
Chapter 3

Fourier Synthesis

In this chapter we consider the Cauchy problem for constant coefficients
equation, but with a slightly different approach. Our main goal is to give
stability estimates. In particular, we show how the maximal estimates lead
to the notions of symmetrizability and strong hyperbolicity.

We consider systems (2.1.1) P (∂), supposed to be hyperbolic in the di-
rection ν. The coefficients of P are matrices in L(E) and N denotes the
dimension of dimE.

The time variable ν · x plays a particular role, we call it t and choose
coordinates such that x = (t, y) ∈ R × Rd, so that ν = (1, 0, . . . , 0). In this
case:

(3.0.1) P (∂x) = P (∂t, ∂y) =
m�

j=0

Aj(∂y)∂
m−j

t

where Aj is a differential operator in ∂y of degree j. In particular A0 is a
constant matrix. The hyperbolicity assumption means

detA0 �= 0;(3.0.2)

(τ, η) ∈ C× Rd, |Im τ | > γ0, ⇒ detP (iτ, iη) �= 0(3.0.3)

for some γ0 ≥ 0.
The Cauchy problem reads

(3.0.4)

�
P (∂)u = f for t > 0,

∂j

t
u|t=0 = gj for j = 0, . . . ,m− 1.
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3.1 Fourier synthesis

Our main tool in this chapter is the partial Fourier transform with respect
to the space variables y. With little risk of confusion, we denote it by ˆ or
F , and specify Fspace when necessary.

Assuming that u and f are temperate distributions in y, the equation
Pu = f reads (at least formally)

(3.1.1)
m�

j=0

Aj(iη)∂
m−j

t
û(t, η) = f̂(t, η)

and the initial conditions become

(3.1.2) ∂j

t
û(0, η) = ĝj(η).

Introduce

(3.1.3) U(t, η) =





�η�m−1û
�η�m−2∂tû

...
∂m−1
t

û




, F (t, η) =





0
...
0

f̂




, G(η) =





�η�m−1g0
�η�m−2g1

...
gm−1




,

(3.1.4) A(iη) =





0 −�η� 0 . . . 0
0 0 −�η� . . . 0
...

. . .
. . .

... 0 −�η�
Ãm(iη) . . . . . . Ã1(iη)





with

(3.1.5) �η� = (1 + |η|2)
1
2 , Ãj(iη) = �η�1−jA−1

0 Aj(iη).

The factors �η�k have been introduced so that all the entries of A have the
same order and A = O(�η�). Then, the Cauchy problem can be written

(3.1.6) ∂tU +A(iη)U = F, U|t=0 = G.

Hence, assuming integrability in time for f̂ ,

(3.1.7) U(t, η) = e−tA(iη)G(η) +

�
t

0
e(s−t)A(iη)F (s, η)ds.

This method is successful if one can perform the inverse Fourier transform,
that is if the mutliplicator e−tA(iη) acts in S �(Rd). The next proposition
answers this question.
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Proposition 3.1.1. i) If for some t0 �= 0 there are C and M such that for
all η ∈ Rd

(3.1.8)
��e−t0A(iη)

�� ≤ C�η�M

then P (∂) is hyperbolic in the time direction.
ii) Conversely, if P (∂) is hyperbolic in the time direction, there are C

and γ such that for all t and η

(3.1.9)
��e−tA(iη)

�� ≤ C�η�mNetγ1 .

Before starting the proof, we collect several elementary remarks on ma-
trices of the form (3.1.4).

Lemma 3.1.2. Consider a matrix of the form

(3.1.10) A =





0 −1 0 . . . 0
0 0 −1 . . . 0
...

. . .
. . .

... 0 −1
Am . . . . . . A1




,

with m blocks of dimension N and P (τ) = τmId +
�

m−1
j=0 τ jAm−j . Then,

(3.1.11) det(λId−A) = (−1)mN detP (−λ).

and given C0, there is C such that if supj |Aj | ≤ C0, then for all λ not an
eigenvalue of A:

(3.1.12) C−1
��(λId−A)−1

�� ≤
�
|λ|+ 1)m−1

��P (−λ)−1
�� ≤ C

��(λId−A)−1
��.

