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1 The Cauchy problem

1.1 Introduction

Consider a constant coefficient system

(1.1) L(∂t, ∂x) = A0∂t +

d∑
j=1

Aj∂xj +B

and the Cauchy problem

(1.2)

{
Lu = f, t > 0,

u|t=0 = u0.

We assume that A0 is invertible, and multiplying the equation by A−10 we
assume that A0 = Id.

Objectives :

• Introduce the notion of hyperbolicity
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• Symmetrizers

• Well posed-ness of the Cauchy problem

• Finite speed of propagation

1.2 Analysis by Fourier synthesis

We look for solutions of the Cauchy problem in the class of temperate dis-
tributions in x, using the spatial Fourier transform

(1.3) û(ξ) = Fu(ξ) =

∫
e−ξ·xu(x)dx

the equation to solve is

(1.4)

{
∂tû+ iA(ξ)û = f̂ , t > 0,

û|t=0 = û0,

where

(1.5) A(ξ) =
d∑
j=1

ξjAj − iB.

Thus, assuming integrability in time for f̂ ,

(1.6) û(t, ξ) = e−itA(ξ)û0(ξ) +

∫ t

0
ei(s−t)A(ξ)f̂(s, ξ)ds.

In particular, for f = 0 this means that

(1.7) û(t, ξ) = e−itA(ξ)û0(ξ).

This method is successful if one can perform the inverse Fourier transform,
that is if the mutliplicator e−itA(ξ) acts in S ′(Rd).

A favorable case is when there are constant C, m and γ such that

(1.8) ∀t ≥ 0, ∀ξ ∈ Rd,
∣∣e−itA(ξ)∣∣ ≤ C〈ξ〉m eγt

in which case one can solve the Cauchy problem in S ′.

Lemma 1.1. The estimate (1.8) for t = 1 implies that there is a constant
γ1 such that for all ξ ∈ Rd the eigenvalues of A(ξ) satisfy Imλ ≤ γ1.
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Proof. The estimate implies that the eigenvalues satisfy (with a new con-
stant C)

(1.9) etImλ = |e−itλ| ≤ C〈ξ〉m.

Let µ(σ) = sup (Imλ) where the supremum is taken for the (λ, ξ) ∈ C×Rd
such that det(A(ξ) − λId = 0, Imλ > 0 and |λ|2 + |ξ|2 = σ. The estimate
above implies that µ(σ) grows at most logarithmically as σ → ∞. By a
lemma on sub-algebraic functions (see e.g. Corollary A.2.6 in [Hör]), this
implies that µ is bounded and the lemma follows.

This is one way to motivate the following definition.

Definition 1.2. The system is said to be hyperbolic in the time direction,
if there is a constant γ1 such that

(1.10) det(τ +A(ξ)) = 0 ⇒ |Im τ | ≤ γ1.

Remark 1.3. The natural condition from the previous lemma is that the
roots are located in Im τ ≥ −γ1. But, a consequence of Proposition 1.14
is that this property is preserved by reversing the time, and therefore the
roots also satisfy Im τ ≤ γ2. This is why we go directly to condition (1.10).

Proposition 1.4. The system is hyperbolic in time if and only if he estimate
(1.8) is satisfied.

Proof. We have already said that the condition is necessary. We prove that
it is sufficient. We use the representation

(1.11) e−itA =
1

2iπ

∫
C
e−itλ

(
λId−A

)−1
dλ

where C is a contour in C surrounding the spectrum of A. We choose C to
be the union of the segment C1 = {|Reλ| ≤ R , Imλ = −2γ1} and of the
half circle C2 = {|λ + 2iγ1| = R, Imλ ≥ −2γ1}, and we choose R = C〈ξ〉
with C large enough so that

λ ∈ C2 ⇒
∣∣(λId−A)−1

∣∣ ≤ C1/R.

We claim that there is another constant C2 such that

(1.12) λ ∈ C1 ⇒
∣∣(λId−A)−1

∣∣ ≤ C2(γ1 + 〈ξ〉)N−1γ−N1 .
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This implies the estimates (1.8) with m = N . Indeed, on C1, because the co-
factors of the matrix λId−A are O(〈(λ, ξ)〉N−1) = O(〈ξ〉N−1), it is sufficient
to prove ∣∣det(λId−A)

∣∣ ≥ γN1
But this is clear since

det(λId−A) =
∏

(λ− λj)

and |λ− λj | ≥ |Imλ− Imλj | ≥ γ1 on C1.

The estimate (1.8) allows us to apply the inverse Fourier transform to
(1.6) when the data are temperate in x. For instance, in the scale of Sobolev
spaces, one can state:

Theorem 1.5. If the system is hyperbolic in time, then the Cauchy problem
is well posed in Sobolev spaces in the sense that there is a constant C such
that for all T > 0, σ ∈ R, for all u0 ∈ Hσ and f ∈ L1([0, T ], Hσ) the Cauchy
problem (1.2) has a unique solution u ∈ C0([0, T ];Hσ−m) and

(1.13)
∥∥u(t)

∥∥
Hσ−m ≤ Ceγt

∥∥u0∥∥Hσ + C

∫ t

9
eγ(t−s)

∥∥f(s)
∥∥
Hσds.

We have show that one can solve the Cauchy problem in Sobolev spaces.
The formula above contains another information.

Proposition 1.6. If the system is hyperbolic, there is a unique fundamental
solution E ∈ C0(R;H−σ) where σ > N + 1

2d, of LE = δId with E = 0 when
t < 0.

Proof. Let Û(t, ξ) be the matrix valued function defined by (1.11). It is
smooth in t and satisfies

∂tU + iA(ξ)U = 0, U(0, ξ) = Id.

Let

(1.14) Ê(t, ξ) = 1{t>0}U(t, ξ).

Then

∂tÊ + iA(ξ)Ê = δt=0Id, Ê = 0 for t < 0, |Ê(t, ξ)| ≤ C〈ξ〉N .

The inverse spatial Fourier transform of Ê has the desired property.
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Conversely, if LE1 = δt=0,x=0 and E = 0 for t < 0, Holmgren’s unique-
ness theorem implies that for t ≥ 0, E1 has compact support in x. Hence
its spatial Fourier transform Ê1 satisifes

∂tÊ1 + iA(ξ)Ê1 = δt=0Id, Ê1 = 0 for t < 0.

Thus we are reduced to uniqueness for o.d.e.’s and Ê1 = Ê.

1.3 A particular case: strongly hyperbolic systems

The best estimate one can expect by the method above is when m = 0 in
(1.8). In this case, for Im τ < −γ

(1.15) (τ Id +A(ξ))−1 = i

∫ ∞
0

e−it(τ Id+A(ξ))dt,

the integral being absolutely convergent, and

(1.16) (γ − Im τ)
∣∣(τ Id +A(ξ))−1

∣∣ ≤ C.
Applying this estimate for (λτ, λξ) and letting λ tend to +∞ implies, first
for Im τ < 0, then by symmetry for Im τ 6= 0, that

(1.17) |Im τ |
∣∣(τ Id +Ap(ξ))

−1∣∣ ≤ C.
where Ap(ξ) =

∑
ξjAj is the principal part of A. Conversely, (1.17) implies

(1.16) (with another constant C) for all A = Ap +B for γ = 2C|B|.
There are several equivalent formulations of this condition.

Theorem 1.7. Consider the homogeneous case A(ξ) =
∑
ξjAj and L(τ, ξ) =

τ Id +A(ξ). The following conditions are equivalent.
i) For all matrix B, L(τ, ξ) +B is hyperbolic.
ii) supξ

∣∣eiA(ξ)∣∣ < +∞
iii) for all ξ, the matrix A(ξ) has only real eigenvalues and is diagonal-

izable; moreover the eigen-projectors are uniformly bounded for ξ ∈ Rd.
iv) for all ξ, the matrix A(ξ) has only real eigenvalues and

(1.18) sup
ξ∈Rd

sup
Im τ<0

|Im τ |
∣∣L(τ, ξ)−1

∣∣ < +∞.

v) for all ξ ∈ Rd, there is a matrix S(ξ) such that

(1.19) S(ξ) = S∗(ξ), S(ξ)A(ξ) = A∗(ξ)S∗(ξ);

Moreover S is definite positive and S(ξ) and S(ξ)−1 are uniformly bounded
for ξ ∈ Rd.
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Proof. See [Me1].

Definition 1.8. The system L(∂) is strongly hyperbolic if its principal part
satisfies one of the equivalent condition above.

In particular, strong hyperbolicity depends only on the principal part of
L, which is not the case for general hyperbolicity.

Theorem 1.9. If L is strongly hyperbolic, then the Cauchy problem is well
posed in L2 in the sense that there are constants C and γ such that for all
T > 0, for all u0 ∈ L2 and f ∈ L1([0, T ], L2) the Cauchy problem (1.2) has
a unique solution u ∈ C0([0, T ];L2) and

(1.20)
∥∥u(t)

∥∥
L2 ≤ Ceγt

∥∥u0∥∥L2 + C

∫ t

0
eγ(t−s)

∥∥f(s)
∥∥
L2ds.

