
Chapter 1

Examples

1.1 Transport equations

(1.1.1) (∂t + v · ∂x)u = f, u|t=0 = h.

(1.1.2) u(t, x) = h(x− tv) +

�
t

0
f(s, x− (t− s)v)ds.

(1.1.3) u(t, x) = h(x− tv) +

�
t

0
f(t− s, x− sv)ds.

1.2 1-D wave equation

(1.2.1) (∂2
t − ∂2

x)u = f, u|t=0 = h0, ∂tu|t=0 = h1.

Let v = (∂t − ∂x)u. Then (∂t + ∂x)v = 0 and v|t=0 = h1 − ∂xh0 so that

v(t, x) = (h1 − ∂xh0)(x− t) +

�
t

0
f(t− s, x− s)ds.

Thus

u(t, x) = h0(x+ t) +

�
t

0
v(t− s, x+ s)ds.

The contribution of h1 in last integral is
�

t

0
h1(x+ 2s− t)dt =

1

2

�
t

−t

h1(x− y)dy.
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The contribution of h0 is

h0(x+ t)−
1

2

�
t

−t

∂xh0(x− y)dy =
1

2

�
h0(x+ t)− h0(x− t)

�
.

The contribution of f is
�

{0≤s�≤t}
f(t− s− s�, x− s+ s�)ds�ds =

1

2

�

{|y|≤s≤t}
f(t− s, x− y)dsdy.

(1.2.2)

u(t, x) =
1

2

�
h0(x+ t)− h0(x− t)

�
+

1

2

�
t

−t

h1(x− y)dy

+
1

2

�

{|y|≤s≤t}
f(t− s, x− y)dsdy.

1.3 The multi-D wave equation

(1.3.1) (∂2
t −∆x)u = f, u|t=0 = h0, ∂tu|t=0 = h1.

Fourier in x

(1.3.2) (∂2
t + |ξ|2)û = f̂ , û|t=0 = ĥ0, ∂tû|t=0 = ĥ1.

(1.3.3)

û(t, ξ) = cos(t|ξ|)ĥ0(ξ) +
sin(t|ξ|)

|ξ|
ĥ1(ξ)

+

�
t

0

sin((t− s)|ξ|)

|ξ|
f̂(t− s, ξ)ds.

Compute the inverse Fourier transform of cos(t|ξ|) and sin(t|ξ|)
|ξ| . Let

(1.3.4) E(t, x) =
1

(2π)d

�
eix·ξ

sin(t|ξ|)

|ξ|
dξ.

Then (formally)

(1.3.5)

u(t, x) =

�
∂tE(t, y)h0(x− y)dy +

�
E(t, y)h1(x− y)dy

+

�

{0≤s≤t}
E(s, y)f(t− s, x− y)dsdy.

Example 1. In 1-D

E(t, x) =
1

2
1[−t,t](x).

Proof : compute the Fourier transform of 1[−t,t]. We recover the formula
above.
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Example 2. In 3-D. E is the distribution

(1.3.6) �Et,ϕ� = t

�

S2
ϕ(tω)dω.

Proof : compute the Fourier transform of this distribution

Êt(ξ) = �Et, e
−ix·ξ

� = t

�

S2
e−itω·ξdω.

This integral is invariant by rotation in ξ and we can assume that ξ =
(0, 0, r), r = |ξ|. Write ω = (cosφσ, sinφ) with φ ∈]−π/2,π/2[ and σ ∈ S1.
Then dω = 1

2(cosφ)dσdφ. Hence

Êt(ξ) =
t

2

�
e−itr sinφ cosφ dφ =

sin(tr)

r
.

Example 3. In 5-D. E is the distribution

(1.3.7) �Et,ϕ� =
2t

3

�

S4
Xϕ(tω)dω, X = −x · ∂x + 3.

Proof : compute the Fourier transform, using that

Xe−ix·ξ = (3 + ix · ξ)e−ix·ξ

Êt(ξ) = �Et, e
−ix·ξ

� =
2t

3

�

S4
(3 + ix · ξ)e−itω·ξdω.

This integral is invariant by rotation in ξ and we can assume that ξ =
(0, 0, r), r = |ξ|. Write ω = (cosφσ, sinφ) with φ ∈]−π/2,π/2[ and σ ∈ S3.
Then dω = 3

4(cosφ)
3dσdφ. Hence

Êt(ξ) =
t

2

�
π/2

−π/2
e−itr sinφ(3 + itr sinφ) cos3 φ dφ

=
t

2

� 1

−1
e−itrs(3 + itrs)(1− s2)φ ds.

Integrating by parts we get

Êt(ξ) =
t

2

� 1

−1
e−itrs(3 + ∂ss)(1− s2)ds

=
t

2

� 1

−1
e−itrsds =

sin(tr)

r
.
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Example 3. In 2-D. We apply the formula in R3 for functions inde-
pendent of x3. Using the parametrization (cosφ cos θ, cosφ sin θ, sinφ) of S2

we get

�Et,ϕ� =
t

4π

�
ϕ(t cosφ cos θ, t cosφ sin θ) cosφdθdφ

=
t

2π

�
ϕ(tr cos θ, tr sin θ)

r
√
1− r2

drdθ

=
t

2π

�

{|y|≤1}
ϕ(ty)

dy�
1− |y|2

=
t

2π

�

{|y|≤t}
ϕ(y)

dy�
t2 − |y|2

.

