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Abstract. We show that the multiple divisor functions of integers in invertible residue classes
modulo a prime number, as well as the Fourier coefficients of GLpNq Maass cusp forms for all
N > 2, satisfy a central limit theorem in a suitable range, generalizing the case N “ 2 treated

by É. Fouvry, S. Ganguly, E. Kowalski and P. Michel in [4]. Such universal Gaussian behaviour
relies on a deep equidistribution result of products of hyper-Kloosterman sums.
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7. Asymptotic expansion of the mixed moments 24
8. Proof of the convergences in law 38
9. The case of the multiple divisor functions 39
Appendix A. Computation of the residue of Rankin-Selberg L-functions 43
Appendix B. Generating series involving Schur polynomials 45
Appendix C. Generating series involving the multiple divisor functions 49
References 49

1. Introduction and statement of the results

Problems concerning the asymptotic distribution of arithmetic functions in residue classes
are very classical in analytic number theory, and have been considered from many different
points of view. Recently, É. Fouvry, S. Ganguly, E. Kowalski and P. Michel [4] proved that the
classical divisor function, as well as Fourier coefficients of classical (primitive) holomorphic cusp
forms, satisfies a form of central limit theorem concerning the distribution in non-zero residue
classes modulo a large prime number.

It seems natural to explore the same type of statistical questions for higher divisor functions,
or Fourier coefficients of automorphic forms on higher-rank groups, especially because of the
philosophy which relates the distribution properties of primes in arithmetic progressions with
that of higher divisor functions. We will show that a suitable central limit theorem holds for
these divisor functions as well as for Fourier coefficients of cusp forms on GLpNq for all N > 2,
taken to be of full level over Q. To simplify the notation, we will not consider holomorphic cusp
forms in the case N “ 2, since this case is treated in [4].
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We remark that there are not many statements of analytic number theory which are currently
known to hold for an individual (and not on average over a family) cusp form on GLpNq for
arbitrary N . The best known results of this type are the approximations to the Ramanujan–
Petersson–Selberg conjectures (see the paper of Z. Rudnick, W. Luo and P. Sarnak [18]), and
the distribution properties of zeros of the standard L-functions for test functions with suitable
restrictions (due to Z. Rudnick and P. Sarnak [24]). The present paper adds a further example
of such properties. It is interesting to note that we require a deep result of equidistribution of
hyper-Kloosterman sums to obtain a “universal” Gaussian behavior, which is derived from the
determination of the monodromy groups of Kloosterman sheaves, due to N. Katz [15]. As far
as we are aware, this is a new ingredient in such studies.

1.1. Statement of the results. We refer to the introduction of [4] for a survey of the literature
prior to that paper, and we now state our results. We fix throughout an integer N > 2.

Let p be an odd prime number. We will consider the group Fˆp of invertible residue classes
modulo p as a probability space with its uniform probability measure µp, so that

@E Ă Fˆp , µppEq “
|E|
p´ 1

.

1.1.1. The case of GLpNq Maass cusp forms. We fix a Hecke-Maass cusp form f on GLpNq with
level 1. We denote by af pm1, . . . ,mN´1q its Fourier coefficients, for integers m1, . . ., mN´2 > 1
and mN´1 P Z´ t0u. We also use the shorthand notation

af pnq “ af pn, 1, . . . , 1q (1.1)

for n > 1, and we recall that we then have also

af˚pmq “ af˚pm, 1, . . . , 1q “ af p1, . . . , 1,mq (1.2)

for m ­“ 0 an integer, where f˚ is the dual of f . We also assume that f is arithmetically
normalized so that af p1q “ 1. In particular, af pnq is then the eigenvalue of f for the n-th
Hecke operator Tn.

We will fix a test function w : R˚` Ñ R, which is a non-zero smooth function compactly
supported on an interval rx0, x1s Ă R˚`. For X > 1, we then define

Sf pX, p, aq :“
ÿ

n>1
n”a mod p

af pnqw
´ n

X

¯

Mf pX, pq :“
1

p

ÿ

n>1

af pnqw
´ n

X

¯

.

The quantity Mf pX, pq is a natural “fake” main term for the quantity Sf pX, p, aq, which
naturally occurs in the process but is extremely small in view of the use of the smooth weight.
Having in mind that the number of terms in Sf pX, p, aq is roughly X{p, the square root cancel-
lation philosophy suggests to define

Ef pX, p, aq “
Sf pX, p, aq ´Mf pX, pq

pX{pq1{2
(1.3)

for a an invertible residue class modulo p.
An important observation is that, in general, Ef pX, p, aq is not real-valued, and thus the

distribution results will involve probability measures on C. More precisely, recall that f is said
to be self-dual if f is equal to its dual form f˚, which is equivalent with requiring that the
Fourier coefficients are real numbers, in which case Ef pX, p, aq is a real number. If f is not
self-dual then we define

Zf pX, p, aq “ p<e pEf pX, p, aqq,=m pEf pX, p, aqqq P R2.

We view these quantities as random variables a ÞÑ Ef pX, p, aq and random vectors a ÞÑ
Zf pX, p, aq on the finite set of invertible residue classes modulo p endowed with the uniform
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probability measure µp described above, and we will attempt to determine their distribution
when p is large, for suitable values of X.

We will use the method of moments to study their distribution. This allows us to prove results
of interest even in situations where we cannot currently prove an equidistribution statement.

For any pair pκ, λq non-negative integers, we define the pκ, λq-th mixed moment of Ef pX, p, aq
by

Mf pX, p, pκ, λqq :“
1

p

ÿ

a mod p
pa,pq“1

Ef pX, p, aq
κEf pX, p, aq

λ
. (1.4)

The next theorem states an asymptotic expansion for these mixed moments in specific ranges
for X with respect to p. Before stating it, we recall that the k-th moment of a centered Gaussian
random variable with variance V “ σ2 > 0 is given by

mkV
k{2 “ δ2|k

k!

2k{2pk{2q!
V k{2.

Theorem A (Mixed moments)– Let f be an even or odd GLpNq Hecke-Maass cusp form, which
is not induced from a holomorphic form if N “ 2, and w : R˚` Ñ R be a smooth and compactly

supported function. Let 2pN´1 ă X 6 pN . Then we have

Mf pX, p, pκ, λqq “ δf“f˚mκ`λ p2cf,wq
pκ`λq{2

` δf‰f˚δκ“λ2κκ!cκf,w

`Oε,f

¨

˝p1`ε

ˆ

pN´1

X

˙pκ`λq{2´1

`

ˆ

X

pN

˙1{2´θ`ε

`
1
?
p

ˆ

pN

X

˙

κ`λ
2
`ε
˛

‚ (1.5)

for all ε ą 0, where θ “ 1{2´ 1{pN2 ` 1q and cf,w ą 0 is a constant given by

cf,w “
rfHf,f˚p1q

2
||w||22,

where rf is the residue at s “ 1 of the Rankin-Selberg L-function Lpf ˆ f˚, sq (see Proposition
A.1), }w}2 is the L2-norm of w with respect to the Lebesgue measure on R˚`, and Hf,f˚p1q is
an Euler product defined in Proposition 5.1.

In this theorem, the error term in (1.5) only tends to 0 as X and p tend to infinity in suitable
ranges. For instance, if X “ pγ with N ´ 1 ă γ ă N , then this theorem implies that

lim
pÑ`8

Mf pp
γ , p, pκ, λqq “ δf“f˚mκ`λ p2cf,wq

pκ`λq{2
` δf‰f˚δκ“λ2κκ!cκf,w, (1.6)

for all κ and λ such that κ` λ ă 1
N´γ .

The most restrictive error term in (1.5) is the last one, which we will see comes from deep
equidistribution theorems of hyper-Kloosterman sums. One can expect that the estimate for
this term is not best possible, and that the asymptotic formula for all moments should be valid
when X “ pγ with N ´ 1 ă γ ă N . This seems to be a rather difficult problem.

Nevertheless, the limit holds for all moments when X is a suitable function of p, and standard
techniques from probability theory then lead to central limit theorems for the random variables
Ef pX, p, ˚q and Zf pX, p, ˚q for such functions X.

Corollary B (Central limit theorems)– Let f be an even or odd GLpNq Hecke-Maass cusp form,
which is not induced from a holomorphic form if N “ 2, and w : R˚` Ñ R be a smooth and

compactly supported function. Let X “ pN{Φppq for a function Φ : r2,`8rÑ r1,`8r satisfying

lim
xÑ`8

Φpxq “ `8 and Φpxq “ Oεpx
εq

for all ε ą 0.
3



‚ If f is self-dual then the sequence of random variables Ef pX, p, ˚q converges in law to a
centered Gaussian random variable with variance 2cf,w, as p goes to infinity among the
prime numbers. In other words, for all real numbers α ă β, we have

lim
pPP

pÑ`8

1

p´ 1

ˇ

ˇ

 

a P Fˆp , α 6 Ef pX, p, aq 6 β
(ˇ

ˇ “
1

a

2π ˆ 2cf,w

ż β

x“α
exp

ˆ

´
x2

2ˆ 2cf,w

˙

dx.

‚ If f is not self-dual then the sequence of random vectors Zf pX, p, ˚q converges in law to
a Gaussian random vector with covariance matrix

cf,w

ˆ

1 0
0 1

˙

(1.7)

as p goes to infinity among the prime numbers. In other words, for real numbers α1 ă β1

and α2 ă β2, we have

lim
pPP

pÑ`8

1

p´ 1

ˇ

ˇ

 

a P Fˆp , Zf pX, p, aq P rα1, β1s ˆ rα2, β2s
(
ˇ

ˇ

“
1

2πcf,w

ż β1

x“α1

ż β2

y“α2

exp

ˆ

´
x2 ` y2

2cf,w

˙

dx dy.

Remark 1.1– (1) The same central limit theorem would follow for all X with 2pN´1 ă X ă pN

if one could prove that the limit (1.6) holds for all κ and λ in that range. At the very least, for
X “ pγ with N ´ 1 ă γ ă N , we obtain convergence of all moments up to κ` λ ă 1

N´γ .

(2) It is a very interesting question whether one can establish this result with the smooth
weight wpn{Xq replaced by a characteristic function of 1 6 n 6 X. For N “ 2, Lester and
Yesha [17, Th. 1.1, Th. 1.2] have recently shown that this can be done. This is a non-trivial
fact, which has not been extended to N > 3 at the moment.

1.1.2. The case of the multiple divisor functions. The same techniques also enable us to study
a similar problem for the N -th multiple divisor function dN . The only notable difference is the
existence of a significant main term.

Thus, for an invertible residue class a in Fˆp , we define

EdN pX, p, aq “
SdN pX, p, aq ´MdN pX, pq

pX{pq1{2
,

where

SdN pX, p, aq “
ÿ

n>1
n”a mod p

dN pnqw
´ n

X

¯

(1.8)

MdN pX, pq “
1

p

ÿ

n>1

dN pnqw
´ n

X

¯

´
1

p2

ż `8

x“0

N
ÿ

k“1

βkppq

pk ´ 1q!
logk´1 pxqwpxqdx (1.9)

where w : R˚` Ñ R is again a fixed non-zero smooth function compactly supported on rx0, x1s Ă

R˚` and βkppq are certain coefficients that we will define precisely in Section 9. Once again, the
normalisation is suggested by the square root cancellation philosophy.

We will study the convergence in law of the sequence of random variables a ÞÑ EdN pX, p, aq
on Fˆp endowed with its uniform probabiblity measure µp.

For κ a non-negative integer, let us define the κ-th moment of EdN pX, p, aq by

MdN pX, p, κq :“
1

p

ÿ

a mod p
pa,pq“1

EdN pX, p, aq
κ.

The next theorem states an asymptotic expansion for these moments in specific ranges for X
with respect to p.
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Theorem C (Moments for dN )– Let N > 3 and w : R˚` Ñ R be a smooth and compactly

supported function. If 2pN´1 ă X 6 pN then

MdN pX, p, κq “ mκQ
´

log
pN

X

¯κ{2

`Oε,f

˜

p1`ε

ˆ

pN´1

X

˙κ{2´1

`

ˆ

X

pN

˙1{2`ε

`
1
?
p

ˆ

pN

X

˙

κ
2
`ε
¸

(1.10)

for all ε ą 0, where Q is a polynomial of degree N2 ´ 1 with leading coefficient

||w||22
pN2 ´ 1q!

ź

q prime

´

1´
1

q

¯pN´1q2

ˆ

N´1
ÿ

k“0

ˆ

N ´ 1

k

˙2

p´k

as a leading coefficient, where }w}2 is the L2-norm of w with respect to the Lebesgue measure
on R˚`.

As in the case of Maass cusp forms, we deduce a central limit theorem for EdN pX, p, aq for a
large class of functions X.

Corollary D (Central limit theorems for dN )– Let N > 3 and w : R˚` Ñ R be a smooth and

compactly supported function. Let X “ pN{Φppq for a function Φ : r2,`8rÑ r1,`8r satisfying

lim
xÑ`8

Φpxq “ `8 and Φpxq “ Oεpx
εq

for all ε ą 0. Let

H “
ź

q prime

´

1´
1

q

¯pN´1q2

ˆ

N´1
ÿ

k“0

ˆ

N ´ 1

k

˙2

p´k ą 0.

The sequence of random variables

EdN pX, p, ˚q
c

H||w||22 logN
2´1 pΦppqq

pN2´1q!

converges in law to a centered Gaussian random variable, whose variance is 1, as p goes to
infinity among the prime numbers. In other words, for all real numbers α ă β, we have

lim
pPP

pÑ`8

1

p´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

$

’

’

&

’

’

%

a P Fˆp , α 6
EdN pX, p, aq

c

HN p1q||w||22 logN
2´1 pΦppqq

pN2´1q!

6 β

,

/

/

.

/

/

-

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“
1
?

2π

ż β

x“α
exp

ˆ

´
x2

2

˙

dx.

Remark 1.2– As a final remark, we note that it is possible to extend the Central Limit Theo-
rems, for cusp forms as well as for dN , to restrict the average over residue classes a which are
considered, in either of the following manners (which may be combined):

‚ We may assume that a ranges over the reduction modulo p of an interval Ip of integers

of length p1{2`δ ! |Ip| 6 p´ 1 for any fixed δ ą 0;
‚ We may assume that a ranges over the set fpFpq of values in Fp of a fixed non-constant

polynomial f P ZrXs, for instance that a is restricted to be a quadratic residue.

This essentially only requires an extension of the results of Section 4, as recently discussed
by É. Fouvry, E. Kowalski and Ph. Michel in [5, Section 5.3].
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1.2. Strategy of the proof. The basic strategy follows that of É. Fouvry, S. Ganguly, E.
Kowalski and P. Michel [4] of applying the Voronŏı summation formula, followed by equidis-
tribution theorems for hyper-Kloosterman sums. There is a significant increase in complexity
due to the context of GLpNq automorphic forms, and to the fact that the Fourier coefficients
are not always real-valued. However, more importantly, a number of crucial facts which could
be checked relatively easily by direct calculations or ad-hoc methods in the GLp2q case (for
holomorphic forms or the divisor function) require much more intrinsic arguments. This is
the case for instance of the unitarity of the integral transform that appears in the Voronŏı
summation formula, and also of certain multiplicity computations from representation theory
which seem very difficult to handle with explicit integrals. In addition, the computation of the
limiting variance is surprisingly delicate, and indeed is the only place where we need to invoke
an upper-bound for the Fourier coefficients of f , which goes beyond the “local” Jacquet-Shalika
bound, that follows from genericity of the local representations.

The most technical part of the argument is contained in Section 7, where we obtain the
asymptotic expansion of the moments. However, the idea underlying this computation can be
motivated using probabilistic analogies, and we do this at the beginning of that section.