Conversely, if the Cauchy problem is well posed in L2 in the sense above,
the system is strongly hyperbolic.

Proof. The sufficiency is a particular case with m = 0 of Theorem 1.5.
Conversely, the estimate (1.20) with u0 = 0, implies that for u ∈ C∞0 (R1+d)
and λ > γ.

(1.21) (λ− γ)
∥∥e−λtu∥∥

L2 ≤ C
∥∥e−λtLu∥∥

L2

Using this estimate for

u(t, x) = eiρ(tτ+x·ξ)χ(ρ
1
2x)a

with λ = −ρIm τ and letting ρ tend to +∞ implies that for Im τ < 0

|Im τ |
∣∣a∣∣ ≤ C∣∣Lp(τ, ξ)a∣∣

where Lp denotes the principal part of L. This is condition iv) of Theo-
rem 1.7.

Introduce the ”energy ”

(1.22) E(u) =

∫ (
S(ξ)û(ξ) , û(ξ)

)
dξ.

where S is the symmetrizer in condition v) of Theorem (1.7). Then E(u) ≈
‖u‖2L2 . In the homogenous case, the solutions of Lu = 0 satisfy

(1.23)
d

dt
E(u(t)) = 0.
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More generally, if u is smooth enough,

(1.24)
d

dt
E(u(t)) = 2Re Ẽ(Lu(t), u(t))

where Ẽ is the hermitian symmetric form associated to E . This form is
definite positive, hence using Cauchy Schwarz inequality, one has

(1.25) E(u(t))
1
2 ≤ E(u(t))

1
2 +

∫ t

0
E(f(s))

1
2ds

which is more precise than and implies (1.20). Estimates for zero-th order
perturbations L(∂) +B follow from Gronwall’s lemma.

Example 1.10. Symmetric hyperbolic systems in the sense of Friedrichs.
An important class of strongly hyperbolic systems has been introduced by
Friedrichs [Fr1, Fr2]. The condition is that the symmetrizer S can be cho-
sen independent of ξ. In this case, S is a constant matrix, which satisfies:

(1.26) SA0 = (SA0)
∗ � 0, SAj = (SAj)

∗, j = 1, . . . , d.

In this case, the energy can be defined on the x side :

(1.27) E(u) =

∫ (
Su(x) , u(x)

)
dx.

Note also that for symmetric systems as above, the cone of hyperbolic direc-
tions is the set of ν ∈ R1+d such that SL0(ν) is definite positive.

1.4 Necessary conditions for the well posedness

Hyperbolicity is necessary, not only for the global (in space) well posed-ness
but also in a local theory. Set

(1.28) L(τ, ξ) = τA0 +
∑

ξjAj − iB, p(τ, ξ) = detL(τ, ξ).

Recall that we assume that A0 is invertible. The principal symbol is L0 =
τA0 +

∑
ξjAj and we set

(1.29) p0(τ, ξ) = detL0(τ, ξ).

Let H denote the half space {t > 0}. A minimal form for the well
posed-ness of the Cauchy problem is the condition that

(WP )

{
for all f ∈ C∞0 (H), the equation Lu = f has a unique

solution u ∈ D ′(R1+d) with support contained in H.
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Lemma 1.11. If the condition WP is satisfied, then for all f ∈ C∞ with
support in H the equation Lu = f has a unique solution u ∈ C∞ with
support in H. Moreover, if x̃ is a point in H, there are constants C, R and
s such that for all u ∈ C∞ with support in H:

(1.30) |u(x̃)| ≤ C sup
|α|≤s, |x̃|≤R

|∂αLu(x̃)|.

Proof. See Lemma 12.3.2 in Hörmander [Hör] and the estimate (12.3.3)
which follows.

Theorem 1.12. Suppose that the estimate (1.30) is satisfied. Then, p is
hyperbolic in the time direction, i.e. there is a number γ0 such that

(1.31) p(τ, ξ) 6= 0 if ξ ∈ R, τ ∈ C and Im τ < −γ0.

Proof. Choose a function χ ∈ C∞(R) supported in t > 0 and such that
χ = 1 for t > 1

2 t := t0. Consider

u(t, x) = χ(t)ei(tτ+xξ)r

with (τ, ξ) ∈ C × Rd such that Im τ < 0 and p(τ, ξ) = 0 and r satisfying
L(τ, ξ)r = 0 and |r| = 1. In particular, Lu = 0 when t > t0 and (1.30)
implies that, with a new constant C,

(1.32) e−tIm τ ≤ C(1 + |τ |2 + |ξ|2)s/2.

Let µ(σ) = sup (−Im τ) where the supremum is taken for the ξ̃ = (τ, ξ) ∈
C× Rd such that p(ξ̃) = 0 and , Im τ < 0 and |ξ̃| = σ. The estimate above
implies that µ(σ) grows at most logarithmically as σ →∞. By a lemma on
sub-algebraic functions (see e.g. Corollary A.2.6 in [Hör]), this implies that
µ is bounded and (1.31) follows.

1.5 Properties of hyperbolic polynomials

A very important feature of hyperbolic equations is the finite speed of prop-
agation. It is closely related to the property that the direction of time
can be perturbed. This leads to give definitions independent of coordi-
nates. So we change slightly the notations and we denote by x̃ ∈ R1+d

the time-space variables and by ξ̃ the dual variables. We consider N × N
first order system systems

∑d
j=0Aj∂x̃j + B. Their characteristic deter-

minant is p(ξ̃) = det
(∑d

j=0 iξ̃jAj + B
)
, the principal part of which is

p0(ξ̃) = det
(∑d

j=0 iξ̃jAj
)
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Definition 1.13. A polynomial p(ξ̃) with principal part p0 is said to be
hyperbolic in the direction ν if p0(ν) 6= 0 and there is γ0 such that p(iτν+ξ̃) 6=
0 for all ξ ∈ R1+d and all real τ < −γ0.

A first order system L =
∑d

j=0Aj∂x̃j +B is said to be hyperbolic in the

direction ν ∈ R1+d if the characteristic determinant is.

Theorem 1.14. i ) If p is hyperbolic in the direction ν, then it is also
hyperbolic in the direction − ν. In particular, there is γ1 such that the roots
in τ of p(ξ̃ + τν) = 0 are located in |Im τ | ≤ γ1.

ii) If p is hyperbolic in the direction ν then p0 is also hyperbolic in this
direction. This is equivalent to the conditions that for all ξ̃, the roots in τ
of p(τν + ξ̃) = 0 are real.

iii) If f p is hyperbolic in the direction ν and if Γ denotes the component
of ν in the open set {p(ξ̃) 6= 0}, then Γ is an open convex cone in R1+d and
p is hyperbolic in any direction ϑ ∈ Γ.

Proof. See G̊arding [Gar] or Hörmander [Hör].

In coordinates (t, x) where ν = dt = (1, 0, . . . , 0), we just recover the
Definition 1.2.

There is also a similar definition of strong hyperbolicity:

Definition 1.15. L =
∑d

j=0Aj∂x̃j+B is strongly hyperbolic in the direction
ν if and only if for all matrix B1, L+B1 is hyperbolic in the direction ν.

This definition depends only on the principal part L0 of L. Theorem 1.7
can be reformulated as follows

Theorem 1.16. L =
∑d

j=0Aj∂x̃j is strongly hyperbolic in the direction ν if
and only if one of the following condition is satisfied

i) there is a constant C such that for all (γ, ξ̃, u) ∈ R× R1+d × CN :

(1.33)
∣∣γu∣∣ ≤ C∣∣L(ξ̃ + iγν)u

∣∣.
ii) There is a real C1 such that

(1.34) ∀t ∈ R,∀ξ̃ ∈ R1+d :
∣∣eitA(ξ̃)∣∣ ≤ C1.

iii) All the the eigenvalues λ of A(ξ̃) are real and semi-simple and there
is a real C2 such that all the eigen-projectors Πλ(ξ̃) satisfy

(1.35) ∀ξ̃ :
∣∣Πλ(ξ̃)

∣∣ ≤ C2.
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iv) There are definite positive matrices S(ξ̃) and there are constants C4

and c4 > 0 such that for all ξ̃, S(ξ̃)A(ξ̃) is symmetric, and

(1.36)
∣∣S(ξ̃)

∣∣ ≤ C4, S(ξ̃) ≥ c4Id.

Another important property is that the strong form of hyperbolicity is
preserved for all ϑ ∈ Γ.

