽ−, (6.3.19) can be written

(6.3.20) ∀(u, v) ∈ E−(ζ) : |v| ≤ CΛ(ζ)|u| .
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6.4 Low frequency analysis of the Evans condition

Consider a profile w solution of (5.2.2) such that

w(0) = 0 and lim
z→+∞w(z) = p ∈ U .

On one hand, we consider the linearized equation (6.1.2) around w. On
the other hand, when the profile w is transversal in the sense of Definition
5.5.4, one can define a smooth manifold C near p and consider the linearized
hyperbolic equation (6.1.6) at p where the boundary operator M is such
that Mu = 0 is an equation of the tangent space TpC.

Theorem 6.4.1. The uniform Evans condition (6.3.17) is satisfied on 0 <
|ζ| ≤ ρ0 for some ρ0 > 0, if and only if the profile w is transversal and the
hyperbolic boundary value problem (6.1.6) satisfies the uniform Lopatinski
condition.

6.4.1 Detailed spectral analysis of G∞
By Lemma 6.3.2 there is W(z, ζ) defined for ζ in a neighborhood ω0 of 0 in
Rd+1 such that (6.3.8) and (6.3.9) are satisfied on ω0.

Lemma 6.4.2. There is a C∞ invertible matrix V(ζ) defined on a neigh-
borhood ω0 of 0 such that V−1G∞V has the block diagonal form

(6.4.1) V(ζ)−1G∞(ζ)V(ζ) =
(

H(ζ) 0
0 P (ζ)

)
:= G2(ζ)

with H(0) = 0, P (0) = Gd(p)(Bd,d(p))−1Ad(p) and

(6.4.2) V(0) =
(

Id (Ad(p))−1Bd,d(p)
0 Id

)
The eigenvalues of P satisfy |Re µ| ≥ c for some c > 0 and

(6.4.3) H = −(Ad(p))−1
(
(iτ + γ)Id +

d−1∑
j=1

iηjAj(p)
)

+ O(|ζ|2).

A crucial remark is that the principal term in the right hand side of
(6.4.3) is the symbol of the hyperbolic operator appearing in (6.2.4).
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Proof. By Lemma 5.1.3, Gd(p) is invertible. Lemma 6.3.1 implies that, on
a small neighborhood ω0 of the origin, there is a smooth family of matrices
V such that (6.4.1) and (6.4.2) hold. Moreover, the eigenvalues of P (0) =
Gd(p) do not belong to the imaginary axis, and this remains true for P (ζ),
ζ close to 0.

Next, note that

G∞ =
(

0 Id
M∞

1 + O(|η|2) Gd + O(|η|)
)

with

M∞
1 := (Bd,d(p))−1

(
(iτ + γ)Id +

d−1∑
j=1

iηjAj(p)
)

Writing V(ζ) = V(0) + O(|ζ|), one obtains that the left upper block of
V−1G∞V is H = −G−1

d M∞
1 + 0(|ζ|2), implying (6.4.3).

The lemma immediately implies that the negative space F−(ζ) = E−(G∞(ζ))
is

(6.4.4) F−(ζ) = V(ζ)
(
E−(H(ζ))× E−(P (ζ))

)
.

In particular, for ζ '= 0 with γ ≥ 0, the bounded solutions of the homoge-
neous equation ∂zU = GU are

(6.4.5) U(z) = W(z, ζ)V(ζ)
(
ezH(ζ)uH , ezP (ζ)uP

)
with uH ∈ FH− (ζ) := E−(H(ζ)), uP ∈ FP−(ζ) := E−(P (ζ)).

Because P (0) has no eigenvalues on the imaginary axis, the spaces FP±(ζ)
depend smoothly on ζ ∈ ω0 and their value at ζ = 0 are FP±(0) = E±(Gd(p)).
Thus dim FP−(ζ) = N−. For ζ > 0 and γ ≥ 0, the space F−(ζ) is well defined
and dim F−(ζ) = N by Lemma 6.3.1. Thus FH− (ζ) depends smoothly on ζ
for ζ > 0 with γ ≥ 0 and

(6.4.6) dim FH
− (ζ) = N+ for ζ > 0 with γ ≥ 0 .

6.4.2 Proof of Theorem 6.4.1, necessary conditions

Introduce

(6.4.7) Γ2(ζ) = ΓW(0, ζ)V(ζ) .
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Since W and V are smooth, we deduce from Lemma 6.2.7 that there is a
constant C such that for all ζ ∈ ω0, with ζ '= 0 and γ ≥ 0, there holds

(6.4.8)
1
C

D(ζ) ≤ D2(ζ) ≤ CD(ζ)

with

(6.4.9) D2(ζ) = det
(
FH
− (ζ)× FP

−(ζ), ker Γ2(ζ)
)

.

Moreover, the uniform Evans condition (6.3.17) is satisfied on a neighbor-
hood of the origin, if and only if there is a constant C such that for all ζ
small with ζ '= 0 and γ ≥ 0, there holds

(6.4.10) ∀(uH , uP ) ∈ FH
− (ζ)× FP

−(ζ) : |uH |+ |uP | ≤ C|Γ2(ζ)(uh, uP )| .

Proposition 6.4.3. If the uniform Evans condition (6.3.17) is satisfied for
ζ small, then the profile w(z) is transversal.

Proof. The linearized equation (6.3.4) at ζ = 0 is exactly the linearized pro-
file equation (5.5.4) considered in Chapter five. In particular, the bounded
solutions of the homogeneous equation are

(6.4.11) U(z) = W(z, 0)V(0)
(
q, ezP (0)v

)
with v ∈ FP−(0) = E−(Gd) and q arbitrary. The Dirichlet condition ΓU(0) =
0 corresponds to Γ2(0)(q, v) = 0.

Applying (6.4.10) with uH = 0, implies that for all v ∈ FP−(ζ):

|v| ≤ C|Γ2(ζ)(0, v)|.
Since FP−(ζ) is smooth in ζ, this extends to ζ = 0. Thus v = 0 if Γ2(0)(0, v) =
0 and v ∈ E−(Gd) proving that the equation (5.5.10) has no nontrivial
solution.

If the uniform Evans condition holds, for ζ '= 0 small with γ ≥ 0, the
mapping Γ2(ζ) from FH− (ζ) × FP−(ζ) to CN is an isomorphism. Thus, for
all h ∈ CN there is a solution U(ζ) ∈ FH− (ζ) × FP−(ζ) of Γ2(ζ)U(ζ) = h.
By (6.4.10), the U(ζ) are bounded, and extracting a subsequence, we can
assume that U(ζ) converges to U = (q, v) as ζ → 0 with γ ≥ 0. By con-
tinuity of FP−(ζ), the limit v belongs to FP−(0) = E−(Gd), and (q, v) solves
Γ2(0)(q, v) = h. This shows that the mapping Γ2(0) from CN × E−(Dd)
to CN is surjective, hence that the problem (5.5.11) has always a bounded
solution. By Proposition 5.5.3, this implies that the profile w is transver-
sal.
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Suppose that the profile w is transversal. By Proposition 5.5.5 and the
representation (6.4.11) of bounded solutions, the tangent space Ċ to C at p
is

Ċ := π
(

ker Γ2(0) ∩ (
CN × E−(Gd)

))
where π is the mapping

π : (q, v) 4→ q .

The transversality hypothesis implies that dim C = N− and there is a map-
ping K from Ċ to E−(Gd) such that

ker Γ2(0) ∩ (
CN × E−(Gd)

)
=

{
(ϕ, Kϕ) ; ϕ ∈ Ċ}

.

By continuity, this extends to a neighborhood of the origin where the space
π(K(ζ)) with

K(ζ) = ker Γ2(ζ) ∩ (
CN × FP

−(ζ)
)

has dimension N− and there is a mapping K(ζ) from π(K(ζ)) to FP−(ζ) such
that

(6.4.12) K(ζ) =
{
(ϕ, K(ζ)ϕ) ; ϕ ∈ π(K(ζ))

}
.

Consider next the space E+(Gd). Then CN = E−(Gd) ⊕ E+(Gd). Con-
sider the mapping

9 : (q, v− + v+) 4→ v+

from ker Γ2(0) ⊂ CN × CN to E+(Gd). The kernel is ker Γ2(0) ∩ (
CN ×

E−(Gd)
)

and thus has dimension N−. Thus the range has dimension N −
N− = dim E+(Gd), proving that 9 is surjective. Therefore, there is map
K ′ from E−(Gd) to ker Γ2(0) such that 9K ′ = Id. The N+ dimensional
space K′(0) = K ′E−(Gd) satisfies ker Γ2(0) = K(0) ⊕ K′(0). By continuity,
this extends to a neighborhood of the origin where there is a mapping K ′(ζ)
from E−(Gd) to ker Γ2(ζ) such that 9K ′ = Id and ker Γ2(ζ) = K(ζ)⊕K′(ζ)
where K′(ζ) := K ′(ζ)E−(Gd).

Taking bases {eH
j }, {eP

k }, {ϕl,Kϕl)} and {K ′ψm, ψm)} in FH− , FP−, K and
K′ respectively, we see that the determinant D2(ζ) is, up to a permutation
of columns, equal to ∣∣∣∣eH

j ϕl 0 K ′
1ψm

0 Kϕl eP
k K ′

2ψm

∣∣∣∣
where we have written K ′ψ = (K ′

1ψ, K ′
2ψ) ∈ CN × CN . Since the Kϕl

belong to the space generated by the eP
k , we can eliminate these terms
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in the determinant. Moreover, since 9K ′ = Id on E+(Gd) and CN =
E−(Gd)⊕ E+(Gd), the determinant

det
(
eP
k ,K ′

2ψm
)

does not vanish on a neighborhood of zero. Summing up, we have proved:

Proposition 6.4.4. When the profile w is transversal, there is a neighbor-
hood ω0 of the origin in Rd+1 such that the Evans determinant satisfies

(6.4.13) D(ζ) = β(ζ) det
(
FH
− (ζ), πK(ζ)

)
.

where β is a non vanishing smooth function on a neighborhood of the origin.

Since H(0) = 0 the analysis of FH− (ζ) is more delicate. We use polar
coordinates:

(6.4.14) ζ = ρζ̌ = ρ(τ̌ , γ̌, η̌) , with ρ = |ζ| , |ζ̌| = 1 .

Then, (6.4.3) implies that

(6.4.15) H(ζ) = H(ρζ̌) = ρȞ(ζ̌, ρ)

where Ȟ is a smooth function of (ζ̌, ρ) ∈ Rd+1 × R for |ζ̌| ≤ 2 and |ρ| ≤ ρ0

for some ρ0 > 0. In addition:

(6.4.16) Ȟ(ζ̌, 0) = −(Ad(p))−1
(
(iτ̌ + γ̌)Id +

d−1∑
j=1

iη̌jAj(p)
)
.

In particular, the negative space of H(ζ) is the negative space of Ȟ(ζ̌, ρ)
which we denote by F̌−(ζ̌, ρ):

(6.4.17) FH
− (ζ) = F̌(ζ̌, ρ) , when ζ = ρζ̌ .

By (6.4.6) this N+ dimensional space is well defined for ρ > 0 small enough
and |ζ̌| = 1 with γ̌ ≥ 0.

Denote by Sd the unit sphere {ζ̌; |ζ̌| = 1}, by Sd
+ the half sphere {γ̌ > 0}

and by S
d
+ the closed half sphere γ̌ ≥ 0.

Lemma 6.4.5. The N+ dimensional vector bundle F̌(ζ̌, ρ) extends smoothly
to Sd

+ × {0}.
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Proof. When ρ = 0, (6.4.16) and the hyperbolicity Assumption (H2) imply
that Ȟ(ζ̌, 0) has no eigenvalues on the imaginary axis when γ̌ > 0. There-
fore, the negative space of Ȟ(ζ̌, 0) depends smoothly on ζ̌ for ζ̌ ∈ Sd

+.
For a fixed ζ̌ ∈ Sd

+, by continuity Ȟ(ζ̌, ρ) has no eigenvalues on the imag-
inary axis for (ζ̌, ρ) in a small neighborhood of (ζ̌, 0) when γ̌ > 0. Therefore
the negative space F̌(ζ̌, ρ) is smooth for (ζ̌, ρ) in a small neighborhood of
(ζ̌, 0).

Remark 6.4.6. Consider the hyperbolic boundary value problem (6.1.6).
By definition kerM = Ċ = π(K(0)) with the notations above. Therefore,
the Lopatinski determinant of this problem is:

(6.4.18) Ď(ζ̌) = det
(
F̌(ζ̌, 0), π(K(0))

)
.

Proposition 6.4.7. If the system (6.1.2) satisfies the uniform Evans condi-
tion (6.3.17) for small ζ̌, then the hyperbolic boundary value problem (6.1.6)
satisfies the uniform Lopatinski condition.

Proof. Using Propositions 6.4.3 and 6.4.4, the assumption implies that

(6.4.19)
∣∣ det

(
F̌(ζ̌, ρ), π(K(ρζ̌))

)∣∣ ≥ c > 0

for all ζ̌ ∈ S
d
+ and ρ > 0 small enough.

The π(K(ζ) form a smooth N− dimensional bundle; by Lemma 6.4.5,
the F̌(ζ̌, ρ) are smooth up to ρ = 0 when γ̌ > 0. Hence, the determinant
above is smooth in (ζ̌, ρ), up to ρ = 0 when γ̌ > 0. Therefore, the estimate
implies that ∣∣ det

(
F̌(ζ̌, 0), π(K(0))

)∣∣ ≥ c > 0

for all ζ̌ ∈ Sd
+.

6.4.3 Proof of Theorem 6.4.1, sufficient conditions

To prove the converse of Proposition 6.4.7, the idea is to prove that the
determinant in (6.4.19) extends continuously to ρ = 0 for ζ̌ in the compact
set S

d
+. This follows from the next result which is much stronger than

Lemma 6.4.5.

Theorem 6.4.8. Under the Assumptions 5.1.1, the N+ dimensional vector
bundle F̌(ζ̌, ρ) extends continuously to the S

d
+ × {0}.

The proof of this theorem is postponed to the next Chapter, where we
show that it is a consequence of the construction of symmetrizers, see [MZ2].
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End of the proof of Theorem 6.4.1 If the profile is transversal, then the Evans
function satisfies (6.4.13) for small values of ρ = |ζ|. By Theorem 6.4.8, the
determinant

det
(
F̌(ζ̌, ρ), π(K(ρζ̌))

)
is continuous for (ζ̌, ρ) ∈ S

d
+× [0, ρ0] for some ρ0 > 0. The uniform Lopatin-

ski condition states that this determinant is uniformly bounded from below
for ρ = 0 and ζ̌ ∈ Sd

+. Thus the extension does not vanish for ζ̌ ∈ S
d
+

and ρ = 0, and by compactness and continuity, it does not vanish for
(ζ̌, ρ) ∈ S

d
+ × [0, ρ1] for some ρ1 > 0.
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Chapter 7

Stability estimates

In this chapter we prove that the uniform Evans condition of Definition 6.3.5
implies uniform estimates for the solutions of (6.1.2). Moreover, these esti-
mates are optimal from the point of view of parabolic smoothness. The proof
relies on the use of symmetrizers, which are constructed as Fourier multi-
pliers. A corollary of the construction of symmetrizers, is the continuous
extendability of the spectral spaces E− stated in Lemma 6.2.8 and Theorem
6.4.8 (see [MZ2]). In this chapter, we always suppose that Assumption 5.1.1
are satisfied and consider the linearized equations (6.1.2) around a profile w
which satisfies (6.1.1).

7.1 The estimates

They involve weighted norms. We consider the following weight functions :
with ζ := (τ, γ, η), let

(7.1.1) ϕ =


(
γ + ε|ζ|2) 1

2 when |εζ| ≤ 1,

≈ ε−
1
2 when 1 ≤ |εζ| ≤ 2,

Λ(εζ)√
ε
≈ (

γ + |τ |+ ε|η|2) 1
2 when |εζ| ≥ 2.

where Λ is defined at (6.3.15). Note that the three terms above have the
same order when |εζ| ≈ 1.

Given a weight function ψ(τ, η), we introduce the norm

(7.1.2)
∣∣u∣∣

(ψ)
=

( ∫
ψ(τ, η)2 |û(τ, η)|2 dτdη

) 1
2
,
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where û is the Fourier transform of u(t, y) defined on Rd. When u also
depends on the variable x, we denote by ‖u‖(ψ) the norm

(7.1.3)
∥∥u

∥∥
(ψ)

=
( ∫ ∞

0

∣∣u(x)
∣∣2
(ψ)

dx
) 1

2
.

We use different weight functions, ϕ, ϕ2, ϕ/Λ etc. In these case, the weights
and the norms depend on the parameters ε and γ. For simplicity we do
not reflect this dependence in the notation and write ‖ · ‖(ϕ) etc. When the
weight is equal to 1, we obtain the usual L2 norms on R1+d

+ and Rd, denoted
by ‖ · ‖ and | · | respectively.

Theorem 7.1.1. Under the stability Assumption 6.3.5, there is a constant
C such that for all u and f in C∞0 (R1+d

+ ) satisfying (6.1.2), for all γ > 0
and all ε ∈]0, 1], one has

(7.1.4) ‖e−γtu‖(ϕ2)+
√

ε‖e−γt∂xu‖(ϕ)+ε
∣∣e−γt∂xu|x=0

∣∣
(ϕ/

√
Λ)
≤ C‖e−γtf‖ .

We first state a simplified version of the estimates:

Corollary 7.1.2. Under the stability Assumption 6.3.5, there is C such that
for all ε ∈]0, 1], all γ > 0 and all test functions u, f satisfying (6.1.2), one
has

(7.1.5) γ‖e−γtu‖+
√

εγ‖e−γt∇y,xu‖+ ε‖e−γt∇y∇y,xu‖ ≤ C‖e−γtf‖

To simplify notations, we write below a(ε, ζ, u, f) ! b(ε, ζ, u, f), to mean
that there is a constant C such that for all ε ∈]0, 1], all ζ with γ > 0 and all
u and f there holds a(ε, ζ, u, f) ≤ Cb(ε, ζ, u, f).

Proof of Corollary 7.1.2. There holds
√

γ +
√

ε|η| ! ϕ

which by Plancherel’s theorem implies that

γ‖u‖+
√

εγ‖∂yu‖+ ε‖∂2
yu‖ ! ‖u‖(ϕ2) ,

√
γ‖u‖+

√
ε‖∂yu‖ ! ‖u‖(ϕ) .