1.3. Organisation of the paper. The general background on GLpNq Maass cusp forms is
given in Section 2. The Voronŏı summation formula is introduced in Section 3, which also con-
tains the analytic and the unitarity properties of the generalized Bessel transforms occuring in
this summation formula. The algebraic ingredient required to prove the crucial equidistribution
result for products of hyper-Kloosterman sums is done in Section 4. The technical ingredient
needed to achieve the variance computation is proved in Section 5. The first steps in the proof
of Theorem A, such as the input of the Voronŏı summation formula, are done in Section 6. The
combinatorial analysis in the proof of Theorem A appears in Section 7. Corollary B is proved
in Section 8 and Theorem C in Section 9. The general properties of Maass cusp forms, which
are stated in Section 2 without proof in [6], are proved in Appendix A. A generating series
involving a product of Schur polynomials (respectively a product of multiple divisor functions)
is studied in Appendix B (respectively in Appendix C).

Notations– As already mentioned, N > 2 is a fixed integer. We denote epzq :“ expp2iπzq for
z P C. The sign of a non-zero real number x is denoted sgnpxq P t´1, 1u.

P stands for the set of prime numbers. The main parameters in this paper are an odd prime
number p, which goes to infinity among P and a positive real number X, which goes to infinity
with p. Thus, if f and g are some C-valued functions on R2 then the symbols fpp,Xq !A gpp,Xq
or equivalently fpp,Xq “ OApgpp,Xqq mean that |fpp,Xq| is smaller than a constant, which
only depends on A, times gpp,Xq at least for p a large enough prime number.

The Mellin transform of a function ψ : R˚` Ñ C is denoted Mrψs and is given by

Mrψspsq “

ż `8

x“0
ψpxqxs

dx

x

for all complex numbers s for which the integral exists. If G is a holomorphic function defined
for s P C with real part ą σ0 > ´8 and with fast enough decay as the imaginary part grows,
then M´1rGs will denote its inverse Mellin transform defined by

M´1rGspxq “
1

2iπ

ż

pσq
Gpsq

ds

xs

for a fixed σ ą σ0 and for all positive real number x.
If E is a finite set then |E| stands for its cardinality.
If Q is an assertion then the Kronecker symbol δQ equals 1 if Q is true and 0 otherwise.
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2. Quick review of GLpNq automorphic forms

A convenient reference for this section is [6]. Let f be a GLpNq Hecke-Maass cusp form of
level 1 and let f˚ be its dual. If N “ 2, we require (for convenience) that the corresponding
classical modular form is not holomorphic.

For positive integers m1, . . . ,mN´2 and a non-zero integer mN´1, we denote by

af pm1, . . . ,mN´1q

the pm1, . . . ,mN´1q’th Fourier coefficient of f . We assume that f is arithmetically normalized,
namely af p1, . . . , 1q “ 1. Since f is a Hecke eigenform, the multiplicity 1 theorem shows that f
is either even or odd, i.e., that

af pm1, . . . ,´mN´1q “ εfaf pm1, . . . ,mN´1q (2.1)

where

εf :“

#

`1 if f is even,

´1 if f is odd
(2.2)

by [6, Proposition 9.2.5, Proposition 9.2.6]. More precisely, a GLpNq Maass cusp form of level
1 is always a linear combination of an even and an odd one by [6, Definition 9.2.4]. If N is odd,
then it is known that a GLpNq Maass cusp form of level 1 is always even (see [6, Proposition
6.3.5]). If N is even and f is a GLpNq Hecke-Maass cusp form of level 1 then one can check
that f and Kpfq defined by

Kpfqpzq :“ f pdiagp´1, 1, . . . , 1qzq

for z in the generalized upper-half plane have the same Hecke eigenvalues (this follows from the
fact that K commutes with the Hecke algebra). Since K is an involution, the multiplicity 1
theorem implies the result (see [14, Theorem 6.28] and [6, Section 9.2] for more details).

The Fourier coefficients satisfy the Ramanujan-Petersson bound on average, by Rankin-
Selberg theory. Recall that the Rankin-Selberg L-function of f and another GLpNq Hecke-
Maass cusp form g of level 1 is the Dirichlet series

Lpf ˆ g, sq “ ζpNsq
ÿ

m1,...,mN´1>1

af pm1, . . . ,mN´1q ag pm1, . . . ,mN´1q

pmN´1
1 mN´2

2 . . .mN´1q
s

.

This L-function has an analytic continuation to C if g ‰ f˚, and a meromorphic continuation to
C with a simple pole at s “ 1 if g “ f˚ (see [6, Theorem 12.1.4]). The residue of Lpf ˆ f˚, sq at
s “ 1 is denoted rf . It is a positive real number, and it may be expressed in terms of invariants
of f , see Proposition A.1.

The Rankin-Selberg L-function has also an Euler product of degree N2 given by

Lpf ˆ g, sq “
ź

qPP

ź

16j,k6N

ˆ

1´
αj,qpfqαk,qpgq

qs

˙´1

(2.3)
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by [6, Proposition 12.1.3] where the αj,qpfq’th are the complex roots of the monic polynomial

XN `

N´1
ÿ

`“1

p´1q`af p

`´ 1 terms
hkkikkj

1, . . . , 1 , q, 1, . . . , 1qXN´` ` p´1qN P CrXs (2.4)

(where the Fourier coefficient corresponding to ` has index q at the `-th position).
For a prime number q, we denote for convenience

αqpfq :“ tαj,qpfq, 1 6 j 6 Nu (2.5)

and we remark that (2.4) and (2.14) imply that

αqpf
˚q “

!

αj,qpfq, 1 6 j 6 N
)

.

From (2.4), we also find that

af p

`´ 1
hkkikkj

1, . . . , 1, q, 1, . . . , 1q “ e`pαqpfqq :“
ÿ

16j1ă¨¨¨ăj`6N

αj1,qpfq . . . αj`,qpfq (2.6)

for 1 6 ` 6 N ´ 1. More generally, it follows from the works of Shintani and of Casselman–
Shalika (see also [27, Proposition 5.1]) that, for a prime number q and N ´ 1 non-negative
integer k1, . . . , kN´1, we have

af

´

qk1 , . . . , qkN´1

¯

“ SkN´1,...,k1 pα1,qpfq, . . . , αN,qpfqq (2.7)

where

SkN´1,...,k1 px1, . . . , xN q “
1

V px1, . . . , xN q
det

¨

˚

˚

˚

˚

˚

˚

˝

x
N´1`kN´1`¨¨¨`k1
1 . . . x

N´1`kN´1`¨¨¨`k1
N

...
...

...

x
2`kN´1`kN´2

1 . . . x
2`kN´1`kN´2

N

x
1`kN´1

1 . . . x
1`kN´1

N
1 . . . 1

˛

‹

‹

‹

‹

‹

‹

‚

(2.8)
is a Schur polynomial and where V px1, . . . , xN q stands for the usual Vandermonde determinant

V px1, . . . , xN q :“
ź

16iăj6N

pxi ´ xjq .

We will need the following property, which we will explain in Proposition B.1: there exist
polynomials PN px,y, T q, where x “ px1, . . . , xN q and y “ py1, . . . , yN q are indeterminates, such
that

ÿ

k>0

S0,...,0,kpxqS0,...,0,kpyqT
k “

PN px,y, T q
ś

16j,k6N p1´ xjykT q
(2.9)

The analytic properties of the Rankin-Selberg L-functions are known to imply that
ÿ

m1,...,mN´1>1

mN´1
1 mN´2

2 ¨¨¨mN´16X

|af pm1, . . . ,mN´1q|2 !ε,f X1`ε (2.10)

for all real number X > 1 and ε ą 0. This bound on average for the Fourier coefficients of f is
strong enough in all the analytic estimates in this work, except when computing the variance in
Section 5, which requires a non-trivial individual bound for Satake parameters which is stronger
than what is implied by this bound.

More precisely, recall that W. Luo, Z. Rudnick and P. Sarnak have proved in [18] and [19]
that

max
16j6N

|αj,qpfq| 6 q1{2´1{pN2`1q (2.11)
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for all Hecke-Maass cusp forms f of level 1 and all prime numbers q. (The Ramanujan-Petersson
conjecture claims that this should hold with 1 on the right-hand side, and the Jacquet-Shalika
local bound shows that it does with q1{2 instead).

By [6, Theorem 9.3.11], the Fourier coefficients of f satisfy the multiplicativity relations

af pm, 1, . . . , 1qaf pm1, . . . ,mN´1q “
ÿ

śN
`“1 c`“m

cj |mjp16j6N´1q

af

ˆ

m1cN
c1

,
m2c1

c2
, . . . ,

mN´1cN´2

cN´1

˙

(2.12)

for positive integers m,m1, . . . ,mN´2 and non-zero integer mN´1 (there is no typo), as well as

af
`

m1m
1
1, . . . ,mN´1m

1
N´1

˘

“ af pm1, . . . ,mN´1q af
`

m11, . . . ,m
1
N´1

˘

(2.13)

for positive integers m1,m
1
1, . . . ,mN´2, m

1
N´2, and non-zero integers mN´1,m

1
N´1 such that

`

m1 . . .mN´1,m
1
1 . . .m

1
N´1

˘

“ 1.

We also mention that, for positive integers m1, . . . ,mN´1, we have

af˚pm1, . . . ,mN´2,mN´1q “ af pmN´1,mN´2, . . . ,m1q (2.14)

by [6, Theorem 9.3.11, Addendum]. Using the fact that f is a Hecke eigenfunction, one derives
by Möbius inversion the relation

af pm1, . . . ,mN´2,mN´1q “ af pmN´1,mN´2, . . . ,m1q, (2.15)

(see [6, Theorem 9.3.6, Theorem 9.3.11, Addendum]) and in particular, we see that the Fourier
coefficients of f are real if f is self-dual, i.e., if f “ f˚. Recalling the definition ((1.1) and (1.2)),
we see that

af pmq “ af pm, 1, . . . , 1q “ af p1, . . . , 1,mq “ af˚pmq (2.16)

for m > 1.
We now consider analogues of some of these properties at the infinite place. We denote by

νpfq “ pν1pfq, . . . , νN´1pfqq P CN´1

the type of f . The components of the type of f are complex numbers characterized by the
property that, for every invariant differential operator D in the center of the universal enveloping
algebra of GLpN,Rq, the cusp form f is an eigenfunction of D with the same eigenvalue as the
power function Iνpfq which is defined in [6, Equation (5.1.1)].

On the other hand, we denote by

α8pfq “ tαj,8pfq, 1 6 j 6 Nu

the Langlands parameters1 of f .
The Langlands parameters are obtained as a set of affine combinations of the coefficients of

the type. They satisfy
N
ÿ

j“1

αj,8pfq “ 0. (2.17)

and

α8pf
˚q “ ´α8pfq (2.18)

since the type of f˚ is νpf˚q “ pνN´1pfq, νN´2pfq, . . . , ν1pfqq (see [6, Proposition 9.2.1]).
We also have the unitarity property (see [24, Equation A.2])

α8pfq “ ´α8pfq (2.19)

or equivalently

α8pf
˚q “ α8pfq (2.20)

1For reference, we note that αj,8pfq is denoted λjpνq and αj,8pf
˚
q is denoted Ăλjpνq in [6].
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by (2.18). It is known that

max
16j6N

|<e pαj,8pfqq| 6
1

2
´

1

N2 ` 1
, (2.21)

(see [18,19]), and this analogue of (2.11) will also be used.

3. Generalized Bessel transforms for GLpNq

3.1. The Voronŏı summation formula. The first case of the Voronŏı summation formula
beyond GLp2q is due to S.J. Miller and W. Schmid, for GLp3q cusp forms (see [21]; note that
according to [12, Section 1.2] and [8, Page 4], P. Sarnak and T. Watson had developed before a
version of the Voronŏı summation formula for GLp3q for prime denominators). D. Goldfeld and
X. Li developed a Voronŏı summation formula for GLpNq for prime denominators in [7] and for
general denominators in [8]. Independently, S.J. Miller and W. Schmid found a more general
version of the Voronŏı summation formula for GLpNq in [22].

The version we use is both a particular case and a slightly renormalized version of the formulas
given in [7, Theorem 4.1] and in [12, Theorem 1], which, among other things, takes into account
the properties (2.1) and (2.15) satisfied by the Fourier coefficients of f .

In order to state the formula, we first define the required integral transforms.
Given an N -tuple α “ pα1, . . . , αN q of complex numbers and an integer k P t0, 1u, we denote

Γk,αpsq :“
ź

16j6N

ΓR ps` αj ` kq

where ΓRpsq :“ π´s{2 Γps{2q for all complex number s. We write α˚ “ α “ pαjq16j6N .
Given a smooth function w with compact support on R˚`, we then define

Bk,αrwspxq :“
1

2iπ

ż

pσq

Γk,αpsq

Γk,α˚p1´ sq
Mrwsp1´ sq

ds

xs
(3.1)

“M´1

„

s ÞÑ
Γk,αpsq

Γk,α˚p1´ sq
Mrwsp1´ sq



pxq (3.2)

for all positive real number x and σ ą max16j6N p´<e pαjqq, and

B˘αrws :“
1

2

ˆ

B0,αrws ¯
1

iN
B1,αrws

˙

, (3.3)

which are functions defined for x ą 0, and finally

Bαrwspxq :“ Bsgnpxq
α rwsp|x|q (3.4)

for all non-zero real numbers x.
Moreover, we recall the definition of hyper-Kloosterman sums. For r > 1 a positive integer,

F a finite field of characteristic p with |F| “ q and u P F, we denote

Krpu, qq “
1

q
r´1
2

ÿ

px1,...,xrqPpF˚qr
x1...xr“u

ψFpx1 ` ¨ ¨ ¨ ` xrq, (3.5)

where ψF denotes the additive character given by

ψFpxq “ e

ˆ

TrF{Fppxq

p

˙

.

Proposition 3.1 (Voronŏı summation formula for GLpNq)– Let N > 2 be an integer and f a
Hecke-Maass cusp form on GLpNq of level 1. Let w : R˚` Ñ R be a smooth and compactly
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supported function. Let p be a prime number and let b be an integer. If p does not divide b then

ÿ

n>1

af pnqe

ˆ

bn

p

˙

wpnq “
εf

p
N
2

ÿ

mPZ˚
af˚pmqKN´1pb̄m, pqBα8pfqrws

ˆ

m

pN

˙

` εf

N´2
ÿ

`“1

p´1q``1

p`

ÿ

mPZ˚
af p

`´ 1
hkkikkj

1, . . . , 1, p, 1, . . . , 1,mqBα8pfqrws
ˆ

m

p`

˙

(3.6)

where b̄ denotes the inverse of b modulo p. The second sum is zero if N “ 2.

Proof of proposition 3.1. When N is odd, (3.6) can be deduced directly from [7, Theorem 4.1].
Let us assume then that N is even and let us check that (3.6) can be deduced from [12, Theorem
2]. The explicit links between their notations and ours are given in [12, Remark 3]. Let πpfq
be the automorphic cusp form of GLpN,AQq associated to f and let π8pfq be its archimedean
component. For χ P t1, sgnu one of the two unitary characters of R˚, the duality between w
and Bα8pfqrws is given by

ż `8

y“0

`

Bα8pfqrwspyq ` Bα8pfqrwsp´yqχp´yq
˘

ys
ds

y

“ χp´1qN´1γ p1´ s, π8pf
˚q ˆ χ, ψ8q

ż `8

y“0
wpyqχpyqy1´sds

y

according to [12, Lemma (5.2)] for all s of real part sufficiently large, where

γ p1´ s, π8pf
˚q ˆ χ, ψ8q “ ε ps, π8pf

˚q ˆ χ, ψ8q
L ps, π8pfq ˆ χq

L p1´ s, π8pf˚q ˆ χq

by [12, Section 5.1]. Consequently,

M
“

y ÞÑ Bα8pfqrwspεyq
‰

psq “Mrwsp1´ sq

ˆ
1

2

`

γ p1´ s, π8pf
˚q, ψ8q ` εˆ p´1qN´1γ p1´ s, π8pf

˚q ˆ sgn, ψ8q
˘

for ε “ ˘1. We have

ε ps, π8pf
˚q, ψ8q “ εf ,

ε ps, π8pf
˚q ˆ sgn, ψ8q “ εf i

N

and

L ps, π8pfqq “

N
ź

j“1

ΓR ps` αj,8pfqq ,

L ps, π8pfq ˆ sgnq “

N
ź

j“1

ΓR ps` αj,8pfq ` 1q .