Theorem 1.17. If L is strongly hyperbolic in the direction ν, then it is
strongly hyperbolic in any direction ϑ ∈ Γ. Moreover, for all compact cone
Γ1 ⊂ Γ with compact bases, there is a constant C such that

(1.37) Im ξ̃ ∈ Γ1 ⇒ |Im ξ̃||u| ≤ C|L0(ξ̃)u|

Proof. This is a consequence of the fact that the cone of hyperbolicity Γ
depends only the principal part L0. Thus if L + B is hyperbolic in the
direction ν for all B, then L+B is hyperbolic in the direction ϑ for all B if
ϑ ∈ Γ.

1.6 Finite speed of propagation

Theorem 1.18. If L is hyperbolic in directions ν ∈ Γ, then L has a unique
fundamental solution E supported in the polar cone of Γ .

(1.38) Γ◦ = {x̃ ∈ R1+d , ∀ξ̃ ∈ Γ : ξ̃ · x̃ ≥ 0 }

Proof. By Proposition 1.6, for all ν ∈ Γ, there is a fundamental solution Eν
supported in {ξ̃ · x̃ ≥ 0}. By deformation, using the definition of |Gamma
Holmgren’ uniqueness theorem implies that they all coincide and therefore
E is supported in the intersection of the half spaces {ξ̃ · x̃ ≥ 0}.

One can also give a more constructive proof. Fix ν ∈ Γ and use coordi-
nates such that ν = dt. The fundamental solution constructed in Proposi-
tion 1.6 can be written

(1.39) E(x̃) =
1

(2π)d+1

∫
{Im ξ̃·x̃=γ}

eiξ̃·x̃L(ξ̃)−1dξ̃,

where the integral is understood as an inverse Fourier transform. The matrix
L(ξ̃)−1 is defined and holomorphic for ξ̃ ∈ R1+d − iΓR1 , if Γ1 is a subcone
with compact base in Γ and ΓR1 = {η̃ ∈ Γ1; |η| ≥ R}, provided that R is
large enough. By Paley-Wiener theorem, E is supported in {x̃ · ϑ ≥ 0} for
all ϑ ∈ Γ1}.
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Let us come back to coordinates (t, x) such that dt ∈ Γ. As a corollary
we obtain :

Theorem 1.19. If u0 ∈ D′(Rd) [resp C∞(Rd)], the Cauchy problem Lu =
0, u|t=0 = u0 has a unique solution u continuous in times with values in D ′

[resp. C∞(R1+d)] and

(1.40) supp(u) ⊂ supp(u0) + Γ◦.

Proof. The construction above shows that E is continuous with values in E ′

the space of distributions with compact support so the following definition
makes sense:

(1.41) u(t, · ) = E(t, · ) ∗ u0( · )

The theorem follows.

There are similar results for equations with source terms f 6= 0.

2 Boundary value problems

2.1 Introduction

Consider

(2.1)

{
Lu = f, xn > 0,

Mu|xn=0 = g.

Here xn = n · x̃ and An = L(n) is invertible. L is assumed to be hyperbolic.
The matrices Aj and L(ξ̃) act from spaces E to F and M from E to G. We
assume in this lecture that the boundary is not characteristic, that is that

(2.2) detL0(n) 6= 0,

where L0 is the principal part of L.
At the end, we want to solve the problem (2.1) for positive time (a direc-

tion of hyperbolicity) with an initial datum at t = 0 (the initial boundary
value problem, in short IBVP). An intermediate step is to solve the equation
for t running from −∞ to +∞ (that is in R1+d

+ = {xn ≥ 0}), in spaces of
functions or distributions which are allowed to have an exponential growth
in time at +∞, but still decaying (temperate) at infinity in space. More
precisely, given a direction of hyperbolicity ν, supposed to be independent
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of n, we set t = ν · x̃ and we fix coordinates x̃ = (t, x′, xn). We look for
solutions of the form

(2.3) eγtu[(t, x)

with u[ tempered. The equations for u[ reads

(2.4)

{
Lγu[ = f[ xn > 0,

Mu[|xn=0 = g[,

where

(2.5) Lγ(∂) = L(∂) + γL(ν), Lγ(τ, ξ) = L(τ − iγ, ξ).

So the first goal is to solve (2.4) when γ is large enough, say γ ≥ γ0, and
next to draw conclusions for (2.1) and for the IBVP.

Objectives:

• Introduce the stability condition for (2.4), the Lopatinski condition;

• Introduce the method of symmetrizers ;

• Discuss the causality principle;

• Discuss the finite speed propagation property in relation to the choice
of the time direction.

2.2 The basic bvp for o.d.e

Apply the tangential Fourier Laplace transform to (2.1), that is the Fourier
transform with respect to (t, x′) to (2.4). To simplify notations, we call u
the resulting function. The equations are

(2.6)

{
∂xnu+ iG(ζ)u = f, xn > 0,

Mu|xn=0 = g.

Here ζ = (τ, ξ′) ∈ C× Rd−1, Im τ = −γ < 0 and

(2.7) G(ζ) = L0(n)−1L(ζ, 0).

Lemma 2.1. Hyperbolicity implies that there is γ0 such that for Im τ < −γ0,
G(ζ) has no real eigenvalue.
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Proof. IfG has a real eigenvalue λ, then ξn = −λ satisfies detL(τ, ξ′, ξn) = 0,
which requires that |Im τ | ≤ γ0 for some γ0.

Definition 2.2. For Im τ < 0, the incoming space Ein(ζ) [resp. outgoing
space Eout(ζ) ] is the invariant space of G(ζ) associated to the eigenvalues in
{Imλ < 0} [resp. {Imλ > 0}]. We denote by Πin [resp. Πout] the spectral
projectors on these spaces.

Lemma 2.3. The dimension of Ein is equal to N+, the number of positive
eigenvalues of L0(n)−1L0(ν).

Proof. This number is independent of ζ. We compute it for ζ = (−iγ, 0)
with γ → +∞. Indeed,

G(−iγ, 0) = −iγGγ , Gγ := L0(n)−1L0(ν) + γ−1B.

Thus By hyperbolicity and (2.2), the eigenvalues of L0(n)−1L0(ν) are real
and 6= 0. Thus, for γ large, the eigenvalues of Gγ split into two groups. N+

of them are in Reλ > 0 and N − N+ are in Reλ < 0. Hence Gγ has N+

eigenvalues in Imµ < 0 and N −N+ in Imµ < 0.

We now consider the o.d.e. (∂xn + iG)u = f in spaces of temperate
(or decaying) functions on [0,+∞[. By Lemma 2.1 the solutions of the
homogeneous equations u = e−ixnGa, split into groups, those which decay
exponentially at +∞ when a ∈ Ein and those which decay exponentially at
−∞ when a ∈ Eout. One has the following representation:

(2.8) e−ixnGΠin =
1

2iπ

∫
C+
eixnξn

(
ξnId +G

)−1
dξn

where C+ is a contour in {Im ξn > 0} surrounding the spectrum of −G
located in this half space. Similarly

(2.9) e−ixnGΠout =
1

2iπ

∫
C−
eixnξn

(
ξnId +G

)−1
dξn,

with C− ⊂ {Im ξn < 0}.

Lemma 2.4. e−ixnGΠin [resp. e−ixnGΠout is exponentially decaying when
xn → +∞ [resp. xn → −∞]. If f is temperate at +∞, the temperate
solutions of (∂xn + iG)u = f on R+ are

(2.10) u(xn) = e−ixnGa+ If(xn), a ∈ Ein
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where

(2.11)

If(xn) =

∫ xn

0
ei(yn−xn)GΠinfdyn

−
∫ ∞
xn

ei(yn−xn)GΠoutfdyn.

Therefore, to solve (2.6) is remains to check the boundary condition,
that is to solve for a = Πinu0

(2.12) a ∈ Ein(ζ), Ma = g −MI(f)|xn=0

Proposition 2.5. For Im τ < −γ0, the boundary value problem (2.6) has a
unique (temperate) [resp. in the Schwartz class] [resp. in L2] solution for all
f in the same space and all g ∈ G, if and only if M|Ein is an isomorphism

from Ein to G.

This leads to the natural condition which we assume to be satisfied from
now on.

Assumption 2.6. The number of boundary conditions is N+, i.e. the
boundary operator acts from E to G where dimG = N+.

The analysis above also legitimates the following condition:

Definition 2.7. We say that the (2.1) satisfies Lopatinski condition (in the
time direction dt) if there is γ0 such that for all ζ = (τ, ξ′) with Im τ < −γ0,
Ein(ζ) ∩ kerM = {0}.

2.3 Fourier synthesis

To get solutions for (2.4), we must be able to perform the inverse Fourier
transform, that is we need estimates. For simplicity, we give details in L2

spaces.
We use the representation (2.10) of the solution

(2.13) û(xn, τ, ξ
′) = e−ixnG(ζ)â(ζ) + I(ζ, f̂( ·, τ, ξ′))

where I(ζ, f̂) is given by (2.15) and ζ = (τ, ξ′) with Im τ < −γ0 for some γ0.

