Chapter 1

Examples

1.1 Transport equations

(1.1.1) (Or+v-0p)u=f, uj— = h.
(1.1.2) u(t,x) = h(z — tv) + /0 f(s,x — (t —s)v)ds.
(1.1.3) u(t,z) = h(z —tv) + /0 f(t—s,x— sv)ds.

1.2 1-D wave equation

(1.2.1) (07 —02u=f,  weo=ho, Ouupy_o=hi

Let v = (0 — Oy)u. Then (0; + 0,)v = 0 and v—g = h1 — 9;ho so that

v(t,z) = (h1 — Ozho)(x — t) —i—/o f(t—s,x—s)ds.

Thus '
u(t,x) = ho(x +t) + / v(t — s,z + s)ds.
0

The contribution of h; in last integral is

t 1 t
/hl(a?—i—Zs—t)dt:Q/ hi(z —y)dy.
0

—t
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The contribution of hg is
1 t

ho(o+0)— 5 [ Buhola — )y =
—t

The contribution of f is

1
/ f(t—s—s’,:l:—s+s’)ds'ds:/ f(t— s,z —y)dsdy.
{o<s'<t) 2 Jylzs<ny

u(t,z) = %(ho(:c +1) —ho(z —t)) + ;/_t hi(z —y)dy
1

—i—/ f(t—s,x —y)dsdy.
2 Jyi<s<ny

%(ho(ﬂ? + t) — ho(&? — t))

(1.2.2)

1.3 The multi-D wave equation

(1.3.1) (0} — A)u=f, Uj—o = ho, Opup—g = h1.
Fourier in z
(1.3.2) (07 + 1) =, Ujp=p = ho, Orltyp—o = hi.

i1, =costt€ole) + g in(e)
(1.3.3) gin((s

+/ Sln(( _S)’ﬂ)f(t—s,{)ds.
0 €]
Compute the inverse Fourier transform of cos(t¢|£|) and % Let
B wesin(tlg])

(1.3.4) Blt:o) = (G5 /e g

Then (formally)

ut.a) = [ OB hola —p)dy+ [ E(t.g)h(e — )iy

(1.3.5)

+/ E(s,y)f(t — s,z —y)dsdy.
{0<s<t}

Example 1. In 1-D

1
E(t,z) = 51[—t,t] ().

Proof : compute the Fourier transform of 1_; ;. We recover the formula
above.



Example 2. In 3-D. F is the distribution

(1.3.6) (Et, @) = t/s2 o(tw)dw.
Proof : compute the Fourier transform of this distribution
Ei(&) = (By, e @) = t/s2 ey,
This integral is invariant by rotation in £ and we can assume that £ =

(0,0,r), r = |§] Write w = (cos ¢ 0,sin ¢) with ¢ €] —7/2,7/2[ and o € S*.
Then dw = 3(cos ¢)dodep. Hence

. t o in(t
Et(f) _ /e—ztrs1n¢cos¢ d(ﬁ — Sln( T)‘
2 T
Example 3. In 5-D. F is the distribution
2t
(1.3.7) (Et, ) = 3 Xp(tw)dw, X =—-x-0,+3.
G4

Proof : compute the Fourier transform, using that
Xe @8 = (34 iz - &)e ¢

Et(f) = <Et7 e*ix~§> 23t /;4 (3 +iz - f) 1tw-§dw.

This integral is invariant by rotation in £ and we can assume that £ =

(0,0,7), r = |£]. Write w = (cos ¢ 0, sin ¢) with ¢ €] — /2, 7/2[ and o € S3.
Then dw = 3(cos ¢)3dod¢. Hence

R T2
Ey(&) = % / B e~ rsine (3 4 ity sin ¢) cos® ¢ dg

t [t
= 2/ eMS(3 itrs) (1 — s2)¢ ds.
—1

Integrating by parts we get

1
/ e 8 (3 4 9,5)(1 — s?)ds

/ efztrsd Sin(tT‘)
1 T
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Example 3. In 2-D. We apply the formula in R? for functions inde-
pendent of x3. Using the parametrization (cos ¢ cos 6, cos ¢ sin , sin ¢) of S?
we get

(Ey, ) = Z/gp(t cos ¢ cos 0, t cos ¢ sin 0) cos pdfdo
T

o(trcos @, trsinf) L sdrdf

Vi—r2
_ t/ (p(ty)L _ t/ (p(y)diy
21 Jyyl<1y VI=1ly2 27 Jyy<s V2 —yl?