Noting that

p´1qN´1iN “ ´
1

iN
,

the formula follows as stated. �

The following useful lemma relates the Bessel transforms for f and its dual.

Lemma 3.2– Let k P t0, 1u and w : R˚` Ñ R a smooth and compactly supported function. One
has

Bk,α8pfqrws “ Bk,α8pf˚qrws
and

B˘α8pfqrws “ B˘p´1qN

α8pf˚q
rws and Bα8pfqrwspxq “ Bα8pf˚qrwspp´1qNxq

for all non-zero real number x.
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Proof of lemma 3.2. The second and third equalities are direct consequences of the first one by
(3.3) and (3.4). Let us quickly check the first one. Denote α “ α8pfq so that α8pf

˚q “ α˚

by (2.20). By (3.1), we have

Bk,αrwspxq “
1

2iπ

ż

pσq

Γk,αpsq

Γk,α˚p1´ sq
Mrwsp1´ sq

ds

xs

“
1

2iπ

ż

pσq

Γk,αpsq

Γk,α˚p1´ sq
Mrwsp1´ sq

ds

xs

“
1

2iπ

ż

pσq

Γk,α˚psq

Γk,αp1´ sq
Mrwsp1´ sq

ds

xs

“ Bk,α8pf˚qrws

by (2.20). �

3.2. Unitarity of the generalized Bessel transforms. A key ingredient in the computa-
tion of the variance in Sections 7.5.1, 7.5.2, 7.6.1 and 7.6.2 below will be the unitarity of the
generalized Bessel transforms in the following sense.

Proposition 3.3 (Unitarity of the generalized Bessel transforms)– If w : R˚` Ñ R is a smooth and
compactly supported function and k P t0, 1u then

||Bk,α8pfqrws||2 “ ||w||2 (3.7)

where the L2-norms are computed with respect to the Lebesgue measure dx on R˚`.

Proof of proposition 3.3. Denote α “ α8pfq. One gets successively

||Bk,αrws||22 “
ż `8

x“0
|Bk,αrwspxq|2 dx

“

ż `8

x“0
Bk,αrwspxqBk,αrwspxq dx

“

ż `8

x“0
Bk,αrwspxqBk,α˚rwspxq dx

by Lemma 3.2. Then, the Parseval formula for the Mellin transform (namely the fact that the
(suitably renormalized version of the) Mellin transform is a unitary operator) asserts that

||Bk,αrws||22 “
1

2iπ

ż

pσq
M rBk,αrwss psqM

“

Bk,α˚rws
‰

p1´ sqds

for σ large enough (see [26, Theorem 1.17]). By (3.2),

||Bk,αrws||22 “
1

2iπ

ż

pσq

Γk,αpsq

Γk,α˚p1´ sq
Mrwsp1´ sq (3.8)

ˆ
Γk,α˚p1´ sq

Γk,αp1´ p1´ sqq
Mrwsp1´ p1´ sqqds (3.9)

“
1

2iπ

ż

pσq
Mrwsp1´ sqMrwspsqds (3.10)

“ ||w||22 (3.11)

once again by the Parseval formula for the Mellin transform. �

Corollary 3.4– Let w : R˚` Ñ R be a smooth and compactly supported function.

‚ If N is odd then
ÿ

gPtf,f˚u

M
”

ˇ

ˇBα8pgqrws
ˇ

ˇ

2
ı

p1q “ ||w||22. (3.12)
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‚ Independently of the parity of N ,
ÿ

εPt˘1u

M
„

ˇ

ˇ

ˇ
Bεα8pfqrws

ˇ

ˇ

ˇ

2


p1q “ ||w||22. (3.13)

Proof of corollary 3.4. By Lemma 3.2, we have

M
”

ˇ

ˇBα8pgqrws
ˇ

ˇ

2
ı

p1q “M
„

ˇ

ˇ

ˇ
B`1
α8pgq

rws
ˇ

ˇ

ˇ

2


p1q

for g “ f, f˚ and

M
„

ˇ

ˇ

ˇ
Bεα8pgqrws

ˇ

ˇ

ˇ

2


p1q “

ż `8

x“0
Bεα8pgqrwspxqB

p´1qNε
α8pg˚q

rwspxqdx

for g “ f, f˚ and ε “ ˘1. A straightforward computation reveals that

M
„

ˇ

ˇ

ˇ
Bεα8pgqrws

ˇ

ˇ

ˇ

2


p1q “
1

4

´

||B0,α8pgqrws||
2
2 ` ||B1,α8pgqrws||

2
2

¯

´
ε

4iN
M

“

B0,α8pg˚qrwsB1,α8pgqrws ` p´1qNB0,α8pgqrwsB1,α8pg˚qrws
‰

p1q.

Proposition 3.3 implies both (3.12), if N is odd, and (3.13). �

3.3. Asymptotic behaviour of the generalized Bessel transforms. Bounds for the gen-
eralized Bessel transforms B˘α8pfqrws both for small and large arguments are required in this

work.

Proposition 3.5– Let w : R˚` Ñ R be a smooth and compactly supported function, x be a positive
real number and K be a positive integer. Let α “ α8pfq for some cusp form f as before.

‚ If 0 ă x 6 1 then
B˘αrwspxq ! max

16j6N
x<e pαj,8pfqq.

In particular, if 0 ă x 6 1 then

B˘αrwspxq ! x´p1{2´1{pN2`1qq

by (2.21).
‚ If x ą 0 then

B˘αrwspxq !A,α,w
1

xA

for all positive real number A.

Proof of proposition 3.5. For the first part, we can shift the contour in (3.1) to the left, passing
through simple poles at z “ ´2n ´ αj ´ k for all non-negative integers n and 1 6 j 6 N , the
largest contribution occuring when n “ 0.

For the second part, we can shift the contour to the right to <e psq “ A without encountering
any singularity. �

For the next corollary, we recall the definition ((1.1) and (1.2)) of af pmq for all integers
m > 1.

Corollary 3.6– Let Z be a positive real number, M1 > 1 be a real number, 1 6M1 6M2 6 `8
and w : R˚` Ñ R be a smooth and compactly supported function. One has

ÿ

mPZ˚
M16|m|6M2

|af pmq|
ˇ

ˇ

ˇ
Bα8pfqrws

´m

Z

¯ˇ

ˇ

ˇ
!ε,f δZ6M1M

1`ε
1

ˆ

Z

M1

˙A

` δM16Z6M2Z
1`ε ` δM26ZM

1`ε
2

ˆ

Z

M2

˙1{2

for all ε ą 0 and all real number A ą 1.
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Proof of corollary 3.6. Let us assume that Z >M1 and M2 “ `8. Then, Proposition 3.5 tells
us thatfor all positive real number A, the m-sum is bounded by

Z1{2
ÿ

M16m6Z

|af pmq|

m1{2
` ZA

ÿ

mąZ

|af pmq|

mA
.

By the Cauchy-Schwarz inequality, the first term is bounded by

! Z1{2

˜

ÿ

M16m6Z

|af pmq|
2

¸1{2 ˜
ÿ

M16m6Z

1

m

¸1{2

!ε,f Z
1{2

`

Z1`ε
˘1{2

“ Z1`ε

for all ε ą 0 by (2.10). By summation by parts, the second term equals

ZA

«

1

xA

ÿ

16m6x

|af pmq|

ff`8

x“Z

`AZA
ż `8

x“Z

1

xA`1

ÿ

16m6x

|af pmq|dx.

Choosing A ą 1, the Cauchy-Schwarz inequality and (2.10) ensure that this quantity is also
! Z1`ε.

Let us assume that Z ăM1 and M2 “ `8. Similarly, the m-sum is bounded by

M1`ε

ˆ

Z

M1

˙A

by summation by parts and (2.10).
The argument in the case where M2 is a real number are essentially the same. �

4. Equidistribution of products of hyper-Kloosterman sums

This section contains the crucial algebraic ingredient involved in the determination of the
asymptotic behaviour of certain combinations of hyper-Kloosterman sums which will arise in
Section 7.4.

Let k > 1 be a positive integer, let m “ pm1, . . . ,mkq, n “ pn1, . . . , nkq be two tuples of

non-negative integers, and let c “ pc1, . . . , ckq P
`

F˚p
˘k

be given.
We define

Sm;npc; pq :“
1

p

ÿ

aPF˚p

k
ź

j“1

KN pacj , pq
njKN p´acj , pq

mj , (4.1)

where we recall that KN px, pq denotes the normalized hyper-Kloosterman sum defined in (3.5).
We will determine the behavior of these sums as p tends to infinity.

For G either the special linear group SLN or the symplectic group SpN (if N is even), we
denote by

Std : G Ñ GLN

the standard N -dimensional representation of G. When G “ SLN , we denote by Std the
contragredient of the standard representation.

Theorem 4.1– Let p be an odd prime number, k > 1, c “ pc1, . . . , ckq P
`

F˚p
˘k

and let m “

pm1, . . . ,mkq and n “ pn1, . . . , nkq be two tuples of non-negative integers.

‚ If N is odd and if the parameters cj’s are distinct in F˚p{t˘1u then

Sm;npc; pq “ Am,n `Opp
´1{2q

where the implied constant depends only on pk,N,m,nq and where

Am,n “

k
ź

j“1

Amj ,nj ,
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with Am,n > 0 given by the multiplicity of the trivial representation of SLN in the tensor
product

ρm,n “ Std
bm

b Stdbn

for all non-negative integers m and n.
‚ If N is even and if the parameters cj’s are distinct in F˚p{t˘1u, then

p´1qsSm;npc; pq “ Bm,n `Opp
´1{2q (4.2)

where

s “
ÿ

16j6k

pmj ` njq,

the implied constant depends only on pk,N,m,nq, and where

Bm,n “

k
ź

j“1

BmjBnj ,

with Bm > 0, for m > 0, given by the multiplicity of the trivial representation of SpN
in ρm “ Stdbm.

Remark 4.2– (1) Note that the “main terms” Am,n and Bm,n are independent of the tuple c
(with their respective restrictions). However, this independence is only meaningful when these
main terms do not vanish.

(2) Opening all the hyper-Kloosterman sums in Sm;npc; pq, we can transform this sum into
an additive character sum in

1` pN ´ 1q
k
ÿ

j“1

pmj ` njq

variables over F. Comparing the normalization shows that Theorem 4.1 is equivalent to uniform
square-root cancellation over primes for these sums whenever the main term vanishes.

This is the analogue of [4, Proposition 3.2], and proceeds along similar lines. Let us decompose
the proof in several steps. We begin with a lemma.

Lemma 4.3– Let F be a finite field with |F| “ q elements, let r > 1 be an integer, and let a P F˚.
We have

exp
´

ÿ

ν>1

1

ν

´

ÿ

xPF˚ν

Krpx, qνqKrpax, q
νq

¯

T ν
¯

“
PapT q

p1´ T q ¨ ¨ ¨ p1´ qr´1T q

as a formal power series in CrrT ss, where Fν denotes the extension of degree ν of F and

PapT q “

#

1 if a ­“ 1

1` qT if a “ 1.

Proof of lemma 4.3. Let

Srpa,Fq “
ÿ

xPF˚
Krpx, qqKrpax, qq

for r > 1.
A straightforward application of the definition of Kloosterman sums and of orthogonality

of characters (see [15, p. 170] for a similar computation) shows that, for r > 2, we have the
relation

Srpa,Fq “ Sr´1pa,Fq ´
1

qr´1
.

Since it is clear that

S1pa,Fq “

#

q ´ 1 if a “ 1

´1 if a ­“ 1,
15



we obtain, by induction on r first, and then by replacing F by Fν for ν > 1, the formula

ÿ

xPF˚ν

Krpx, qνqKrpax, q
νq “

#

qν ´ 1´ q´ν ´ ¨ ¨ ¨ ´ qνpr´1q if a “ 1,

´1´ q´ν ´ ¨ ¨ ¨ ´ qνpr´1q if a ­“ 1.

Summing over ν and taking the exponential, the result follows. (One could also invoke the
Plancherel formula for the discrete Mellin transform, and the fact that the Mellin transforms of
hyper-Kloosterman sums are products of Gauss sums, see [16, 8.2.8,8.2.9]). �

The next proposition is the key to Theorem 4.1.

Proposition 4.4– Let p be an odd prime number, k > 1, c “ pc1, . . . , ckq P
`

F˚p
˘k

. Let ` ­“ p
be a prime number, and let KN be the rank N Kloosterman `-adic sheaf on the multiplicative
group over Fp.

‚ If N is odd and the parameters cj’s are distinct in F˚p{t˘1u then the arithmetic and
geometric monodromy groups of the sheaf

Fpcq :“ rˆc1s
˚KN ‘ ¨ ¨ ¨ ‘ rˆcks

˚KN

coincide and are equal to SLkN (the direct product of k copies of SLN ).
‚ If N > 2 is even and the parameters cj’s are distinct in F˚p{t˘1u then the arithmetic

and geometric monodromy groups of the sheaf

Gpcq :“ rˆc1s
˚KN ‘ ¨ ¨ ¨ ‘ rˆcks

˚KN ‘ rˆp´c1qs
˚KN ‘ ¨ ¨ ¨ ‘ rˆp´ckqs

˚KN

coincide and are equal to Sp2k
N (the direct product of 2k copies of SpN ).

Proof. In both cases, we will apply the Goursat-Kolchin-Ribet criterion [16, Proposition 1.8.2],
much as in [20].

We consider first the case when N is odd. Then, for each 1 6 j 6 k, the geometric and arith-
metic monodromy group of rˆcjs

˚KN coincide and are equal to SLN (as proved by N. Katz [15,
Theorem 11.1]). It follows that there is a natural inclusion of the geometric and arithmetic
monodromy groups of Fpcq in SLkN in that case. We thus need to prove that this inclusion is
an isomorphism.

The Goursat-Kolchin-Ribet criterion shows that this follows if there does not exist a rank 1
sheaf L such that either

rˆcis
˚KN » rˆcjs

˚ǨN b L or rˆcis
˚KN » rˆcjs

˚KN b L (4.3)

for any 1 6 i ­“ j 6 k, where » denotes geometric isomorphism and ǨN is the dual of KN

(see [16, Proposition 1.8.2] and [16, Example 1.8.1]).
We therefore assume that there exists a rank 1 sheaf L satisfying (4.3) for some 1 6 i ‰ j 6 k;

we will find a contradiction.
If we have a geometric isomorphism

rˆcis
˚KN » rˆcjs

˚ǨN b L
then we also get an isomorphism

rˆcis
˚KN » rˆp´cjqs

˚KN b L
since ǨN » rˆp´1qs˚KN for N odd.

Hence the assumption implies that there is a geometric isomorphism

rˆas˚KN » KN b L
for some (possibly different) rank 1 sheaf L with a “ ci{cj or a “ ´ci{cj .

From this geometric isomorphism, as in [20, Lemma 2.4], it would follow that L is tame at
8 (because the unique slope of the Kloosterman sheaf is 1{N ă 1, whereas the unique slope of
the rank 1 sheaf L, if it were wildly ramified, would be a positive integer). Tensoring with ǨN ,
we deduce that an isomorphism as above implies an equality of Swan conductors at infinity

Swan8prˆas
˚KN b ǨN q “ Swan8pKN b ǨN q,
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where the point is that L has disappeared because tensoring with a tame sheaf leaves the Swan
conductor unchanged.

Again as in [20, Lemma 2.4], the Swan conductors are the degrees of the corresponding zeta
functions, as rational functions, i.e., they are the degrees of

exp
´

ÿ

ν>1

1

ν

´

ÿ

xPF˚pν

KN px, pνqKN pax, p
νq

¯

T ν
¯

and

exp
´

ÿ

ν>1

1

ν

´

ÿ

xPF˚pν

KN px, pνqKN px, p
νq

¯

T ν
¯

.