Thus the distribution E is the function

(1.3.8) E(t, x) =
t

2π
�
t2 − |y|2

1.4 Gas dynamics

1.4.1 General Euler’s equations

The equations of gas dynamics link the density ρ, the pressure p, the velocity
v = (v1, v2, v3) and the total energy per unit of volume and unit of mass E
through the equations:

(1.4.1)






∂tρ+ div(ρv) = 0

∂t(ρvj) + div(ρvvj) + ∂jp = 0 1 ≤ j ≤ 3

∂tE + div(ρEv + pv) = 0

Moreover, E = e+|v|2/2 where e is the specific internal energy. The variables
ρ, p and e are linked by a state law. For instance, e can be seen as a function
of ρ and p and one can take u = (ρ, v, p) ∈ R5 as unknowns. The second law
of thermodynamics introduces two other dependent variables, the entropy
S and the temperature T so that one can express p, e and T as functions
P, E and T of the variables (ρ, S), linked by the relation

(1.4.2) dE = T dS +
P

ρ2
dρ .

One can choose u = (ρ, v, S) or �u = (p, v, S) as unknowns. The equations
read (for smooth solutions):

(1.4.3)






∂tρ+ div(ρv) = 0

ρ(∂tvj + v ·∇vj) + ∂jp = 0 1 ≤ j ≤ 3

∂tS + v ·∇S = 0
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with p given a a given function P of (ρ, S) or ρ function of (p, S).
Perfect gases. They satisfy the condition

(1.4.4)
p

ρ
= RT,

where R is a constant. The second law of thermodynamics (1.4.2) implies
that

dE =
P

Rρ
dS +

P

ρ2
dρ

thus
∂E

∂S
=

P

Rρ
,

∂E

∂ρ
=

P

ρ2
and ρ

∂E

∂ρ
−R

∂E

∂S
= 0

Therefore, the relation between e, ρ and S has the form

(1.4.5) e = E(ρ, S) = F
�
ρ eS/R

�
.

Thus the temperature T = T (ρ, S) = ∂

∂S
E = G

�
ρ eS/R

�
withG(s) = s

R
F �(s).

This implies that T is a function of e:

(1.4.6) T = Ψ(e) =
1

R
G
�
F−1(e)

�
.

A particular case of this relation is when Ψ is linear, meaning that e is
proportional to T :

(1.4.7) e = CT,

with C constant. In this case

1

R
sF �(s) = CF (s), thus F (s) = λsRC .

This implies that eand p are linked to ρ and S by

(1.4.8) e = ργ−1eC(S−S0), p = (γ − 1)ργeC(S−S0) = (γ − 1)ρe,

with γ = 1 +RC.

1.4.2 The isentropic system

When S is constant the system (1.4.3) reduces to

(1.4.9)

�
∂tρ+ div(ρv) = 0

ρ(∂tvj + v ·∇vj) + ∂jp = 0 1 ≤ j ≤ 3

with ρ and p linked by a state law, p = P(ρ). For instance, p = cργ for
perfect gases satisfying (1.4.8).
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1.4.3 Acoustics

By linearization of (1.4.9) around a constant state (ρ, v), one obtains the
equations

(1.4.10)

�
(∂t + v ·∇)ρ+ ρ divv = f

ρ(∂t + v ·∇)vj + c2∂jp = gj 1 ≤ j ≤ 3

where c2 := dP
dρ (ρ). Changing variables x to x− tv, reduces to

(1.4.11)

�
∂tρ+ ρ divv = f

ρ∂tv + c2∇p = g.

Compute the fundamental solution in D = 3. Assume for simplicity that
ρ = 1, c = 1, the general case following easily. In the Fourier side we have

to compute eitA(ξ) where

A =

�
0 tξ
ξ 0

�
.

Note that

A2 =

�
|ξ|2 0
0 ξtξ

�
, A3 = |ξ|2A,

so that

eitA = I +
�

p≥0

(it)2p+2

(2p+ 2)!
|ξ|2pA2 +

�

p≥0

(it)2p+1

(2p+ 1)!
|ξ|2pA

eitA = Id +
cos(t|ξ|)− 1

|ξ|2
A2 +

sin(t|ξ|)

|ξ|
iA

The inverse Fourier transform of sin(t|ξ|)
|ξ| is Et given at (1.3.6). The inverse

Fourier transform of 1−cos(t|ξ|)
|ξ|2 , Ft, satisfies ∂tFt = Et,

(1.4.12) �Ft,ϕ� =

�

0≤s≤t

sϕ(x+ sω)dsdω =

�

{|y|≤t}
ϕ(x+ y)

dy

|y|
.
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1.5 Maxwell’s equations

1.5.1 General equations

The general Maxwell’s equations read:

(1.5.1)






∂tD − c curlH = −j,

∂tB + c curlE = 0,

divB = 0,

divD = q

where D is the electric displacement, E the electric field vector, H the
magnetic field vector, B the magnetic induction, j the current density and
q is the charge density; c is the velocity of light. They also imply the charge
conservation law:

(1.5.2) ∂tq + divj = 0.