Lemma 2.8. There are m0 ≥ 1, γ0 ≥ 0 and C such that for all real ξn and
all ζ with Im τ < −γ0

(2.14) γm0
∣∣(ξnId +G(ζ)−1

∣∣ ≤ 〈ζ〉m0−1.
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Proof. When |ξn| ≤ C〈ζ〉 this is the resolvent estimate, and when |ξn| is
large, there is a bound in O(|ξn|−1).

Lemma 2.9. f ∈ L2(R+) then I(f) is the restriction to R+ of the solution
in L2 of (∂xn + iG)ũ = f̃ where f̃ is the extension of f by 0 on the negative
axis.

Proof. ũ is given by the formula

(2.15) ũ(xn) =

∫ xn

−∞
ei(yn−xn)GΠinf̃dyn −

∫ ∞
xn

ei(yn−xn)GΠoutf̃dyn.

Corollary 2.10. There are C and γ0 such that when Im τ < −γ0

γm0
∥∥I(f)

∥∥
L2 ≤ C〈ζ〉m0−1

∥∥f∥∥
L2 ,(2.16)

γm0
∣∣I(f)|xn=0

∣∣ ≤ C〈ζ〉m0− 1
2

∥∥f∥∥
L2 .(2.17)

Proof. ũ can be computed using a Fourier transform in xn: its Fourier trans-
form is

û(ξn) = −i(ξn +G)−1f̂

where f̂ is the Fourier transform of f̃ . The L2 estimate of ũ follows from
(2.14). The second estimate follows using the equation and the inequality

(2.18) |ũ(0)|2 ≤ 2
∥∥ũ∥∥

L2

∥∥∂xn ũ∥∥L2 ≤ 2
∥∥ũ∥∥

L2

∥∥f̃∥∥
L2 +O(〈ζ〉)

∥∥ũ∥∥2
L2 .

For the first term in (2.13), we use the following estimate.

Lemma 2.11. There is C such that for Im τ < −γ0 and a ∈ Ein(ζ), u =
e−ixnGa satisfies

(2.19) γm0
∥∥u∥∥

L2(R+)
≤ 〈ζ〉m0−1|a|.

Proof. Introduce L∗ = −∂x − iG∗ the adjoint of L = ∂x + iG. Then

(2.20)
(
Lu, v

)
L2(R+)

−
(
u, L∗v

)
L2(R+)

= −
(
u(0), v(0)

)
.

In particular, if u = e−ixnGa with a ∈ Ein, one has

(2.21)
(
u, L∗v

)
L2(R+)

=
(
a, v(0)

)
.

15



For f ∈ L2(R+), extend it by 0 for negative xn and consider the solution
v of L∗v = f̃ . L∗ satisfies the same estimate (2.14) as L and repeating the
proof of the Corollary above, we obtain the estimate

(2.22) γm0 |v(0)| ≤ C〈ζ〉m0− 1
2

∥∥f∥∥
L2 .

With (2.20), this implies (2.19).

Next we need estimates for the solutions of the equation (2.12). The
Lopatinski condition says that there is an inverse mapping R(ζ) : G 7→
Ein(ζ) such that MR(ζ) = IdG.

Lemma 2.12. If the Lopatinski condition is satisfied, there are γ1, m and
C such that for Im τ ≤ −γ1

(2.23) a ∈ Ein(ζ) ⇒ |Im τ |m
∣∣u∣∣ ≤ C〈ζ〉m ∣∣Ma

∣∣.
Equivalently, this means that

(2.24)
∣∣R(ζ)

∣∣ ≤ C|Im τ |m/〈ζ〉m.

Proof. Again, the polynomial bound depends on properties of semi-algebraic
functions. See Appendix 2.

Summing up, we have proved the following:

Theorem 2.13. Suppose that the system is hyperbolic in the time direction
and the Lopatinski condition is satisfied. Then, there are C, m and γ0 such
that, when Im τ < −γ0, for all f ∈ L2(R+) and all g ∈ CN+, the problem
(2.6) has a unique solution u ∈ H1(R+) wich satisfies,

γ
∥∥u∥∥2

L2 +
∣∣u(0)

∣∣2 ≤ C(〈ζ〉/γ)m(γ−1∥∥f∥∥2
L2 +

∣∣g∣∣2).(2.25)

where γ = −Im τ .

By Fourier inversion, we obtain the following corollary.

Theorem 2.14. If the Lopatinski condition is satisfied, then there are γ0
such that for γ ≥ γ0, σ ≥ 0 f ∈ Hσ+m(R1+d

+ ), g ∈ Hσ+m(Rd), then the

problem (2.4) has a unique solution u ∈ Hσ(R1+d
+ ).

Equivalently, for f ∈ eγtHσ+m(R1+d
+ ), g ∈ eγtHσ+m(Rd), the problem

(2.1) has a unique solution u ∈ eγtHσ(R1+d
+ ).
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2.4 The method of symmetrizers

Estimates for symmetric hyperbolic BVP are easily obtained by integrations
by part. The method of symmetrizers is also a key ingredient in the analysis
of systems with variable coefficients. What we introduce can be seen as the
symbolic part of the analysis, see e.g. [Kr].

Definition 2.15. A symmetrizer is S(ζ) such that

(2.26) S(ζ) = S(ζ)∗, ImS(ζ)G(ζ) ≥ c(ζ)Id, |S(ζ)| ≤ C

with c(ζ) > 0. The boundary condition M is dissipative [resp. strictly
dissipative] for S if

(2.27) S(ζ) ≥ 0 [resp. S(ζ) ≥ c1(ζ)Id ] on kerM.

Proposition 2.16. If S is a symmetrizer and M is strictly dissipative, then
the Lopatinsky condition is satisfied. The equation (2.6) is well posed in L2

and the solutions satisfy

(2.28) c
∥∥u∥∥2

L2 + c1
∣∣u(0)

∣∣2 . 1

c

∣∣f∥∥2
L2 +

1

c1

∣∣g∣∣2
Proof. For decaying solutions, one has the energy balance

(2.29) 2Re
(
Sf, u

)
L2 = −(Su(0), u(0))− 2Im

(
SGu, u

)
L2

and

(2.30) c
∥∥u∥∥2

L2 +
1

2
(Su(0), u(0)) .

1

c

∣∣f∥∥2
L2 .

In particular, if f = 0, this implies that

(2.31) S ≤ 0 on Ein.

Hence, strict dissipativity implies that Ein∩kerM = {0} and the Lopatinski
condition is satisfied.

Let H1 be a fixed space such that E = kerM ⊕H1. Let C1 be such that

(2.32) u ∈ H1 ⇒ |u| ≤ C1|Mu|.

Decompose u ∈ E into u = u0 + u1 ∈ kerM ⊕H1. Then

(2.33)

(Su, u) = (Su0, u0)−O(|u1|2)−O(|u1||u0|)

≥ 1

2
c1|u0|2 −

C

c1
|u1|2 ≥

1

4
|u|2 − C ′

c1
|Mu|2

since Mu1 = Mu. This proves (2.28) and the proposition follows.
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If the boundary condition is only dissipative, then the conclusion is that

(2.34) Mu(0) = 0 ⇒ c
∥∥u∥∥2

L2 .
1

c

∥∥f∥∥2
L2 .

Given an inhomogeneous boundary term g, we can choose a ∈ E such that
Ma = g and |a| . |g|. We apply the estimate above to u−a−δxn and obtain
that

(2.35) c
∥∥u∥∥2

L2 .
1

c

∥∥f∥∥2
L2 + (

c

δ
+
δ2 + 〈ζ〉2

cδ
)|g|2

Choosing δ ≈ 〈ζ〉, we get that

(2.36) c
∥∥u∥∥2

L2 .
1

c

∥∥f∥∥2
L2 + (

c

〈ζ〉
+
〈ζ〉
c

)|g|2.

An estimate of u(0) and be deduced from the inequality

(2.37)
∣∣u(0)

∣∣2 ≤ 2
∥∥∂xnu∥∥L2

∥∥u∥∥
L2 .

∥∥f∥∥
L2

∥∥u∥∥
L2 + 〈ζ〉

∥∥u∥∥2
L2 .

In particular, if f = 0 and g = 0, then u = 0. Hence we have proved

Proposition 2.17. If S is a symmetrizer and M is dissipative, then the
Lopatinsky condition is satisfied. The equation (2.6) is well posed in L2 and
the solutions satisfy (2.36) and (2.37).

2.5 Dissipative symmetric hyperbolic BVP

Important examples are dissipative BVP for symmetric hyperbolic systems
in the sense of Friedrichs (see the definition at Example 1.10). If S is a
Friedrichs’ symmetrizer, then −S is a symmetrizer for the o.d.e in the sense
of definition 2.15. Accordingly,

Definition 2.18. If L is symmetric hyperbolic in the sense of Friedrichs
with symmetrizer S, the boundary condition M is said to be dissipative [resp.
strictly dissipative] when SL0(n) ≤ 0 [resp. SL0(n)� 0] on kerM .