But Lemma 4.3 shows that these degrees differ except if a “ 1, since the first is N for a ­“ 1,
and the second is N ` 1. Thus, we get a “ 1, and hence ci “ ˘cj , a contradiction to our
assumption on c that concludes the case where N is odd.

Let us now assume that N > 2 is even. We denote ci “ ´ci´k for k ` 1 6 i 6 2k. Again
N. Katz [15, Th. 11.1] has show that, for each 1 6 j 6 2k, the geometric and arithmetic
monodromy groups of rˆcjs

˚KN coincide and are equal to SpN , and it follows that there is a

natural inclusion of the geometric and arithmetic monodromy groups of Gpcq in Sp2k
N . To prove

that this is an isomorphism using the Goursat-Kolchin-Ribet criterion, we need to show that
there does not exist a rank 1 sheaf L and a geometric isomorphism

rˆcis
˚KN » rˆcjs

˚ǨN b L or rˆcis
˚KN » rˆcjs

˚KN b L

for some 1 6 i ­“ j 6 2k. Since ǨN » KN for N even (the arithmetic monodromy group being
self-dual), this reduces to checking that we can not have

rˆcis
˚KN » rˆcjs

˚KN b L or rˆcis
˚KN » rˆp´cjqs

˚KN b L
for 1 6 i ­“ j 6 k. But this follows by the same reasoning as for N odd, taking advantage of
the fact that the ci are distinct modulo ˘1. �

Now, we can get back to the proof of Theorem 4.1.

Proof of theorem 4.1. We only consider the case when N is odd, since the proof is similar for N
even, using the second part of Proposition 4.4 instead of the first.

The point is that, for some isomorphism ι : Q̄` » C, we have

Sm;npc; pq “
ÿ

aPF˚p

ιpTrpFroba,p | ρm,npFpcqqqq,

where

ρm,n “

k
ò

j“1

ρmj ,nj

is a representation of the arithmetic monodromy group of Fpcq, and Froba,p is the geomet-
ric Frobenius conjugacy class at a relative to Fp. Indeed, this follows immediately from the
definition of the Kloosterman sheaves, which implies that, for a suitable ι, we have

ιpTrpFroba,p | KN qq “ p´1qN´1KN pa; pq.

By Proposition 4.4, the arithmetic and the geometric monodromy group of Fpcq coincide and
are equal to SLkN . Thus, Katz’s effective version of the Deligne equidistribution theorem for
curves (see [15, Section 3.6]) shows that

Sm;npc; pq “ µ`Opp´1{2q

where µ is the multiplicity of the trivial representation of the geometric monodromy group in the
representation ρm,n, where the implied constant depends only on k, N and m, n (the crucial
property of independence of the implied constant on p arises from the fact that, for p varying,
the sheaf Fpcq always has the same rank, number of singularities and Swan conductors). �
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It is now essential to determine when the leading terms Am,n and Bm,n are non-zero. This
happens in very special configurations only.

Proposition 4.5– Let N > 2.
(1) We have

A0,0 “ 1, B0 “ 1

for N odd or N even, respectively.
(2) Let m and n be non-negative integers with pm,nq ‰ p0, 0q.

‚ For N odd, A1,1 “ 1 and Am,n > 1 if and only if N divides m´ n.
‚ For N even, B2 “ 1 and Bm > 1 if and only if 2 divides m.

Proof of proposition 4.5. The first point is clear since ρ0,0 (resp. ρ0) is the one-dimensional
trivial representation.

We come to the second point, first when N is odd.
Then A1,1 is the multiplicity of the trivial representation of SLN in Std b Std » EndpStdq.

Since Std is an irreducible representation of SLN , Schur’s Lemma implies that A1,1 “ 1.
We now consider the action of the center of SLN on ρm,n. This group is isomorphic to

the cyclic group of N -th roots of unity. Since a generator ξ of this group acts on Std by
multiplication by ξ, and on the contragredient by multiplication by ξ´1, we see that ξ acts
on ρm,n by multiplication by ξn´m. But the action of the center must also be trivial on any
subrepresentation, and therefore ξn´m “ 1 if Am,n > 1, i.e., m ” n mod N whenever Am,n > 1.

Conversely, assume N | m´ n. We can assume (up to exchanging pm,nq with pn,mq, which
we can since Am,n “ An,m, simply because the contragredient of ρm,n is ρn,m) that n > m, say
n “ m` qN with q > 0. Then

ρm,n » EndpStdqbm b StdbqN .

The first tensor factor always contains the trivial representation, and therefore it is enough
to show that the second does for any q > 0. By writing

StdbNq “ pStdbN qbq,

we then reduce to the case of StdbN . But this representation contains the trivial representation,
as one can most easily see by considering the contragredient, which acts on the space of N -
multilinear forms on CN , and contains the space of antisymmetric N -linear forms on CN , in
which the determinant is a non-trivial invariant vector for the action of SLN .

Consider finally the case when N is even. Since Std is then self-dual, we have B2 “ 1 again
by Schur’s Lemma. The center of SpN contains ´1, and considering its action shows that 2 | n if
Bn > 1. Finally, if 2 | n, we see as above that Bn > 1 because B2 > 1 (which may be interpreted
by the existence of the invariant alternating bilinear form on the standard representation of the
symplectic group.) �

Remark 4.6– In particular, note that if N is even and

Bm,n ­“ 0,

then s “
ř

16j6kpmj ` njq is even, and therefore the formula (4.2) becomes

Sm;npc; pq “ Bm,n `Opp
´1{2q.

Remark 4.7– For N “ 3, G. Djanković (see [3]) has computed the first few moments of hyper-
Kloosterman sums and found that

S0;1p1; pq “ ´
1

p2
, S0;2p1; pq “ ´

1

p
´

1

p2
´

1

p3
, S1;1p1; pq “ 1´

1

p
´

1

p2
´

1

p3
,

S0;3p1; pq “ 1´

ˆ

1`

ˆ

´3

p

˙˙

1

p
´

3

p2
´

2

p3
´

1

p4
,
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for all odd prime numbers p. He also proved elementarily the upper-bound

S0;4p1; pq !
1
?
p

(already known due to the results of N. Katz). Of course, these results are compatible with
Theorem 4.1 and Proposition 4.5.

G. Djanković observed that “curiously there is no cancellation in the sum” S0;3p1; pq. But
Proposition 4.5 explains this feature, simply by the fact that the trivial representation occurs
in Stdb3.

We also note that D. Würsch, in his (unpublished) 2011 Master Thesis at ETH Zürich,
computed Sp2,2qp1; pq for N “ 3 in terms of the number of points on a certain elliptic surface.

Remark 4.8– One can use character theory and explicit descriptions of the Haar measure on
the relevant maximal compact subgroups of the monodromy groups to give “concrete” integral
formulas for Am,n and Bm. Since we will not use such descriptions, we omit the details.

5. Asymptotic of sums related to the variance

In this section, we find the asymptotic behavior of certain sums, which will allow us to finalize
the proof of our main results, by identifying the main terms with data depending on the input
cusp form f and test function w. The proof may be skipped in a first reading. As before, f is
a cusp form on GLpNq with level 1 and w is smooth and compactly supported on R˚`.

For g P tf, f˚u, Y, Z some positive real numbers and B a smooth function on R, we consider
the sum

Vpf,gqpY, Zq :“
1

Y

ÿ

16măZ

af pmqagpmqB
´m

Y

¯

.

We will use Rankin-Selberg theory to derive the following asymptotic expansion of such sums.
Because the result might be applicable in other contexts, we include a parameter in the state-
ment measuring the approximation to the Ramanujan-Petersson conjecture at finite places; in
our case, taking θ “ 1{2´1{pN2`1q is possible by the work of Luo, Rudnick and Sarnak [18,19].

Proposition 5.1– Let θ Ps0, 1{2r be a real number such that the Satake parameters of f satisfy

|αj,qpfq| 6 qθ

for all primes q and 1 6 j 6 N .
Let 0 ă Y ă Z be real numbers. If the function B satisfies the bounds

Bpxq ! x´η for 0 ă x ă 1, (5.1)

for some 0 6 η ă 1 and

Bpxq !A x
´A for x ą 0, (5.2)

for all positive real numbers A, then we have

Vpf,gqpY,Zq “

˜

δf˚‰f
g“f˚

` δf˚“f

¸

rfHf,f˚p1qM rBs p1q `Oε,f

˜

Zε
ˆ

Y

Z

˙A

` Y ´1{2`θ`ε

¸

(5.3)

for all A ą 0, where rf is the residue at s “ 1 of the Rankin-Selberg L-function Lpf ˆ f˚, sq
and

Hf,f˚p1q “
ź

qPP
PN pαqpf

˚q, αqpfq, qq,

in terms of the polynomials PN px,y, T q, which are defined by (2.9). Furthermore, we have

Hf,f˚p1q ą 0.

19



Remark 5.2– We illustrate here the special cases N “ 2 and N “ 3:
(1) If N “ 2 then

Hf,f˚p1q “
6

π2
ą 0.

by Remark B.2.
(2) On the other hand, if N “ 3, then we have

Hf,f˚p1q “
ź

qPP

˜

1´
|af pq, 1q|2

q2
`

2af pq, qq

q3
´

|af pq, 1q|2

q4
`

1

q6

¸

“
ź

qPP

¨

˝1´
|af pq, 1q|2

q2
`

2
´

|af pq, 1q|2 ´ 1
¯

q3
´

|af pq, 1q|2

q4
`

1

q6

˛

‚

“
ź

qPP

ˆ

1´
1

q

˙2 ˆ

1`
1` |af pq, 1q|

q
`

1

q2

˙ˆ

1`
1´ |af pq, 1q|

q
`

1

q2

˙

by Remark B.2, (2.6), (2.4) and the formula

S1,1px1, x2, x3q “ px1 ` x2qpx1 ` x3qpx2 ` x3q “
ÿ

16j1‰j263

xj1x
2
j2 ` 2e3px1, x2, x3q

where e3 is defined in (2.6).
In particular, one can see immediately that Hf,f˚p1q ą 0, using the fact that Satake param-

eters GLp3q cusp forms are bounded by q1{2´1{10.

Proof of proposition 5.1. By the Cauchy-Schwarz inequality, summation by parts, (2.10) and
(5.2), one gets

Vpf,gqpY, Zq “ V 0
pf,gqpY, Zq `Oε,f

˜

Zε
ˆ

Y

Z

˙A´1
¸

(5.4)

for all A ą 1 since Y ą Z and where

V 0
pf,gqpY q :“

1

Y

ÿ

m>1

af pmqagpmqB
´m

Y

¯

is the extension to the sum over all the positive integers m.
Using Mellin inversion, we obtain

V 0
pf,gqpY q “

1

Y

1

2iπ

ż

p3q
Df,gpsqY

sM rBs psq ds

where the Dirichlet series

Df,gpsq :“
ÿ

m>1

af pmqagpmq

ms

is absolutely convergent on <e psq ą 1, by (2.10), and defines a holomorphic function on this
half-plane.

In addition, since m ÞÑ af pmqagpmq is a multiplicative function by (2.13), we have an Euler
product expansion given by

Df,gpsq “
ź

qPP

ÿ

k>0

af pq
kqagpq

kq

qks
:“

ź

qPP
Df,g,qpsq.

By (2.7), (2.5), (2.14) and (2.9), we have the formula

Df,g,qpsq “
PN pαqpfq, αqpgq, q

´sq
ś

16j,k63 p1´ αj,qpfqαk,qpgqq
´sq
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for any prime number q. As a consequence, the quotient

Df,gpsq

Lpf ˆ g, sq
“

ź

qPP
PN pαqpfq, αqpgq, q

´sq :“ Hf,gpsq

defines a holomorphic function on <e psq ą 1{2` θ.
Moreover, the Mellin transform of B is holomorphic on <e psq ą η since

M rBs psqxs´1 !

#

x´η`<e psq´1 when x is close to 0`,

x´A`<e psq´1 when x is close to `8

for all A ą 0.
Going back to the integral formula (5) for V 0

pf,gqpY q, we can shift the integral to the line

<e psq “ max p1{2` θ, ηq ` ε ă 1

(the assumptions θ ă 1{2 and η ă 1 are crucial here). Using the properties of the Rankin-
Selberg L-function, we see that we encounter at most a simple pole at s “ 1, and that the latter
exists if and only if

pf˚ ‰ f and g “ f˚q or pf˚ “ fq

(recall that g is either f or f˚).
The residue at s “ 1, in case there is a pole, is equal to

rfHf,f˚p1qM rBs p1q

where rf is the residue at s “ 1 of the Rankin-Selberg L-function Lpf ˆ f˚, sq.
Hence, we have

V 0
pf,gqpY, Zq “

˜

δf˚‰f
g“f˚

` δf˚“f

¸

rfHf,f˚p1qM rBs p1q `O
´

Y ´1{2`θ`ε
¯

, (5.5)

and (5.3) follows from (5.4) and (5.5).
Finally, the positivity property Hf,f˚p1q ą 0 holds since Hf,f˚p1q is an absolutely convergent

Euler product, and each term is positive by Proposition B.1 below, since the assumption (B.1)
is satisfied in view of (2.11). �

6. Applying the Voronŏı formula

We continue with a fixed Hecke-Maass cusp form f on GLpNq of level 1. Since f is fixed, we
will denote α “ α8pfq.

We recall the definition (1.3) of the error terms Ef pX, p, aq, for an invertible residue a class
in Fˆp , which depend on the choice of a fixed text function w : R˚` Ñ R, which is assumed to be
non-zero, smooth and compactly supported on rx0, x1s Ă R˚`. To simplify notation, we denote

Bαpxq “ Bαrwspxq.

In this section, we perform the first steps of the analysis of these sums before computing their
moments.

Proposition 6.1– Let α “ α8pfq for some cusp form f as before. If a is an invertible residue
class in Fˆp then

Ef pX, p, aq “
εf

a

pN{X

ÿ

mPZ˚
af˚pmqKN p´am, pqBα

ˆ

m

pN{X

˙

` εf

N´2
ÿ

`“1

p´1q`

pp``1q{2
a

p`{X

ÿ

mPZ˚
af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1,mqBα
ˆ

m

p`{X

˙

. (6.1)
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In particular,

Ef pX, p, aq “
εf

a

pN{X

ÿ

mPZ˚
af˚pmqKN p´am, pqBα

ˆ

m

pN{X

˙

`Oε,f

ˆ

pε
?
p

˙

(6.2)

and hence we have

Ef pX, p, aq !ε,f

ˆ

pN

X

˙1{2`ε

(6.3)

for all ε ą 0.

Remark 6.2– Note that the normalised hyper-Kloosterman sum KN pu, pq is a real number if N
is even and a complex number if N is odd, whose complex conjugate is KN p´u, pq. Hence, in
all cases, we have

KN pu, pq “ KN

`

p´1qNu, p
˘

. (6.4)

If f is self-dual then the left-hand side of 6.1 is obviously a real number by (2.15). One can
check directly that each m-sum in the right-hand side is a real number too by (6.4) and by
Lemma 3.2.

To get the previous proposition, we will use the fact that P. Deligne proved in [2] that this
normalised hyper-Kloosterman sum satisfies

|KN pu, pq| 6 N. (6.5)

Proof of proposition 6.1. Using additive characters to detect the congruence class a modulo p,
and isolating the contribution of the trivial character, we have

Sf pX, p, aq “
1

p

ÿ

b mod p

e

ˆ

´
ab

p

˙

ÿ

n>1

af pnqw
´ n

X

¯

e

ˆ

bn

p

˙

“Mf pX, pq `
1

p

ÿ˚

b mod p

e

ˆ

´
ab

p

˙

ÿ

n>1

af pnqe

ˆ

bn

p

˙

w
´ n

X

¯

,

where
ř

˚

restricts the sum to invertible residue classes.