Thus (7.1.4) implies (7.1.5).
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Introducing u∗ = e−γtu, (6.1.2) is equivalent to

(7.1.6)


(∂t + γ)u∗ +

d∑
j=1

A.
j∂ju∗ − ε

d∑
j,k=1

B.
j,k∂

2
j,ku∗ +

1
ε
E.u∗ = f∗ ,

u∗|x=0 = 0 .

with f∗ = e−γtf . Thus (7.1.4) is equivalent to

(7.1.7) ‖u∗‖(ϕ2) +
√

ε‖∂xu∗‖(ϕ) + ε
∣∣∂xu∗|x=0

∣∣
(ϕ/

√
Λ)

! ‖f∗‖ .

for the solutions of (7.1.6).
Denote by û [resp. f̂ ] the space-time tangential Fourier transform of u∗

[resp. f∗], that is the partial Fourier transform with respect to the variables
(t, y). The Fourier transform of (7.1.6) is pecisely the equation (6.3.1).
Therefore, by Plancherel’s theorem, the energy estimates (7.1.7) are implied
by, and indeed equivalent to, the following estimates

(7.1.8) ϕ2‖û‖L2(R+) +
√

εϕ‖∂xû‖L2(R+) + ε(ϕ/
√

Λ)|∂xû(0)| ! ‖f̂‖L2(R+) .

for the solutions of (6.3.1). We get rid of the ε ’s using the rescaling (6.3.3)

ũ(z) = û(εz) , f̃(z) = εf̂(εz) , ζ̃ = εζ .

In this case, the equation (6.3.1) is transformed into

(7.1.9) −∂2
z ũ +A(z, ζ̃)∂zũ +M(z, ζ̃)ũ = f̃ , ũ(0) = 0 .

Introduce the weights
(7.1.10)

h(ζ̃) =
√

εϕ(ζ) =


(
γ̃ + |ζ̃|2) 1

2 when |ζ̃| ≤ 1,
≈ 1 when 1 ≤ |ζ̃| ≤ 2,

Λ(ζ̃) ≈ (
γ̃ + |τ̃ |+ |η̃|2) 1

2 when |ζ̃| ≥ 2,

%(ζ̃) = h(ζ̃)Λ(ζ̃)
−1/2

.

Therefore, the estimates (7.1.8) and Theorem 7.1.1 are consequences of the
following estimates:

Theorem 7.1.3. Suppose that the uniform Evans condition 6.3.5 is satis-
fied. Then, there is a constant C such that for all ζ̃ ∈ R1+d with γ̃ > 0 and
for all ũ and f̃ in C∞0 (R+) satisfying (7.1.9), there holds

(7.1.11) h2‖ũ‖L2(R+) + h‖∂zũ‖L2(R+) + %|∂zũ(0)| ≤ C‖f̃‖L2(R+) .
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As in Chapter six we write the equation as a first order system: (6.3.4)
for Ũ = t(ũ, ṽ) with ṽ = ∂zũ and F̃ = t(0, f̃). The estimates to prove are

(7.1.12) h2‖ũ‖L2(R+) + h‖ṽ‖L2(R+) + %|ṽ(0)| ≤ C‖f̃‖L2(R+) .

These estimates are proved using symmetrizers.

7.2 The method of symmetrizers

Recall now the essence of the “method of symmetrizers” as it applies to
general boundary value problems

(7.2.1) ∂xu = G(x)u + f , Γu(0) = 0 .

Here, u and f are functions on [0,∞[ with values in some Hilbert space H,
and G(x) is a C1 family of (possibly unbounded) operators defined on D,
dense subspace of H.

A symmetrizer is a family of C1 functions x 4→ S(x) with values in
the space of operators in H such that there are C0, λ > 0, δ > 0 and C1

such that

∀x , S(x) = S(x)∗ and |S(x)| ≤ C0 ,(7.2.2)
∀x , 2Re S(x)G(x) + ∂xS(x) ≥ 2λId ,(7.2.3)
S(0) ≥ δId− C1Γ∗Γ .(7.2.4)

In (7.2.2), the norm of S(x) is the norm in the space of bounded operators
in H. Similarly S(x)∗ is the adjoint operator of S(x). The notation Re T =
1
2(T + T ∗) is used in (7.2.3) for the real part of an operator T . When T
is unbounded, the meaning of Re T ≥ λ, is that all u ∈ D belong to the
domain of T and satisfy

(7.2.5) Re
(
Tu, u

) ≥ λ|u|2 .

The property (7.2.3) has to be understood in this sense.

Lemma 7.2.1. If there is a symmetrizer S, then for all u ∈ C1([0,∞[;H)∩
C0([0,∞;D) with compact support in time, there holds:

(7.2.6) λ‖u‖2 + δ|u(0)|2 ≤ C2
0

λ
‖f‖2 + C1|Γu(0)|2 ,

where f := ∂xu−Gu.
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Here, | · | is the norm in H and ‖ · ‖ the norm in L2([0,∞[;H).

Proof. Taking the scalar product of Su with the equation (7.2.1) and inte-
grating over [0,∞[, (7.2.2) implies

(7.2.7)
−(S(0)u(0), u(0)) =

∫
∂x(Su, u)dx

=
∫ (

(2Re SG + ∂xS)u, u
)
dx + 2Re

∫ (
Sf, u

)
dx .

By (7.2.3), there holds:∫ (
(2Re SG + ∂xS)u, u

)
dx ≥ 2λ‖u‖2 .

By (7.2.4),
(S(0)u(0), u(0)) ≥ δ|u(0)|2 − C1|Γu(0)|2 .

By (7.2.2)

2
∣∣∣ ∫ (

Sf, u
)
dx

∣∣∣ ≤ 2C0‖f‖ ‖u‖ ≤ C2
0

λ
‖f‖2 + λ‖u‖2 .

Thus the identity (7.2.7) implies the energy estimate (7.2.6).

To prove Theorem 7.1.3, it is sufficient to construct symmetrizers S(z, ζ)
for G(z, ζ). Three different regimes appear in the construction: the high
frequency regime, when |ζ| is large, the low frequency regime when |ζ| is
small, and the intermediate regime when ζ is bounded and bounded away
from zero. The three different constructions are developed in the next two
sections.

Remark 7.2.2. In our application below, the operators are matrices and the
Hilbert space H is finite dimensional. However, thinking of the matrices as
Fourier multipliers, our computations apply in the Hilbert spaceH = L2(Rd)
of functions of the variables (t, y). This is the correct approach to generalize
them to variable coefficients operators, where the Fourier multipliers are
replaced by pseudo-differential operators (see [MZ1]).

The construction of the symmetrizers has two parts. First, we construct
families of symmetrizers Sκ(z, ζ) satisfying (7.2.2) and (7.2.3). This only
uses the structural hyperbolicity-parabolicity Assumptions (5.1.1). Next we
choose κ such that the third condition (7.2.4) holds. There we use the sta-
bility condition (6.3.5). We end this section with noticing a general recipe
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linking Evans-Lopatinski conditions to (7.2.4). Consider the following situ-
ation:

Suppose that we are given continuous vector bundles E±(ζ) ⊂ CD de-
pending on parameters ζ in some set ω ⊂ Rm and such that

(7.2.8) CD = E−(ζ)⊕ E+(ζ) .

Denote by Π±(ζ) the projectors associated to this decomposition. Consider
a family of matrices Γ(ζ) depending continuously on ζ ∈ ω and such that
dim ker Γ(ζ) + dim E−(ζ) = D.

Proposition 7.2.3. Consider a family Sκ(ζ) of symmetric D×D matrices,
with κ ∈ R+ and ζ ∈ ω. Suppose that there is a compact set ω ⊂ ω such
that for all ζ ∈ ω

(7.2.9) Sκ ≥ κΠ∗+Π+ −Π∗−Π− .

and

(7.2.10) det
(
E−(ζ), ker Γ(ζ)

) '= 0 .

Then, for κ large enough, there are C1, δ > 0 and a neighborhood of ω in ω
such that for ζ in this neighborhood:

(7.2.11) Sκ(ζ) + C1Γ(ζ)∗Γ(ζ) ≥ δId .

Proof. By continuity, there is c > 0 such that∣∣ det
(
E−(ζ), ker Γ(ζ)

)∣∣ ≥ c

on a neighborhood of ω. By Lemma 6.2.4, this implies, that for ζ in a
possibly smaller neighborhood:

|Π−h|2 ≤ C0|ΓΠ−h|2 ≤ C ′0
(|Π+h|2 + |Γh|2)

with C0 and C ′0 independent of h and ζ. Thus, (7.2.9) implies that

(Sκh, h) + C1|Γh|2 ≥ (κ− C1)|Π+h|2 + (C1/C ′0 − 1)|Π−h|2 .

If C1 > C ′0 and κ > C1, (7.2.11) holds for some δ > 0.

In most of the applications, E− and E+ will be the positive and negative
space of G, but near the so-called glancing modes, the spectral projectors
on positive and negative spaces are not uniformly bounded. In these cases,
E+ is chosen as a suitable supplementary space of the negative space E−.
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7.3 High frequencies

We first consider the case where ζ is large. In this case the parabolic proper-
ties are dominant. As in the proof of Lemma 6.3.1, we introduce “parabolic
polar coordinates at infinity

(7.3.1)
ζ̂ = (τ̂ , η̂, γ̂) = (λ2τ, λη, λ2γ) with

λ = 〈ζ〉−1 = (τ2 + γ2 + |η|4) 1
4 .

and λ is small. Then

M(z, ζ) = 〈ζ〉2M̂(z, ζ̂, λ) A(z, ζ) = 〈ζ〉Â(z, ζ̂, λ)

with

(7.3.2)
M̂(z, ζ̂, λ) = M̂(z, ζ̂) + λM̂1(z, ζ̂) + λ2M̂2(z, ζ̂)

Â(z, ζ̂, λ) = Â(z, ζ̂) + λÂ1(z, ζ̂)

where the M̂j and Âj are smooth and bounded functions of z and ζ̂ in the
“sphere” Ŝd := {〈ζ〉 = 1}. Moreover, the leading terms M̂ and Â are given
by (6.3.7). λ ∈ [−1, 1]. We denote by Ŝd

+ the closed half sphere {γ̂ ≥ 0}.
It is convenient to reduce G to first order as in the proof of Lemma 6.3.1,
introducing the change of unknowns

(7.3.3) u1 = 〈ζ〉u, v1 = v.

Then, (6.3.4) is transformed into

(7.3.4) ∂zU1 = λ−1Ĝ1(z, ζ̂, λ)U1 + F , ΓU1(0) = u1(0) = 0 ,

Ĝ1(z, ζ̂, λ) :=
(

0 Id
M̂ Â

)
.

Proposition 7.3.1 (symmetrizers for high frequencies). When the
uniform Evans condition (6.3.17) holds, there are λ0 > 0, c > 0, δ > 0,
C ≥ 0 and a C∞ self adjoint matrix Ŝ on [0,+∞[×Ŝd

+ × [0, λ0] such that
i) Ŝ and its derivatives are uniformly bounded and converge with an

exponential rate at z = +∞.
ii) λ−1Re (ŜĜ1) + 1

2∂zŜ ≥ cλ−1Id.
iii) Ŝ|z=0 + CΓ∗Γ ≥ δId.
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Proof. With (7.3.2), one has Ĝ1(z, ζ̂, λ) = Ĝ1(z, ζ̂) + O(λ) with

Ĝ1 =
(

0 Id
M̂ Â

)
Thus the matrices G1 are uniformly bounded and by (6.3.5) they converge
when z tends to infinity. Moreover, G1(z, ζ̂, λ) has the same eigenvalues as
λ−1G(z, ζ). Hence, by Lemma 6.3.1, for ζ̂ ∈ Ŝd

+, Ĝ1(z, ζ̂, λ) and Ĝ∞1 (ζ̂, λ)
have no purely imaginary eigenvalues. Thus, the spectrum of Ĝ1(z, ζ̂, λ) re-
mains in a compact set which does not intersect the imaginary axis when
γ̂ ≥ 0. Therefore, the spectral projectors Π±(z, ζ̂, λ) on the N dimensional
invariant spaces F̂±(z, ζ̂, λ) of Ĝ1(z, ζ̂, λ) associated to eigenvalues with posi-
tive/negative real part are well defined and smooth, bounded as well as their
derivatives, for z ≥ 0, ζ̂ ∈ Ŝd

+ and λ ≥ 0.
Because the eigenvalues of Ĝ1Π+ have positive real part there are self-

adjoint matrices Ŝ+ such that

(7.3.5) Re (Ŝ+Ĝ1Π+) ≥ Π∗+Π+ , Π∗+Π+ ≤ Ŝ+ ≤ CΠ∗+Π+ .

For instance we can choose

(7.3.6) Ŝ+ = 2
∫ ∞

0
Π∗+e−sĜ∗1 e−sĜ1Π+ ds .

Note that
e−sĜ1Π+ =

1
2iπ

∫
α

e−sµ(µ− Ĝ1)−1dµ

where α is a positively oriented circle in the right half plane {Re µ > 0}
surrounding the eigenvalues of Ĝ1 in this half space. Thus, e−sĜ1Π+ and its
adjoint Π∗+e−sĜ∗1 are exponentially decaying in s. With the choice (7.3.6),
one has Re (Ŝ+Ĝ1Π+) = Π∗+Π+. Moreover, Ŝ+ ≤ CΠ∗+Π+ and multiplying
Ŝ+ by a positive constant we can achieve that Ŝ ≥ Π∗+Π+. In addition,
we note that the matrices Ŝ+(z, ζ̂, λ) are smooth functions of z, ζ̂ and λ,
uniformly bounded as well as their derivatives. In particular, (7.3.5) holds
with a constant C independent of z ≥ 0, ζ̂ ∈ Ŝd

+ and λ ∈ [0, 1].
Similarly, there is Ŝ−(z, ζ̂, λ), such that

(7.3.7) −Re (Ŝ−Ĝ1Π−) ≥ Π∗−Π− , Π∗−Π− ≤ Ŝ− ≤ CΠ∗−Π− .

One construct Ŝ as

(7.3.8) Ŝ = κŜ+ − Ŝ− .
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with κ > 0 to be chosen large enough. Property i) is clear. Moreover,

ŜĜ1 = ŜĜ1Π+ + ŜĜ1Π− = κŜ+Ĝ1Π+ − Ŝ−Ĝ1Π−

hence, there is c > 0 such that for all z ≥ 0, all ζ̂ ∈ Ŝd
+, all λ ∈ [0, 1] and all

κ ≥ 1,
Re ŜĜ1 ≥ κΠ∗+Π+ + Π∗−Π− ≥ cId .

Since ∂zS is bounded by C(κ + 1), this implies property ii) provided that λ
is smaller than some λ0 > 0, ( possibly depending on κ).

To prove iii), we use the following result, concerning the spaces F̂−(0, ζ̂, λ) =
ker Π+(0, ζ̂, λ).

Lemma 7.3.2. Under Assumption 6.3.5, there holds

(7.3.9) F̂−(0, ζ̂, 0) ∩ ker Γ = {0} .

Taking this lemma for granted, we finish the proof of Lemma 7.3.1. For
ζ̂ ∈ Ŝd

+ there holds

C2N = F−(0, ζ̂, 0)⊕ F+(0, ζ̂, 0)

Moreover, (7.3.9) implies that the determinant det(F−(0, ζ̂, 0), ker Γ) does
not vanish. With (7.3.8), we are in position to apply Proposition 7.2.3 and
there are κ and λ0 > 0 such that the estimate iii) holds for ζ̂ ∈ Ŝd

+ and
λ ∈ [0, λ0].

Hence, by continuity-compactness, it does not vanish for ζ̂ ∈ Ŝd
+ and λ

small. This implies iii). It only remains to prove Lemma 7.3.2.

Proof of Lemma 7.3.2.
In order to use Assumption 6.3.5, we give a link between the spaces

F̂−(0, ζ̂, 0) and the spaces Ẽ−(ζ) introduced in Chapter 6, section 3. Recall
that E−(ζ) is the set of initial data U(0) = (u(0), v(0)) for bounded solutions
U = (u, v) of the homogeneous equation (6.3.4) with F = 0. In addition to
the change of unknows (7.3.3), rescale the variable z = λẑ and introduce

u2(ẑ) = u1(λẑ) = λ−1u(λẑ) , v2(ẑ) = v1(λẑ) = v(λẑ) .

Then the homogeneous equation (6.3.4) is transformed into

(7.3.10) ∂ẑU2 = Ĝ2(ẑ, ζ̂, λ)U2
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with

(7.3.11) Ĝ2(ẑ, ζ̂, λ) = Ĝ1(λẑ, ζ̂, λ)

Denote by F̃−(ζ̂, λ) the set of initial data for bounded solutions of (7.3.10).
The computation above shows that F̃−(ζ̂, λ) = {(λ−1u, v); (u, v) ∈ E−(ζ)}.
Therefore, by (6.3.20), Assumption 6.3.5 implies that there is C such that
for all ζ̂ ∈ Ŝd

+ and all λ ∈ [0, 1]:

(7.3.12) ∀U = (u, v) ∈ F̃−(ζ̂, λ) : |v| ≤ C|u| .

When λ tends to zero, (7.3.11) implies that

Ĝ2(ẑ, ζ̂, λ) → Ĝ1(0, ζ̂, 0) =
(

0 Id
M̂0 Â0

)
where M̂0 and Â0 are the evaluation at 0 of the functions M̂ and Â defined
at (6.3.7). Since Ĝ1(0, ζ̂, 0) is constant, the space of initial data of bounded
solutions of the equation

(7.3.13) ∂zU2 = Ĝ1(0, ζ̂, 0)

is the negative spectral space F∞− (0, ζ̂, 0).
Using that Ĝ1 has no eigenvalues on the imaginary axis, one shows that

F̃−(ζ̂, λ) → F̂∞− (0, ζ̂, 0)

as λ → 0 The uniform estimate (7.3.12) implies that the estimate |v| ≤ C|u|
extends to the limit space F̂−(0, ζ̂, 0), (7.3.9).