It is maximal, dissipative or strictly dissipative, if in addition dim kerM =
N −N+.

If the condition is dissipative, then dim kerM ≤ N − N+ since the sig-
nature of SL0(n) is (N+, N −N+). This explains the terminology ”maximal
dissipative”.
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We recall briefly the mains results of this theory. They are based on the
following the energy balance, where we use coordinates (t, x):

(2.38)

∫
Rd+

(
SA0u(T ), u(T )

)
dx−

∫
[0,T ]×Rd−1

(
SAnu0, u0

)
dtdx′

=

∫
Rd+

(
SA0u(0), u(0)

)
dx+ 2Re

∫
[0,T ]×Rd+

(
SLu, u

)
dtdx.

Proposition 2.19. Consider a symmetric hyperbolic system.
i ) If the boundary conditions are dissipative and if u satisfies the homo-

geneous boundary conditions Mu = 0 on the boundary,

(2.39)
∥∥u(t)

∥∥
L2 ≤ Ceγt

∥∥u(0)
∥∥
L2 + C

∫ t

0
eγ(t−s)

∥∥Lu(s)
∥∥
L2ds.

If the boundary condition is maximal dissipative, then for all f ∈ L1([0, T ], L2)
and u0 ∈ L2, the initial boundary value problem Lu = f , u|t=0 = u0,
Mu|xn=0 = 0 has a unique solution u ∈ C0([0, T ];L2) which satisfies (2.39).

ii) If the boundary conditions are strictly dissipative then uγ = e−γtu
satisfies

(2.40)

∥∥uγ(t)
∥∥
L2 +

∥∥uγ |xn=0

∥∥
L2([0,t]×Rd−1 ≤ C

∥∥u(0)
∥∥
L2

+ C

∫ t

0

∥∥e−γsLu(s)
∥∥
L2ds+ C

∥∥uγ |xn=0

∥∥
L2([0,t]×Rd−1

If the boundary condition is maximal dissipative, then for all f ∈ L1([0, T ], L2),
g ∈ L2[0, T ]×Rd−1 and u0 ∈ L2, the initial boundary value problem Lu = f ,
u|t=0 = u0, Mu|xn=0 = 0 has a unique solution u ∈ C0([0, T ];L2) which
satisfies (2.40).

In the maximal dissipative cases one can also solve the inhomogeneous
boundary value problem, but, in general, not for general g ∈ L2 if one want a
L2 solution ( g ∈ H

1
2 is sufficient), and one does not recover the L2 estimate

of the trace u|xn=0, only and H−
1
2 estimate which is only a consequence of

the fact that u ∈ L2, Lu ∈ L2 and the boundary is not characteristic.
Note that the ”semi group” estimates above (meaning in C0([0, T ];L2))

imply estimates in L2([0, T ];L2). For instance, (2.40) implies that for γ ≥ γ0
and u ∈ eγtS (R1+d

+ ) :

(2.41) γ
∥∥u∥∥2

L2
γ

+
∥∥u|xn=0

∥∥2
L2
γ
.

1

γ

∥∥Lu∥∥2
L2
γ

+
∥∥Mu|xn=0

∥∥2
L2
γ
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where L2
γ = eγtL2. Equivalently, v = e−γtu satisfies

(2.42) γ
∥∥v∥∥2

L2 +
∥∥u|xn=0

∥∥2
L2 .

1

γ

∥∥(L+ γA0)u
∥∥2
L2 +

∥∥Mu|xn=0

∥∥2
L2

2.6 Maximal estimates and the uniform Lopatinski condition

In the constant coefficient case, by tangential Fourier transform, the estimate
(2.42) is equivalent to the a similar estimate for the o.d.e (2.6) : for γ ≥ γ0,
ζ = (τ − iγ, ξ′) and u ∈ S (R+)

(2.43) γ
∥∥u∥∥2R+

+
∣∣u(0)

∣∣2 ≤ C(γ−1∥∥f∥∥2
L2(R+)

+
∣∣g∣∣2)

with f = ∂xnu+ iG(ζ)u and g = Mu(0). The important point is that C is
independent of ζ when Im τ ≤ −γ0.

Applied to solutions of ∂xnu+ iG(ζ)u = 0, this implies that

(2.44) ∀u ∈ Ein(ζ),
∣∣u∣∣ ≤ C∣∣Mu

∣∣.
Definition 2.20. The uniform Lopatinski condition is said to be satisfied
when the condition dimG = N+ and there are constants G and γ0 such that
the estimate (2.44) is satisfied.

The improvement with respect to the weak form of the condition is that
the constant in C (2.44) can be taken independent of ζ.

Remark 2.21. The discussion before the definition shows that the uniform
Lopatinski condition is necessary for the validity of the maximal estimates.

Proposition 2.22. The uniform Lopatinski condition is satisfied for M if
and only if there is ε > 0 such that the Lopatinski condition is satisfied for
all M ′ such that |M −M ′| ≤ ε.

Proof. If (2.44) is satisfied then it holds for M ′ with C replaced by 2C if
C|M −M ′| ≤ 1

2 . Conversely, the condition implies that

u ∈ Ein, |Mu| ≤ ε|u| ⇒ u = 0

and hence (2.44) holds with C = ε−1.

Theorem 2.23. If the maximal estimates are satisfied for some bound-
ary conditions M0, in particular if the system is symmetric in the sense of
Friedrichs, then the uniform Lopatinski condition is necessary and sufficient
for the validity of the maximal estimates.
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2.7 Kreiss symmetrizers

A major contribution to the theory has been given by O.Kreiss [Kr] who
constructed tangential symmetrizers to prove that, for a class o the uniform
Lopatinski condition is sufficient for the validity of the maximal estimates.
Because zero-th order term are irrelevant, we assume here that L = L0 is
homogeneous. He proved the following.

Theorem 2.24. Il the system L is striclty hyperbolic and the boundary
conditions satisfy the uniform Lopatinski condition, then there are constants
C and c > 0 and symmetrizers S(ζ) for ζ = (τ − iγ, ξ′), γ > 0, such that

S(ζ) = S(ζ)∗, |S(ζ)| ≤ C(2.45)

ImS(ζ)G(ζ) ≥ cγId(2.46)

S(ζ) ≥ c1(ζ)Id ] on kerM.(2.47)

Strictly hyperbolic means that the eigenvalues of A(ξ) are real and sim-
ple. Note that in any case, strong hyperbolicity is necessary to have maximal
estimates, as is it already necessary in the interior (see Theorem 1.7). The
result is still true when the multiplicities of the eigenvalues are constant,
and in some cases of variable multiplicities. See [Maj, Me3, MZ].

2.8 The causality principle

A weak form of the causality principle is that is u is a solution of the BVP
(2.1) with data f and g which vanish in t < t0, then u = 0 for t < t0. This
means that the values of a solution u at time t0 only depend on the data for
times t ≤ t0.

There is no loss of generality in assuming that t0 = 0. For the solutions
constructed by Fourier synthesis, the statement is clear because if the data
vanish in the past, the Laplace Fourier transform has an holomorphic exten-
sion to a half space Im τ < −γ0. This property is inherited by the solution,
and together with the estimates we can conclude that u = 0 (see Appendix
2). For instance, we can state

Theorem 2.25. With notations as in Theorem 2.14, if γ is larger than soem
γ0 , if f ∈ eγtHσ+m(R1+d

+ ), and g ∈ eγtHσ+m(Rd) vanish for t < 0, then

the problem (2.1) has a unique solution u ∈
⋃
ρ≥γ e

ρtHσ(R1+d
+ ). Moreover,

u vanishes for t < 0 and belongs to eγtHσ(R1+d
+ ).
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2.9 Invariant definitions. The incoming spaces

Recall the notations.The symbol L(ξ̃) =
∑
ξjAj − iB acts from E to F

with dimE = dimF = N . We denote by p(ξ̃) = detL(ξ̃). The principal
symbol is L0(ξ̃) =

∑
ξ̃jAj . L is assumed to be hyperbolic in some direction

ν and Γ ⊂ R1+d denotes the open convex cone of hyperbolic directions. We
consider the domain Ω = {xn > 0} where xn = n · x, and n ∈ R1+d is
the inner conormal to the boundary. The boundary matrix is An = L0(n),
supposed to be invertible, and we denotes by G(ξ̃) = A−1n L(ξ̃).

There is γ0 > 0 such that

(2.48) ξ̃ ∈ R1+d, ϑ ∈ Γ ⇒ p(ξ̃ − iγ0ν − iϑ) 6= 0

(see [Gar] or Theorem 12.4.4 in [Hör]). We can normalize ν so that γ0 = 1
so that, denoting by Γν = ν + Γ ⊂ Γ,

(2.49) Im ξ̃ ∈ Γν ⇒ p(ξ̃) 6= 0.