Moreover, given C0, there are δ0 and C such that if supj |Aj | ≤ C0 and
if A� is mN × mN matrix such that |A�| ≤ δ0, A + A� is conjugated to a
matrix of the form (3.1.10) with entries Aj +A�

j
on the lower row such that

|A�
j
| ≤ C|A�|.

Proof of Proposition 3.1.1. a) By the lemma above, the roots of P (−λ, iη)
are eigenvalues of A(iη). The estimate (3.1.8) implies that they satisfy

e−t0Reλ = |e−t0λ| ≤ C�η�M .

When t0 > 0 we deduce from Lemma 2.3.3 that there is γ such that the roots
of detP (−λ, iη) = 0 satisfy Reλ ≥ −γ, thus the roots of detP (iτ, iη) = 0
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satisfy Im τ ≥ −γ which means that P is hyperbolic in the time direction
dt.

When t0 < 0 we conclude that the roots of detP (iτ, iη) = 0 satisfy
Im τ ≤ γ , which means that P is hyperbolic in the direction −dt, thus also
in the direction dt by Theorem 2.4.2.

b) To prove ii), we use the representation

(3.1.13) e−tA =
1

2iπ

�

C
e−tλ

�
λId−A

�−1
dλ

where C is a contour in C surrounding the spectrum of A. By assumption,
it is located in a strip |Reλ| ≤ 1

2γ1. Moreover, there is a constant K such
that

|A(iη)| ≤ K�η�.

If t > 0, we choose C to be the union of the half circle C1 = {|λ + γ1| =
R,Reλ ≥ −γ1} and of the diameter C2 = {|Imλ| ≤ R , Reλ = −γ1}, where
R = 2γ1 + 2K�η�. In particular, on C, Reλ ≥ −γ1 and e−tλ ≤ etγ1 .

On C1, |λ| ≥ γ1 + 2K�η� ≥ 1
2 |A(iη)| and thus

��(λId− A)−1
�� ≤ 2|λ|−1 ≤

4/R. This shows that the contribution of C1 to the integral (3.1.13) is less
that 2etγ1 .

The estimate (2.5.2) implies that that on C2

��P (−λ, iη)−1
�� ≤ C�η�m(N−1)

and thus by Lemma 3.1.2

(3.1.14)
��(λId−A)−1

�� ≤ C�η�mN−1.

This implies that the contribution of C2 is bounded by the right hand side
of (3.1.9).

If t < 0, we argue in a similar way, integrating over −C.

The estimate (3.1.9) allows us to apply the inverse Fourier transform
to (3.1.7) when the data are temperate in x. For instance, in the scale of
Sobolev spaces, one can state:

Theorem 3.1.3. If the system is hyperbolic in time, then the Cauchy prob-
lem is well posed in Sobolev spaces in the following sense : if γ, M and C
are chosen so that (3.1.8) is satisfied, then for all T > 0, σ ∈ R, for all gj ∈
Hσ+m−1−j and f ∈ L1([0, T ], Hσ) the Cauchy problem (3.0.4) has a unique
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solution u ∈ C0([0, T ];Hσ−M+m−1) such that ∂j

t
u ∈ C0([0, T ];Hσ−M+m−1−j)

for j ≤ m− 1 and

(3.1.15)

m−1�

j=1

��∂j

t
u(t)

��
Hσ−M+m−j−1 ≤Ceγt

m−1�

j=1

��gj
��
Hσ+m−j−1

+ C

�
t

9
eγ(t−s)

��f(s)
��
Hσds.

3.2 Maximal estimates and strong hyperbolicity

The best estimate one can expect in (3.1.9) is

(3.2.1) ∀η ∈ Rd, ∀t ≥ 0 :
��e−tA(iη)

�� ≤ Ceγt

in which case the Theorem 3.1.3 holds with M = 0. It turns out that the
condition above only depends on the principal part of P

(3.2.2) P pr(∂x) =
�

Apr
m−j

(∂y)∂
j

t

where Apr
k

is the homogeneous part of degree k of Ak. The principal part of
A is defined as

(3.2.3) A
pr(iη) = lim

ρ→+∞

1

ρ
A(iρη) =





0 −|η| 0 . . . 0
0 0 −|η| . . . 0
...