Remark 7.3.3. The transversality condition (7.3.9) is equivalent to the
requirement that the problem

(7.3.14) −∂2
zu + Â0∂zu + M̂0u = 0 , u(0) = 0

has no nontrivial solution in H2([0,∞[). Suppose that the parabolic problem
is symmetric, i.e. that there is a smooth symmetric definite positive matrix
S(p) such that

(7.3.15) Re
∑

ξjξkS(p)Bj,k(p)
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is definite positive. Recall the definition (6.3.7) of Â and M̂ . If u ∈ H2

satisfies (7.3.14), taking the real part of the scalar product in L2 with
(S(0)Bd,d(0))u yields

Re
(
SBd,d∂zu, ∂zu

)
+

d−1∑
j=1

Re iηj
(
S(Bj,d + Bd,j)∂zu, u

)
+

d−1∑
j,k=1

Re ηjηk

(
SBj,ku, u

)
+ γ

(
Su, u

)
= 0 ,

where the matrices S and Bj,k are evaluated at the state p = 0. The as-
sumption on S implies that the sesquilinear form on the left hand side is
coercive on the space H1

0 ([0,+∞[), as easily seen by extending u by 0 for
negative z and considering the Fourier transform in z. Thus (7.3.14) has no
non trivial H2 solution. Therefore, the symmetry of the Parabolic operator
implies te transversality (7.3.9) and thus that the uniform stability condition
is automatically satisfied for large ζ.

7.4 Medium frequencies

Consider ζ = (τ , η, γ) ∈ Rd+1 with γ ≥ 0. We construct symmetrizers for
ζ close to ζ. By Lemma 6.3.2 the system (6.3.4) is transformed into the
constant coefficient system (6.3.10) through the change of unknows Ũ(z) =
W(z, ζ)U1(z). Thus the main idea is to construct symmetrizers for the
constant coefficients system (6.3.10). They will provide estimates for U1,
and thus for Ũ = WU1.

Proposition 7.4.1 (Symmetrizers for medium frequencies). Suppose
that the uniform stability condition (6.3.17) holds. Then, for all ζ '= 0 with
γ ≥ 0 there is a neighborhood ω of ζ and there are constants c > 0, δ > 0,
C ≥ 0 and a C∞ matrix S(ζ) on ω such that for all ζ ∈ ω:

S = S∗ ,(7.4.1)
Re (SG∞) ≥ cId ,(7.4.2)
S + C(Γ1)∗Γ1 ≥ δId .(7.4.3)

Proof. By Lemma 6.3.1, the eigenvalues of G∞(ζ) are away from the imagi-
nary axis. Hence, there is a smooth invertible matrix V on a neighborhood
ω of ζ, such that

V−1G∞V =
(

G+ 0
0 G−

)
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where G± have their spectrum in ±Re µ > 0. Consider

S = (V−1)∗
(

κS+ 0
0 −S−

)
V−1

with S± symmetric, positive definite and such that

Re (S+G+) ≥ Id , −Re (S−G−) ≥ Id .

For instance, as in (7.3.6), one can choose

S+ = 2
∫ ∞

0
e−tG∗+e−tG+dt

and use a similar expression for S−. For all κ ≥ 1, (7.4.2) holds. Moreover,
the form of S implies that there are constants c and C such that

(7.4.4) (SV, V ) ≥ cκ|Π+V |2 − C|Π−V |2 .

where Π+ [resp. Π−] is the spectral projector of G∞ on the space F+

[resp. F−] generated by generalized eigenvectors associated to eigenvalues
in Re µ > 0 [resp. Re µ < 0]. These projectors are smooth functions of ζ in
a neighborhood of ζ since the two groups of eigenvalues remain separated,
thus one has the smooth decomposition:

(7.4.5) C2N = F−(ζ)⊕ F+(ζ) .

The space kerΠ+ = F− is the set of initial data such that the cor-
responding solution of ∂zU1 = G∞U1 is bounded. Thus, by (6.3.12), the
Evans-Lopatinski stability condition (6.3.18) implies that

(7.4.6) F−(ζ) ∩ ker Γ1(ζ) = {0}
and this remains true on a neighborhood of ζ. Thus, with (7.4.4) and (7.4.5),
we are in position to apply Proposition 7.2.3 and (7.4.3) follows for κ large
enough.

7.5 Low frequencies

We now turn to the most difficult case of low frequencies and work near
ζ = 0. We use the change of unknows U2 = V−1U1 given by Lemma 6.4.2.
It transforms the equation (6.3.10) into

(7.5.1) ∂zU2 = G2(ζ)U2 + F2 , Γ2(ζ)U2(0) = 0 ,
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with F2 = V−1F1 and Γ2(ζ) = Γ1(ζ)V(ζ). The matrix G2 has the block
diagonal form (6.4.1)

G2 =
(

H 0
0 P

)
.

In a neighborhood of ζ = 0, we construct a symmetrizer for the matrix G2 :

(7.5.2) S =
(

SH 0
0 SP

)
where SH and SP are symmetrizers for H and P respectively. The con-
struction of SP is quite similar to the construction performed for medium
frequencies, using that the spectrum of P is away from the imaginary axis.
The construction of SH is much more delicate. We use polar coordinates:

(7.5.3) ζ = ρζ̌ = ρ(τ̌ , γ̌, η̌) , with ρ = |ζ| , |ζ̌| = 1 .

Recall that

(7.5.4) H(ζ) = ρȞ(ζ̌, ρ)

with Ȟ(ζ̌, 0) given by (6.4.16). As in Chapter 6, Section 4, Sd denotes the
sphere {|ζ̌| = 1}, Sd

+ the open half sphere where γ̌ > 0 and S
d
+ denotes the

closed half sphere γ̌ ≥ 0.

Theorem 7.5.1 (Symmetrizers for low frequencies). Suppose that the
uniform stability condition (6.3.17) is satisfied. There are constants c > 0,
δ > 0 and C such that:

i) there is a neighborhood ω of 0 and there is a C∞ N ×N matrix SP

on ω such that for all ζ ∈ ω:

(7.5.5) SP (ζ) = (SP (ζ))∗ , Re (SP (ζ)P (ζ)) ≥ cId ;

ii) there are ρ0 > 0 and a C∞ matrix ŠH on S
d
+× [0, ρ0] such that for

all (ζ̌, ρ) ∈ S
d
+ × [0, ρ0] there holds:

(7.5.6) ŠH = (ŠH)∗ , Re (Š1Ȟ) ≥ c(γ̌ + ρ)Id ;

iii) for all ζ = ρζ̌ ∈ R1+d with ζ̌ ∈ S
d
+ and ρ ∈]0, ρ0], the matrix

(7.5.7) S(ζ) =
[

ŠH(ζ̌, ρ) 0
0 SP (ζ)

]
satisfies

(7.5.8) S(ζ) + CΓ2(ζ)∗Γ2(ζ) ≥ δId .
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Since the eigenvalues of P are away from the imaginary axis, there are
families of symmetrizers SP (ζ) on a neighborhood of 0 in Rd+1 such that

(7.5.9) SP = κ(Π+
P )∗S+

P Π+
P − (Π−P )∗S−P Π−P , Re (SP P ) ≥ cId ,

where Π±
P are the spectral projectors associated to the spectral decomposi-

tion

(7.5.10) CN = FP
−(ζ)⊕ FP

+(ζ)

associated to the splitting of eigenvalues of P in the half spaces {±Re µ > 0}
and S±P are definite positive. Recall that dim FP± = N±. For ζ '= 0 with
γ > 0, Lemma 6.3.1 implies that G2(ζ) and hence H(ζ) and Ȟ(ζ̌, ρ) have no
eigenvalues on the imaginary axis. Thus the positive and negative spaces
F̌H± (ζ) associated to Ȟ satisfy

(7.5.11) dim F̌H
± (ζ̌, ρ) = N∓ .

To construct the ŠH , one can argue locally near a given point ζ̌ ∈ S
d
+.

The main argument is the following result which is proved in Chapter 8:

Theorem 7.5.2. For all ζ̌ ∈ S
d
+, there are spaces F± satisfying

(7.5.12) CN = F− ⊕ F+ , dim F± = N∓ ,

and such that for all κ ≥ 1 there are a neighborhood ω̌ of (ζ̌, 0) in Rd+1×R,
a C∞ mapping ŠH from ω̌ to the space of N ×N matrices and a constant
c > 0 such that for all (ζ̌, ρ) ∈ ω̌,

ŠH(ζ̌, ρ) = Š∗H(ζ̌, ρ) ,(7.5.13) (
Š(ζ̌, ρ)h, h

) ≥ κ|Π+h|2 − |Π−h|2 ,(7.5.14)

and for all (ζ̌, ρ) ∈ ω̌ with ρ ≥ 0 and γ̌ ≥ 0:

(7.5.15) Re
(
ŠH(ζ̌, ρ)Ȟ(ζ̌, ρ)h, h

) ≥ c(γ̌ + ρ)|h|2 .

In (7.5.14), Π± denote the projectors on F± associated to the decomposition
(7.5.12).

Concerning the choice of spaces F±, the first idea would be to take
F± = F̌H± (ζ̌, 0). However we don’t know yet that theses spaces are well
defined when γ̌ = 0, and the splitting (7.5.12) is not always true for all ζ̌. On
the contrary, we can use this theorem to prove the continuous extendability
of the F̌H− (ζ̌, ρ) to ρ = 0 . We stress the fact the uniform stability condition
is not required for this Theorem and for its following corollary:
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Theorem 7.5.3. The vector bundle F̌H− (ζ̌, ρ) defined for ζ̌ ∈ S
d
+ and ρ ∈

]0, ρ0] extends continuously to ρ = 0.

Proof. a) Consider κ > 2 and ω̌ given by Theorem (7.5.2). For (ζ̌, ρ) ∈ ω̌
with γ̌ ≥ 0 and ρ > 0, consider h ∈ F̌H− (ζ̌, ρ) and

u(z) = ezȞ(ζ̌,ρ)h

This function is exponentially decaying at +∞ and satisfies ∂zu = Ȟ(ζ̌, ρ)u.
Therefore multiplying by Š(ζ̌, ρ) and integrating by parts yield, thanks to
(7.5.13): (

Šh, h) + 2Re
∫ ∞

0

(
ŠȞu(z), u(z)

)
dz = 0

By (7.5.15), the integral is nonnegative. Therefore (Šh, h) is nonpositive
which by (7.5.14) implies that κ|Π+h|2 ≤ |Π−h|2. Thus

(7.5.16) ∀h ∈ F̌H
− (ζ̌, ρ) : |Π+h| ≤ 1√

κ− 1
|h| .

This implies that the mapping Π− from F̌H− (ζ̌, ρ) into F− is one to one
and since both spaces have dimension N , it is a bijection. Therefore, there
is a mapping Φ(ζ̌, ρ) from F− to F+ such that

(7.5.17) F̌H
− (ζ̌, ρ) =

{
u + Φ(ζ̌, ρ)u : u ∈ E−

}
and

(7.5.18) ∀u ∈ F− : |Φ(ζ̌, ρ)u| ≤ 1√
κ− 2

|u|.

Since κ is arbitrarily large, this proves that

(7.5.19) F− = l̃im F̌H
− (ζ̌, ρ),

where l̃im means that (ζ̌, ρ) tends to (ζ̌, 0) with ρ > 0, γ̌ ≥ 0.

b) The relation (7.5.19) implies that for all ζ̌ ∈ S
d
+ there is a unique

space F− such that the properties listed in Theorem 7.5.2 are satisfied. We
denote by F̃H− (ζ̌, ρ) = F− the extension of F̌H− (ζ̌, ρ) defined by (7.5.19) for
ρ = 0. We prove that F̃H− (ζ̌, ρ) is continuous at ρ = 0.

Consider again a given point ζ̌ ∈ S
d
+. For κ > 2, let ω̌ be given by

Theorem 7.5.2. For all (ζ̌, ρ) ∈ ω̌, the estimate (7.5.16) holds. For all
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(ζ̌ ′, 0) ∈ ω̌, thanks to (7.5.18), we can let (ζ̌, ρ) tend (ζ̌ ′, 0) in the sense of
l̃im. Therefore, passing to the limit in (7.5.16) implies that for all (ζ̌, ρ) ∈ Ω
with γ̌ ≥ 0 and ρ ≥ 0:

∀h ∈ F̃H
− (ζ̌, ρ) : |Π+h| ≤ 1

κ− 1
|h| .

Arguing as before, this implies that

F− = F̃H
− (ζ̌, 0) = lim F̃H

− (ζ̌, ρ),

where the limit is taken for (ζ̌, ρ) tending to (ζ̌, 0) in S
d
+×[0, ρ0]. This means

that the bundle F̃H− (ζ̌, ρ) is continuous in (ζ̌, ρ) ∈ S
d
+ × [0, ρ0] at (ζ̌, 0).

Proof of Theorem 7.5.1 assuming Theorem 7.5.2. Consider ζ̌ ∈ S
d
+. We ap-

ply Proposition 7.2.3 to the symmetrizers

Šκ(ζ̌, ρ) =
[
ŠH,κ(ζ̌, ρ) 0

0 SP,κ(ρζ̌)

]
where ŠH,κ is given by Theorem 7.5.2 in a neighborhood of (ζ̌, 0) which may
depend on κ and SP,κ is given by (7.5.9). By (7.5.12), the spaces F± satisfy
the property (7.2.8). By (7.5.9) and (7.5.14), the estimate (7.2.9) is satisfied
at (ζ̌, 0).

For ρ > 0, the negative space of G2(ρζ̌) is

F̌−(ζ̌, ρ) := F̌H
− (ζ̌, ρ)× FP

−(ρζ̌) .

Transporting the uniform stability condition by the change of unknows V(ζ),
we know that for all ζ̌ ∈ S

d
+ and ρ > 0:∣∣ det

(
F̌−(ζ̌, ρ), ker Γ2(ρζ̌)

)∣∣ ≥ c > 0

By Theorem 7.5.3 this estimate extends to ρ = 0 and thus the determinant
det

(
F̃−(ζ̌, ρ), ker Γ(ρζ̌)

)
does not vanish at ζ = ζ̌ and ρ = 0. Thus Proposi-

tion 7.2.3 implies that there are κ, C and δ > 0 and a neighborhood of ω of
(ζ̌, 0) in Sd × R such that

∀(ζ̌, ρ) ∈ ω : Šκ(ζ̌, ρ) + CΓ2(ζ)∗Γ2(ζ) ≥ δId .

165



By compactness, there are ρ0 > 0 and a finite covering ∪ωj of S
d
+×[0, ρ0],

parameters κj and constants C and δ > 0 such that

(7.5.20) ∀j , ∀(ζ̌, ρ) ∈ ωj : Šκj (ζ̌, ρ) + CΓ2(ζ)∗Γ2(ζ) ≥ δId .

Consider a partition of unity
∑

χj = 1 on S
d
+ × [0, ρ0] with χj ∈ C∞0 (ωj).

Let
ŠH(ζ̌, ρ) =

∑
χjŠH,κj ,

SP (ζ) = SP,κ∗(ζ) , κ∗ = maxκj ,

Š(ζ̌, ρ) =
[
ŠH(ζ̌, ρ) 0

0 SP (ρζ̌)

]
.

By (7.5.9), SP,κ∗ ≥ SP,κj for all j. Hence S ≥ ∑
χjSκj and therefore (7.5.20)

implies that
Š(ζ̌, ρ) + CΓ2(ζ)∗Γ2(ζ) ≥ δId .

Thus property iii) in Theorem 7.5.1 is proved.
Properties i) and ii) directly follow from (7.5.9) and (7.5.15) respectively.

7.6 Proof of the L2 estimates

We prove the estimate (7.1.12) in the three different regimes.

a) Medium frequencies. Lemmas 7.4.1 and 7.2.1 imply that for all
ζ '= 0 with γ ≥ 0, there is a neighborhood ω of ζ such that for all ζ ∈ ω, the
solutions of (6.3.10) satisfy

‖U1‖2L2(R+) + |U1(0)|2 ≤ ‖F1‖2L2(R+) .

Shrinking ω if necessary, we can assume that the contjugation matrixW(z, ζ)
is defined for ζ ∈ ω. Therefore, the solutions Ũ = WU1 of (6.3.4) satisfy

‖Ũ‖2L2(R+) + |Ũ(0)|2 ≤ ‖F̃‖2L2(R+) ,

which implies (7.1.12) for ζ ∈ ω.

b) Low frequencies. We first consider the equation (7.5.1). We use
the symmetrizers SH(ζ) = ŠH(ζ̌, ρ) and SP (ζ) given in polar coordinates
ζ = ρζ̌ by Lemma 7.5.1. For 0 < ζ ≤ ρ0 and γ ≥ 0, the lemma implies that:

Re (SHH) " ρ(γ̌ + ρ) = c(γ + |ζ|2) ≈ h2 , Re (SP P ) " Id .
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Therefore, the components (u2, v2) and (f2, g2) of U2 and F2 respectively,
satisfy

h2‖u2‖2L2(R+) +
(
SHu2(0), u2(0)

)
! 1

h2
‖f2‖2L2(R+) ,

‖v2‖2L2(R+) +
(
SP v2(0), v2(0)

)
! C‖g2‖2L2(R+) .

Adding up and using the third part of Lemma 7.5.1, we obtain that

h2‖u2‖2L2(R+) + ‖v2‖2L2(R+) + |U2(0)|2 ! 1
h2
‖f2‖2L2(R+) + ‖g2‖2L2(R+) ,

thus

h2‖u2‖L2(R+) + h‖v2‖L2(R+) + h|U2(0)| ! ‖f2‖L2(R+) + h‖g2‖
! ‖F2‖L2(R+) .

Thanks to the special form (6.4.2) of V(0), U1 = VU2 and F1 = VF2 satisfy

u1 = O(1)U2 , v1 = O(1)v2 + O(ζ)u2 , F2 = O(1)F1 .

On the neighborhood |ζ| ≤ ρ0 of the origin, h is bounded and |ζ| ! h. Hence
|ζ|h ! h2 and the solutions U1 of (6.3.10) satisfy

(7.6.1) h2‖u1‖L2(R+) + h‖v1‖L2(R+) + h|U1(0)| ≤ C‖F1‖L2(R+) .

Decreasing ρ0 if necessary, we can assume that the matrix W is defined for
|ζ| ≤ ρ0. Since W = Id + O(e−θz), Ũ = WU1 satisfies:

ũ = O(1)U1 , ṽ = O(1)v1 + O(e−θz)u1 , F1 = O(1)F .