This implies that for ξ̃ ∈ R1+d− iΓν , G(ξ̃) has no real eigenvalue and hence
the definition of incoming spaces has the following extension:

Definition 2.26. For ξ̃ ∈ R1+d − iΓν , the incoming space Ein(ξ̃) is the
invariant space of G(ξ̃) associated to the eigenvalues in {Imλ < 0}.

The dimension of Ein is constant, and was computed above.

Lemma 2.27. Ein(ξ̃) is an holomorphic vector bundle over R1+d − iΓν of
dimension N+, the number of positive eigenvalues of A−1n L(ν).

In particular, if n ∈ Γ [resp. n ∈ −Γ], then Ein = CN [resp. Ein = {0} ]

From now on, we assume that ±n /∈ Γ otherwise Ein = CN or Ein = {0}
and all what follows is trivial.

Because
G(ξ̃ + sn) = G(ξ̃) + sId

the incoming spaces have the property that

(2.50) Ein(ξ̃ + sn) = Ein(ξ̃)

if the segment [ξ, ξ + sn] is contained in R1+d − iΓν . (This is trivial if
s ∈ R; if s is complex, the assumption is that for t ∈ [0, 1] the eigenvalues
of G(ξ̃ + tsn) do not cross the real axis, implying that the invariant space
associated to the eigenvalues in {Imλ < 0} is constant).
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Consider the projection $ : R1+d 7→ R1+d/Rn ≈ T ∗∂Ω and its complex
extension C1+d 7→ C1+d/Cn ≈ C ⊗ T ∗∂Ω. Let Γ[ denote the projection of
Γ:

(2.51) Γ[ = {ζ : ∃ξ̃ ∈ Γ , ζ = $ξ̃} ⊂ T ∗∂Ω\{0}.

It is an open convex cone in T ∗∂Ω. Let Γ[ν = ν[ + Γ[ = $Γν . It is convex
and for ζ ∈ Γ[ν , $−1(ζ) is a segment in Γ. Thus the invariance (2.50) implies
that Ein depends only on $ξ̃ and legitimates the following definition:

Definition 2.28. For ζ ∈ T ∗∂Ω− iΓ[ν , we set

(2.52) Ein(ζ) = Ein(ξ̃), ξ ∈ R1+d − iΓν , $ξ̃ = ζ.

In coordinates (t, x′, xn) with dual variables (τ, ξ′, ξn) ∈ Rd×R, one can
identify T ∗∂Ω with the first factor Rd. This is what we did in the previous
sections, and this is why we use the notation ζ for element of T ∗∂Ω. More
importantly, we have extended the definition of Ein to the complex domain
{Im ζ ∈ Γ[ν}.

When L = L0 is homogeneous, then Ein is clearly homogeneous of degree
0 and defined in R1+d − iΓ. In general, because L0 is hyperbolic with the
same cone of hyperbolic directions Γ, we can introduce the incoming spaces
associated to L0, which we denote by. Ein0 (ξ̃). For ξ̃ ∈ R1+d − iΓ and ε > 0
small, we have

(2.53)
Πin(ξ̃/ε) =

1

2iπ

∫
C+

(z +G0(ξ̃)− iεA−1n B)−1dz

→ Πin
0 (ξ̃) as ε→ 0.

This property is still true in the quotient ξ̃ 7→ ζ. Note that these conver-
gences hold for Im ζ ∈ Γ[, which means in particular that Im ζ̃ 6= 0. No
uniformity in Im ζ is claimed as Im ζ → 0.

In the homogeneous case the domain of definition of Ein can be extended,
using the following remark:

Lemma 2.29. For all complex number a,

(2.54) Im ζ ∈ −Γ[, Im (aζ) ∈ −Γ[ ⇒ Ein0 (aζ) = Ein0 (ζ).

Proof. Because Γ[ is an open convex cone, one has a 6= 0 and a 6= −1. With
at = ta+ (1− t) 6= 0, we prove that Ein0 (atζ) is constant.
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The assumptions are that ζ = $ξ̃ and aζ = $η̃ with Im ξ̃ ∈ −Γ and
Im η̃ ∈ −Γ. Thus η̃ = aξ̃ + sn, for some complex number s. For t ∈ [0, 1],
atζ = $(ξ̃t) with ξ̃t = tη̃ + (1− t)ξ̃ = atξ̃ + tsn. Because

G0(ξt) = atG0(ξ) + tsId,

the invariant spaces of G0(ξ̃t) are those of G(ξ̃). Moreover, since Γ is convex,
Im ξ̃t ∈ −Γ and the eigenvalues of G(ξt) do not cross the real axis. Hence
Ein0 (ξ̃t) = Ein0 (ξ̃).

Introduce the open set

(2.55) G = {aζ, Im ζ ∈ −Γ[, a ∈ C\{0}} ⊂ C⊗ T ∗∂Ω ≈ C1+d/Cn.

This set is conic and stable by multiplication by complex numbers a 6= 0,
but is not convex. If aζ = bζ ′, with Im ζ and Im ζ ′ in −Γ[, then ζ ′ = αζ
with α = a/b and (2.64) implies that Ein0 (ζ) = Ein0 (ζ ′). Therefore, it makes
sense to extend the definition of Ein0 to the domain G in such a way that

(2.56) ∀ζ ∈ G, ∀a ∈ C\{0} : Ein0 (aζ) = Ein0 (ζ).

In particular, the incoming space Ein(ζ) is defined when ζ̃ ∈ Γ[. We
show that we can also extend the definition of Ein to this region.

Lemma 2.30. When ζ̃ = $ξ̃ and ξ̃ ∈ Γ, the eigenvalues of G0(ξ̃) are real
and exactly N+ are positive. The associated invariant space is Ein0 (ζ) and
has a holomorphic extension to a neighborhood of ζ.

Moreover, there are ε0 > 0 and a complex neighborhood V of ζ such that
Ein extends holomorphical to the cone {ε−1ζ ′, ε < ε0, ζ

′ ∈ V } and

(2.57) ∀ζ ′ ∈ V : Πin(ε−1ζ ′)→ Πin
0 (ζ ′)

One has similar results when θ ∈ −γ[, with Ein0 (−θ) associated to the
negative eigenvalues of G0(−θ), so that Ein0 (−θ) = Ein(θ) in accordance with
(2.56).

Proof. The eigenvalues of G0(ξ̃) = A−1n L(ξ̃) are the inverse of those of
L0(ξ̃)

−1An which are real since we assumed that ξ̃ is in the cone Γ. And
they do not vanish since the matrices are invertible. Moreover the invariant
space of G0()̃ = iG0(−iξ̃) associated to positive eigenvalues is the invariant
space of G0(−iξ̃) associated to eigenvalues in {Imλ < 0}, that is Ein0 . Thus
the invariant space can be continued analytical for all small perturbations
of G0(ξ̃) and the remaining part of the lemma follows.
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2.10 The Lopatinski determinant(s)

We consider boundary conditions M : E 7→ G, with with dimG = N+ as
above. The question under discussion is to know wether Ein(ζ) ∩ kerM is
trivial or not. There are several ways to express this condition. First, given
an arbitrary scalar product in E, one can measure the angle between kerM
and Ein(ξ′) through the quantity

(2.58) D(ζ) =
∣∣ det(H,Ein(ζ))

∣∣
where the determinant is computed by taking orthonormal bases in each
space. This quantity does not depend on the choice of the bases, but it
depends only on the choice of a scalar product on E. One has

(2.59) Ein(ζ) ∩ kerM = {0} ⇔ D(ζ) 6= 0.

However, this choice ignores an important feature of the problem, which
is the analytic dependence of Ein. Locally in T ∗∂Ω − iΓ[ν , one can choose
a holomorphic basis eink (ζ) of Ein(ζ), and form the (local) Lopatinski deter-
minant

(2.60) `(ζ) = det
[
g1, . . . , gN−N+ , e

in
1 (ζ), . . . , einN+

(ζ)
]

where the gj form a basis of kerM . This function has the advantage of being
holomorphic in ζ, and locally there are constants 0 < c ≤ C such that

(2.61) c|`(ζ)| ≤ D(ζ) ≤ C|`(ζ)|.

The function ` can be globalized using analytic continuation and the prop-
erty that T ∗∂Ω − iΓ′ is simply connected, but the global properties of the
extended function do not seem obvious.

There is an alternate way to preserve analyticity. Fix a basis ek of E and
for all subset J = {j1, . . . , jN+} ⊂ {1, . . . , N} of N+ elements consider

(2.62) `J(ζ) = det
[
g1, . . . , gN−N+ ,Π

in(ζ)ej1 , . . . ,Π
in(ζ)eN+ .

]
These functions are clearly defined and holomorphic in T ∗∂Ω− iΓ[ν and

(2.63) Ein(ζ) ∩ kerM 6= {0} ⇔ ∀J, `J(ζ) = 0.