Thus the distribution E is the function

T or

t

NG

(1.3.8) E(t,x)

1.4 Gas dynamics

1.4.1 General Euler’s equations

The equations of gas dynamics link the density p, the pressure p, the velocity
v = (v1,v2,v3) and the total energy per unit of volume and unit of mass E
through the equations:

Op + div(pv) =0
(1.4.1) O (pvj) +div(pvvj) +0;p=0 1<5<3

O E + div(pEv + pv) =0
Moreover, E = e+|v|?/2 where e is the specific internal energy. The variables
p, p and e are linked by a state law. For instance, e can be seen as a function
of p and p and one can take u = (p,v,p) € R® as unknowns. The second law
of thermodynamics introduces two other dependent variables, the entropy

S and the temperature 7" so that one can express p, e and T as functions
P, €& and T of the variables (p, S), linked by the relation
(1.4.2) d€ =7TdS + Bzdp.

p

One can choose u = (p,v,S5) or u = (p,v,S) as unknowns. The equations
read (for smooth solutions):
Op + div(pv) =0
(1.4.3) p(Owj +v-Vuj)+0;p=0 1<35<3
0S+v-VS=0



with p given a a given function P of (p,S) or p function of (p,5).
Perfect gases. They satisfy the condition

(1.4.4) P _ Rrr,
P

where R is a constant. The second law of thermodynamics (1.4.2) implies
that

P P
d€ = —dS+ —d
Ry T 2%
ths o6 P 0E P oe  oc
—_— — _— = — d _ —_— =
S Rp’ 09p p? an pap R(’?S 0
Therefore, the relation between e, p and S has the form
(1.4.5) e=E&(p,S) :F(peS/R).

Thus the temperature ' = T (p, S) = %5 = G(pe¥/B) with G(s) = £F'(s).
This implies that T is a function of e:

(1.4.6) T:w@:%0w4@y

A particular case of this relation is when W is linear, meaning that e is
proportional to 1"

(1.4.7) e=CT,
with C' constant. In this case

1
ESF/(S) = CF(s), thus F(s) = \sTiC.

This implies that eand p are linked to p and S by
(1.4.8) e = pr1eC5=%), p=(y—1)p"eC575) = (v —1)pe,
with v =1+ RC.

1.4.2 The isentropic system
When S is constant the system (1.4.3) reduces to

{@p+mwmo=o

(1.4.9) .
p(Oj+v-Vuj)+0;p=0 1<5<3

with p and p linked by a state law, p = P(p). For instance, p = ¢p? for
perfect gases satisfying (1.4.8).



1.4.3 Acoustics

By linearization of (1.4.9) around a constant state (p,v), one obtains the
equations

O +v-V)p+ pdive =
(1.4.10) O+ V)p e d ,
PO +v-Vivj+cOip=g; 1<j<3
where ¢? 1= %(g) Changing variables x to  — tv, reduces to
Op + pdive =
(1.4.11) e /
PO +c"Vp =g.

Compute the fundamental solution in D = 3. Assume for simplicity that
p =1, c =1, the general case following easily. In the Fourier side we have

_ (0 %€
A= (5 0) |
2
A2 = <‘£0| g(t)§> ) A3 = |£|2A7

— 7 2p 2 QP
S e T I e

to compute ¢4 where

Note that

so that

cos(tle]) — 1 5  sin(tle])
Pt b VA

e T
)

The inverse Fourier transform of %

et = 1d + iA

is B} given at (1.3.6). The inverse

Fourier transform of 1_(:&75'(;‘5”, F;, satisfies O, F; = Ey,

dy

(1.4.12) (Fy, @) = / sp(x + sw)dsdw = / oz +y)—.
0<s<t {ly|<t} |y!
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1.5 Maxwell’s equations

1.5.1 General equations

The general Maxwell’s equations read:
oD — ccurlH = —j,
OB + ccurlE = 0,
divB =0,
divD = q

(1.5.1)

where D is the electric displacement, E the electric field vector, H the
magnetic field vector, B the magnetic induction, j the current density and
q is the charge density; c is the velocity of light. They also imply the charge
conservation law:

(1.5.2) 0rq + divj = 0.