Therefore, the solutions Ũ of (6.3.4) satisfy

(7.6.2)
h2‖ũ‖L2(R+) + h‖ṽ‖L2(R+) + h|Ũ(0)| ! h2‖u1‖L2(R+)

+ h‖v1‖L2(R+) + h‖e−θzu1‖L2(R+) + h|U1(0)| .
We use here the following inequality:

Lemma 7.6.1. Given θ > 0, there is a constant C such that all function
u ∈ H1(R+) satisfies the inequality:

(7.6.3) ‖e−θzu‖L2([0,∞[) ≤ C
(
|u(0) |+ ‖∂zu‖L2([0,∞[)

)
.
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The proof is left as an exercise. We apply this estimate to u1, noticing
that the equation (6.3.10) implies that ∂zu1 = v1. Thus

‖e−θzu1‖L2(R+) ≤ C
(|U1(0)|+ ‖v1‖L2(R+)

)
.

With (7.6.1) and (7.6.2), this implies that for 0 < |ζ| ≤ ρ0 with γ ≥ 0, the
solutions of (6.3.4) satisfy

h2‖ũ‖L2(R+) + h‖ṽ‖L2(R+) + h|Ũ(0)| ! ‖F1‖L2(R+) ! ‖F̃‖L2(R+) .

This implies (7.1.12).

c) High frequencies. We use notations (7.3.3): u1 = 〈ζ〉u, v1 = v. By
Lemmas 7.3.1 and 7.2.1, for ζ large enough, the solution U1 = (u1, v1) of
(7.3.4) satisfies

〈ζ〉‖U1‖2L2(R+) + |U1(0)|2 ! 1
〈ζ〉‖F‖

2
L2(R+)

Thus, the solution Ũ of (6.3.4) satisfies

〈ζ〉2‖ũ‖L2(R+) + 〈ζ〉‖ṽ‖L2(R+) + 〈ζ〉|ṽ(0)| ! ‖F̃‖L2(R+) .

This implies (7.1.12).

d) Endgame. By steps b) and c), there are ρ0 > 0 and λ0 > 0 such that
the estimate (7.1.12) is proved for ζ '= 0 with γ ≥ 0 and either |ζ| ≤ ρ0 or
|ζ| ≥ λ0. By step a), one can cover the compact set {ρ0 ≤ |ζ| ≤ λ0 γ ≥ 0} by
a finite number of open sets where the estimate holds, proving that (7.1.12)
holds with a uniform constant C, independent of ζ. #

168



Chapter 8

Kreiss Symmetrizers

This chapter is entirely devoted to the proof of Theorem 7.5.2. For strictly
hyperbolic equations the construction of symmetrizers is due to O.Kreiss
([Kre] augmented with J.Ralston’s note [Ral], see also [Ch-Pi]). It was then
noticed by A.Majda and S.Osher ([Ma-Os], [Maj]) that the strict hyperbol-
icity can be somewhat relaxed and that the construction extends to systems
satisfying a block structure condition. Finally, it is proved in [Mé3] that the
block structure condition is satisfied for all hyperbolic systems with constant
multiplicity. We discuss in this chapter the extension of Kreiss construction
to hyperbolic-parabolic systems given in [MZ1].

8.1 Scheme of the construction

8.1.1 Notations

We denote here by

A(η, ξ) =
∑
j<d

ηjAj(p) + ξAd(p) , (η, ξ) ∈ Cd−1 × C ,

the symbol of the hyperbolic part of the equation evaluated at a given point
p ∈ U and by

B(η, ξ) =
∑

j,k<d

ηjηkBj,k(p) +
∑
j<d

ξηj
(
Bj,d(p) + Bd,j(p)

)
+ ξ2Bd,d(p)

the symbol of the parabolic part. In accordance with Assumption 5.1.1, we
suppose in this chapter:
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Assumption 8.1.1. i) For all (η, ξ) ∈ Rd\{0} the eigenvalues of A(η, ξ)
are real, semi-simple and have constant multiplicity. Moreover, Ad is non-
singular.

ii) There is c > 0 such that for all (η, ξ) ∈ Rd, the eigenvalues of
iA(η, ξ) + B(η, ξ) satisfy Re µ ≥ c(|η|2 + ξ2).

Denoting by ζ = (τ, η, γ) ∈ R×Rd−1×R the tangential Fourier-Laplace
frequencies, the symbol called Ȟ(ζ, 0) in (6.4.16) reads

(8.1.1) H(ζ, 0) = −A−1
d

(
(iτ + γ)Id +

d∑
j=1

iηjAj
)
.

With notations as in Chapter six, the block decomposition (6.4.1) shows
that the perturbations Ȟ(ζ̌, ρ) occurring in (6.4.15) satisfy

det
(
iρξId−ρȞ(ζ̌, ρ)

)
det

(
iρξId− P (ρζ̌)

)
= det

(
iρξId−G∞(ρζ̌)

)
= det(−B−1

d,d) det
(
(iρτ̌ + ργ̌)Id + iρA(η̌, ξ) + ρ2B(η̌, ξ)

)
Factoring out ρN implies that the perturbations Ȟ(ζ̌, ρ) satisfy the next
hypothesis.

Assumption 8.1.2. i) The N ×N matrices H(ζ, ρ) are smooth functions
of ζ in the unit sphere Sd and ρ ∈ [−ρ0, ρ0] such that H(ζ, 0) is given by
(8.1.1).

ii) There holds

(8.1.2)
det

(
(iτ + γ)Id+iA(η, ξ) + ρB(η, ξ)

)
= e(ζ, ξ, ρ) det

(
iξId−H(ζ, ρ)

)
where e is a polynomial in ξ with smooth coefficients in (ζ, ρ).

Remark 8.1.3. When ρ = 0, (8.1.1) implies that

(8.1.3) e(ζ, ξ, 0) = det Ad '= 0 .

Remark 8.1.4. The Assumptions 8.1.1 and 8.1.2 imply that for γ ≥ 0,
ρ ≥ 0 and γ + ρ > 0, H(ζ, ρ) has no eigenvalues in the imaginary axis
iR. Thus, the number of eigenvalues counted with their multiplicity in
{Re µ > 0} [resp. {Re µ < 0}] is therefore constant for (ζ, ρ) ∈ S

d
+ × [0, ρ0]

with γ + ρ > 0. It is equal to N− [resp. N+] the number of negative [resp.
positive] eigenvalues of Ad.
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Let us rephrase Theorem 7.5.2 in the new setting:

Theorem 8.1.5. Suppose that Assumptions 8.1.1 and 8.1.2 are satisfied.
For all ζ ∈ S

d
+, there are spaces F± satisfying

(8.1.4) CN = F− ⊕ F+ , dim F± = N∓ ,

and such that for all κ ≥ 1 there are a neighborhood ω of (ζ, 0) in Sd×R, a
C∞ mapping S from ω to the space of N ×N matrices and a constant c > 0
such that for all (ζ, ρ) ∈ ω,

S(ζ, ρ) = S∗(ζ, ρ) ,(8.1.5) (S(ζ, ρ)h, h
) ≥ κ|Π+h|2 − |Π−h|2 ,(8.1.6)

and for all (ζ, ρ) ∈ ω with ρ ≥ 0 and γ ≥ 0:

(8.1.7) Re
(S(ζ, ρ)H(ζ, ρ)h, h

) ≥ c(γ + ρ)|h|2 .

In (8.1.6), Π± denote the projectors on F± associated to the decomposition
(8.1.4).

Note that, it is sufficient to check (8.1.6) at (ζ, 0), since it will extend by
continuity to a neighborhood, changing S to S/2 and decreasing κ to κ/4.

8.1.2 Block reduction

Fix ζ ∈ S
d
+. We split the eigenvalues of H := H(ζ, 0) into eigenvalues in

{±Re µ > 0} and in {Re µ = 0}. We denote by µ
k

= iξ
k

the distinct eigen-
values located on the imaginary axis. By standard perturbation arguments,
there are δ > 0, a neighborhood ω0 of (ζ, 0) in Sd ×R and a smooth matrix
V(ζ, ρ) on ω such that

(8.1.8) V−1HV =

 H1 · · · 0
... . . . ...
0 · · · Hk


such that each block Hk(ζ, ρ) has its spectrum either in {|Re µ| ≥ 2δ} or
in the ball of radius δ centered at µ

k
. Moreover, we can assume that the

balls of radius 2δ centered at the µ
k

do not intersect each other. This block
decomposition corresponds to a smooth decomposition

(8.1.9) CN = F1(ζ, ρ)⊕ · · · ⊕ Fk(ζ, ρ)
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into invariant subspaces of H(ζ, ρ). In particular, when k corresponds to a
purely imaginary eigenvalue µ

k
, Fk(ζ, 0) is the space spanned by the gener-

alized eigenvectors of H(ζ, 0) associated to this eigenvalue. We denote by
Nk = dim Fk the dimension of the block Hk. By Assumption 8.1.2, H and
thus the Hk have no eigenvalues on the imaginary axis when ρ ≥ 0, γ ≥ 0
and ρ + γ > 0. Therefore, the number of eigenvalues of Hk in {±Re µ > 0}
is constant for ρ ≥ 0, γ ≥ 0 and ρ + γ > 0. We denote it by Nk,±. Because
the total number of eigenvalues of H in {±Re µ > 0} is N∓, we have

(8.1.10)
∑

Nk,± = N∓ .

It is sufficient to construct symmetrizers Sk for each block Hk separately.
With

S = (V−1)∗

 S1 · · · 0
... . . . ...
0 · · · Sk

V−1

Theorem 8.1.5 follows from the next result:

Proposition 8.1.6. With notations as above, for all k, there are spaces Fk±
satisfying

(8.1.11) CNk = Fk
+ ⊕ Fk

− , dim Fk
− = Nk,− ,

and for all κ large enough, symmetrizers Sk, C∞ on a neighborhood of (ζ, 0),
such that

Sk = (Sk)∗(8.1.12) (SkU,U)
) ≥ κ|Πk

+U |2 − |Πk
−U |2 ,(8.1.13)

ReSkHk ≥ c(γ + ρ)Id , for ρ ≥ 0 , γ ≥ 0 .(8.1.14)

In (8.1.13), Sk = Sk(ζ̌, 0) and Πk± are the projectors associated to the de-
composition (8.1.11).

The construction of the Sk depends on the nature of the spectrum of
Hk. The easy case is when the spectrum is away from the imaginary axis
(elliptic modes). Next, we consider the case where the spectrum is purely
imaginary when γ = ρ = 0 and semi-simple (hyperbolic modes). This case
is studied in the next section. The most difficult case, considered in sections
3 and 4, occurs when Jordan blocks are present (glancing modes).
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8.1.3 Elliptic modes

We now prove Proposition 8.1.6 when the spectrum of Hk lies in

(8.1.15) {Re µ > 2δ} [resp. {Re µ < −2δ} ] .

In this case, there are self adjoint positive definite matrices Sk(ζ̌, ρ), defined
and C∞ on a neighborhood ω of (ζ̌, 0) and such that

Re SkHk ≥ cId [resp. Re SkHk ≤ −cId ] .

with c > 0 independent of (ζ, ρ) ∈ ω. We set

Fk
− = {0} [resp. Fk

− = CNk ]

and
Sk = κSk [resp. Sk = −Sk ]

and properties (8.1.5) to (8.1.7) are satisfied.

Remark 8.1.7. When ζ belongs to the open half sphere Sd
+, that is when

γ > 0, H(ζ, 0) has no eigenvalues on the imaginary axis, and all the blocks
Hk satisfy (8.1.15). Thus Proposition 8.1.6 is proved when γ > 0.

8.2 Hyperbolic modes

8.2.1 Preliminaries

a) Introduce the characteristic polynomial

(8.2.1) ∆(τ, η, ξ) := det
(
τ Id +

d−1∑
j=1

ηjAj + ξAd

)
.

The Assumption 8.1.1 implies that there are functions λj(η, ξ), smooth and
homogenenous of degree one in Rd\{0}, and fixed integers αj such that

(8.2.2) λ1 < λ2 < . . . , and ∆(τ, η, ξ) =
j∏

j=1

(
τ + λj(η, ξ)

)αj .

The roots λj are real analytic and therefore extend to the complex domain.
In particular, there is δ > 0 such that the λj are defined for complex ξ such
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that |Im ξ| ≤ δ(|η| + |Re ξ|) and the factorization (8.2.2) extends to such ξ
and τ ∈ C.

In addition, since the eigenvalues are semi-simple, the eigenprojectors
Πj(η, ξ) are C∞ functions, homogeneous of degree zero, of (η, ξ) ∈ (Rd\{0}).
The dimension of the associated eigenspace is equal to the multiplicity αj .
By analytic continuation, the projectors Πj extends analytically to ξ in the
domain |Im ξ| ≤ δ(|η|+ |Re ξ|) and AΠj = λjΠj on this domain.

b) For ρ small enough and (η, ξ) in a compact of Rd\{0}, the eigenvalues
of iA(η, ξ) + ρB(η, ξ) remain close to the iλj and the Πj(η, ξ) extend to
smooth spectral projectors Πj(η, ξ, ρ) of iA(η, ξ) + ρB(η, ξ). Therefore, in
a neighborhood of a given point (η, ξ) ∈ Rd\{0} there is a smooth block
decomposition

(8.2.3) V −1
(
A(η, ξ) + ρB(η, ξ)

)
V =

 D1 · · · 0
... . . . ...
0 · · · Dj

 ,

with Dj of dimension αj × αj of the form

(8.2.4) Dj(η, ξ, ρ) = iλj(η, ξ) + ρB′
j(η, ξ, ρ) .

By Assumption 8.1.1, the eigenvalues of Dj satisfy Re µ ≥ cρ(|η|2 + ξ2) and
thus the spectrum of B′

j is contained in {Re µ > c(|η|2 + ξ2)}.
Introduce the determinant

(8.2.5) ∆̃(τ, η, ξ, ρ) := det
(
iτ Id + iA(η, ξ) + ρB(η, ξ)

)
.

Near any point (η, ξ) ∈ Rd\{0}, the block decomposition (8.2.3) implies

(8.2.6) ∆̃(τ, η, ξ, ρ) =
∏

∆j(τ, η, ξ, ρ)

with

(8.2.7) ∆j(τ, η, ξ, ρ) := det
(
i(τ + λj(η, ξ))Id + ρB′

j(η, ξ, ρ)
)
.

8.2.2 Symmetrizers for hyperbolic modes

Let ζ ∈ S
d
+. In the block decomposition (8.1.8), we consider now the case

where the spectrum of Hk is {iξk} and the spectrum of Hk(ζ, ρ) is contained
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in the ball of radius δ centered at µ
k

= iξ
k

when (ζ, ρ) remains in the
neighborhood ω of (ζ, 0). Note that necessarily γ = 0.

Since iξ
k

is an eigenvalue of H(ζ, 0), τ is an eigenvalue of A(η, ξ
k
). Note

that (η, ξ
k
) '= (0, 0), since otherwise it would imply that τ = 0 which is

impossible since ζ '= 0. Therefore the factorization (8.2.2), implies that
there is a unique eigenvalue λj such that

(8.2.8) τ + λj(η, ξ
k
) = 0 .

We assume in this section that ξ
k

is a simple root of this equation, that is

(8.2.9) % := ∂ξλj(η, ξ
k
) '= 0 .

Lemma 8.2.1. Suppose that (8.2.8) and (8.2.9) hold. Then, the dimension
Nk of the block Hk is equal to the multiplicity αk. Moreover, there are a
smooth scalar function qk(ζ) and a smooth matrix Rk(ζ, ρ) on a neighbor-
hood ω of (ζ, 0), such that

(8.2.10) Hk(ζ, ρ) = qk(ζ)Id + ρRk(ζ, ρ) .

Furthermore, qk is purely imaginary when γ = 0, q̇k := ∂γRe qk(ζ) does
not vanish and the spectrum of q̇kRk(ζ, 0) is contained in the half space
{Re µ > 0}.
Proof. The eigenvalue λj is an analytic function of (η, ξ) and thus extends to
complex values of ξ with small imaginary part. By (8.2.9), for ζ = (τ, η, γ)
close to ζ the equation

(8.2.11) τ − iγ + λj(η, ξ) = 0

has a unique solution ξk(ζ) close to ξ
k
. We define qk(ζ) = iξk(ζ) so that

qk(ζ) = µ
k

= iξ
k
. The implicit function theorem also implies that ξk(ζ) is

real when γ = 0. Moreover, there holds

∂ξλj(η, ξ
k
)∂γξk(ζ) = i .

Thus, using (8.2.9) yields

(8.2.12) q̇k = ∂γqk(ζ) = −1/% '= 0 .

Using Assumption 8.1.2 and Remark 8.1.4 on one hand and the factor-
ization (8.2.6) on the other hand, we see that for (ζ, ξ, ρ) close to (ζ, ξ

k
, 0),

there holds

(8.2.13)
∆̃(τ − iγ, η, ξ, ρ) = e(ζ, ξ, ρ) det

(
iξId−H(ζ, ρ)

)
= e1(ζ, ξ, ρ) det

(
iξId−Hk(ζ, ρ)

)
= e2(ζ, ξ, ρ)∆j(τ − iγ, η, ξ, ρ),
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where e, e1 and e2 do not vanish in a neighborhood of (ζ, ξ
k
, 0).

For ρ = 0, ∆j(τ, η, ξ, 0) = (τ +λj(η, ξ))αj . Therefore, by (8.2.9), ξk(ζ) is
a root of multiplicity αj of ∆j(τ − iγ, η, ξ) and hence of det(iξId−H(ζ, 0)).
This shows that qk(ζ) is an eigenvalue of algebraic mulitplicity αj of H(ζ, 0).
Moreover, the kernel of ξk(ζ)Id−H(ζ, 0) is equal to the kernel of (τ−iγ)Id+
A(η, ξk(ζ)), which is of dimension αj . This shows that the geometric mul-
tiplicity of the eigenvalue qk(ζ) is equal to its algebraic multiplicity. Thus,
this eigenvalue is semi-simple, showing that the block Hk has dimension
Nk = αj and that

(8.2.14) Hk(η, 0) = qk(η)Id .

This implies (8.2.10).
Moreover, by (8.2.9)

i(τ + λj(η, ξ
k

+ ξ′))Id + ρB′
j(η, ξ

k
+ ξ′, ρ)

)
= i%ξ′Id + ρB′

j + O
(
ξ′2 + ρ2

)
.

with B′
j = B′

j(η, ξ
k
). Thus,

∆j(τ , η, ξ
k

+ ξ′, ρ) = det
(
i%ξ′Id + ρB′

j

)
+ O

(
(|ξ′|+ |ρ|)αj+1

)
Similarly, with (8.2.10)

i(ξ
k

+ ξ′)Id−Hk(ζ, ρ) = iξ′Id− ρRk + O(ρ2)

with Rk = Rk(ζ, 0), hence

det
(
i(ξ

k
+ ξ′)Id−Hk(ζ, ρ)

)
= det

(
iξ′Id− ρRk) + O

(
(|ξ′|+ |ρ|)αj+1

)
.