Considering the principal part L0 which is hyperbolic with the same cone
of hyperbolic directions Γ, one can form the quantities D0 and `J,0 associ-
ated to L0 and M . The following properties are immediate consequences of
(2.56), (2.53) and Lemma 2.30.
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Proposition 2.31. i) D0 and `J,0 are defined on the set G and

(2.64) ∀ζ ∈ G, ∀a ∈ C\{0} : D0(aζ) = D0(ζ), `J,0(aζ) = `J,0(ζ).

ii) For all ζ ∈ T ∗∂Ω− Γ[,

(2.65) D(ζ/ε)→ D0(ζ), `J(ζ/ε)→ `J,0(ζ) as ε→ 0.

iii) if θ ∈ Γ[, there are ε0 and a complex neighborhood V of θ such that
D and the `J are defined for ζ/ε if ζ ∈ V and ε < ε0 and the convergence
above is true on V .

2.11 The Lopatinski condition

First remark that if ϑ ∈ Γ[, then there is γ0 such that γϑ ∈ Γ[ν when γ ≥ γ0.
This legitimates the following definition:

Definition 2.32. The (weak) Lopatinski condition is satisfied in the direc-
tion ϑ ∈ Γ[ if and only if there is γ0 such that D(ζ − iγϑ) 6= 0 for all
ζ ∈ T ∗∂Ω and γ > γ0.

Lemma 2.33. If L satisfies the Lopatinski condition in the direction ϑ ∈ Γ[,
then L0 also satisfies the Lopatinski condition.

Proof. Suppose that D0(ζ) = 0 at some ζ ∈ T ∗∂Ω−iγϑ. For ε small enough,
the function gε(z) = D(ζ + zϑ/ε) is defined for z in a disc centered at the
origin and gε → D0(ζ + zϑ). Moreover, D0 is not identically 0. Hence,
by Lemma 3.5 (Hurwitz lemma if we replace D by an holomorphic local
version), gε vanishes in a neighborhood of the origin.

Theorem 2.34. Suppose that the Lopatinski condition is satisfied in the
direction ϑ ∈ Γ[. Let Σ denote the component of ϑ in {ζ ∈ Γ[, D0(−iζ) 6=
0}. Then Σ is an open convex subcone of Γ[ in T ∗∂Ω and the Lopatinski
condition is satisfied in all direction θ ∈ Σ.

Proof. a) For ζ ∈ T ∗∂Ω, we look at the function of the complex variable
z, Fζ(z) = D0(ζ + zϑ). It is defined when ζ + zϑ ∈ G, in particular when
Im z < 0 since then ζ + zϑ ∈ T ∗∂Ω − iΓ[ and, by assumption, Fζ does not
vanish there. Moreover, −ζ − zϑ ∈ T ∗∂Ω − iΓ[ when Im z > 0, and thus
ζ+zϑ ∈ G. By (2.64), Fζ(z) = D0(−ζ−zϑ) wich is 6= 0 by assumption. This
shows that for ζ ∈ T ∗∂Ω, Fζ is defined and does not vanish when Im z 6= 0.
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b) When θ ∈ Σ, Im (−i(θ+zϑ)) = −θ−Re zϑ ∈ −Γ[ when Re z ≥ 0 thus
−i(θ+zϑ) ∈ T ∗∂Ω− iΓ[ and θ+zν ∈ G. Thus, Fθ is defined for Re z ≥ 0. It
does not vanish when Im z 6= 0 by step a), and it does not vanish when z = 0
since Fθ(0) = D0(θ) = D0(−iθ) which is 6= 0 by assumption. Therefore,
Fθ(z) 6= 0 when Re z = 0.

Moreover, for |z| large in Re z ≥ 0, one has ϑ + z−1ζ ∈ Γ[ ⊂ G and
Fζ(z) = D0(ϑ+ z−1ζ) = D0(−i(ϑ+ z−1ζ)) 6= 0 since D0(ϑ 6= 0).

This shows that Fθ does not vanish when Re z = 0 or when Re z ≥ 0
and lz| is large. Since Fϑ(z) = D0((1 + z)ϑ = D0(ϑ) 6= 0 for all z such that
Re z ≥ 0, Lemma 3.6 by deformation that Fθ does not vanish either on the
domain {Re z ≥ 0}:

(2.66) ∀θ ∈ Σ, ∀z, Re z ≥ 0 ⇒ D0(θ + zϑ) 6= 0.

Because Re 1/z ≥ 0 when Re z ≥ 0, the homogeneity of D0, implies that
D0(ϑ + zθ) 6= 0 when Re z ≥ 0 and z 6= 0. This property is also true at
z = 0, and hence

(2.67) ∀θ ∈ Σ, ∀z, Re z ≥ 0 ⇒ D0(ϑ+ zθ) 6= 0.

In particular, this applies to z real nonnegative, and by homogeneity, one
has D0(tθ

′ + sν ′) 6= 0 when t > 0 and s ≥ 0. This extends to t = 0. Thus
the segment [ν, θ′] is contained in Σ and Σ is star shaped with respect to ν.

c) Let ζ ∈ T ∗∂Ω and θ ∈ Σ. For γ > γ0, we look at the function
of z, Gγ(z) = D(ζ − iγϑ − izθ), which is defined for Re z ≥ 0 since then
Im (ζ − iγθ[ − izθ) = −γθ[ − Re zθ ∈ −Γ[ν − Γ[ ⊂ −Γ[ν . It does not vanish
when Re z = 0, since the Lopatinski condition is satisfied in the direction ϑ.

Moreover, when z is large, setting ẑ = z/|z|, one has

Gγ(z) = D
(
− iẑθ + |z|−1(ζ − iγϑ)

)
By iii) of Proposition 2.31, since θ ∈ Γ[, this converges to D0(−iẑθ) =
D0(−iθ) 6= 0 if Re ẑ ≥ 0 . This implies that Gγ does not vanish in the half
space Re z ≥ 0, either when Re z = 0 or when |z| ≥ R0(1 + γ), for some R0

large enough.
Therefore, applying Lemma 3.6, to prove that

(2.68) ∀ζ ∈ T ∗∂Ω, ∀γ > γ0, ∀z, Re z ≥ 0 ⇒ D(ζ − iγϑ− izθ) 6= 0.

it is sufficient to show that for γ1 large

(2.69) γ ≥ γ1, |z| ≤ R0(1 + γ) : D(ζ − iγϑ− izθ) 6= 0.
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Here we factor out γ and use again the Proposition 2.31 which implies that

Gγ(z) = D(γ(−iϑ− iẑθ + γ−1ζ)→ D0(−i(ϑ+ ẑθ)),

where ẑ = z/γ is bounded. By step (2.67) the limit does not vanish and
is bounded from below since |ẑ| is bounded. Therefore, (2.69) and (2.68)
follow.

d) Because Σ is open, one can replace θ by θ− δϑ for some δ > 0 small,
and (2.68) implies that

(2.70) ∀ζ ∈ T ∗∂Ω, ,∀z, Re z > β ⇒ D(ζ − izθ) 6= 0.

This shows that the Lopatinski condition is satisfied in the direction θ′.
Applying step a), this implies that Σ is star shaped with respect to θ′

and the proof of the theorem is complete.

Theorem 2.35. If M satisfies the uniform Lopatinski condition in a direc-
tion ϑ ∈ Γ[, then Σ = Γ[ and the uniform Lopatinski condition is satisfied
in all directions θ ∈ Γ[.

Proof. We have seen that Γ[ − iΓ[ ∈ C and that ∆ is continuous there. The
uniform Lopatinski condition implies that |∆(aθ)| ≥ c when θ ∈ Γ[ Im a < 0.
Hence by continuity |∆(θ)| ≥ c, implying that θ ∈ Σ.

By Proposition 2.22, there is ε > 0 such that M ′ satisfies the Lopatinski
condition in the direction ϑ if |M − M ′| ≤ ε, and thus in all direction
θ ∈ Σ = Γ[ by Theorem 2.34 and the remark above. By Proposition 2.22,
this implies that the uniform Lopatinski condition is satisfied in all directions
θ ∈ Γ[.

3 Appendix

3.1 Laplace Fourier Transform

If u ∈ D ′(Rd), let M denote the set of η ∈ Rd such that eη·xu ∈ S ′(Rd).

Lemma 3.1 ([Hör] Lemma 7.4.1 ). M is convex.

Proof. Note that if ψ ∈ C∞(Rd) is bounded as well as its derivatives at all
order, then the mapping ϕ 7→ ψϕ is continuous in S , and therefore u 7→ ψu
is a continuous map in S ′.

It η1 ∈ M and η2 ∈ M , for t ∈ [0, 1] and η = tη1 + (1 − t)η2, one has
eη·x = ψ(eη1·x + eη2·x) where ψ is bounded and has bounded derivatives,
implying that η ∈M .
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Lemma 3.2. If the interior M◦ of M is not empty, then there is an holo-
morphic function U on Rd + iM◦ such that for η ∈M◦, let U(·+ iη) is the
Fourier transform of eη·xu in S ′(Rd).