. . .
. . .

... 0 −|η|
Ãpr

m(iη) . . . . . . Ãpr
1 (iη)





with Ãpr
k

= |η|1−kApr
k
(iη), so that Apr is homogeneous of degree one in η.

Note also that Apr is odd in η in the sense that Apr(−iη) is conjugated to
−Apr(iη):

(3.2.4) A
pr(−η) = −E

1
A

pr(iη)E , E = diag(IdE,−IdE, IdE . . .).

Proposition 3.2.1. There are C and γ such that the condition (3.2.1) is
satisfied if and only if there is a constant C such that

(3.2.5) ∀η ∈ Rd, ∀t :
��etApr(iη)

�� ≤ C.
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Proof. a) Suppose that we have (3.2.1). Then,

��e−t
1
ρA(iρη)�� ≤ Ceγt/ρ.

Together with (3.2.3), this implies (3.2.5).

b) Conversely, we use the following remark which concerns exponential
of matrices. Considering the ordinary differential equation ∂tu+(A+B)u =
0, we see that

e−t(A+B) = e−tA +

�
t

0
e(s−t)Ae−s(A+B)ds

and therefore Gronwall’s lemma implies that, for t ≥ 0,

(3.2.6)
��e−tA

�� ≤ Ceγt ⇒
��e−t(A+B)

�� ≤ Ce(γ+C|B|)t.

For |η| ≥ 1, we have Ak(iη)−Apr
k
(iη) = O(|η|k−1) and here is a constant

K such that

(3.2.7) |A
pr(iη)−A(iη)| ≤ K for |η| ≥ 1.

Therefore, (3.2.5) and (3.2.6) imply that
��e−tA(iη)

�� ≤ CKt for |η| ≥ 1 and t ≥ 0

estimate (3.2.1) is satisfied for |η| ≥ 1. The estimate (3.2.1) is clear for
|η| ≤ 1 since there A(iη) is bounded.

The condition (3.2.5) has several equivalent formulations, as explained
in the next proposition.

Proposition 3.2.2. Given matrices A(a) which depend on parameters a ∈

A , The following conditions are equivalent
i) There is a real C1 such that

(3.2.8) ∀t ∈ R, ∀a ∈ A :
��etA(a)

�� ≤ C1.

ii) All the the eigenvalues λ of A(a) are purely imaginary and semi-
simple and there is a real C2 such that all the eigen-projectors Πλ(a) satisfy

(3.2.9) ∀a ∈ A :
��Πλ(a)

�� ≤ C2.

iii) A(a) − λId is invertible when Reλ �= 0 and there is a real C3 such
that

(3.2.10) ∀λ /∈ iR ∀a ∈ A :
���A(a)− λId

�−1�� ≤ C3

��Reλ|−1.
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iv) There are definite positive matrices S(a) and there are constants C4

and c4 > 0 such that for all a ∈ A , S(a)A(a) is skew adjoint and

(3.2.11)
��S(a)

�� ≤ C4, S(a) ≥ c4Id.

v) There is a real C5 such that for all matrix B, all a ∈ A and all ρ ∈ R,
the eigenvalues of ρA(a) +B are located in {|Reλ| < C5|B|}.

Proof. a) ii) implies that A(a) has the spectral decomposition A =
�

λjΠj

with λj ∈ ıR. Thus (3.2.9) implies that
��etA)

�� =
��� etλjΠj

�� ≤ NC2.
Conversely, i) implies that the eigenvalues λj of A(a) are purely imagi-

nary and semi-simple and thus that A(a) =
�

λjΠj . Moreover,

lim
T→∞

1

2T

�
T

−T

et(A(a)−λjId)dt =
�

k

lim
T→∞

1

2T

�
T

−T

et(λk−λjId)Πkdt = Πj .