With (8.2.13), comparing the Taylor expansions implies

(8.2.15) det
(
i%ξ′Id + ρB′

j

)
= det

(
iξ′Id− ρRk).

Thus, using (8.2.12), the spectrum of q̇kRk = −%−1Rk is equal to the spec-
trum of %−2B′

j which is located in {Re µ > 0}. The proof of the lemma is
now complete.

Proof of Proposition 8.1.6 for hyperbolic modes.
When q̇k > 0 [resp. q̇k < 0], there is c > 0 such that the eigenvalue qk(ζ)

satisfies for ζ close to ζ and γ > 0 small:

(8.2.16) Re qk ≥ cγ , [resp. Re qk ≤ −cγ]
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Thus, for γ > 0 small, (8.2.15) implies that the number of eigenvalues in
{Re µ < 0} of Hk(ζ, 0) is 0 [resp. Nk]. The spectrum of Rk(ζ, 0) = Rk is
contained in {Re µ > 0} [resp. {Re µ < 0}] and this property extends to
a neighborhood of (ζ, 0). Therefore, there are self-adjoint positive definite
matrices Sk(ζ, ρ) which depend smoothly on (ζ, ρ) in a neighborhood of
(ζ, 0), satisfying

(8.2.17) Re SkRk ≥ cId , [resp. − Re SkRk ≥ cId] .

We set
Fk
− = {0} , [resp. Fk

− = CNk ] .

Next we choose

Sk = κSk , κ ≥ 1 , [resp. Sk = −Sk]

With this choice, properties (8.1.12) (8.1.13) are immediate. Moreover,
(8.2.16) (8.2.17) imply that there is c > 0 such that for (ζ, ρ) in a neighbor-
hood of (ζ, 0) with γ ≥ 0 and ρ ≥ 0, there holds in both cases

ReSkHk ≥ c(γ + ρ)Id .

This means that (8.1.14) is satisfied.

8.3 The block structure property

Consider again ζ ∈ S
d
+ with γ = 0 and a purely imaginary eigenvalue µ

k
=

iξ
k

of H(ζ, 0). In the previous section we have shown that (η, ξ
k
) '= 0 and

that there is a unique eigenvalue λj of A(η, ξ) such that

(8.3.1) τ + λj(η, ξ
k
) = 0 .

Since λj is real analytic in ξ, there is an integer ν ≥ 1 such that

(8.3.2) ∂ξλj = · · · = ∂ν−1
ξ λj = 0 , ∂ν

ξ λj = ν!% '= 0 at (η, ξ
k
).

In section 2, we investigated the case ν = 1, see (8.2.9). From now, on we
study the case ν > 1, which corresponds to the so-called glancing modes.
Note that % is real. We denote by αj the multiplicity of the eigenvalue λj

such that (8.3.1) holds.
In this section, we prove that, locally, the block Hk(ζ, ρ) can be put in

a special form, first when ρ = 0 and next for ρ '= 0. We use this special
form in the next section to construct symmetrizers, finishing the proof of
Proposition 8.1.6.
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8.3.1 The hyperbolic case

The next result relies on the constant multiplicity hypothesis in Assumption
8.1.1.

Theorem 8.3.1. With assumptions as above, there is a neighborhood ω of
ζ in Rd+1 and there are matrices T (ζ), C∞ on ω such that

(8.3.3) Q(ζ) := T (ζ)−1Hk(ζ, 0)T (ζ) =

 Q . . . 0

0 . . . 0
0 · · · Q


with αj diagonal blocks all equal to the same matrix Q(ζ) of size ν × ν.
Moreover, at the base point

(8.3.4) Q(ζ) = Q := i(ξ
k
Id + J) , J =


0 1 0

0 0 . . .
. . . . . . 1

· · · 0


where J is the Jordan’s matrix of size ν.

In addition, Q has the form

(8.3.5) Q(ζ) = Q +

 q1(ζ) 0 · · · 0
...

... · · · ...
qν(ζ) 0 · · · 0


and the coefficients of Q are purely imaginary when γ = 0. Moreover,

(8.3.6) q̇ := ∂γqν(ζ) =
−1
%

In the strictly hyperbolic case, αj = 1 and there is one block Q. In
the general case, the main difficulty is to show that there exists a smooth
block diagonal decomposition (8.3.3). Note that the theorem implies that
the dimension Nk of the block Hk is necessarily

(8.3.7) Nk = ναj .

First we study the structure of the characteristic polynomial of Hk(ζ, 0).
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Lemma 8.3.2. There is a neighborhood ω of ζ and there is a monic polyno-
mial in ξ, D(z, ξ), of degree ν and with C∞ coefficients in ζ ∈ ω such that
for all ζ ∈ ω,

(8.3.8) Dk(ζ, ξ) := det
(
ξId + iHk(ζ)

)
=

(
D(ζ, ξ)

)αj ,

The coefficients of D are real when γ = 0 and

(8.3.9)
∂D

∂γ
(ζ, ξ

k
) =

−i

%
.

Furthermore, the set ω∗ of points ζ ∈ ω such that D(ζ, ·) has only simple
roots is dense in ω.

Proof. The eigenvalue λj is real analytic in ξ and have an holomorphic
extension to a complex neighborhood of ξ

k
and the factorization (8.2.2)

extends to the complex domain. In particular, there are neigborhood ω of
ζ and O ⊂ C of ξ

k
such that for ζ ∈ ω and ξ ∈ O, one has

∆(τ − iγ, η, ξ) =
(
τ − iγ + λj(η, ξ)

)αj E1(ζ, ξ) ,

where the function E1 does not vanish on ω × O. By (8.1.1) (8.1.8), there
holds

∆(τ − iγ, η, ξ) = detAd

∏
m

det
(
ξId + iHm(ζ, 0)

)
.

By definition of the Hm, the roots of the Dm, with m '= k, are away from
ξ
k
. Thus, shrinking the neighborhoods if necessary, one obtains that for

(ζ, ξ) ∈ ω ×O

(8.3.10) Dk(ζ, ξ) =
(
τ − iγ + λj(η, ξ)

)αjE(ζ, ξ) ,

where E is smooth in ζ, holomorphic in ξ and does not vanish on ω ×O.
By (8.3.2) we are in position to apply the Weirstrass preparation theorem

to the function τ +λj : there is a monic polynomial of degree ν in ξ, D(ζ, ξ),
with C∞ coefficients in ζ, and there is a nonvanishing function E2(ζ, ξ)
defined for (ζ, ξ) in a neighborhood of (ζ, ξ

k
), holomorphic in ξ, C∞ in ζ

and such that

(8.3.11) τ − iγ + λj(η, ξ) = E2(ζ, ξ) D(ζ, ξ) , D(ζ, ξ) = (ξ − ξ)ν .

For the convenience of the reader we include a short proof, which allows the
introduction of parameters and non analytic regularity in ζ.
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Suppose that f(a, ξ) is holomorphic in ξ, C∞ in the parameters a and
satisfies the analogue of (8.3.2) at a given root (a, ξ). Then, there is r > 0
and there is a neighborhood ω of a such that for all z ∈ ω, f(a, ·) has ν roots
in the disc {|ξ − ξ| < r/2}. Thus, there is a unique decomposition

f(a, ξ) = p(a, ξ) eh(a,ξ)

with p a polynomial of degree ν, with ν roots in the disc {|ξ− ξ| < r/2} and
h holomorphic in {|ξ − ξ| < 2r} such that h(a, ξ) = 0. Thus necessarily, for
|ξ − ξ| < r, one has

∂ξh(a, ξ) =
1

2iπ

∫
|w−ξ|=r

∂ξf(a,w)
f(a,w)

dw

w − ξ
.

This shows that ∂ξh and therefore h and p = fe−h are C∞ in a. Factoring
out the coefficient of ξν implies (8.3.11).

The Schwarz reflection principle implies that λj(η, ξ) = λj(η, ξ). Thus
the explicit formula above shows that when γ = 0, D has real coefficients.

Combining (8.3.10) and (8.3.11) implies that Dk = DαjE3 on a neighor-
bood ω × O of (ζ, ξ

k
) where E3 does not vanish. Moreover, shrinking O

if necessary, all the roots of the polynomials Dk(z, ·) and D(z, ·) are in O.
This implies that E3(z, ·) is a constant in ξ and, since both polynomials are
monic (8.3.8) follows.

In (8.3.11), D and E2 are real when γ = 0. Moreover, together with
(8.3.2), it implies that E2(ζ, ξ

k
) = %. Differentiating (8.3.11) in γ yields

−i = %∂γD(ζ, ξ
k
)

and the property (8.3.9) follows.
Shrinking the neighborhoods, one can assume that ∂γD does not vanish

on ω×O. Suppose that ζ1 ∈ ω and D(ζ1, ·) and has a multiple root at ξ1 of
multiplicity ν1. Since ∂γD does not vanish, for ζ = (τ1, η1, γ1 + s) ∈ ω, one
has D = c1(ξ − ξ1)ν1 + O(ξ − ξ1)ν1+1 + c2s + O(s2) with c2 '= 0. Thus, for
s small enough, the multiple root splits into simple roots. This proves that
ω∗ is dense in ω.

Next, we study the structure of Hk(ζ, 0). Let Π(η, ξ) denote the eigen-
projector associated to λj(η, ξ). It has constant rank αj and is a C∞ function
of (η, ξ) for (η, ξ) '= 0. Denote by H = H(ζ, 0).
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Lemma 8.3.3. The operators P l = (∂l
ξΠ)(η, ξ) satisfy

(H− µ
k
)P 0 = 0 ,(8.3.12)

(H− µ
k
)P l = ilP l−1 for l = 1, . . . ν − 1 .(8.3.13)

Moreover, the generalized eigenspace of H associated to µ
k

is the direct sum

K =
ν−1⊕
l=0

P lK0 , K0 := P 0CN .

Proof. Freezing the coefficients at η, (8.3.2) implies

λ(η, ξ) + τ = O(ξ − ξ
k
)ν .

Moreover,

0 =
(
ξId + Ad

−1
( ∑

η
j
Aj − λ(η, ξ)Id

))
Π(η, ξ)

= (iH+ ξId)Π(η, ξ) + O((ξ − ξ
k
)ν) .

Evaluating at ξ = ξ
k

yields (8.3.12), since ξ
k

= −iµ
k
. Taking the Taylor

expansion at order ν − 1 implies (8.3.13).
Introduce K0 := P 0CN and for l = 1, . . . , ν − 1, Kl := P lK0. Then

(8.3.13) implies that

(8.3.14) (H− µ
k
)K0 = 0 , (H− µ

k
)Kl = Kl−1 .

Note that K0 is the eigenspace of A(η, ξ
k
) associated to the eigenvalue

λj(η, ξ
k
). Thus, dim K0 = rankΠ0 = αj and dim Kl ≤ rank∂l

ξΠ(ξ) ≤ αj .
On the other hand, (8.3.14) implies that for l ≥ 1, dim Kl ≥ dim Kl−1.
Therefore

(8.3.15) dim Kl = αj , l ∈ {0, . . . , ν − 1} .

Suppose that for l ∈ {0, . . . , ν−1} there is ul ∈ K0, that is such that ul =
P 0ul and assume that

∑
P lul = 0 . Applying (H− µ

k
)ν−1 to this equation,

implies that 0 = (H− µ
k
)ν−1P ν−1uν−1 = P 0uν−1 = uν−1. Inductively, one

shows that all the ul vanish. This proves that the sum K := K0⊕ . . .⊕Kν−1

is direct. In particular, dim K = ναj .
By (8.3.15) (H − µ

k
)νK = 0, thus K is contained in the generalized

eigenspace Fk(ζ, 0) of H. By (8.3.8), the dimension Nk of this space, which
is the degree of Dk, is equal to ναj . Therefore K is equal to Fk(ζ, 0) and the
lemma is proved.
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Let (e0,1, . . . , e0,αj
) be a basis of K0. For l = 1, . . . , ν − 1, and p =

1, . . . , αj , introduce

(8.3.16) el,p =
1
l!

P le0,p .

Lemma 8.3.3 implies that

(8.3.17) (H− µ
k
)e0,p = 0 and (H− µ

k
)el,p = iel−1,p for l ≥ 1 .

The {el,p} form a basis of K. We denote by Hp the space generated by
(e0,p, . . . , eν−1,p). Thus

(8.3.18) K = H1 ⊕ . . .⊕Hαj
.

Taking this basis to write the conjugation (8.1.8), the relations (8.3.17) imply
that the matrix of Hk(ζ, 0) has the following diagonal block structure

Hk(ζ, 0) =

 Q · · · 0
... . . . ...
0 . . . Q


with Q = µkId + iJ = i(ξ

k
+ J) where J is the ν × ν nilpotent matrix

introduced in (8.3.4).

Our goal is to extend the splitting (8.3.14) to a neighborhood of ζ with
spaces Hp(ζ) invariant by H(z) and smooth in ζ.

The eigenprojector Π(η, ξ) extends analytically to a neighborhood ω1×O
of (η, ξ

k
); say that O contains the disc of radius 2r centered at ξ

k
. Since

D(ζ, ξ) vanishes only at ξ = ξ
k
, shrinking the neighborhood ω of ζ if

necessary, one can assume that for all ζ ∈ ω, the ν complex roots of
D(ζ, ξ) = 0 satisfy |ξp − ξ| ≤ r/2. Therefore, we can define for ζ ∈ ω
and l ∈ {0, . . . , ν − 1},

(8.3.19) Pl(ζ) :=
l!(ν − l − 1)!

2iπν!

∫
|ξ−ξ|=r

Π(η, ξ)
∂l+1

ξ D(ζ, ξ)
D(ζ, ξ)

dξ .

They are C∞ functions on ω. Since D(ζ, ξ) = (ξ − ξ
k
)ν , Cauchy’s formula

implies that

(8.3.20) Pl(ζ) = (∂l
ξΠ)(η, ξ) = P l .
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Moreover, when ζ ∈ ω∗, the roots (ξ1, . . . , ξν) of D(ζ, ·) are simple and

(8.3.21) Pl(ζ) =
ν∑

m=1

cl(ζ, ξm) Π(η, ξm)

where

cl(ζ, ξm) =
l!(ν − l − 1)!

ν!
∂l+1

ξ D(ζ, ξm)
∂ξD(ζ, ξm)

∈ C .

Recall that {e0,p}1≤p≤αj is a basis of K0. For l ∈ {0, . . . , ν − 1} and
p ∈ {1, . . . , αj}, consider

(8.3.22) el,p(ζ) :=
1
l!

Pl(ζ)e0,p

and Hp(ζ) the linear space spanned by (e0,p(ζ), . . . , eν−1,p(ζ)).

Lemma 8.3.4. Shrinking the neighborhood ω if necessary, for ζ ∈ ω, the
vectors {el,p(z)} are linearly independent. Their span K(ζ) = H1(z)⊕ . . .⊕
Hαj (ζ) is equal to the invariant space Fk(ζ, 0) of H(ζ, 0) associated to the
eigenvalues close to µ

k
.

Moreover, for all p, Hp(ζ) is invariant by H(ζ, 0) and the matrix of
H(ζ, 0)|Hp(ζ) in the basis {el,p(ζ)}0≤l≤ν−1 is independent of p.

Proof. By (8.3.20), the definition (8.3.22) implies that el,p(ζ) = el,p. There-
fore, for ζ close to ζ, the vectors el,p(ζ) are linearly independent.

Suppose that ζ ∈ ω∗. In this case, Hk(ζ, 0) has ν pairwise different
eigenvalues in the disc |ξ− ξ

k
| ≤ r/2, (iξ1, . . . , iξν). They satisfy D(ζ, ξ1) =

. . . = D(ζ, ξm) = 0 and τ − iγ + λj(η, ξm) = 0. Therefore the kernel Lm(ζ)
of iH(ζ) + ξmId is the range of Π(η, ξm) and

(8.3.23) H(ζ, 0)Π(η, ξm) = iξmΠ(η, ξm) .

In particular, the dimension of Lm(ζ) is αj . Since the ξm are pairwise distinct
the spaces Lm(ζ) are in direct sum. Because, Nk = ναj , this implies that
the eigenvalues iξm of H(ζ, 0) are semi-simple and that

L1(ζ)⊕ . . .⊕ Lν(ζ) = Fk(ζ, 0) .

For (ζ, ξ) close to (ζ, ξ
k
), Π(η, ξ) is close to Π(η, ξ

k
) and

ẽp(η, ξ) :=
1
l!

Π(η, ξ)e0,p , 1 ≤ p ≤ αj
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form a basis of Π(η, ξ)CN . In particular, {ẽp(η, ξm}1≤p≤αj is a basis of
Lm(ζ). Since the Lm are in direct sum the {ẽp(η, ξm)}p,m are linearly inde-
pendent and form a basis of Fk(ζ). The identity (8.3.21) implies that for all
l and p,

(8.3.24) el,p(ζ) =
ν∑

m=1

cl(ζ, ξm) ẽp(h, ξm) .

Let H̃p(ζ) denote the space spanned by {ẽp(ζ, ξm)}1≤m≤ν . Then (8.3.24)
implies that Hp(ζ) ⊂ H̃p(ζ). Since they have the same dimension, they are
equal and

H1(ζ)⊕ . . .⊕Hαj (ζ) = H̃1(ζ)⊕ . . .⊕ H̃αj (ζ)

= L1(ζ)⊕ . . .⊕ Lν(ζ) = Fk(ζ, 0) .

In addition, (8.3.23) implies that H̃p(ζ) = Hp(ζ) is invariant by H(ζ, 0). The
matrix of H(ζ, 0)|Hp(ζ) in the basis {ẽp(ζ, ξm)}1≤m≤ν is diagonal with entries
{iξm}. It is independent of p. Since the coefficients cl(ζ, ξm) in (8.3.24) are
also independent of p, it follows that the matrix of H(ζ, 0)|Hp(ζ) in the basis
{el,p(ζ)}0≤l≤ν−1 is independent of p.

The el,p(ζ) are smooth functions of ζ and ω∗ is dense in ω. Therefore, it
remains true for all ζ ∈ ω that Hp(ζ) is invariant byH(ζ, 0), that H1(ζ)⊕. . .⊕
Hαj (ζ) = Fk(ζ) and the matrix of H(ζ, 0)|Hp(ζ) in the basis {el,p(ζ)}0≤l≤ν−1

is independent of p.