The Voronŏı summation formula (Proposition 3.1) may be applied to each sum over n, with
wXpxq “ wpx{Xq. In this case, we have

Bk,αrwXspxq “ XBk,αrwspXxq

for k P t0, 1u. This leads to

Sf pX, p, aq “Mf pX, pq

` εf
X

p

N´2
ÿ

`“1

p´1q``1

p`

ÿ

mPZ˚
af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1,mqBα
ˆ

mX

p`

˙

ÿ˚

b mod p

e

ˆ

´
ab

p

˙

` εf
X

pN{2`1

ÿ

mPZ˚
af˚pmqBα

ˆ

mX

pN

˙

ÿ˚

b mod p

KN´1pb̄m, pqe

ˆ

´
ab

p

˙

.

In the second term, the sum over b is a Ramanujan sum, equal to ´1. In the last term, the
sum over b is easily computed: we have

ÿ˚

b mod p

KN´1pb̄m, pqe

ˆ

´
ab

p

˙

“ p1{2KN p´am, pq.
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We therefore deduce

Sf pX, p, aq “Mf pX, pq ` εf
X

p

N´2
ÿ

`“1

p´1q`

p`

ÿ

mPZ˚
af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1,mqBα
ˆ

mX

p`

˙

` εf
X

ppN`1q{2

ÿ

mPZ˚
af˚pmqKN p´am, pqBα

ˆ

mX

pN

˙

,

which is (6.1).
Furthermore, for N > 3 and 1 6 ` 6 N ´ 2, (2.13) tells us that if we write m “ pkm1 with

pp,m1q “ 1 and k > 0, then we have

af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1,mq “ af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1, pkqaf p1, . . . , 1,m
1q.

As a consequence, the second term in (6.1) is

εf

N´2
ÿ

`“1

p´1q`

pp``1q{2
a

p`{X
B`

where

B` :“
1

2iπ

ż

pσq
F`psq

Lpf˚, sq

Lppf˚, sq

ˆ

p`

X

˙s

M
“

B`αrws ` εB´αrws
‰

psq ds

by the Mellin inversion formula, where Lpf˚, sq is the Godement-Jacquet L-function of f˚

(see [6, Definition 9.4.3]), with p-factor given by

Lppf
˚, sq “

ÿ

k>0

af p1, . . . , 1, p
kq

pks
“

N
ź

j“1

ˆ

1´
αj,ppf

˚q

ps

˙´1

(see [6, Equation 9.4.2]) and

F`psq “
ÿ

k>0

af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1, pkq

pks
.

By Lemma 6.3 below, we can shift the contour to the line <e psq “ 1{2 ` ε for any ε ą 0
without encountering any pole. This gives the bound

B` !ε p
`{2`ε

ˆ

p`

X

˙1{2`ε

,

which proves (6.2).
More directly, the first term in (6.1) is bounded by

! δpNăX

ˆ

pN

X

˙A´1{2

` δpN>X

ˆ

pN

X

˙1{2`ε

!

ˆ

pN

X

˙1{2`ε

by Corollary 3.6 and (6.5), which is (6.3). �

We used the following lemma:

Lemma 6.3– Let 1 6 ` 6 N ´ 2 for N > 3. The series

F`psq “
ÿ

k>0

af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1, pkq

pks

defines a holomorphic function on <e psq > 1{2` ε for any ε ą 0, which satisfies

F`psq ! p`{2`ε

for <e psq “ 1{2` ε.
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Proof of proposition 6.3. We prove this lemma by induction on `. If ` “ 1 then

F1psq “

ˆ

af pp, 1, . . . , 1q ´
1

ps

˙

Lppf
˚, sq

since

af p1, . . . , 1, p
kqaf pp, 1, . . . , 1q “ af pp, 1, . . . , 1, p

kq ` af p1, . . . , 1, p
k´1q

by (2.12) for all positive integer k. The result follows from the Jacquet-Shalika bound

|αj,qpfq| 6 q
1{2

and (2.6).
If 2 6 ` 6 N ´ 2 then

F`psq “ af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1qLppf
˚, sq `

1

ps
F`´1psq

since

af p1, . . . , 1, p
kqaf p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1q “ af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1, pkq

` af p

`´1
hkkikkj

1, . . . , 1, p, 1, . . . , 1, pk´1q

for all positive integers k by (2.12). Once again, the result follows from the Jacquet-Shalika
bound and (2.6). �

7. Asymptotic expansion of the mixed moments

This long section is the heart of the paper, since we will prove Theorem A. Before we begin
the proof, we explain how the computation can be understood in probabilistic terms, in analogy
with Lindeberg’s proof of the usual Central Limit Theorem for triangular arrays of random
variables using the method of moments.

7.1. Notation. We now come back to Theorem A, and begin by recalling and fixing some
notation. Thus f is a fixed cusp form of level 1 on GLpNq, and w is a compactly supported
smooth test function. We denote

α “ α8pfq, α˚ “ α8pf
˚q “ α

(by (2.20), and

Bαpxq “ Bαrwspxq, Bα˚pxq “ Bα˚rwspxq.
We consider the mixed moment M “ Mf pX, p, pκ, λqq for fixed non-negative integers κ and λ

and an odd prime p.
The following notation will also be used througout this section. We will denote ν “ κ`λ and

P “ pp´ 1q{2. By m “ pm1 . . . ,mνq, we will always denote a ν-tuple of non-zero integers, by
j “ pj1, . . . , jνq a ν-tuple of integers in t1, . . . , P u, and by e “ pe1 . . . , eνq a ν-tuple of elements
in t˘1u.

7.2. Probabilistic analogy. For simplicity, we denote by Ep the random variable a ÞÑ Ef pX; p, aq.
We can then interpret the Voronŏı summation formula as giving an approximate decomposition

Ep “
ÿ

mPZ˚
Tp,m `Opp

´1{2`εq

for any ε ą 0, where Tp,m is also viewed as a random variable given by

Tp,m “
εf

a

pN{X
af˚pmqBα

ˆ

m

pN{X

˙

Kp,m
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with Kp,mpaq “ KN p´am; pq. It is easy to restrict the sum to 1 6 |m| ă p{2 (using (6.5) and
Corollary 3.6), getting a random variable

Ep “
ÿ

16|m|ăp{2

Tp,m.

Now our computations can be interpreted as comparing the moments of Ep with those of

rEp “
ÿ

16|m|ăp{2

rTp,m

where

T̃p,mpaq “
εf

a

pN{X
af˚pmqBα

ˆ

mk

pN{X

˙

Zp,m,

where the Zp,m are, for a given p, random variables (defined on a different probability space) of
the form

Zp,m “ TrpΘp,mq,

where pΘp,mqmPFˆp are Haar-distributed random variables on

GN “

#

USpN pCq if N is even,

SUN pCq if N is odd,

and where we assume:

‚ if N is even, that the pΘp,mqPFˆp are independent;

‚ if N is odd, that the variables pΘp,mq16măp{2 are independent, and furthermore

Θp,´m “
tΘ´1

p,m

for all m.

Indeed, one may interpret Theorem 4.1 as expressing the fact that

E
´

ν
ź

i“1

Kp,mi

¯

“ E
´

ν
ź

i“1

Zp,mi

¯´

1`Opp´1{2
¯

for all ν-tuples m of integers with 1 6 |mi| ă p{2 (where Ep¨q denotes expectation on the
relevant probability space).

Using this, it is not too difficult to prove Corollary B by exploiting the fact that the cor-

responding central limit theorem holds for rEp as p tends to infinity, with X “ pN{Φppq as in
that corollary. In turn, this probabilistic statement follows easily from the Lindeberg-Feller
Theorem for triangular arrays with independent rows (see, e.g., [1, Th. 27.2, §30]), after taking
into account the relation Zp,´m “ Zp,m if N is odd.

However, proceeding in this manner, even if it leads to an elegant proof of the Central Limit
Theorem, would not give the more precise asymptotic of fixed moments in Theorem A, valid (for
given κ and λ) in a wider range of p and X (at least, we are not aware of suitable probabilistic
references that would give such a result). We therefore implement the idea by computing
explicitly the asymptotic behavior of the moments. The reasoning above is however a good
motivation and check that the combinatorial extraction of the main terms is done correctly.

7.3. Initial cleaning. We begin by assuming that κ, λ > 1, since the remaining cases are
easier. We also denote Y “ pN{X to lighten the notation (in the setting of the Central Limit
Theorem of Corollary B, this is Y “ Φppq, which the reader should therefore think as a quantity
that grows rather slowly with p). We assume throughout that Y ă p{2, which corresponds to
the assumption 2pN´1 ă X in Theorem A.

By (2.15), we have

Ef pX, p, aq “ Ef˚pX, p, aq
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for all integers a coprime with p. Thus, applying Proposition 6.1 to Ef pX, p, aq and its conjugate,
and then expanding the κ-th (resp. λ-th) power, we obtain the expression

M “

ˆ

εf
?
Y

˙ν 1

p

ÿ˚

a mod p

ÿ

mPpZ˚qν

κ
ź

k“1

af˚pmkqKN pamk, pqBα
´mk

Y

¯

ˆ

ν
ź

`“κ`1

af pm`qKN pam`, pqBα˚
´m`

Y

¯

`Oε,f

ˆ

pε
?
p
Y pν´1q{2

˙

,

where the sum over a is restricted to a coprime to p (note that we made a change of variable
a ÞÑ ´a, and that we used the fact (2.16) that

af˚pmq “ af p1, . . . , 1,mq “ af pm, 1, . . . , 1q

in the expansion of the conjugates).
We then split this expression into

M “ Σ1 ` Σ2 `Oε,f

ˆ

pε
?
p
Y pν´1q{2

˙

where Σ1 is the contribution of the ν-tuples m where |mk| ă p{2 for all k, and Σ2 is the
remaining contribution.

By (6.5) and Corollary 3.6, we easily estimate Σ2 as follows: we have

Σ2 !
1

Y
ν
2

¨

˝

ÿ

|m|>p{2
|af˚pmq|

ˇ

ˇ

ˇ
Bα

´m

Y

¯ˇ

ˇ

ˇ

˛

‚

¨

˝

ÿ

|m|>1

|af˚pmq|
ˇ

ˇ

ˇ
Bα

´m

Y

¯ˇ

ˇ

ˇ

˛

‚

ν´1

(7.1)

!
1

Y
ν
2

p1`ε

ˆ

Y

p

˙A

Y p1`εqpν´1q (7.2)

! p1`ε

ˆ

pN´1

X

˙A

Y ν{2´1`ε (7.3)

for all A ą 1 and if 2pN´1 ă X.
Thus, the core of the proof is to determine the asympotic behaviour of Σ1. In order to

rearrange conveniently this expression, we first normalize the tuples m that remain in Σ1.
Each component of the ν-tuple m ranges over a finite set of representatives of the invertible

residues classes modulo the odd prime number p, namely

tp1´ pq{2, . . . ,´1,`1, . . . , pp´ 1q{2u .

We can uniquely write

m “ pe1j1, . . . , eνjνq,

where the components of the ν-tuple e “ pe1, . . . , eκ`λq belong to t˘1u and those of the ν-tuple
j “ pj1, . . . , jκ`λq belong to the subset R “ t1, . . . , P u.

Using this parameterization, we get

Σ1 “

ˆ

εf
?
Y

˙ν 1

p

ÿ˚

a mod p

ÿ

ePt˘1uν

ÿ

jPRν

κ
ź

k“1

gkpjkqKN paekjk, pq
ν
ź

`“κ`1

g˚` pj`qKN pae`j`, pq (7.4)

where we have defined

gkpmq :“ af˚pmqBα
´ekm

Y

¯

g˚` pmq :“ af pmqBα˚
´e`m

Y

¯

for integers m and for 1 6 k 6 κ and κ` 1 6 ` 6 ν.
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7.4. Combinatorial rearranging. If we exchange the order of summation in our last expres-
sion for Σ1 in order to sum over a first, we encounter sums which are very close to those of
Section 4, but which differ because there is no provision for the factors ekjk or e`j` to be distinct,
or distinct modulo ˘1, as required to apply Theorem 4.1.

We therefore rearrange the sums via a combinatorial rearrangement. Assume that s and t
are two positive integers with s 6 t. We denote by P pt, sq the set of surjective functions

σ : t1, . . . , tu Ñ t1, . . . , su

which satisfy the conditions

@j P t1, . . . , tu, σpjq “ 1 or Dk ă j, σpjq “ σpkq ` 1. (7.5)

These conditions ensure that P ps, tq parameterizes bijectively the partitions of a set of t
elements into s nonempty subsets, namely into the pre-images σ´1pjq for 1 6 j 6 s.

In particular, by a formal rearranging, we obtain the following lemma (see [11, Lemma 7.3]):

Lemma 7.1– Let t > 1 be a positive integer. If f : V t Ñ C is any function, where V is a finite
set, then we have

ÿ

jPV t

fpj1, . . . , jtq “
t
ÿ

s“1

ÿ

σPP pt,sq

ÿ

pj1,...,jsqPV s

distinct

fpjσp1q, . . . , jσptqq.

We will apply this to the sum over j P Rν in the formula (7.4) for Σ1. Doing so, we get

Σ1 “

ˆ

εf
?
Y

˙ν 1

p

ÿ˚

a mod p

ÿ

ePt˘1uν

ν
ÿ

s“1

ÿ

σPP pν,sq

ÿ

pj1,...,jsqPRs

distinct
κ
ź

k“1

gkpjσpkqqKN paekjσpkq, pq
ν
ź

`“κ`1

g˚` pjσp`qqKN pae`jσp`q, pq.

We can now collect terms in the products which are equal. This must be done while keeping
track of the signs e, and of the distinction between the indices j which range from 1 to κ and
those which range from κ` 1 to ν, and hence a certain amount of bookkeeping is required.

For 1 6 s 6 ν, σ P P pν, sq and any u P t1, . . . , su, we denote first

σu “ |σ´1puq|,

so that, by definition, we have

σu > 1 and
s
ÿ

u“1

σu “ ν. (7.6)

We next count the pre-images of u according to which of the two intervals they belong: for
1 6 u 6 s, we let

βu “|t1 6 k 6 κ, σpkq “ uu| > 0,

γu “|tκ` 1 6 ` 6 κ` λ, σp`q “ uu| > 0,

noting that these depend on σ. Hence, we have

βu ` γu “ σu > 1. (7.7)

Finally, we count the preimages j with a given sign ej , both their total number, and the
number in the two subintervals. For 1 6 u 6 s, for ε “ ˘1 and e P t˘1uν , we let

σεupeq “ |t1 6 a 6 ν, σpaq “ u, ea “ εu| > 0, (7.8)

βεupeq “ |t1 6 k 6 κ, σpkq “ u, ek “ εu| > 0, (7.9)

γεupeq “ |tκ` 1 6 ` 6 ν, σp`q “ u, e` “ εu| > 0. (7.10)
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These non-negative integers satisfy the following set of properties.

βεupeq ` γ
ε
upeq “ σεupeq > 0, (7.11)

β1
upeq ` β

´1
u peq “ βu > 0, γ1

upeq ` γ
´1
u peq “ γu > 0, (7.12)

σ1
upeq ` σ

´1
u peq “ σu > 1, (7.13)

for 1 6 u 6 s, ε “ ˘1, e P t˘1uν .
In terms of these data, by appealing to Lemma 3.2 and the definition (4.1), we can collect

terms in order to express Σ1 in the form

Σ1 “

ˆ

εf
?
Y

˙ν
ÿ

ePt˘1uν

ν
ÿ

s“1

ÿ

σPP pν,sq

ÿ

pj1,...,jsqPRs

distinct

s
ź

u“1

af˚pjuq
βuaf pjuq

γu

ˆ

s
ź

u“1

Bα
ˆ

ju
Y

˙β1
upeq

Bα
ˆ

´ju
Y

˙β´1
u peq

ˆ

s
ź

u“1

Bα˚
ˆ

ju
Y

˙γ1upeq

Bα˚
ˆ

´ju
Y

˙γ´1
u peq

S
pNq
σ´1peq,σ1peq

pj; pq, (7.14)

where j “ pj1, . . . , jsq, and we have defined the tuples σ1puq and σ´1peq in the sum of Kloost-
erman sums by

σ1peq “ pσ1
upeqq16u6s, σ´1peq “ pσ´1

u peqq16u6s.