To close the system, one needs constitutive equations which link E, D, H,
B and j.

Equations in vacuum

Consider here the case j = 0 and q = 0 (no current and no charge) and

(1.5.3) D = εE, B = µH,

where ε is the dielectric tensor and µ the tensor of magnetic permeability.
In vacuum, ε and µ are scalar and constant. After some normalization

the equation reduces to

(1.5.4)






∂tE − curlB = 0,

∂tB + curlE = 0,

divB = 0,

divE = 0.

The first two equations imply that ∂tdivE = ∂tdivB = 0, therefore the
constraints divE = divB = 0 are satisfied at all time if they are satisfied at
time t = 0. This is why one can “forget” the divergence equation and focus
on the evolution equations

(1.5.5)

�
∂tE − curlB = 0,

∂tB + curlE = 0,
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Moreover, using that curl curl = −∆Id + grad div, for divergence free fields
the system is equivalent to the wave equation :

(1.5.6) ∂2
tE −∆E = 0.

1.5.2 Crystal optics

With j = 0 and q = 0, we assume in (1.5.3) that µ is scalar but that ε is a
positive definite symmetric matrix. In this case the system reads:

(1.5.7)

�
∂t(εE)− curlB = 0,

∂tB + curlE = 0,

plus the constraint equations div(εE) = divB = 0 which are again propa-
gated from the initial conditions. One can choose coordinate axes so that ε
is diagonal:

(1.5.8) ε−1 =




α1 0 0
0 α2 0
0 0 α3





with α1 > α2 > α3.

1.5.3 Laser - matter interaction

Still with j = 0 and q = 0 and B proportional to H, say B = H, the
interaction light-matter is described through the relation

(1.5.9) D = E + P

where P is the polarization field. P can be given explicitly in terms of E,
for instance in the Kerr nonlinearity model:

(1.5.10) P = |E|
2E.

In other models P is given by an evolution equation:

(1.5.11)
1

ω2
∂2
t P + P − α|P |

2P = γE

harmonic oscillators when α = 0 or anharmonic oscillators when α �= 0.
In other models, P is given by Bloch’s equation which come from a more

precise description of the physical interaction of the light and the electrons
at the quantum mechanics level.
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With Q = ∂tP , the equations (1.5.1) (1.5.11) can be written as a first
order 12× 12 system:

(1.5.12)






∂tE − curlB +Q = 0,

∂tB + curlE = 0,

∂tP −Q = 0,

∂tQ+ ω2P − ω2γE − ω2α|P |
2P = 0.

1.6 Magneto-hydrodynamics

1.6.1 A model

The equations of isentropic magnetohydrodynamics (MHD) appear in basic
form as

(1.6.1)






∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρutu) +∇p+H × curlH = 0

∂tH + curl(H × u) = 0

(1.6.2) divH = 0,

where ρ ∈ R represents density, u ∈ R3 fluid velocity, p = p(ρ) ∈ R pressure,
and H ∈ R3 magnetic field. With H ≡ 0, (1.6.1) reduces to the equations
of isentropic fluid dynamics.

Equations (1.6.1) may be put in conservative form using identity

(1.6.3) H × curlH = (1/2)div(|H|
2I − 2HtH)tr +HdivH

together with constraint (1.6.2) to express the second equation as

(1.6.4) ∂t(ρu) + div(ρutu) +∇p+ (1/2)div(|H|
2I − 2HtH)tr = 0.

They may be put in symmetrizable (but no longer conservative) form by a
further change, using identity

(1.6.5) curl(H × u) = (divu)H + (u ·∇)H − (divH)u− (H ·∇)u

together with constraint (1.6.2) to express the third equation as

(1.6.6) ∂tH + (divu)H + (u ·∇)H − (H ·∇)u = 0.
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1.7 Elasticity

The linear wave equation in an elastic homogeneous medium is a second
order constant coefficients 3× 3 system

(1.7.1) ∂2
t v −

3�

j,k=1

Aj,k∂xj∂xkv = f

where the Aj,k are 3 × 3 real matrices. In anisotropic media, the form of
the matrices Aj,k is complicated (it may depend upon 21 parameters). The
basic hyperbolicity condition is that

(1.7.2) A(ξ) :=
�

ξjξkAj,k

is symmetric and positive definite for ξ �= 0.
In the isotropic case

(1.7.3)
3�

j,k=1

Aj,k∂xj∂xkv = 2λ∆xv + µ∇x(divxv).

The hyperbolicity condition is that λ > 0 and 2λ+ µ > 0.
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