Using the bases {el,p(ζ)}, in the block decomposition

Fk(ζ) = H1(ζ)⊕ . . .⊕Hαj (ζ),

the lemma implies that the matrix of Hk(ζ, 0) has the following diagonal
block structure

(8.3.25) Hk(ζ, 0) =

 Q(ζ) · · · 0
... . . . ...
0 . . . Q(ζ)


with Q(ζ) = Q as in (8.3.4).

Lemma 8.3.5. Shrinking the neighborhood ω if necessary, there are bases
in the spaces Hp(ζ) which are C∞ in ζ ∈ ω and such that

i) (8.3.25) holds and Q(ζ) = Q,
ii) the matrix Q(ζ) has the special form (8.3.5) and its coefficients are

purely imaginary when γ = 0,
iii) the lower hand corner entry of ∂γQ(ζ) is equal to −1/%.
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Proof. Consider the canonical basis (e1, . . . , eν) of Cν . Using the notation
Q′(ζ) = Q(ζ) − Q, define the matrix T by T (ζ)eν = eν and inductively
T (ζ)el = (J − iQ′)T (ζ)el+1 for l < ν. Because Q′(ζ) = 0, there holds
T (ζ)el = el for all l. Thus T (ζ) = Id and T (ζ) is invertible for ζ in a
neighborhood of ζ. By contruction, (J − iQ′(ζ))Tel = Tel−1 = TJel for l ∈
{2, . . . , ν}. Therefore, the matrix Q̃′(ζ) = T−1QT −Q satisfies Q̃′(ζ)el = 0
for l ≥ 2. This shows that

Q̃(z) := T (z)−1Q(z)T (z) = Q +

 q1(z) 0 · · · 0
...

... . . . ...
qν(z) 0 . . . 0

 .

Lemma 8.3.2 and (8.3.25) imply that(
D(ζ, ξ)

)αj = det
(
iHk(ζ) + ξId

)
=

(
det

(
iQ(ζ) + ξId

))αj

and therefore the monic polynomials of degree ν det
(
iQ(ζ) + ξId

)
and

D(ζ, ξ) are equal. Thus,

(8.3.26)

D(ζ, ξ) = det
(
iQ(ζ) + ξId

)
= det

(
iQ̃(ζ) + ξId

)
= det

(
(ξ − ξ

k
)Id− J + iQ̃′(ζ)

)
= (ξ − ξ

k
)ν +

ν∑
l=1

iql(ζ) (ξ − ξ)ν−l .

Since D has real coefficients when γ = 0, this implies that the iql(ζ) are real
and therefore that Q̃(ζ) is purely imaginary when γ = 0.

In addition, (8.3.26) and (8.3.9) imply that

∂D

∂γ
(ζ, ξ

k
) = i

∂qν

∂γ
(ζ) =

−i

%
.

This implies (8.3.6) and the proof of Theorem 8.3.1 is complete.

8.3.2 The generalized block structure condition

We now look for normal forms for Hk(ζ, ρ) for ρ '= 0.

Theorem 8.3.6. There is a neighborhood ω of (ζ, 0) in Rd+1×R and there
are invertible matrices V(ζ, ρ) C∞ on ω such that

(8.3.27) V−1(ζ, ρ)Hk(ζ, ρ)V(ζ, ρ) = Q(ζ) + ρR(ζ, ρ) .
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where Q is given by Theorem 8.3.1 and

(8.3.28) R =

 R1,1 · · · R1,αj

... . . . ...
Rαj ,1 · · · Rαj ,αj

 ,

where the subblocks Rp,q are ν×ν matrices. Moreover, at ρ = 0, the matrices
Rp,q have the special form

(8.3.29) Rp,q(ζ, 0) =

 ∗ 0 . . . 0
... 0 . . . 0

rp,q 0 . . . 0

 .

In addition, denoting by R+ the αj × αj matrix with entries rp,q, the matrix
q̇Re R+(ζ, 0) is definite positive, where q̇ = ∂γRe qν(ζ) as in Theorem 8.3.1.

Remarks 8.3.7. a) Part of this result was originally established in [Zum],
under the additional assumption that A(η, ξ) and B(η, ξ) be simultaneously
symmetrizable, under which the matrices R+ may be chosen to be diagonal,
see Observations 4.11–4.12 and equations (4.102)–(4.103) of that reference.

b) In some cases, it may happen that the eigenvalues of iA(η, ξ) +
ρB(η, ξ) have constant multiplicity in (η, ξ) and ρ. For instance, this is
the case of an artificial viscosity when B = −∆y,xId, in which case the
eigenvalues are iλj(η, ξ) + ρ(|η|2 + ξ2). In this case, the analysis of the
previous section can be extended and one can put R in a block diagonal
form as well, that is Rp,q = 0 when p '= q and Rp,p = R. In, this case
R+ = rId, where r is the lower left hand entry of R. However this extended
constant multiplicity condition is not always satisfied.

Proof of Theorem 8.3.6.
a) With T given by Theorem 8.3.1, we have

T −1(ζ)Hk(ζ, ρ)T (ζ) = Q(ζ) + ρR(ζ, ρ)

for some matrix R(ζ, ρ). Consider an additional change of basis is Id + ρT̃ .
Then,

(Id + ρT̃ )−1(Q+ ρR)(Id + ρT̃ ) = Q+ ρR̃ , R̃ = R+ [Q, T̃ ] + O(ρ).

Denoting by Tp,q the blocks of T̃ (ζ, 0), the blocks R̃p,q(ζ, 0) are Rp,q(ζ, 0) +
[iJ, Tp,q]. Consider the canonical basis (e1, . . . , eν) of Cν . Then Je1 = 0
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and Jel = el−1 for l ≥ 2. Define Tp,q by Teν = 0 and inductively Tp,qel =
JTp,qel+1 − iRp,qel+1 for l < ν. Then [Tp,q, J ]el = −iRp,qel for l = 2, . . . ν.
In this case, R̃p,qel = 0 for l ≥ 2, showing that the blocks R̃p,q have the form
(8.3.29).

b) Thus, from now on we assume that (8.3.27) and (8.3.29) are satisfied.
We compute the Taylor expansion at (ζ, ξ

k
) of the characteristic polynomial

of Hk using Assumption 8.1.2 and the factorization (8.2.6). With ξ′ = ξ−ξ
k

possibly complex, (8.3.2) implies(
iτ + λj(η, ξ)

)
Id + ρB′

j = i%ξ′νId + ρB′
j + O

(|ξ′|ν+1 + ρ|ξ′|+ ρ2
)

with B′
j = B′

j(η, ξ
k
, 0). Therefore, substituting in (8.2.7) yields

(8.3.30)
∆j(τ , η, ξ, ρ) =det

(
i%ξ′νId + ρB′

j

)
+ O

(
(|ρ|+ |ξ′|) (|ξ′|ν + ρ)αj

)
.

Comparing (8.1.2) and (8.2.6) we see that

(8.3.31)
∆j(τ − iγ, η, ξ, ρ) = E(ζ, ξ) det

(
iξId−Hk(ζ)

)
= E(ζ, ξ) det

(
iξId−Q(ζ)− ρR(ζ, ρ)

)
,

with E '= 0 near the (ζ, ξ
k
). We now compare the Taylor expansion (8.3.30)

of ∆j to the Taylor expansion of the right hand side. There we use the
following lemma, in which J is the block diagonal matrix

J =

 J . . . 0

0 . . . 0
0 · · · J

 .

Lemma 8.3.8. Suppose that M(h) is a αjν×αjν matrix with blocks Mp,q(h)
depending smoothly on the parameter h, satisfying (8.3.29) and such that
M(0) = 0. Then there holds

det
(
ξId− J + iM(h)

)
= det(ξνId + ih∂hM +(0))

+ O
(
(|h|+ |ξ|) (|ξ|ν + |h|)αj

)
,

where M + is the αj × αj matrix with entries mp,q which are the lower left
hand corner coefficient of Mp,q.
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We apply this lemma with parameter h = ρ and M = ρR(ζ, ρ). Recall-
ing that Q(ζ) = iξ

k
Id + iJ , it implies

(8.3.32)
det

(
iξId−Q(ζ)−ρR(ζ, ρ)

)
= iναj det

(
ξ′νId + iρR+

)
+ h.o.t.

where R+ is the αj ×αj matrix with entries rp,q and R+ its value at the base
point. Thus, comparing the Taylor expansions (8.3.30) and (8.3.32), we find
that

det
(
βξ′νId− iρB′

j

)
= E(ζ)i(ν−1)αj det

(
ξ′νId + iR+

)
.

Therefore, the eigenvalues of R+ are the eigenvalues of −%−1B′
j . With (8.3.6),

this implies

(8.3.33) Spectrum
(
q̇R+

) ⊂ {Re µ > 0} .

c) As already used, see for instance (7.3.6), (8.3.33) implies that there is
a definite positive matrix Σ such that Re q̇ΣR+ is definite positive. Therefore,

(8.3.34) Re T−1q̇R+T is definite positive ,

where T = Σ−1/2. As R+, T is a αj × αj matrix. Consider T the ναj × ναj

matrix with blocks Tp,q = tp,qId of size ν×ν, where the tp,q are the coefficients
of T . Then S = T −1 has blocks Sp,q = sp,qId where the sp,q are the entries
of S = T−1. Straightforward computations show that

T −1QT = Q ,

since the blocks of the first matrix in the left hand side are∑
n

sp,nQtn,q = Qδp,q .

Next, the blocks of R̃ := T −1RT are

(8.3.35) R̃p,q =
∑
n,m

sp,ntm,qRn,m .

At the base point (ζ, 0) the columns 2 to ν of Rn,m vanish and the same
property holds for R̃p,q, showing that the form of the matrix R̃ at the base
point is unchanged. Moreover, (8.3.35) implies that the matrix of the lower
left hand corner elements in R̃ is R̃+ = T−1R+T and thus Re ·qR̃+ is positive
definite at the base point.
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Proof of Lemma 8.3.8.
a) We start with a general remark. Consider a N ×N matrix A with

entries aj,k depending on variables x. Assume that

aj,k(x) = aj,k(x) + h.o.t.

where aj,k is homogeneous of degree µj−νk and h.o.t denotes terms of higher
degree, here O(|x|µj−νk+1). Then

(8.3.36) det A(x) = det A(x) + h.o.t.

and det A is homogeneous of degree µ :=
∑

µj −
∑

νk. Indeed,

det A =
∑

ε(σ)aσ1,1 · · · aσN ,N

where the sum is extended over all the permutations σ of {1, . . . , N} and
ε(σ) is the signature of σ. Each monomial is equal to the corresponding one
with a in place of a plus higher order terms, and the term with the a is
homogeneous of degree∑

(µσk − νk) =
∑

µσk −
∑

νk =
∑

µj −
∑

νk = µ.

b) In our case, we consider the matrix A = ξId − J + iρM. Denote
by Ap,q the blocks in A and by Ap,a,p,b the entries of Ap,q. Remember that
1 ≤ p, q ≤ α and 1 ≤ a, b ≤ ν. We use a quasi-homogeneous version of
(8.3.36) with weight 1 on the variable ξ and weight ν on the variable ρ. To
be more specific, with ξ0 and h0 fixed, consider ξ = tξ0 and h = tνh0 with
t ∈ [0, 1]. Introduce the weights

µp,a = a + 1 , νq,b = b .

The diagonal terms inA are equal to ξ, homogeneous of degree 1 = µp,a−νp,a

in t. The entries Np,a,q,b ofN are zero or equal to−1 when p = q and b = a+1
which is homogeneous of degree 0 = µp,a− νp,a+1. Introduce M = ∂hM(0).
Then the form (8.3.29) of the blocks Mp,q of M implies that Mp,a,q,b(th)
vanishes when b > 1. When b = 1

Mp,a,q,1(th) = tνh0Mp,a,q,b + O(t2ν) .

The leading term is homogeneous of degree ν which is strictly larger than
µp,a − νq,1 = a if a < ν, and exactly equal to µp,a − νq,1 = ν if a = ν. Thus,
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only the lower left hand corners of Mp,q have a non vanishing principal part
in the sense of a). Thus

(8.3.37)
det

(
tξ0Id− J+iM(tνh0)

)
=

det
(
tξId− J + itνh0M+

)
+ O(tαν+1)

where the leading term is homogeneous in t of degree αν and M+ is the
matrix with all entries equal to zero except M +

p,ν,q,1 = mp,q.

c) Grouping the indices the other way, i.e. considering the matrix A as
a block matrix with blocks Âa,b with entries Âp,a,q,b, we see that there is a
permutation matrix P such that

P−1
(− J + ihM+

)
P =


0 −Id 0 · · ·
0 0 . . . 0
0 · · · 0 −Id

ihM + 0 · · · 0

 := M̂

where M + is the matrix with entries mp,q. Thus u ∈ ker(ξId − J + ihM+)
if and only if v = P−1u ∈ ker(ξId + M̂), which means that the blocks
components va of v satisfy va = ξ′a−1v1 and v1 ∈ ker(hM + + ξ′ν−1Id).
Therefore

det
(
ξId− J + ihM+

)
= det

(
ξνId + ihM +

)
.

With (8.3.37) this implies that

(8.3.38)
det

(
tξ0Id− J+iM(tνh0)

)
=

det
(
(tξ0)νId + itνh0M

+
)

+ O(tαν+1)

and the Lemma follows.

8.4 Construction of symmetrizers near glancing
modes

8.4.1 Examples

We use examples to introduce the main three ingredients of the construction.
Consider the ν × ν matrix

(8.4.1) Q = iJ + γK , K =


0 0 · · · 0
...

...
...

0 0 · · · 0
σ 0 · · · 0

 , σ ∈ {−1,+1},
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where J is the Jordan matrix in (8.3.4). The characteristic polynomial is

(8.4.2) det(µId−Q) = (µν − iν−1γσ) .

When γ > 0, the eigenvalues are

µl = iγ1/νeiθl , θl =
2lπ

ν
− σπ

2ν

There are no eigenvalues on the imaginary axis. The number of eigenvalues
in {Re µ < 0} is

(8.4.3) ν− =


ν/2 if ν is even,

(ν − 1)/2 if ν is odd and σ = +1
(ν + 1)/2 if ν is odd and σ = −1

Eigenvectors associated to µl are φl := t(1,−iµl, . . . , (−iµl)ν−1). They all
converge to t(1, 0, . . . , 0) as γ tends to zero.. Next, remark that (φ1 −
φ2)/(γ1/ν) tends to t(0, e2iπ/ν , 0, . . .). Continuing the argument, one shows
that F−(γ), the space generated by eigenvectors associated to eigenvalues in
{Re µ < 0}, has a limit F− as γ tends to zero and that

(8.4.4) F− = Cν− × {0}ν−ν−

is the space generated by the first ν− elements of the canonical basis in Cν .
This yields to define the space

(8.4.5) F+ = {0}ν− × Cν−ν−

the space generated by the last ν−ν− elements of the canonical basis in Cν .
In particular,

(8.4.6) Cν = F− ⊕ F+ .

Remark 8.4.1. F+ is not the limit of the space F+(γ), generated by
eigenvectors associated to eigenvalues in {Re µ > 0}. This limit is the space
Cν−ν− × {0}ν generated by the first ν − ν− vectors of the canonical basis.

We look for symmetrizers

(8.4.7) S = E − iγF
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with

E = Et real ,(8.4.8)
F = −F t real ,(8.4.9)

This implies that S = S∗ is self adjoint. Moreover,

(8.4.10) SQ = iEJ + γ(EK + FJ)− iγ2FK .

Our goal is to construct E and F such that

(Sw,w) ≥ κ|Π+w|2 − |Π−w|2 ,(8.4.11)
Re (iEJ) = 0 ,(8.4.12)
Re (EK + FJ) ≥ cId , with c > 0 ,(8.4.13)

where Π± are the projectors on F± in the decomposition (8.4.6). The last
two properties imply that for γ small enough

Re (SQ) ≥ c

2
Id .

Conditions (8.4.8) (8.4.12) are satisfied when E has the form

(8.4.14) E =


0 · · · · · · 0 e1
... . .. e2
... . .. . ..

0 . .. . ..

e1 e2 eν

 .

with coefficients ej ∈ R. Moreover,

(8.4.15) EK + FJ =

 σe1 F1,1 · · · F1,ν−1
...

...
...

σeν Fν,1 · · · Fν,ν−1

 .

In particular (8.4.13) requires that σe1 > 0. Conversely, there holds:

Lemma 8.4.2. For all κ ≥ 1, there is a matrix E(κ) of the form (8.4.14)
such that (8.4.11) holds and

(8.4.16) σe1 ≥ 1
2

.
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Next, the condition (8.4.16) implies that

(8.4.17) Re (EKw, w) ≥ 1
4
|w1|2 − C|w′|2

where (w1, w2, . . . , wν) are the components of w ∈ Cν and w′ = (w2, . . . , wν).
Thus, for (8.4.13) to hold, it is sufficient that

(8.4.18) Re (FJw,w) ≥ (C + 1)|w′|2 − 1
8
|w1|2 .

The existence of such an F follows from the next lemma.

Lemma 8.4.3. For all C > 0, there is a matrix F satisfying (8.4.9) such
that

(8.4.19) Re (FJw,w) ≥ C|w′|2 − |w1|2 .

Indeed, if F satisfies (8.4.19) with the constant 8(C + 1), F/8 satisfies
(8.4.18).

We now consider perturbations of (8.4.1):

(8.4.20) Q = iJ + iQ′(η) + γK

where Q′ is a real matrix depending smoothly on the parameters η and
such that Q′(η) = 0. One look for symmetrizers which are perturbations of
(8.4.7):

(8.4.21) S = E + E′(η)− iγF ,

with E′(η) real and symmetric, vanishing at η. In this case

(8.4.22) SQ = iEJ+iE′(J+Q′)+iEQ′+γ((E+E′)K+F (J+Q′))−iγ2FK .

The real part of the term in γ remains definite positive for η close to η. The
third ingredient in the construction of symmetrizers is the following result.

Lemma 8.4.4. For all real matrices Q′ and Q′′ depending smoothly on the
parameters η and such that Q′(η) = Q′′(η) = 0, there exists on a neighbor-
bood of η, a real symmetric matrix E′(η), C∞ in η, vanishing at η and such
that E′(J + Q′) + Q′′ is symmetric.