We note that the parameters ju which now appear in this last sum are not only distinct, but
also distinct modulo t˘1u in F˚p . In particular, we can now apply Theorem 4.1. This requires
us to distinguish between the cases of odd N and even N .

7.5. The combinatorial analysis for N odd. In this entire section, N is odd. We recall
that, in this case, we have εf “ 1. From (7.14), after applying Theorem 4.1 (to estimate the

sums S
pNq
σ´1peq,σ1peq

pj; pq) and Proposition 4.5 (to isolate the main terms), and Lemma 3.2 (to

clean-up the weight functions), one gets

Σ1 “
ÿ

ePt˘1uν

ν
ÿ

s“1

ÿ

σPP pν,sq

Σ1pσ, eq ` O

¨

˝

1
?
p

1

Y ν{2

¨

˝

ÿ

16|m|ăp{2

ˇ

ˇaf˚pmq
ˇ

ˇ

ˇ

ˇ

ˇ
Bα

´m

Y

¯ˇ

ˇ

ˇ

˛

‚

ν˛

‚ (7.15)

where

Σ1pσ, eq :“
1

Y
ν
2

ÿ

pj1,...,jsqPRs

distinct

ź

16u6s
N |σ1

upeq´σ
´1
u peq

af˚pjuq
βuaf pjuq

γu

Bα
ˆ

ju
Y

˙β1
upeq

Bα
ˆ

ju
Y

˙γ´1
u peq

Bα˚
ˆ

ju
Y

˙γ1upeq

Bα˚
ˆ

ju
Y

˙β´1
u peq

A
pNq

σ1
upeq,σ

´1
u peq

(the integer A
pNq

σ1
upeq,σ

´1
u peq

being defined in Theorem 4.1).

Note that, according to Corollary 3.6, the error term in (7.15) satisfies

1
?
p

1

Y ν{2

¨

˝

ÿ

16|m|ăp{2

ˇ

ˇaf˚pmq
ˇ

ˇ

ˇ

ˇ

ˇ
Bα

´m

Y

¯
ˇ

ˇ

ˇ

˛

‚

ν

!
1
?
p
Y ν{2`ε

for all ε ą 0 if 2pN´1 ă X.
Our next step is to show that the main term in Σ1 arises from the contribution of the terms

Σ1pσ, eq, where σ is in P pν, sq for some s with 1 6 s 6 ν and e is in t˘1uν , and they satisfy

σ´1
u peq “ σ1

upeq “ 1 (7.16)
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for all u P t1, . . . , su. We call such data pσ, eq resonant.
First of all, if the condition N | σ1

upeq ´ σ
´1
u peq in the product over u in the sum Σ1pσ, eq is

not satisfied for one u at least, then Corollary 3.6 gives immediately

Σ1pσ, eq !ε,f
1

Y 1{2´ε
.

Next, we claim that if pσ, eq is non-resonant, with σ P P pν, sq and e P t˘1uν such that

N | σ1
upeq ´ σ

´1
u peq

for all u, then

s 6
ν ´ 1

2
. (7.17)

Indeed, note first that if u satisfies (7.16), then we have σu “ 2 by (7.13). On the other hand,
if u does not satisfy (7.16), then in view of the conditions N | σ1

upeq ´ σ
´1
u peq and

σ1
upeq ` σ

´1
u peq “ σu > 1,

we see that either σ´1
u peq “ σ1

upeq > 2, and then σu > 4, or σ1
upeq ` σ

´1
u peq > N > 3. Thus, in

all cases, we have
σu > 3

unless u satisfies (7.16). Denoting by U the set of those u which do satisfy (7.16), we note that
if σ is not resonant, we have |U | ă s, and hence

3ps´ |U |q > 2ps´ |U |q ` 1,

and we obtain

ν “
ÿ

16u6s

σu “
ÿ

uPU

σu `
ÿ

uRU

σu > 2|U | ` 3ps´ |U |q > 2|U | ` 2ps´ |U |q ` 1 > 2s` 1,

which gives (7.17).
Using Corollary 3.6, we see that

Σ1pσ, eq !ε,f
1

Y 1{2´ε
(7.18)

for pσ, eq non-resonant, provided 2pN´1 ă X.
Observe that if pσ, eq is resonant, then each σu is equal to 2, hence ν “ 2s is even. We can

therefore write

Σ1 “ δ2|ν

ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
σ resonant

Σ1pσ, eq `Oε,f

ˆ

Y ´1{2`ε `
1
?
p
Y ν{2`ε

˙

if 2pN´1 ă X, and the corresponding Σ1pσ, eq are given by

Σ1pσ, eq “
1

Y
ν
2

ÿ

pj1,...,jν{2qPR
ν{2

distinct

ν{2
ź

u“1

af˚pjuq
βuaf pjuq

γu

ˆ Bα
ˆ

ju
Y

˙β1
upeq

Bα
ˆ

ju
Y

˙γ´1
u peq

Bα˚
ˆ

ju
Y

˙γ1upeq

Bα˚
ˆ

ju
Y

˙β´1
u peq

by the condition A
pNq
1,1 “ 1 (see Proposition 4.5).

By (7.16) and (7.11), for all u with 1 6 u 6 s “ ν{2, the 4-tuple

ωupeq “
`

β´1
u peq, γ

´1
u peq, β

1
upeq, γ

1
upeq

˘

(7.19)

(which also depends on σ) is one of the four tuples in the set ω “ tω1, ω2, ω3, ω4u, where

ω1 “ p0, 1, 1, 0q, ω2 “ p1, 0, 0, 1q, (7.20)

ω3 “ p1, 0, 1, 0q, ω4 “ p0, 1, 0, 1q. (7.21)

29



The sum Σ1pσ, eq almost factors as a product of four independent terms. Indeed, if we sum
over all j, relaxing the condition that j has distinct components, we only introduce sums whose
contributions is dominated by the error terms already present. Hence we have

Σ1 “ δ2|ν

ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
resonant

Σ̃1pσ, eq `Oε,f

ˆ

Y ´1{2`ε `
1
?
p
Y ν{2`ε

˙

if 2pN´1 ă X, where

Σ̃1pσ, eq “

¨

˝

1

Y

ÿ

16măp{2

|af˚pmq|
2
ˇ

ˇ

ˇ
Bα

´m

Y

¯ˇ

ˇ

ˇ

2

˛

‚

u1peq

ˆ

¨

˝

1

Y

ÿ

16măp{2

|af pmq|
2
ˇ

ˇ

ˇ
Bα˚

´m

Y

¯
ˇ

ˇ

ˇ

2

˛

‚

u2peq

ˆ

¨

˝

1

Y

ÿ

16măp{2

af˚pmq
2Bα

´m

Y

¯

Bα˚
´m

Y

¯

˛

‚

u3peq

ˆ

¨

˝

1

Y

ÿ

16măp{2

af pmq
2Bα˚

´m

Y

¯

Bα
´m

Y

¯

˛

‚

u4peq

, (7.22)

with exponents given by

ubpeq “ |t1 6 u 6 ν{2, ωupeq “ ωbu|

for 1 6 b 6 4 (again, these depend on σ).
The four terms in the product are of the type considered in Section 5, but note that they

will actually look different if f is self-dual and when f is not. So we split into two cases
again. We begin with the case when f is not self-dual, which we think of as the generic case.
(When N “ 3, the GLp3q self-dual cusp forms are the symmetric square lifts of GLp2q forms, as
explained in [23], and hence are very special; similar characterizations of self-dual representations
of GLpNq for all N > 3 are expected to hold, but are not known in full generality).

7.5.1. The non self-dual case for N odd. In this subsection, we assume that f is not self-dual,
namely f˚ ‰ f .

We then show that the main term in Σ1 in (7.22) comes from the contribution of the resonant

Σ̃1pσ, eq where pσ, eq is such that

ωupeq “ ω1 or ωupeq “ ω2 (7.23)

for all u P t1, . . . , ν{2u, i.e., those where

u3peq “ u4peq “ 0,

which we call the focusing pairs.
Indeed, each of the four sums in (7.22) can be estimated asymptotically using Proposition 5.1,

applied with pY, Zq “ pY, p{2q (recall that p{2 ą Y ), θ “ 1{2´ 1{pN2 ` 1q and suitable smooth
functions B, namely

Bpyq “ |Bαpyq|2, Bpyq “ |Bα˚pyq|2, Bpyq “ BαpyqBα˚pyq, Bpyq “ BαpyqBα˚pyq

in the four successive terms. These satisfy the assumption of Proposition 5.1 with

η “ 2 max |<epαj,8pfqq| 6 1´
2

pN2 ` 1q
ă 1,

by Proposition 3.5 and (2.21).
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Proposition 5.1 leads to the estimate

Σ̃1pσ, eq ! Y p´1{2`θ`εqpu3peq`u4peqq,

and hence
Σ̃1pσ, eq ! Y ´1{2`θ`ε,

unless u3peq ` u4peq “ 0, i.e., unless pσ, eq is focusing, since u3peq and u4peq are non-negative
integers.

From Proposition 5.1, using the notation introduced there, we now deduce that, for X ą

2pN´1, we have

Σ1 “ δ2|ν

`

rfHf,f˚p1q
˘ν{2

ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
u3peq`u4peq“0

´

M
”

|Bα|2
ı

p1q
¯u1peq´

M
”

|Bα˚ |2
ı

p1q
¯u2peqq

`Oε,f

ˆ

Y ´1{2`θ`ε ` Y ´1{2`ε `
1
?
p
Y ν{2`ε

˙

(7.24)

by (5.3) (we also used the properties rf “ rf˚ and Hf,f˚p1q “ Hf˚,f p1q.)
The remaining set of focusing pairs pσ, eq has now a very clean structure. We state this as a

lemma.

Lemma 7.2– With notation as above, for any pσ, eq which is a focusing pair, we have κ “ λ “
ν{2. Furthermore, the map

pσ, eq ÞÑ pσ̃, ẽq,

where σ̃ is the restriction of σ to tκ ` 1, . . . , νu and ẽ is the κ-tuple peuq16u6κ, is a bijection
between the set of focusing pairs pσ, eq and the product set Sκ ˆ t˘1uκ, where Sκ is the set of
bijections from tκ` 1, . . . , νu to t1, . . . , κu.

We then have, for all such pσ, eq, the relation

u1peq “ |tu , 1 6 u 6 κ and ẽu “ 1u|, (7.25)

and u2peq “ κ´ u1peq.

One important consequence of this lemma is that the exponents u1peq and u2peq in (7.22)
are independent of σ when u3peq “ u4peq “ 0. We will denote u1peq by u1pẽq.

Proof. Using (7.12) and the definition of ω1, ω2, the focusing assumption u3peq ` u4peq “ 0
imply that for all u we have

βu “ β1
upeq ` β

´1
u peq “ 1, γu “ γ1

upeq ` γ
´1
u peq “ 1.

By definition of βu (resp. γu), the first property (resp. second) implies that the restriction
of σ to t1, . . . , κu (resp. to tκ` 1, . . . , νu) is surjective (resp. surjective). In particular, κ > ν{2
and λ > ν{2. Using ν “ κ` λ, this means that κ “ λ “ ν{2.

In turn, the two restrictions of σ are then surjective maps from and to sets of size ν{2, and
hence are bijections. In particular, the map σ̃ is indeed an element of the set Sκ, and pσ̃, ẽq
belongs to Sκ ˆ t˘1uκ.

We next show that the map is injective. Indeed, the condition (7.5) imposed on all elements σ
of P pν, ν{2q implies, by an elementary induction, that the restriction of σ to the initial segment
t1 . . . , κu is the identity map. Thus σ is entirely determined by σ̃.

The condition (7.23) and the definition (7.19) of ωupeq and (7.20) of the permitted four-tuples
ω1 and ω2 imply that

eσ̃´1puq “ ´eu (7.26)

for κ` 1 6 u 6 ν. Indeed, for all u with 1 6 u 6 ν{2, we have either

γ´1
u peq “ β1

upeq “ 1

or
γ´1
u peq “ β1

upeq “ 0.
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Assume the first holds: this means, by (7.9) and (7.10), that (i) there exists a single ` with
κ ` 1 6 ` 6 ν, σp`q “ u, and e` “ 1; (ii) there exists a single k with 1 6 k 6 κ, σpkq “ u,
and ek “ ´1. Since σ is the identity on t1, . . . , κu, we have σpkq “ k “ u. Then, since σ̃ is a
bijection, we have ` “ σ̃´1puq “ σ̃´1pkq, and hence eσ̃´1puq “ e` “ ´1 “ ´ek “ ´eu.

The other case is similar, and we obtain (7.26) for all u. Thus e is entirely determined by ẽ,
and we conclude that the map pσ, eq ÞÑ pσ̃, ẽq is injective.

We now show that it is surjective. Given pσ̃, ẽq P Sκˆt˘1uκ, we can define a surjective map
σ from t1, . . . , νu to t1, . . . , ν{2u by extending σ̃ by the identity on t1, . . . , κu. Then we define
a ν-tuple e using (7.26) and the bijectivity of σ̃. It is clear that this pair pσ, eq is mapped to
pσ̃, ẽq, but we must check that σ satisfies (7.5) in order to conclude. This condition is indeed
true: for 1 6 j 6 κ, this is because σpjq “ j, which satisfies (7.5), and for κ ` 1 6 j 6 ν, this
is because k “ σpjq is between 1 and κ, and hence, if k ­“ 1, we have σpjq “ k “ σpk ´ 1q ` 1
with k ´ 1 ă κ ă j.

Finally, we obtain (7.25) because u1peq is the number of k with 1 6 k 6 κ where ek “ 1
(since, by (7.26), this is also the number of ` with κ ` 1 6 ` 6 ν for which e` “ ´1). By
assumption, we have

ν{2 “ u1peq ` u2peq ` u3peq ` u4peq “ u1peq ` u2peq,

hence the formula for u2peq. �

Using this lemma, the main term in (7.24) becomes

δκ“λ
`

rfHf,f˚p1q
˘κ

ÿ

σ̃PSκ

ÿ

ẽPt˘1uκ

´

M
”

|Bα|2
ı

p1q
¯u1pẽq ´

M
”

|Bα˚ |2
ı

p1q
¯κ´u1pẽq

“ δκ“λκ!
´

rfHf,f˚p1q
´

M
”

|Bα|2
ı

p1q `M
”

|Bα˚ |2
ı

p1q
¯¯κ

,

since, as we observed, u1pẽq is independent of σ̃ in this double sum. Appealing finally to
Corollary 3.4, this expression is equal to

δκ“λκ!
´

rfHf,f˚p1q||w||22
¯κ
.

To conclude this section, we have shown that, for X ą 2pN´1, we have

Σ1 “ δκ“λ2κκ!

ˆ

rfHf,f˚p1q

2
||w||22

˙κ

`Oε,f

ˆ

Y ´1{2`θ`ε ` Y ´1{2`ε `
1
?
p
Y ν{2`ε

˙

, (7.27)

in the case of a form f which is not self-dual, and of odd N .

7.5.2. The self-dual case for N odd. We now consider the case where f is self-dual, namely
f˚ “ f , which is simpler. Indeed, in this case, the four terms in (7.22) are all equal, and since

u1peq ` u2peq ` u3peq ` u4peq “
ν

2
,

we obtain

Σ1 “ δ2|ν

¨

˝

1

Y

ÿ

16măp{2

af˚pmq
2
ˇ

ˇ

ˇ
Bα

´m

Y

¯ˇ

ˇ

ˇ

2

˛

‚

ν{2

ˆ
ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
resonant

1`Oε,f

ˆ

Y ´1{2`ε `
1
?
p
Y ν{2`ε

˙

.

for X ą 2pN´1.
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By another application of Proposition 5.1 and Corollary 3.4, we conclude that

Σ1 “ δ2|ν

ˆ

rfHf,f˚p1q

2
||w||22

˙ν{2
ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
resonant

1

`Oε,f

ˆ

Y ´1{2`θ`ε ` Y ´1{2`ε `
1
?
p
Y ν{2`ε

˙

.