To close the system, one needs constitutive equations which link F, D, H,
B and j.

Equations in vacuum

Consider here the case j =0 and ¢ = 0 (no current and no charge) and
(1.5.3) D =¢FE, B =uH,

where ¢ is the dielectric tensor and p the tensor of magnetic permeability.
In vacuum, € and p are scalar and constant. After some normalization
the equation reduces to
OFE — curlB =0,
OB + curlE = 0,
divB =0,
divk = 0.

(1.5.4)

The first two equations imply that OdivE = 0idivB = 0, therefore the
constraints divE = divB = 0 are satisfied at all time if they are satisfied at
time ¢ = 0. This is why one can “forget” the divergence equation and focus
on the evolution equations

(1.5.5)

OyFE — curlB =0,
0B + curlE = 0,
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Moreover, using that curl curl = —Ald + grad div, for divergence free fields
the system is equivalent to the wave equation :

(1.5.6) O}FE — AE = 0.

1.5.2 Crystal optics

With j = 0 and ¢ = 0, we assume in (1.5.3) that u is scalar but that ¢ is a
positive definite symmetric matrix. In this case the system reads:

(1.5.7) { Oy(eE) — curlB =0,

0B + curlE = 0,

plus the constraint equations div(¢E) = divB = 0 which are again propa-
gated from the initial conditions. One can choose coordinate axes so that &
is diagonal:

o 0 0
(1.5.8) el=1 0 a 0
0 0 oy

with a1 > as > as.

1.5.3 Laser - matter interaction

Still with 5 = 0 and ¢ = 0 and B proportional to H, say B = H, the
interaction light-matter is described through the relation

(1.5.9) D=E+P

where P is the polarization field. P can be given explicitly in terms of F,
for instance in the Kerr nonlinearity model:

(1.5.10) P = |E]’E.

In other models P is given by an evolution equation:
1

(1.5.11) — 0P+ P —a|PPP=+E
w

harmonic oscillators when o = 0 or anharmonic oscillators when « # 0.

In other models, P is given by Bloch’s equation which come from a more
precise description of the physical interaction of the light and the electrons
at the quantum mechanics level.
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With @ = 0,P, the equations (1.5.1) (1.5.11) can be written as a first
order 12 x 12 system:

OtFE — curlB+ Q =0,

0B + curlE =0,

0P —Q =0,

%Q + WP — w'yE — w?a|P|?P = 0.

(1.5.12)

1.6 Magneto-hydrodynamics

1.6.1 A model

The equations of isentropic magnetohydrodynamics (MHD) appear in basic
form as

Op + div(pu) =0

(1.6.1) Or(pu) + div(pu'u) + Vp + H x curlH = 0
OH + curl(H x u) =0

(1.6.2) divH =0,

where p € R represents density, u € R? fluid velocity, p = p(p) € R pressure,
and H € R? magnetic field. With H = 0, (1.6.1) reduces to the equations
of isentropic fluid dynamics.

Equations (1.6.1) may be put in conservative form using identity

(1.6.3) H x curlH = (1/2)div(|H*I — 2H'H)" + HdivH
together with constraint (1.6.2) to express the second equation as
(1.6.4) Or(pu) + div(pu'u) + Vp + (1/2)div(|H|*T — 2H'H)"™ = 0.

They may be put in symmetrizable (but no longer conservative) form by a
further change, using identity

(1.6.5) curl(H x u) = (divu)H + (u - V)H — (divH )u — (H - V)u
together with constraint (1.6.2) to express the third equation as

(1.6.6) OH + (divu)H + (u- V)H — (H - V)u = 0.
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1.7 Elasticity

The linear wave equation in an elastic homogeneous medium is a second
order constant coefficients 3 x 3 system

3
(1.7.1) Ofv — Y Ajp0y, O v =f

J,k=1

where the Aj;j are 3 x 3 real matrices. In anisotropic media, the form of
the matrices A;, is complicated (it may depend upon 21 parameters). The
basic hyperbolicity condition is that

(1.7.2) A() =) _&i€rAjn
is symmetric and positive definite for £ # 0.
In the isotropic case

3
(1.7.3) > A0, 0,0 = 200 + pV o (dive).
Jk=1

The hyperbolicity condition is that A > 0 and 2A + u > 0.
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