Indeed, applying this lemma to Q′′ = EQ′, provides E′ such that

(8.4.23) Re
(
iE′(J + Q′) + iEQ′

)
= 0 .
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8.4.2 Proof of the main lemmas

Construction of E.
We start with examples and next consider the general case.

a) Consider the case ν = 2. Then

E =
[

0 e1

e1 e2

]
, F− = C

[
1
0

]
, F+ = C

[
0
1

]
.

One can choose e1 = σ, and next e2 ≥ κ + 1 so that

(Ew,w) = e2|w2|2 + 2e1Re w1w2 ≥ κ|w2|2 − |w1|2 .

b) Consider the case ν = 3. We look for

E =

 0 0 e1

0 e1 0
e1 0 e3

 .

The reader can check that one can introduced a non vanishing term e2 in
the matrix E, to the price of modifying the specific choice of the parameters
below. There are two subcases:

b 1) σ = +1. Then

F− = C

 1
0
0

 , F+ = C

 0
1
0

⊕ C

 0
0
1

 .

Then we choose e1 ≥ κ, so that e1σ ≥ 1, since σ = 1. Next we chose
e3 ≥ κ + e2

1 so that

(Ew,w) = e3|w3|2+e1|w2|2 + 2e1Re w1w3

≥ κ|w3|2 + κ|w2|2 − |w1|2 .

b 2) σ = −1. Then

F− = C

 1
0
0

⊕ C

 0
1
0

 , F+ = C

 0
0
1

 .

Then we choose e1 = −1, so that e1σ = 1. Next we choose e3 ≥ κ + 1 so
that

(Ew,w) = e3|w3|2−|w2|2 − 2Re w1w3

≥ κ|w3|2 − |w2|2 − |w1|2 .
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c) We now come to the general case ν ≥ 4.
With E of the form (8.4.14), consider

Φp(w) =
∑

j,k≤p

ej+k−νwjwk ,

where it is agreed that el = 0 when l ≤ 0. In particular, Φp(w) = 0 if 2p ≤ ν.
Note that

(Ew,w) = Φν(w) .

Then

(8.4.24) Φp+1(w) ≥ Φp(w) + e2p+2−ν |wp+1|2 − 2Cp

p∑
j=1

|wj ||wp+1|

with
Cp = max

l≤2p+1−ν
|el| .

Choose sequences αp and βp with αp+1 < αp, βp+1 > βp, α1+ν− = 2, β1+ν′ =
3/4 and αν = βν = 1. With ν− given by (8.4.3) we show that one can choose
the coefficients el so that (8.4.16) holds and for p ≥ ν− + 1:

(8.4.25) Φp(w) ≥ αpκ
p∑

j=ν−+1

|wj |2 − βp

ν−∑
j=1

|wj |2 .

We proceed by induction on p, getting (8.4.11) for p = ν. Indeed, (8.4.24)
implies that

Φp+1(w) ≥ αpκ
p∑

j=ν−+1

|wj |2 + (e2p+2−ν −
C2

p

ε
)|wp+1|2

− βp

ν−∑
j=1

|wj |2 − ε
p∑

j=1

|wj |2

≥ αp+1κ
p+1∑

j=ν−+1

|wj |2 − βp+1

ν−∑
j=1

|wj |2

if ε is small enough and e2p+2−ν −C2
p/ε ≥ αpκ, which can be achieved since

Cp depends only on the el with l < 2p + 2 − ν. Thus it remains to prove
(8.4.25) for p = 1 + ν−.

195



c1) If ν = 2ν ′ is even, ν− = ν ′ and

Φν′+1(w) = e2|wν′+1|2 − 2e1Re wν′wν′+1 .

We proceed as in step a): choose e1 such that e1σ ≥ 1/2 and next choose e2

such that
Φν′+1(w) ≥ 2κ|wν′+1|2 − 1

2
|wν′ |2 .

c2) If ν = 2ν ′ + 1 is odd and σ = +1, then ν− = ν ′ and

Φν′+1(w) = e1|wν′+1|2 .

It is sufficient to choose e1 ≥ 2κ.
c3) If ν = 2ν ′ + 1 is odd and σ = −1, then ν− = ν ′ + 1 and, if e2 = 0,

Φν′+2(w) = e3|wν′+1|2 + e1|wν′+1|2 + 2e1Re wν′+1wν′+2 .

Choose e1 = −1/2 and next e3 large enough, so that

Φν′+2(w) ≥ 2κ|wν′+1|2 − 3
4
|wν′+1|2 .

The proof of Lemma 8.4.2 is now complete.

Construction of F .
a) Start again with the case ν = 2. In this case,

F =
[

0 −f
f 0

]
, FJ = F

[
0 0
0 f

]
.

Thus,
Re (FJw, w) = f |w2|2 .

b) Consider the general case, ν ≥ 3. We look for F as a tridiagonal
skew symmetric real matrix:

F =



0 −f1 0
f1 0 −f2 0

0 f2
. . . . . . . . .

. . . . . . . . . . . . 0
. . . 0 −fν−1

0 fν 0


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with coefficients fj > 0. Then

Re (FJw, w) =
ν∑

j=2

fj−1|wj |2 −
ν−2∑
j=1

Re fjwj+2wj .

Thus, with a1 = f2
1 /4 and next aj = f2

j /2fj−1, there holds

Re (FJw, w) ≥ −|w1|2 +
ν∑

j=2

1
2
fj−1|wj |2 −

ν∑
j=3

aj−2|wj |2 .

Since aj−2 only depends of the fl for l < j − 1, one can choose the fj

inductively so that (8.4.19) is satisfied.

Proof of Lemma 8.4.4.
With Σ = tQ′′ − Q′′ skew symmetric, vanishing at η, we have to solve

the equation

(8.4.26) E′(η)(J + Q′(η))− t
(
J + Q′(η)

)
E′(η) = Σ(η) , E′(η) = tE′(η) .

The first equation is a linear system of ν(ν − 1)/2 equation for ν(ν + 1)/2
unknowns because of the symmetry of E′. The linear operator J : E′ 4→
E′J − tJE′ maps the space of symmetric matrices to the space of skew
symmetric matrices. Its kernel is the space of matrices of the form (8.4.14),
thus its dimension is ν. Hence, J has rank equal to ν(ν− 1)/2 and therefore
it is onto.

More specifically, one can consider the space E′ of symmetric matrices
of the form

E′ =
[

Ě′ 0
0 0

]
,

with Ě′ real, symmetric of dimension (ν−1)×(ν−1). This space of dimension
ν(ν − 1)/2 intersects the space of matrices (8.4.14) at E′ = 0. Therefore, J
is an isomorphism from E′ to the space of skew symmetric matrices. Hence,
for η close to η, the mapping E′ 4→ E′(J + Q′(η)) − t

(
J + Q′(η)

)
E′ is still

an isomorphism from E′ to the space of skew symmetric matrices and the
lemma follows.
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8.4.3 Proof of Proposition 8.1.6 near glancing modes

Consider ζ ∈ Sd
+ with γ = 0 and a real root ξ

k
of (8.3.1) satisfying (8.3.2)

with ν ≥ 2. By Theorem 8.3.6, we know that there is a smooth matrix
V(ζ, ρ) on a neighborhood of (ζ, 0) such that

H̃k(ζ, ρ) := V−1(ζ, ρ)Hk(ζ, ρ)V(ζ, ρ) = Q(ζ) + ρR(ζ, ρ) .

Q and R have the properties listed in Theorems 8.3.1 and 8.3.6 respectively.
It is sufficient to construct symmetrizers for H̃k, since a symmetrizer S

for H̃k provides a symmetrizer (V−1)∗SV−1 for Hk.
We construct S in the block decomposition (8.3.3) (8.3.28) of Q and R:

(8.4.27) S =

 S 0

0 . . . 0
0 S

 ,

with ν × ν blocks S:

(8.4.28) S(ζ, ρ) = E + E′(η)− iγF − iρF ′,

where E and E are real and symmetric matrices, and F and F ′ are real
and skew symmetric. The idea is that E + E′ − iγF is a good symmetrizer
for Q, as suggested by the analysis above, and that −iρF ′ is a perturbation
analogous to −iγF which takes care of the perturbation ρR.

With obvious notations we denote by E , E ′, F and F ′ the block diagonal
matrices

(8.4.29) E =

 E 0

0 . . . 0
0 E

 , . . . , F ′ =

 F ′ 0

0 . . . 0
0 F ′

 .

By the analysis of the example (8.4.1), we have good candidates for the
limit of the negative space Fk−. By (8.3.26), there holds

det(µId−Q(ζ)) = iν
(
ξ′ν +

ν∑
l=1

iql(ζ)ξ′ν−l
)

with µ = i(ξ′ − ξ
k
). At η = η, qν = γq̇ + O(γ2) and one checks that for

γ > 0, the number ν− of eigenvalues of Q in {Re µ < 0} is given by (8.4.3),
with σ = sign q̇. Consider

(8.4.30) E− = Cν− × {0}ν−ν− , E+ = {0}ν− × Cν−ν− .
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Thus
Cν = E− ⊕ E+ .

In the block decomposition of CNk into αj factors Cν , let

(8.4.31) F± = E± ⊕ · · · ⊕ E± .

Therefore, the splitting (8.1.11), CNk = F− ⊕ F+ holds and dim F− = αjν−
is the number Nk,− of eigenvalues of Q in {Re µ < 0}, when γ > 0, and thus
also the eigenvalues of Hk in {Re µ < 0} when γ ≥ 0 and ρ > 0.

The order of the construction is as follows.
1. First one chooses E real and symmetric, using Lemma 8.4.2. The

real coefficient e1 satisfies (8.4.16) and adding up the estimates (8.4.11) in
each block Cν yields:

(Ew,w) ≥ κ|Π+w|2 − |Π−w|2 ,

where Π± are now the projectors on F±. Thus (8.1.13) is satisfied.

2. Using (8.3.4), the Taylor expansion of Q at γ = 0 reads

(8.4.32) Q(ζ) = Q + iQ′(η) + γK(ζ) .

By Theorem 8.3.1, Q′(η) has real coefficients. Therefore, by Lemma 8.4.4,
there are real symmetric matrices, E′(η), depending smoothly on η and such
that

E′(J + Q′) + EQ′ is symmetric.

In the analysis of the example (8.4.1), we have seen that Re (iEJ) = 0.
Thus, since Q = i(ξ

k
Id + J), we have

Re
(
(E + E′)(Q + iQ′)

)
= 0 .

Therefore,

(8.4.33) ReSH̃k = γΦ(ζ) + ρΦ′(ζ, ρ)

with

Φ(ζ) = Re
(EK(ζ) + FJ )

,(8.4.34)

Φ′(ζ, 0) = Re
(ER(ζ, 0) + F ′J )

.(8.4.35)

Here, K [resp. J ] is the block diagonal matrix with diagonal entries equal
to K [resp. J ].
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3. The special form (8.3.5) of Q and (8.4.16) imply that

Re (EK(ζ)w,w) = e1q̇|w1|2 + Re
ν∑

j=2

ν∑
k=ν−j+1

ej+k−ν∂γqk(ζ)w1wj

≥ |q̇|
4
|w1|2 − C0|w′|2 ,

with w′ = (w2, . . . , wν). Here, C0 is a constant which may depend on the
coefficients el, thus on κ.

Applying Lemma 8.4.3 with C = 8(C0 +1)/|q̇|, and multiplying by |q̇|/8,
one obtains a skew symmetric matrix F such that

Re (FJw, w) ≥ C0|w′|2 +
|q̇|
8

(|w′|2 − |w1|2) .

Therefore,

Re
(
EK(ζ) + FJ

) ≥ |q̇|
8

Id ,

hence
Re

(EK(ζ) + FJ ) ≥ |q̇|
8

Id .

Thus, for ζ in a neighborhood of ζ, there holds:

(8.4.36) Φ(ζ) ≥ |q̇|
10

Id .

4. Introduce a notation. In the decomposition CNk = Cν ⊕ . . . ⊕ Cν ,
a vector w ∈ CNk is broken into αj blocks wp ∈ Cνk , and the components
of wp are denoted by wp,a. We denote by Rp,q the ν × ν blocks of R and
by Rp,a,q,b their entries. The entries of E are denoted by Ea,b. By (8.3.29),
Rp,a,q,b(ζ, 0) = 0 when b > 1. Then

Re
(ER(ζ, 0)w,w

)
= Re

∑
Ea,cRp,a,q,1(ζ, 0)wq,1wp,c

= Re
∑

e1rp,q(ζ, 0)wq,1wp,1 + O(|w∗,1| |w′∗|),

where w∗,1 ∈ Cαj is the collection of the first components wp,1 and w′∗
denotes the other components. Moreover, rp,q = Rp,ν,q,1 the lower left hand
corner entry of Rp,q. By Theorem 8.3.6, q̇R+(ζ, 0) is definite positive. By
(8.4.16), e1 and q̇ have the same sign. Therefore, the matrix Re (e1R+(ζ, 0))
is definite positive. Hence, there are c > 0 and C1 such that

Re
(ER(ζ̌, 0)w,w

) ≥ c|w∗,1|2 − C1|w′∗|2.
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By Lemma 8.4.3, there is a skew symmetric matrix F ′ such that

Re (F ′Jwp, wp) ≥ C1|w′p|2 +
c

2
(|w′p|2 − |wp,1|2) .

Hence, the block diagonal matrix F ′ satisfies

Re (F ′Jw,w) ≥ C1|w′∗|2 +
c

2
(|w′∗|2 − |w∗,1|2) .

Therefore,
Re

(ER(ζ, 0) + F ′J ) ≥ c

2
Id

and for (ζ, ρ) in a neighborhood of (ζ, 0):

(8.4.37) Φ′(ζ, ρ) ≥ c

4
Id .

5. Summing up, we have constructed by definition (8.4.28) a self
adjoint matrix S(ζ, ρ), which satisfies (8.1.13) and, by (8.4.33), (8.4.36)
(8.4.37), such that

ReSH̃k ≥ c′(γ + ρ)Id , c′ > 0 ,

for γ ≥ 0 and ρ ≥ 0. This finishes the proof of Proposition 8.1.6, hence of
Theorems 8.1.5 and 7.5.2.
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Chapter 9

Linear and nonlinear
stability of quasilinear
boundary layers

In this chapter, we briefly describe the main results of [MZ1]. They extend to
the multidimensional case the results obtained by E.Grenier and F.Rousset
([Gr-Ro]) in dimension one. They also extend the results of E.Grenier and
O.Guès ([Gr-Gu]) and M.Gisclon and D.Serre ([Gi-Se]) which where ob-
tained under a smallness assumption.

9.1 Assumptions

We consider on R1+d
+ the hyperbolic system (5.1.1)

(9.1.1) L(u, ∂)u := ∂tu +
d∑

j=1

Aj(u)∂ju = F (u) + f

and a parabolic viscous perturbation (5.1.2)

(9.1.2) L(u, ∂)u− ε
∑

1≤j,k≤d

∂j
(
Bj,k(u)∂ku

)
= F (u) + f .

with Dirichlet boundary conditions:

(9.1.3) u |x=0 = 0 .
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We suppose that the hyperbolicity-parabolicity Assumption 5.1.1 is satisfied.
Let us comment here the assumptions. The Assumption (H1) means that
the perturbation

B(u, ∂) :=
∑

∂j

(
Bj,k(u)∂k ·

)
is uniformly parabolic. (H2) means that L is hyperbolic, at least when the
state u remains in the domain U . The important Assumption (H4) means
that the boundary {x = 0} is noncharacteristic for L. The Assumption
(H3) is a compatibility condition between L and B. For example, when
B = ∆x is the Laplacian, (H1) is trivial and (H3) follows immediately
from (H2). When (9.1.1) is a system of conservation laws which admits
a strictly convex entropy η(u), the system is symmetric hyperbolic. If in
addition, Re

(
η′′(u)

∑
ξjξkBj,k(u)

)
is definite positive for all ξ '= 0, then the

assumptions (H1) and (H3) are satisfied.

The solutions of (9.1.2) are expected to be of the form

(9.1.4) uε(t, y, x) = U0(t, y, x, x/ε) + εU1 . . .

where, for (t, y) in the boundary, w(·) = U0(t, y, 0, ·) is a solution of the
innerlayer ode (5.2.2), connecting 0 to

lim
z→∞U0(t, y, 0, z) = u0(t, y, 0)

where u0(t, y, x) is the solution of the limiting hyperbolic boundary value
problem. Following [Gr-Gu], if u0(t, y, 0) is small, there is a unique small
profile w connecting 0 and u0 if and only if u0(t, y, 0) ∈ C, where C is
a smooth manifold of dimension N−, see Proposition 5.4.1. Similarly, if
u0(t, y, 0) remains close to p and w connects 0 to p and is transversal in
the sense of Definition 5.5.4, there is a unique profile w connecting 0 and
u0, close to w, for u0(t, y, 0) ∈ C, a smooth piece of manifold of dimension
N− near p, see Proposition 5.5.5. In general, we have to assume that the
connection w is given and this leads to the next assumption.

Assumption 9.1.1. We are given a smooth manifold C ⊂ U and a smooth
function W from C × [0,∞[ to U∗, such that for all p ∈ C, wp = W (p, ·) is
a solution of (5.2.2) and wp(z) converges to p when z tends to +∞, at an
exponential rate, which can be chosen uniform on compact subsets of C.

Assumption 9.1.1 is the natural analog of assumption (H4), [Zum], made
in the planar shock theory. For the limiting hyperbolic problem (9.1.1) one
considers the boundary conditions:

(9.1.5) u|x=0 ∈ C .
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For all p ∈ C, we can form the linearized equation (6.1.2) around wp, and
the corresponding Evans function D(p, ζ) (6.3.14) or the scaled Evans func-
tion D̃(p, ζ) (6.3.16). They are defined for ζ '= 0, ζ ∈ Rd+1 := {(τ, η, γ) ∈
Rd+1; γ ≥ 0}. Similarly, we can form the linearized hyperbolic equation
(6.1.6) around the constant solution p. Together with the linearized bound-
ary conditions

u̇|x=0 ∈ TpC ,

we can define the Lopatinski determinant Ď(p, ζ̌) (6.2.8), which is defined
for ζ̌ ∈ S

d
+ := {ζ̌ = (τ̌ , η̌, γ̌) ∈ Rd+1; |ζ̌| = 1 , γ̌ ≥ 0}.