We now have a (standard) lemma:

Lemma 7.3– With notation as above, the number of pairs pσ, eq which are resonant is

ν!

pν{2q!
.

Proof of lemma 7.3. We must count the pairs pσ, eq, where σ P P pν, ν{2q, e P t˘1uν , such that
the resonance condition

σ1
upeq “ σ´1

u peq “ 1

holds for 1 6 u 6 ν{2. This condition means exactly that, for each u, there exists exactly one
j, 1 6 j 6 ν, such that σpjq “ u and ej “ 1, and one k, 1 6 k 6 ν with σpkq “ u and ej “ ´1.
This means that σ is an element of P pν, ν{2q such that each u P t1, . . . , ν{2u has two preimages
in t1, . . . , νu.

Given such a fixed σ, a pair pσ, eq is resonant if and only if the signs associated to the two
elements of σ´1puq are opposite for each u. If we fix a subset I Ă t1, . . . , νu, of size ν{2, such
that σ restricted to I is bijective, the tuples e are determined by ej , j P I, and these signs can

be chosen arbitrarily. Thus, for every fixed σ satisfying the condition, there are exactly 2ν{2

tuples e with pσ, eq resonant.
It remains to count the number of σ P P pν, ν{2q such that each u P t1, . . . , ν{2u has two

preimages in t1, . . . , νu. As we observed after introducing (7.5), this amounts to counting the

set P̃ pν, ν{2q of partitions of t1, . . . , νu in ν{2 subsets of size 2, and this set has order equal to

ν!

2ν{2 pν{2q!
(7.28)

(indeed, the symmetric group Sν acts transitively on P̃ pν, ν{2q, and the stabilizer of the element

tt1, 2u, . . . , tν´1, νuu of P̃ pν, ν{2q is isomorphic to pZ{2Zqν{2ˆSν{2 (one can also, for instance,
apply [25, Example 5.2.6 and Exercice 5.43]). �

Thus, if X ą 2pN´1, we have

Σ1 “ δ2|ν
ν!

2ν{2 pν{2q!

´

rfHf,f˚p1q||w||22
¯ν{2

`Oε,f

ˆ

Y ´1{2`θ`ε `
1
?
p
Y ν{2`ε

˙

(7.29)

if f is self-dual, and N is odd.

7.5.3. End of the proof of Theorem A for N odd. Equations (7.3) and (7.29) imply Theorem A
if f is self-dual.

Equations (7.3) and (7.27) imply Theorem A if κλ ‰ 0 and f is not self-dual. To conclude,
we briefly indicate what happens if f is not self-dual and λ “ 0 (the case κ “ 0 being similar).
Arguing as before, the understanding of Mf pX, p, pκ, 0qq boils down to the estimation of

Σ1 “ δ2|κ

ÿ

ePt˘1uκ

ÿ

σPP pκ,κ{2q
resonant

Σ1pσ, eq `Oε,f

ˆ

Y ´1{2`ε `
1
?
p
Y κ{2`ε

˙

where

Σ1pσ, eq “

¨

˝

1

Y

ÿ

16măp{2

af˚pmq
2Bα

´m

Y

¯

Bα˚
´m

Y

¯

˛

‚

κ{2

,

and we see that each such sum is subsumed in the error term by Proposition 5.1 for f ­“ f˚.
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7.6. The combinatorial analysis for N even. In this entire section, N is even. We recall
that, in this case, εf may be either 1 or ´1. We will then, in addition to Bαpxq and Bα˚pxq,
use the notation

B`αpxq “ B`1
α rwspxq, B´αpxq “ B´1

α rwspxq

(recall the definition (3.4)).
The general flow of the argument is similar to that of the previous section, but the combina-

torics involved differs slightly.
We begin as in the case of odd N . By (7.14), after applying Theorem 4.1 (to estimate the

sums S
pNq
σ´1peq,σ1peq

pj; pq) and Proposition 4.5 (to isolate the main terms), and Lemma 3.2 (to

clean-up the weight functions), one gets

Σ1 “
ÿ

ePt˘1uν

ν
ÿ

s“1

ÿ

σPP pν,sq

Σ1pσ, eq `O

¨

˝

1
?
p

1

Y ν{2

¨

˝

ÿ

16|m|ăp{2
|af˚pmq|

ˇ

ˇ

ˇ
Bα

´m

Y

¯ˇ

ˇ

ˇ

˛

‚

ν˛

‚ (7.30)

where

Σ1pσ, eq :“

ˆ

εf
?
Y

˙ν
ÿ

pj1,...,jsqPRs

distinct

ź

16u6s
2|σ´1

u peq`σ1
upeq

af˚pjuq
βuaf pjuq

γu

ˆ Bα
ˆ

ju
Y

˙β1
upeq

Bα
ˆ

´ju
Y

˙β´1
u peq

Bα˚
ˆ

ju
Y

˙γ1upeq

Bα˚
ˆ

´ju
Y

˙γ´1
u peq

B
pNq

σ1
upeq`σ

´1
u peq

,

the integer B
pNq

σ1
upeq`σ

´1
u peq

being defined in Theorem 4.1.

As earlier, according to Corollary 3.6, the error term in (7.30) is

!
1
?
p
Y ν{2`ε

for all ε ą 0 if 2pN´1 ă X.
We now show that the main term in Σ1 comes from the contribution of pairs pσ, eq where σ

in P pν, sq and e in t˘1uν satisfy
`

σ´1
u peq, σ

1
upeq

˘

P tp2, 0q, p0, 2qu . (7.31)

for all u P t1, . . . , su. As before, we call these pairs resonant.
Indeed, as in the case of N odd, we first see that if the condition that σ1

upeq and σ´1
u peq be

even, in the product over u in the sum Σ1pσ, eq, is not satisfied for one u at least, then Corollary
3.6 gives (7.18). Thus, as before, it is enough to prove that

s 6
ν ´ 1

2

if pσ, eq is non-resonant and σ1
upeq, σ

´1
u peq are even for all u, since this leads to the same

bound (7.18), for 2pN´1 ă X, as in the odd case.
If u satisfies (7.31), then we have σu “ 2 by (7.13). If u does not satisfy (7.31), then since

σ1
upeq and σ´1

u peq are even and σ1
upeq ` σ

´1
u peq “ σu > 1, we must have σ1

upeq > 2, σ´1
u peq > 2,

and therefore σu “ σ1
upeq ` σ

´1
u peq > 4. Denoting by U the set of those u which satisfy (7.31),

so that |U | ă s if σ is not resonant, we get

ν “
ÿ

16u6s

σu “
ÿ

uPU

σu `
ÿ

uRU

σu > 2|U | ` 4ps´ |U |q > 2|U | ` 2ps´ |U |q ` 1 > 2s` 1,

as desired.
If pσ,νq is resonant, then ν is even and s “ ν{2 by (7.6). It follows therefore that

Σ1 “ δ2|ν

ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
resonant

Σ̃1pσ, eq `Oε,f

ˆ

Y ´1{2`ε `
1
?
p
Y ν{2`ε

˙
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if 2pN´1 ă X, where

Σ̃1pσ, eq “
1

Y
ν
2

ÿ

pj1,...,jν{2qPR
ν{2

distinct

ν{2
ź

u“1

af˚pjuq
βuaf pjuq

γu

ˆ Bα
ˆ

ju
Y

˙β1
upeq

Bα
ˆ

´ju
Y

˙β´1
u peq

Bα˚
ˆ

ju
Y

˙γ1upeq

Bα˚
ˆ

´ju
Y

˙γ´1
u peq

,

by Proposition 4.5 (i.e., the condition B
pNq
2 “ 1).

Defining the 4-tuple ωupeq for 1 6 u 6 ν{2 as in (7.19), there are now 6 possibilities for
ωupeq, namely

ω1 “ p1, 1, 0, 0q, ω2 “ p0, 0, 1, 1q, (7.32)

ω3 “ p2, 0, 0, 0q, ω4 “ p0, 0, 2, 0q, ω5 “ p0, 2, 0, 0q, ω6 “ p0, 0, 0, 2q. (7.33)

If we sum in Σ̃1 over all the possible ν{2-tuples pj1, . . . , jν{2q instead of those with distinct
components, we only introduce a difference with is dominated by the error term. Thus, collecting
identical terms in the product, and denoting

ubpeq “ |t1 6 u 6 ν{2, ωupeq “ ωbu|

for 1 6 b 6 6, similarly to the case of N odd, we can write

Σ1 “ δ2|ν

ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
resonant

Σ̃1pσ, eq `Oε,f

ˆ

Y ´1{2`ε `
1
?
p
Y ν{2`ε

˙

if 2pN´1 ă X, with

Σ̃1pσ, eq “

¨

˝

1

Y

ÿ

16măp{2

|af˚pmq|
2Bα

ˆ

´m

Y

˙

Bα˚
ˆ

´m

Y

˙

˛

‚

u1peq

ˆ

¨

˝

1

Y

ÿ

16măp{2

|af˚pmq|
2Bα

´m

Y

¯

Bα˚
´m

Y

¯

˛

‚

u2peq

ˆ

¨

˝

1

Y

ÿ

16măp{2

af˚pmq
2Bα

ˆ

´m

Y

˙2
˛

‚

u3peq¨

˝

1

Y

ÿ

16măp{2

af˚pmq
2Bα

´m

Y

¯2

˛

‚

u4peq

ˆ

¨

˝

1

Y

ÿ

16măp{2

af pmq
2Bα˚

ˆ

´m

Y

˙2
˛

‚

u5peq¨

˝

1

Y

ÿ

16măp{2

af pmq
2Bα˚

´m

Y

¯2

˛

‚

u6peq

. (7.34)

7.6.1. The non self-dual case for N even. We must again distinguish between the case where
f is not self-dual, and the self-dual case. Here, we assume that f is not self-dual, namely
f˚ ‰ f .

First, note that we can apply again Proposition 5.1 for suitable functions B to the six sums
in (7.34), leading to the bound

Σ̃1pσ, eq ! Y p´1{2`θ`εqpu3peq`u4peq`u5peq`u6peqq,

and hence all terms in (7.34) such that one of u3peq, u4peq, u5peq or u6peq is non-zero contribute
to the error term. We will say that pσ, eq is focusing if u3peq “ ¨ ¨ ¨ “ u6peq “ 0.
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It follows by (5.3), again for X ą 2pN´1, that we have

Σ1 “ δ2|ν

`

rfHf,f˚p1q
˘ν{2

ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
focusing

´

M
“

|B´α |2
‰

p1q
¯u1peq´

M
“

|B´α |2
‰

p1q
¯u2peq

`Oε,f

ˆ

Y ´1{2`θ`ε `
1
?
p
Y ν{2`ε

˙

(7.35)

(we also used the properties rf “ rf˚ and Hf,f˚p1q “ Hf˚,f p1q.)
As we did in the case of N odd, we determine in a lemma, similar to Lemma 7.2, the focusing

pairs.

Lemma 7.4– With notation as above, for any pσ, eq which is a focusing pair, we have κ “ λ “
ν{2. Furthermore, the map

pσ, eq ÞÑ pσ̃, ẽq,

where σ̃ is the restriction of σ to tκ ` 1, . . . , νu and ẽ is the κ-tuple peuq16u6κ, is a bijection
between the set of focusing pairs pσ, eq and the product set Sκ ˆ t˘1uκ, where Sκ is the set of
bijections from tκ` 1, . . . , νu to t1, . . . , κu.

We then have, for all such pσ, eq, the relation

u1peq “ |tu , 1 6 u 6 κ and ẽu “ ´1u|, (7.36)

and u2peq “ κ´ u1peq.

As in the earlier case, the point is that u1peq and u2peq are, for every focusing pair pσ, eq,
independent of σ. We will denote u1peq by u1pẽq.

Proof of lemma 7.4. The focusing condition on pσ, eq means that, for every u with 1 6 u 6 κ,
either ωupeq “ ω1 or ωupeq “ ω2. By definition, the condition ωupeq “ ω1 is equivalent with the
property that u has exactly one pre-image j under σ with 1 6 j 6 κ, and one pre-image ` with
κ` 1 6 ` 6 ν, and that furthermore ej “ e` “ ´1.

Similarly, ωupeq “ ω2 means that that u has exactly one pre-image j under σ with 1 6 j 6 κ,
and one pre-image ` with κ` 1 6 ` 6 ν, and that furthermore ej “ e` “ ´1.

Arguing as in the proof of Lemma 7.2, we deduce that κ “ λ “ ν{2 and that the restriction
of σ to t1, . . . , κu is the identity, and the restriction σ̃ of σ to tκ` 1, . . . , νu is an element of Sκ.

In addition, the signs ej for the two pre-images of u always coincide, which means that
eσ̃´1puq “ eu for 1 6 u 6 κ. Thus the map pσ, eq ÞÑ pσ̃, ẽq is injective. We then check as in
Lemma 7.2 that it is surjective, and that the formula (7.36) holds. �

Using this lemma, it follows that the main term in (7.24) equals

δκ“λ
`

rfHf,f˚p1q
˘κ

ÿ

σ̃PSκ

ÿ

ẽPt˘1uκ

`

M
“

|B´α |2
‰

p1q
˘u1pẽq

ˆ
`

M
“

|B`α |2
‰

p1q
˘κ´u1pẽq ,

which is equal to

δκ“λκ!
`

rfHf,f˚p1q
`

M
“

|B´α |2
‰

p1q `M
“

|B`α |2
‰

p1q
˘˘κ

,

because u1pẽq depends only on ẽ.
By Corollary 3.4, this is equal to

δκ“λκ!
´

rfHf,f˚p1q||w||22
¯κ

and we conclude that, if X ą 2pN´1, then we have

Σ1 “ δκ“λ2κκ!

ˆ

rfHf,f˚p1q

2
||w||22

˙κ

`Oε,f

ˆ

Y ´1{2`θ`ε `
1
?
p
Y ν{2`ε

˙

. (7.37)
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7.6.2. The self-dual case for N even. In this section, f is self-dual, namely f˚ “ f and N is
even. Note that this corresponds formally to the case treated in [4] of holomorphic cusp forms
with trivial nebentypus for N “ 2 (although, as we have already discussed, the restriction to
holomorphic forms means that the cases we consider are disjoint.)

In this case, (7.34) and (once more) Proposition 5.1 lead to

Σ1 “ δ2|ν

`

rfHf,f˚p1q
˘ν{2

ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
focusing

`

M
“

|B´α |2
‰

p1q
˘vpeq `M

“

|B`α |2
‰

p1q
˘ν{2´vpeq

`Oε,f

ˆ

Y ´1{2`θ`ε `
1
?
p
Y ν{2`ε

˙

(7.38)

if 2pN´1 ă X, where

vpeq “ |
 

1 6 u 6 ν{2,
`

σ´1
u peq, σ

1
upeq

˘

“ p2, 0q
(

|

so that

ν{2´ vpeq “ |
 

1 6 u 6 ν{2,
`

σ´1
u peq, σ

1
upeq

˘

“ p0, 2q
(

|.

Note that vpeq depends on σ. To go further, we observe that if σ P P pν, ν{2q occurs in a
focusing pair, it must satisfy

σu “ |σ
´1puq| “ 2

for all u P t1, . . . , ν{2u. Conversely, assume σ satisfies this condition. Then from the definition
of ω1 and ω2, it follows that a tuple e is such that pσ, eq is focusing if and only if, for each u, we

have em “ en, where σ´1puq “ tm,nu. This means that there are precisely 2ν{2 focusing pairs
pσ, eq with σ fixed, corresponding to arbitrary assignments of signs to the ν{2 pairs of elements
with the same image under σ.