Thus, |Πj | ≤ C1 if (3.2.8) is true.

b) Suppose that ii) is satisfied so that A =
�

λjΠj and Id =
�

Πj .
Then

(3.2.12) S(a) =
�

Π∗
jΠj

is definite positive, satisfies S ≥ N−1Id, |S| ≤ NC2
2 , and SA =

�
λjΠ∗

j
Πj

is skew adjoint.

If iv) holds then, with � = −signReλ ,

c4|Reλ|
��u
��2 ≤ Re �

�
S(A− λId)u, u

�
≤ C4

��(A− λ)u
�� ��u

��

implying iii) with C3 = C4/c4.

If iii) is satisfied, then the eigenvalues of A(a) are purely imaginary and
semi-simple, for if there were a nondiagonal block in the Jordan’s decompo-
sition of A−λjId, the norm of (A− (λj + γ)Id)−1 would be at least of order
γ−2 when γ → 0. Thus A =

�
λjΠj and

lim
γ→0

γ
�
A− (λj + γ)Id)−1 =

�

k

lim
γ→0

γ

(λk − λj + γ)
Πk = Πj ,

hence |Πj | ≤ C3.
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c) By homogeneity, iii) is equivalent to the condition

∀a ∈ A , ∀ρ ∈ R,
��Reλ| ≥ C3 ⇒

���ρA(a)− λId
�−1�� ≤ 1.

By Lemma 3.2.3 below, this is equivalent to the condition that for all matrix
B such that |B| < 1, ρA− λId +B is invertible when |Reλ| ≥ C3, meaning
that the spectrum of ρA+B is contained in {|Reλ| < C3. By homogeneity,
this is equivalent to v) with C5 = C3.

To complete the proof of the proposition, it only remains to prove the
next lemma.

Lemma 3.2.3. The matrix A is invertible with |A−1| ≤ κ if and only if
A+B is invertible for all B such that |B| < κ−1.

Proof. If |A−1| ≤ κ, then A + B = A−1(Id + A−1B) is invertible for all B
such that |A−1B| ≤ κ|B| < 1.

Conversely, if A is not invertible or if |A−1| > κ, there is u such that
|u| = 1 and |Au| < κ−1. Pick a linear form � such that �(u) = 1 and |�| = 1.
Then the matrix B defined by Bu = �(u)Au satisfies |B| = |Au| < κ−1 but
A−B is not invertible since u is in its kernel.

Corollary 3.2.4. The estimate (3.2.5) is satisfied if and only if there is a
constant C such that for all (τ, η) ∈ C× Rd and all u ∈ E:

(3.2.13) |Im τ |(|τ |+ |η|)m−1
|u| ≤ C

��P pr(iτ, iη)u
��.

Proof. The proposition above implies that (3.2.5) is equivalent to the esti-
mate ���λ−A

pr(iη)
�−1�� ≤ C|Reλ|−1.

When |λ|2 + |η|2 = 1, this is equivalent to
��P pr(−λ, iη)

�−1�� ≤ C|Reλ|−1.

as shown in Lemma 3.1.2. By homogeneity, this condition is equivalent to
(3.2.13).

This motivates the following definition. We say that P is strongly hy-
perbolic in the time direction when (3.2.13) is satisfied. Extended to general
direction, the definition reads:

Definition 3.2.5. Consider a differential system P (∂x) of order m with
principal part P pr. It is said to be strongly hyperbolic in the direction ν if
there is a constant C such that for all ξ ∈ Rn, γ real and u ∈ E:

(3.2.14) |γ|(|γ|+ |ξ|)m−1
|u| ≤ C

��P pr(iξ + γν)u
��.
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Note that for ξ = 0, this implies that P pr(ν) �= 0.

Theorem 3.2.6. Suppose that P (∂t, ∂y) is strongly hyperbolic in the time
direction dt. Let Γ denote de cone of hyperbolic directions which contain dt.
Then is is strongly hyperbolic in all directions θ ∈ Γ
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