According to Definition 6.3.5, the strong or uniform stability condition
reads:

Assumption 9.1.2 (Uniform stability condition). For all compact K ⊂
C, there is a constant c > 0 such that for all p ∈ K and ζ ∈ Rd+1

+ \{0}, there
holds:

(9.1.6) |D̃(p, ζ)| ≥ c

Remarks 9.1.3. a) The stability conditions are conditions on the “frozen
coefficient” planar boundary value problems associated with the inner layer
solution. They are natural analogs of those defined in [Zum] for the planar
shock case. In the one-dimensional boundary layer case, Assumption 9.1.2
reduces to the condition imposed by Grenier and Rousset [Gr-Ro]. For
extensions to the multidimensional case, we refer to [GMWZ1], [GMWZ2].

b) The uniform stability conditions involves three regimes for ζ. For
medium frequencies, it just means that D(p, ζ) does not vanish. For high
frequencies, the analysis of section 7.3, shows that is is equivalent to the well
posedness of the parabolic problem

∂tu−
∑
j,k

∂j(Bj,k(0)∂ku) = f , u|x=0 = 0 ,

(see also [Zum], Lemma 4.28). In particular, by Remark 7.3.3 the condition
(9.1.6) is satisfied for large ζ if the parabolic system is symmetric.

c) Theorem 6.4.1 gives equivalent conditions for the validity of the
uniform condition (9.1.6) for low frequencies: it holds, if and only if the
profile wp(·) is transversal for p ∈ C and the limiting hyperbolic problem
(9.1.1) (9.1.5) satisfies the uniform Lopatinski condition (see [Ro1] and also
[ZS]).
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d) When the system is symmetric and the parabolic term is the Laplace
operator, it is proved in [Gr-Gu], that for then for small amplitude layers,
i.e., for p in a suitably small neighborhood of 0, there is a unique manifold C
and connection W having the properties above; moreover, the transversality
condition is satisfied. They also prove that the boundary conditions (9.1.5)
are maximally dissipative, when u is small. In the large, we substitute
for maximal dissipativity the more general uniform Kreiss-Lopatinski-Evans
condition.

9.2 Linear stability

By Theorem 6.4.1, under Assumptions 5.1.1, 9.1.1 and 9.1.2, the mixed prob-
lem (9.1.1) (9.1.5) satisfies the uniform Lopatinski conditions, and therefore
the mixed initial boundary value problem can be solved for initial conditions
which satisfy sufficiently many compatibility conditions (see [Maj], [Ra-Ma],
[Mok], [Mé2]).

Consider a smooth enough function u0 on [−T, T ]× Rd
+, which is to be

thought as a solution of the hyperbolic boundary value problem. For the
moment, we only assume that u0 satisfies the boundary condition (9.1.5).
By definition of the boundary condition, there are profiles

(9.2.1) w0(t, y, z) = W (u0(t, y, 0), z)

connecting 0 to u0(t, y, 0). To extend the definition to x > 0, it is convenient
to extend the definition of W (p, z): consider a compact subset K ⊂ C and
assume that u0(t, y, 0) ∈ K for all (t, y) ∈ [−T, T ]× Rd−1.

Lemma 9.2.1. There is a neighborhood Ω of K in U and a C∞ function W̃
on Ω× R+ such that

i) W̃ (p, 0) = 0,
ii) for all all multi-indices (α, k), there are δ > 0 and C such that

∀p ∈ Ω ,∀z ≥ 0 :
∣∣∂α

p ∂k
z

(
W̃ (p, z)− p

)∣∣ ≤ Ce−δz

iii) when p ∈ C then W̃ (p, z) = W (p, z).

Proof. Near p ∈ C, one can use coordinates p = (p′, p′′) such that C is given
by the equations p′′ = h(p′). Then one can extend locally the function W
as

W̃ (p, z) = W (p′, z) + (p′′ − h(p′)) tanh z .

Gluing the pieces by a partition of unity yields the result.
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9.2.1 L2 stability

Assume that

(9.2.2) u0 ∈ W 2,∞([−T, T ]× Rd
+) , u0|x=0 ∈ K .

Introduce

(9.2.3) uε
0(t, y, x) = χ(x)W̃ (u0(t, y, x), ϕ(x)/ε) + (1− χ(x))u0(t, y, x) ,

where χ ∈ C∞(R) is equal to one on a small neighborhood of 0, so that
u0(t, y, x) ∈ Ω for x in the support of χ. By construction, it satisfies

(9.2.4)

{
uε

0|∂Ω = 0 .

uε
0 − u0 = O(e−δx/ε).

Thus, uε
0 is a perturbation of u0 in the interior, that is for x > 0. The claim

is that uε
0 is close to a solution of (9.1.2) if u0 is a solution of the hyperbolic

problem. In this direction, the main step is to prove that the linearized
equations from (9.1.1) around uε

0 are stable. For applications, we need a
little more. The BKW solutions will have the form uε

app = uε
0 + εuε

1 + ε2 . . ..
Since the term uε

1 depends on the rapid variable x/ε, εuε
1 is bounded in

W 1,∞ but is not a perturbation of uε
0 is this space. To study the linear

stability of uε
0 and uε

app, we suppose that we are given a family of functions
vε ∈ W 2,∞([−T, T ]× Rd

+) such that

(9.2.5) sup
ε∈]0,1]

(
‖vε‖L∞ + ‖ε∇t,xvε‖L∞ + ‖ε2∇2

t,xvε‖L∞
)

< ∞ .

Consider,

(9.2.6) uε
a := uε

0 + εvε

and the linearized equation from (9.1.2) around uε
app reads

(9.2.7) Puε
a
(t, x, ∂t, ∂x)u = f , u|x=0 = 0 .

The differential operator Puε
a

is first order in t and second order in (y, x).
it is given by (6.1.2) when uε

a(t, y, x) = w(w/ε). In the general case, its
coefficients depend on the fast variable x/ε as in (6.1.2), but in addition on
the slow variables (t, y, x).

The first result of [MZ1] is that, under the Assumptions 5.1.1, 9.1.1 and
9.1.2, the equations (9.2.7) are well posed in L2.
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Theorem 9.2.2 (L2 stability). There are C > 0 and ε0 such that for all
ε ∈]0, ε0] and f ∈ L2([−T, T ]× Ω) vanishing for t < 0, the equation (9.2.7)
has a unique solution which vanishes for t < 0. Moreover

(9.2.8) ‖u‖L2 +
√

ε‖∇y,xu‖L2 + ε3/2‖∇2
y,xu‖L2 ≤ C‖f‖L2 .

The estimate (9.2.8) is the exact analogue of the basic uniform L2 es-
timate of Theorem 3.3.2, see (3.3.16). However, the proof is much more
delicate, even in the case of symmetric operators. Let us point out where
the difficulty lies. The coefficients of Puε

a
depend on the rapid variable x/ε

and thus are not (uniformly) Lipschitzean. Moreover, the zero-th order co-
efficient of u in Puε

a
has a factor 1

ε in front of it. Thus the usual energy
method using integration by parts yields singular and unsigned terms, and
therefore we get in the right hand side bad terms in

(9.2.9)
C

ε

∫
α|u|2dtdydx

where the coefficient α depends on z-derivatives of the profile W . There is
no way to absorb this term by a zero-th order term of the left hand side.
However, on the left hand side there is a gain of

(9.2.10) cε

∫
|∂xu|2dtdydx .

Because α depends on rapid derivatives of W , it is exponentially decaying:

(9.2.11) |α(t, y, x)| ≤ W ∗e−θx/ε

for some θ > 0. The bound W ∗ is a measure of the strength of the boundary
layer W . Because u = 0 when x = 0, there holds a Poincaré estimate

1
ε

∫
e−θx/ε|u|2dtdydx ≤ C0ε

∫
|∂xu|2dtdydx .

Indeed, this estimate is clear when ε = 1 and follows for ε ∈]0, 1] by scaling.
Therefore, the bad term (9.2.9) is estimated by

CC0W
∗ε

∫
|∂xu|2dtdydx .

It can be absorbed from the right to the left, that is controlled by the good
term (9.2.10) if

W ∗ <
c

CC0
.

This is exactly where the smallness assumption in [Gr-Gu] comes in. The
main objective of Theorem 9.2.2 is to replace the smallness condition by the
Assumption 9.1.2.
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By localization in time, which can be obtained along the lines developed
in Chapter two, the estimate (9.2.8) follows from a weighted estimates for
solutions on R1+d

+ . One can extend u0 and the vε for t ≥ T and t ≤ T , so
that (9.2.2) and (9.2.5) hold on R1+d

+ . We still denote by uε
0 the extended

function defined by (9.2.3) and by uε
a = uε

0 + εvε. Similarly, Puε
a

denotes the
linearized operator around the extended uε

a. The theorem follows from the
estimates:

(9.2.12)
γ‖e−γt‖L2 +

√
εγ‖e−γt∇y,xu‖L2 + ε‖e−γt∇y∇y,xu‖L2

≤C ‖e−γtPuε
a
u‖L2 .

When uε
a is a profile w(x/ε), the linearized equation is studied in Chapter

seven and the estimate (9.2.12) is proved in Corollary 7.1.2. The proof is
based on the use of symmetrizers, which are Fourier multipliers

S(x, Dt, Dy, γ)u = F−1
(
S(x, τ, η, γ)Fu(x, τ, η)

)
where F denotes the tangential Fourier transform. In general, the coef-
ficients of Puε

a
depend on the slow variables (t, y), so that the method of

Fourier multipliers does not apply directly. However, there are known sub-
stitutes for it: this is the role of pseudodifferential calculus to extend the
constant coefficients calculus of Fourier multipliers to the variable coeffi-
cients case. In short, after the analysis of Chapter seven provides us with
symbols S(t, y, x, ζ) associated to planar layers obtained by freezing the
slowly varying coefficients of Puε

a
. By the pseudodifferential calulus, oper-

ators are associated to these symbols. More precisely, since the coefficients
have a finite smoothness, we use the paradifferential calculus of J.M.Bony
([Bon])(see also [Mey], [Hör], [Tay] and [Mé1] [Mok] [Mé2] for the calculus
with parameter γ). Indeed, because of the parabolic nature of the equation
in the high frequency regime, we need extensions of the classical culculus.
All the details are given in the Appendix B of [MZ1]. The main idea, is that
the properties (7.2.2), (7.2.3) (7.2.4) of the symmetrizers as operators in L2

follow from the similar properties of the symbols as matrices. We refer to
[MZ1] for the details.

9.2.2 Conormal stability

The next step is to prove estimates for the derivatives of the solution u. As
explained in Chapter three, one cannot expect uniform estimates in usual
anisotropic Sobolev spaces. Instead, as in Chapter three, we prove estimates
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in the spaces with conormal regularity. Such spaces have already been widely
used in the study of characteristic hyperbolic boundary value problems, see
e.g. [Rau2], [Gu2]. Introduce again the vector fields {Zk; k = 0, . . . , d} as in
(3.4.9) and the spaces Hs

co([−T, T ]× Rd
+) as in Definition 3.4.4:

(9.2.13)
Hs

co :=
{
u ∈ L2 :Zk1 . . . Zkpu ∈ L2 ,

∀p ≤ m ,∀(k1, . . . , kp) ∈ {0, . . . d}p
}

In order to solve nonlinear problems, we need work in Banach algebras
which means here that we have to supplement the Hs

co estimates with L∞
estimates. Introduce the following norms

(9.2.14) ‖u‖W µ
co(U) = ‖u‖L∞ +

µ∑
p=1

∑
0≤k1,...,kp≤d

‖Zk1 . . . Zkpu‖L∞ .

Reinforcing (9.2.2) and (9.2.5), we now assume that m is a positive
integer and that u0 and vε satisfy on [−T, T ]× Ω,

(9.2.15)

 u0 ∈ Wm+2,∞ , u0|x=0 ∈ K ,

sup
ε∈]0,1]

‖vε‖W m
co

+ ε‖∇t,xvε‖W m
co

+ ε2‖∇2
xvε‖W m

co
< ∞ .

Theorem 9.2.3. There are C > 0 and ε0 such that all ε ∈]0, ε0] and all
f ∈ Hm

co([−T, T ]× Rd
+) vanishing for t < 0, the solution of equation (9.2.7)

which vanishes for t < 0, belongs to Hm
co([−T, T ]× Rd

+) and satisfies

(9.2.16) ‖u‖Hm
co

+
√

ε‖∂xu‖Hm
co

+ ε3/2‖∂2
xu‖Hm

co
≤ C‖f‖Hm

co

If in addition m ≥ 2 + d+1
2 and f ∈ L∞([−T0, T0]× Ω), then the solution u

also satisfies

(9.2.17) ‖u‖W 2
co

+ ε‖∂xu‖W 1
co

+ ε2‖∂2
xu‖L∞ ≤ C

(‖f‖Hm + ε‖f‖L∞
)
.

These estimates are parallel to the estimates (3.4.14) of Proposition 3.4.5.
Usually, one derives the Sobolev estimates by tangential differentiation of
the equations. This was used in Chapter three, as well as in Chapter two.
Here, this procedure leads to difficulties: due to the fact that there is an
ε−1 term in the equation, and the commutator of [Puε

a
, Zα] leads to extra

singular terms which are not controlled. Instead, in [MZ1] we use again the
symmetrizer technics, and prove directly the Hm

co estimates.
Knowing the Hm

co regularity, the L∞ estimates follow as in Proposi-
tion 3.4.2.
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9.3 Nonlinear stability

These results can be used to solve the nonlinear equations (9.1.2). In order to
avoid technical discussions on compatibility conditions for the Cauchy data
and the boundary conditions, we consider here the simple case where the
Cauchy data for (9.1.1) and (9.1.2) are zero, but with a non trivial forcing
term, see [Gr-Gu]. More precisely, we consider F (u) such that F (0) = 0 and
a source term f which vanishes in the past. Consider indices m and s0 such
that

(9.3.1) m >
d + 1

2
, s0 > m + 3

d + 1
2

.

Let

(9.3.2) f ∈ Hs0([−T0, T0]× Rd
+) with f|t<0 = 0 .

Assume that the state u = 0 belongs the domain of hyperbolicity U . Since
the hyperbolic problem satisfies the uniform Lopatinski condition for states
u ∈ U , there is T ∈]0, T0] such that (9.1.1) (9.1.5) has a solution u0 in
Hs0([−T0, T ] × Rd

+) which vanishes for t < 0. In this case, uε
0 given by

(9.2.3) vanishes for t < 0 and is an exact solution of (9.1.2) there. We show
that this solution can be continued to [0, T ] × Rd

+ and that uε
0 is a good

approximation.

Theorem 9.3.1. There is ε0 > 0 such that for all ε ∈]0, ε0] the problem
(9.1.2)(9.1.3) has a unique solution uε ∈ Hm

co ∩ L∞([−T, T ] × Rd
+) which

vanishes for t < 0. Moreover,

(9.3.3) ‖uε − uε
0‖Hm

co
+ ‖u− uε

0‖L∞ = O(ε) .

As in [Gr-Gu], one can construct BKW solutions, thanks to Theorem
6.4.1 which implies that both the hyperbolic equations and the inner layer
o.d.e. are well posed. To prove the theorem, it is sufficient to construct
a first corrector uε

1 such that uε
1 = 0 for t < 0, uε

1 = 0 on {x = 0} and
uε

a = uε
0+εuε

1 satisfies equation (9.1.2) up to an error e = O(ε). Indeed, when
one substitutes uε

0 in (9.1.2), the O(ε−1) term is killed by the choice (9.2.3)
and because W satisfies (5.2.2) when the boundary condition is satisfied.
The interior term vanishes since u0 is a solution of the hyperbolic equation.
However, it remains an O(e−δx/ε) term (see the similar computations of
Chapter four). The corrector uε

1, given by a formula analogous to (9.2.3), can
be chosen to cancel this term (see the general discussion of BKW solutions in
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[Gr-Gu] and Chapter four). Then the solution uε is constructed as uε
a + εvε,

where vε solves

(9.3.4) Puε
a
vε + εQ(vε) = f := ε−1e

and Q is at least quadratic in v. Denoting by ‖·‖Xm
ε

[resp. ‖·‖Ym
ε

] the norm
given by adding the left [resp right] hand sides of (9.2.16) and (9.2.17) one
proves that

(9.3.5)
‖εQ(vε)‖Ym

ε
≤ ε1/4 C(M) ,

‖ε(Q(vε
1)−Q(vε

2))‖Ym
ε
≤ ε1/4C(M) ‖v1 − v2‖Xm

ε
,

provided that

(9.3.6)
ε‖v1‖L∞ ≤ 1 , ε‖v1‖L∞ ≤ 1
ε‖v1‖Xm

ε
≤ M , ε‖v1‖Xm

ε
≤ M .

Together with Theorem 9.2.3, this shows that the equation (9.3.4) can be
solved in Xm, provided that ε is small enough. We refer to [MZ1] for a
detailed proof.

As a conclusion, we note that the results in Theorem 9.2.3 and 9.3.1 are
not quite satisfactory. Because (9.1.2) is parabolic, one should expect the
solutions to be smoother than the solutions of (9.1.1). Here we get a result
going the wrong way. We start from a very smooth solution u0 of (9.1.1) and
we end up with less smooth solutions of (9.1.2). This is clearly related to the
method of proof, and a direct proof of existence with uniform estimates for
(9.1.2), without using the solution u0 of (9.1.1) would be very interesting.
In any case, the stability analysis in Theorem 9.2.2 is a key point
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Inst. Fourier (Grenoble) 51 (2001), 109–130.

[St] E.Stein,. Singular Integrals and Differentiability Propseties of
Functions, Princeton Univ. Press, Princeton, 1970.

[Tar] D.Tartakoff, Regularity of solutions to boundary value prob-
lems for first order systems, Indiana Univ.Math.J., 21 (1972),
pp 1113-1129.

[Tay] M.Taylor. Partial Differential EquationsIII, Applied Mathemat-
ical Sciences 117, Springer, 1996.

[ZS] K. Zumbrun-D.Serre, Viscous and inviscid stability of multidi-
mensional planar shock fronts. Indiana Univ. Math. J. 48 (1999),
937–992.

[ZH] K. Zumbrun-P. Howard, Pointwise semigroup methods and sta-
bility of viscous shock waves. Indiana Mathematics Journal V47
(1998), 741–871.

216



[Zum] K. Zumbrun, Multidimensional stability of planar viscous shock
waves. Advances in the theory of shock waves, 307–516, Progr.
Nonlinear Differential Equations Appl., 47, Birkhäuser Boston,
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