Proof. Let ∈M◦. For ε > 0 small enough, the points η ± εej belong to M ,

where {ej} denote a basis of Rd. Denote by ηk the set of such points. Then,
for |η − η| small enough, the function

ψη =
(∑

e(ηk−η)·x
)−1

in in the Schwartz class S , and is bounded in this space. This implies that
the Fourier transform ûη of uη = eη·xu is C∞ in ξ and in η, for η close to η.
Let U(ξ + iη) = ûη(ξ).

Moreover, both i∂ξj ûη and ∂ηj ûη are the Fourier transform of xjuη.
Hence there are equal, implying that the Cauchy Riemann equations (∂ξj +
i∂ηj )U = 0 are satisfied and U is holomorphic in ξ + iη.

Theorem 3.3. Let Γ be a convex open cone in Rd. If U(ξ) is an holomorphic
function on U := {ξ ∈ Rd + iΓ, |Im ξ| > γ0} and satisfies there

(3.1) |U(ξ)| ≤ C(1 + |ξ|)m

then U is the Fourier Laplace transform of a distribution supported in

(3.2) Γ̂ = {x : ∀ξ, ξ · x ≤ 0}.

Proof. For η ∈ Γ with |η| > γ0, the function U(· + iη) is slowly growing
at infinity and is the Fourier transform of uη ∈ S ′(Rd). Moreover, the
Cauchy Riemann equation implies that ∂ηjuη = xj ûη, hence that u = eη·xuη
is independent of η.

The estimates imply that the uη are O(|η|m) in S ′, hence .

3.2 Proof of Lemma 2.12

Proposition 3.4. The set P = {(ζ,Πin(ζ)); Im ζ < 0} is (real) semi-
algebraic, that is a finite union of finite intersections of sets defined by
polynomial equations or inequalities.

Proof. The characteristic polynomial p(z, ζ) = det(zId − G(ζ) can be fac-
tored as p = p+p− where p+(·, ζ) [resp. p−(·, ζ)] has all its roots in Im z > 0
[resp. Im z < 0]. There are polynomials in z, with analytic coefficients
in ζ, denoted by u±(z, ζ) such that p+u+ + p−u− = 1, wich are uniquely
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determined if one adds the condition deg u+ < deg p− := N− , deg u− <
deg p+ := N+. Note that N± are fixed. The projector Πin(ζ) is

(3.3) Πin(ζ) = (u−p−)(A(ζ), ζ).

We consider the set P̃ of ζ = (τ, ξ′) ∈ C × Rd−1, (a1, . . . , aN−) ∈ CN− ,
(b1, . . . , bN+) ∈ CN+ (u1, . . . , uN−) ∈ CN− , (v1, . . . , vN+) ∈ CN− and matri-
ces Π satisfying the conditions:

Im τ < −γ0, Im aj < 0, Im bj > 0,(3.4) (∑
vjz

j−1)∏(z − aj) +
(∑

ujz
j−1)∏(z − bj) = 1(3.5) ∏

(z − aj)
∏

(z − bj) = det(z −G(ζ)),(3.6)

Π =
(∑

vjG(ζ)j−1
)∏

(G(ζ)− ajId)(3.7)

The second and third conditions are polynomial conditions on the (aj , bj , uj , vj)
and ζ. Thus P̃ is semi-algebraic. Now, P is just the projection of P̃ in
the space of (ζ,Π), therefore is semi-algebraic by Tarski-Seidenberg Theo-
rem.

Proof of Lemma 2.12. Consider a basis {ek} of E. If Π is a N ×N matrix,
for I ⊂ {1, . . . , N} with |I| = dimE, we can form the matrix [MΠ]I with
columns MΠek for k ∈ I and define

(3.8) `(Π) =
∑
I

|det([MΠ]I)|2.

The Lopatinski condition is that

(3.9) `(Πin(ζ)) > 0 when Im τ < −γ0.

Consider the set Q of (t, δ, η,Π) such that

(3.10) Im τ ≤ −γ − 1, |ζ| ≤ t, (ζ,Π) ∈ P, δ = `(Π).

This set is semi-algebraic and therefore the function

(3.11) f(t) = inf{δ;∃(ζ,Π) : (t, δ, ζ,Π) ∈ Q}

is semi-algebraic by Corollary A.2.4 in [Hör]. The Lopatinski condition
implies that f(t) > 0 for all t. Hence, by Theorem A.2.5 in [Hör], there are
a rational number α and c > 0 such that

(3.12) f(t) = ctα(1 + o(t)), t→ +∞.
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This implies that for |ζ| large enough and Im τ ≤ −γ − 1, one has

(3.13) `(Πin(ζ) ≥ 1

2
c〈ζ〉α.

The Lopatinski condition implies that this estimate is also valid (possibly
with another constant c > 0) on any compact domain in |ζ|. Hence is is
satisfied for all ζ such that Im τ ≤ −γ − 1.

In particular, there is another constant c > 0 such that for all ζ there is
I satisfying

(3.14) |`I(Πin(ζ)|2 ≥ c′〈ζ〉α.

Let u ∈ Ein(ζ). The Lopatinski condition implies that u is uniquely deter-
mined by Mu and

(3.15) u =
∑
j∈I

ajΠ
in(ζ)ej

where a = (aj)j∈I solves [MΠin]Ia = g. Because Πin has polynomial bounds
in |ζ|, the estimate (3.14) implies that for some C and m:

|a| ≤ C〈ζ〉m|g|

The estimate (2.23) follows.

3.3 The analogue of Rouché’s theorem

Lemma 3.5. Suppose that Dn is a sequence of functions on Ḣ = {Re z >},
which converge uniformly to D on compact subsets of Ḣ. Suppose that for all
z ∈ Ḣ there is a neighborhood ω of z, a sequence of holomorphic functions
`n on ω for n ≥ n0, which converge to `, and a constant C > 1 such that

(3.16) ∀z ∈ ω,∀n ≥ n0,
1

C
|`n(z)| ≤ Dn(z) ≤ C|`n(z)|

and `n → ` Suppose that D is not identically zero. Then, if D vanishes at
z0 ∈ Ḣ, there is a sequence zn → z such that Dn(zn) = 0.

Proof. a) From the lemma above, we know that D(·) cannot vanish iden-
tically on any open set since it does not vanish at infinity Ḣ.

b ) If D(z) = 0, then by assumption there are holomorphic functions
`n → ` on a neighborhood ω such that the zeros of Dn [resp. D] in ω are
the zeros of the `n. Since ` is not identically zero, z is a zero of finite order
m and on a possibly smaller neighborhood of z, for n large enough, `n has
the m zeros, counted with their multiplicities.
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Lemma 3.6. Suppose that D is a continuous function on H := [0, 1] ×H
where H = {z ∈ C,Re z ≥ 0}. Suppose that for all (t0, z0) ∈ H, there is a
neighborhood of (t0, z0), a function ` on this neighborhood, continuous in t
and holomorphic in z, and a constant C > 1 such that

(3.17)
1

C
|`(t, z)| ≤ D(t, z) ≤ C|`(t, z)|.

Suppose that there is R > 0 such that for all t ∈ [0, 1], D(t, z) 6= 0 when
Re z = 0 and when |z| ≥ R. Suppose that D(0, z) 6= 0 for all z ∈ H. Then
if D(1, ·) does not vanish on H.

Proof. a) We show that D(t, ·) cannot vanish identically on any open set. If
it would, let Z denote the non empty set of points z ∈ Ḣ such that D(t, ·)
vanishes identically on a neighborhood of z. It is open by definition. If zn is
a sequence of points in Z which converge to z ∈ Ḣ, the assumption implies
that on a neighborhood ω of z, the zeros of D are zeros of an holomorphic
function `. In particular, for n large zn ∈ ω and `(zn) = 0. Therefore, the
zeros of ` have an accumulation at point, implying that ` and therefore D
must vanish identically on ω. Therefore Z is open and closed and Z = Ḣ,
which contradicts the assumption that D(t, ·) does not vanish at infinity. .

b) The set N of (t, z) such that D(t, z) = 0 is compact in ]0, 1] × Ḣ
where Ḣ = {Re z > 0} is the interior of H. If it is not empty, let t0 =
min{t, (t, z) ∈ N} and let z0 ∈ Ḣ such that D(t0, z0) = 0. Then t0 > 0.

Let ` be a function satisfying (3.17) on a neighborhood of (t0, z0). By a),
`(t0, ·) it is not identically 0, and therefore it is has a zero of finite order at
z0 and therefore does not vanish on the boundary of a small disc containing
z0. Hence, by Rouché’s theorem, `(t, ·) has a root in this disc for t−t0 small,
which contradicts the definition of t0.
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