In this context, vpeq is equal to the number of u for which the corresponding sign em “ en is
´1, and in particular, for any r, the number of tuples e for which vpeq “ r is equal to

ˆ

ν{2

r

˙

,

corresponding to the choice of r pairs of elements with common sign ´1.
Formally, it follows that for any complex numbers z1 and z2, we have

ÿ

ePt˘1uν

ÿ

σPP pν,ν{2q
focusing

z
vpeq
1 z

ν{2´vpeq
2 “

ÿ

σPP pν,ν{2q
σu“2

ÿ

e
pσ,eq focusing

z
vpeq
1 z

ν{2´vpeq
2

“
ÿ

σPP pν,ν{2q
σu“2

ν{2
ÿ

r“0

ˆ

ν{2

r

˙

zr1z
ν{2´r
2

“ pz1 ` z2q
ν{2|tσ P P pν, ν{2q σu “ 2 for all uu|

“
ν!

2ν{2pν{2q!
pz1 ` z2q

ν{2,

(where the last step follows from (7.28), which is established in the proof of Lemma 7.3).
Applying this formula and using Corollary 3.4, we derive

Σ1 “ δ2|ν

´

rfHf,f˚p1q||w||22
¯ν{2 ν!

2ν{2pν{2q!
`Oε,f

ˆ

Y ´1{2`θ`ε `
1
?
p
Y ν{2`ε

˙

(7.39)

if 2pN´1 ă X.
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7.6.3. End of the proof of Theorem A for N even. Equations (7.3) and (7.39) imply Theorem
A if f is self-dual.

Equations (7.3) and (7.37) imply Theorem A if κλ ‰ 0 and f is not self-dual. It is once
more easy to check the result when κ or λ “ 0. For instance, if λ “ 0 (and f is not self-dual),
understanding Mf pX, p, pκ, 0qq boils down to understanding

δ2|κ

ÿ

ePt˘1uκ

ÿ

σPP pκ,κ{2q
resonant

Σ1pσ, eq `Oε,f

ˆ

Y ´1{2`ε `
1
?
p
Y κ{2`ε

˙

where Σ1pσ, eq is given by
¨

˝

1

Y

ÿ

16măp{2

af˚pmq
2Bα

´m

Y

¯2

˛

‚

vpeq ¨

˝

1

Y

ÿ

16măp{2

af˚pmq
2Bα

ˆ

´m

Y

˙2
˛

‚

ν{2´vpeq

.

These terms are all dominated by the error term, by Proposition 5.1 (this is because Lpfˆf, sq
does not have a pole at s “ 1 if f is not self-dual).

8. Proof of the convergences in law

This section is devoted to the proof of Corollary B. Thus, X “ pN{Φppq for a function Φ
that tends to infinity but satisfies Φpxq ! xε for all ε ą 0.

8.1. The non self-dual case. In this section, we assume that f is not self-dual. In order
to finish the proof of Corollary B, it is enough to apply the following probabilistic lemma to
Zf pX, p, ˚q.

Lemma 8.1– Let pXnqn>1 be a sequence of complex-valued random variables, let σ ą 0 be a
positive real number. Then pXnqn>1 converges in law to a Gaussian vector with covariance
matrix

ˆ

σ 0
0 σ

˙

if and only if, for any non-negative integers κ, λ > 0, we have

lim
nÑ`8

E
´

Xκ
nX̄

λ
n

¯

“ δκ,λ2κκ!σk.

Proof of lemma 8.1. This is presumably standard, but we give a quick proof for lack of a suitable
reference.

The necessity follows by an easy argument from the fact that for a Gaussian variable Z with
the stated covariance matrix, we have

EpZκZ̄λq “ δκ,λ2κκ!σk

(this is straightfoward since it can be evaluated using the explicit density of Z with respect to
Lebesgue measure; after checking that this is non-zero if and only if κ “ λ, one can also notice
that Ep|Z|2κq is the 2k-th moment of a so-called Rayleigh distribution with parameter σ, and
check its value in any table of probability distributions.)

For sufficiency, write Xn “ An` iBn where the random variables An and Bn are real-valued.
By a well-known result (see, e.g., [4, Lemma 5.1]), convergence to the Gaussian holds provided,
for any k, l > 0, we have

EpAknB
l
nq Ñ σpk`lq{2mkml.

But, denoting Mpκ, λq “ EpXκ
nX̄

λ
nq, we have

EpAknB
l
nq “

1

2νiλ

ÿ

06k6κ
06`6λ

p´1q`
ˆ

κ

k

˙ˆ

λ

`

˙

Mpν ´ k ´ l, k ` lq

since, as recalled above, the assumption means that

Mpν ´ k ´ l, k ` lq Ñ EpZκZ̄λq
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where Z is the Gaussian as above. Denoting Z “ A` iB, we deduce that

EpAknB
l
nq Ñ

1

2νiλ

ÿ

06k6κ
06`6λ

p´1q`
ˆ

κ

k

˙ˆ

λ

`

˙

EpZκZ̄λq “ EpAkBlq “ σpk`lq{2mkml

(by rewinding the first formula). �

Remark 8.2– This result, easy as it is, implies the following combinatorial identities, by writing
all expectations of Gaussians in “numerical” terms: for any integers κ, λ > 0 satisfying 2 | ν,
we have

ÿ

06k6κ
06`6λ
k``“ν{2

p´1q`
ˆ

κ

k

˙ˆ

λ

`

˙

“ δ2|κ
2|λ

p´1qδ{2

`ν{2
δ{2

˘`

ν
ν{2

˘

`

ν
δ

˘

where δ “ min pκ, λq. These identities are not so easy to establish directly and are just stated
without proof in [9, Formulas (3.58) and (3.80)].

8.2. The self-dual case. In this section, we assume that the cusp form f is self-dual. The
k-th moment of Ef pX, p, ˚q is Mf pX, p, pk, 0qq for all non-negative integer k. By Theorem A,
we get

Mf pX, p, pk, 0qq “ mk p2cf,wq
k{2
`Oε,f

ˆ

1

Φppq1{2´θ`ε

˙

such that

lim
pPP

pÑ`8

Mf pX, p, pk, 0qq “ mk p2cf,wq
k{2 .

By standard results, convergence to a centered Gaussian random variable is equivalent to con-
vergence of the moments. Hence the sequence of random variables Ef pX, p, ˚q converges in law
to a centered Gaussian random variable with variance is 2cf,w.

9. The case of the multiple divisor functions

In this section, we will give a sketch of the proof of Theorem C, which is very similar to the
self-dual case of Theorem A, the additional ingredient being the presence of main terms arising
from the positivity of the divisor functions.

We begin by stating the corresponding version of the Vornon̆ı summation formula. A. Ivić
proved such a formula for dN , when N > 3, in [13, Theorem 2]. The following statement is
both a simplified (but not straightforward) statement for prime denominators and a slightly
renormalised version of this formula.

We note that we could use a less precise version, as far as understanding the main term is
concerned, but we give the full version as it might be potentially useful for other purposes.

We will need for this the constants γnpαq defined by γ´1pαq “ 1 and

γnpαq “
p´1qn

n!
lim

mÑ`8

˜

m
ÿ

k“0

logn pk ` αq

k ` α
´

logn`1 pm` αq

n` 1

¸

for n > 0 and 0 6 α 6 1. For α “ 0, these are the Stieltjes numbers γn for n > 0, for instance
γ0 “ γ is the Euler-Mascheroni constant. These numbers occur in the Laurent expansion of
ζpsq at s “ 1.

We will denote by Brws the Mellin transform B0rws as in (3.4) for α “ 0 “ p0, . . . , 0q. Note
that 0˚ “ 0. We also extend dN to non-zero integers by defining dN pmq “ dN p|m|q if m 6 ´1.

Proposition 9.1 (Voronŏı summation formula for dN )– Let N > 2 be an integer. Let w : R˚` Ñ R
be a smooth and compactly supported function. Let p be a prime number and let b be an integer.
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If p does not divide b then

ÿ

n>1

dN pnqe

ˆ

bn

p

˙

wpnq “
1

p

ż `8

x“0

N
ÿ

k“1

βkppq

pk ´ 1q!
logk´1 pxqwpxq dx

`
1

pN{2

ÿ

mPZ˚
dN pmqKN´1pb̄m, pqBrws

ˆ

m

pN

˙

`

N´2
ÿ

`“1

ˆ

N ´ 1

`

˙

p´1q``1

p`

ÿ

mPZ˚
dN pmqBrws

ˆ

m

p`

˙

(9.1)

where b̄ denotes the inverse of b modulo p and

βkppq “
1

pN´1

ÿ

16a1,...,aN6p

e

ˆ

ba1 . . . aN
p

˙

ˆ

N´k
ÿ

m“0

p´1qmrm

m!

ÿ

n1,...,nN>´1
n1`...nN“´k´m

N
ź

j“1

γnj

ˆ

nj
p

˙

logm ppq (9.2)

for 1 6 k 6 N .

Proof of proposition 9.1. We use the notation of A. Ivić in [13, Theorem 2]. Note that A. Ivić
considers the case N “ 3 in [13, Page 211], but there are a number of typos in this argument.

First, we compute explicitly

ress“1MrwspsqEN

ˆ

s,
b

p

˙

.

By [13, Equations (2.2) and (2.3)], we have

EN

ˆ

s,
b

p

˙

“
1

p

N
ÿ

k“1

βkpb, pq

ps´ 1qk
`Hpsq (9.3)

where Hpsq is an entire function on C and βkpb, pq is defined in (9.2) for 1 6 k 6 N . These
coefficients do not depend on b for the following reason. Let us fix 0 6 m 6 N ´ k and
n1, . . . , nN > ´1 satisfying n1 ` ¨ ¨ ¨ ` nN “ ´k ´ m. Obviously, there exists at least one
1 6 j0 6 N such that nj0 “ ´1, for which γnj0 paj0{pq “ 1. Performing the summation over aj0
in (9.2), one gets

ÿ

16a1,...,aN6p

e

ˆ

ba1 . . . aN
p

˙

ź

16j6N
j‰j0

γnj

ˆ

nj
p

˙

“ p
ÿ

16a1,...aj0´1,aj0`1,...,aN6p
p|a1...aj0´1aj0`1...aN

ź

16j6N
j‰j0

γnj

ˆ

nj
p

˙

.

This last equality also implies that

βkpb, pq “ βkppq !ε p
ε

for 1 6 k 6 N and for all ε ą 0. Finally, (9.3) also implies that this residue equals the first
term in (9.1).

Then, let us compute explicitly

AN

ˆ

n,
b

p

˙

“
1

2

ˆ

C`N

ˆ

n,
b

p

˙

` C´N

ˆ

n,
b

p

˙˙

,

BN

ˆ

n,
b

p

˙

“
1

2

ˆ

C`N

ˆ

n,
b

p

˙

´ C´N

ˆ

n,
b

p

˙˙
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for all positive integers n, where

C˘N

ˆ

n,
b

p

˙

“
ÿ

n1...nN“n

C˘N

ˆ

n,
b

p

˙

,

C˘N

ˆ

n,
b

p

˙

:“
ÿ

x1,...,xN mod p

e

ˆ

n1x1 ` . . . nNxN ˘ bx1 . . . xN
p

˙

where n “ pn1, . . . , nN q. Let us fix n1, . . . , nN satisfying n “ n1 . . . nN .
If p - n, then we find

C˘N

ˆ

n,
b

p

˙

“ p
ÿ

x2,...,xN mod p
x2...xN”¯b̄n1 mod p

e

ˆ

n1x1 ` . . . nNxN ˘ bx1 . . . xN
p

˙

(9.4)

“ pN{2KN´1p¯b̄n, pq. (9.5)

On the other hand, if p | n, then there exists 1 6 k0 6 N such that p divides nk0 . Thus,

C˘N

ˆ

n,
b

p

˙

“ p
ÿ

x1,...,yxk0 ,...,xN mod p

p|x1...yxk0 ...xN

e

ˆ

n1x1 ` ¨ ¨ ¨ ` {nk0xk0 ` . . . nNxN
p

˙

(9.6)

“ p´1qN´2p`
N´2
ÿ

`“1

p´1q``N´2p``1
ÿ

16k1ă¨¨¨ăk`6N
@16i6`,ki‰k0

ź̀

j“1

δp|nkj
(9.7)

by a simple induction on N , using the notation p̈ as usual to omit a term.
The contribution of (9.5) and of the first term in (9.7) leads to the second term in (9.1), after

a suitable renormalisation of the integral transforms given in [13, Equations (3.9) and (3.10)].
The contribution of the other terms in (9.7) leads to the third term in (9.1). �

We recall from Section 1.1.2 that for an invertible residue class a in Fˆp , we have

EdN pX, p, aq “
SdN pX, p, aq ´MdN pX, pq

pX{pq1{2
,

where SdN pX, p, aq and MdN pX, pq are defined in (1.8) and (1.9).
For κ > 1, we consider

MdN pX, p, κq “
1

p

ÿ˚

a mod p

EdN pX, p, aq
κ.

As in the case of cusp forms, we denote Y “ X{pN . Then, detecting the congruence
n ” a mod p using additive characters and applying the Voronŏı summation formula for dN
(Proposition 9.1), we get

EdN pX, p, aq “
1
?
Y

ÿ

mPZ˚
dN pmqKN p´am, pqBrws

´m

Y

¯

`

N´2
ÿ

`“1

ˆ

N ´ 1

`

˙

p´1q`

pp``1q{2
a

X{p`

ÿ

mPZ˚
dN pmqBrws

ˆ

m

X{p`

˙

. (9.8)

The second term in (9.8) is then seen to be ! p´1{2. Thus, we have

MdN pX, p, κq “
1

Y κ{2

1

p

ÿ˚

a mod p

ÿ

16|m1|,...,|mκ|ăp{2

κ
ź

k“1

dN pmkqKN pamk, pqBrws
´mk

Y

¯

`Oε

˜

pε
?
p
Y κ{2 ` p1`ε

ˆ

pN´1

X

˙A

Y κ{2´1`ε

¸
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if 2pN´1 ă X, for all A ą 1, by the decay properties of the generalized Bessel transforms.
Using again the combinatorial identity in Lemma 7.1, we rearrange this into

MdN pX, p, κq “
1

Y κ{2

ÿ

ePt˘1uκ

κ
ÿ

s“1

ÿ

σPP pκ,sq

ÿ

pj1,...,jsqPRs

distinct

s
ź

u“1

dN pjuq
σu

ˆ Brws
ˆ

ju
Y

˙σ1
upeq

Brws
ˆ

´ju
Y

˙σ´1
u peq

´1

p

ÿ˚

a mod p

s
ź

u“1

KN paju, pq
σ1
upeqKN p´aju, pq

σ´1
u peq

¯

`Oε

˜

pε
?
p
Y κ{2 ` p1`ε

ˆ

pN´1

X

˙A

Y κ{2´1`ε

¸

,

where we use the same notation as in Section 7.4.

9.1. The combinatorial analysis for N odd. Arguing precisely along the same lines as in
Sections 7.5 and 7.5.2 (the self-dual, N odd, case), we obtain

MdN pX, p, κq “ δ2|κ
κ!

pκ{2q!

¨

˝

1

Y

ÿ

16măp{2

dN pmq
2
ˇ

ˇ

ˇ
Brws

´m

Y

¯ˇ

ˇ

ˇ

2

˛

‚

κ{2

`Oε

ˆ

pε
?
p
Y κ{2 ` Y ´1{2`ε `

1
?
p
Y κ{2`ε

˙

if 2pN´1 ă X. Using Proposition 9.2 below and

M
”

|Brws|2
ı

p1q “
||w||22

2

(by (3.12)), we derive Theorem C for N odd.

9.2. The combinatorial analysis for N even. Arguing precisely along the same lines as in
Section 7.6 and Section 7.6.2 (the self-dual, N even, case, with λ “ 0 so that ν “ κ), we get

MdN pX, p, κq “ δ2|κ

ÿ

ePt˘1uκ

ÿ

σPP pκ,κ{2q
focusing

¨

˝

1

Y

ÿ

16măp{2

dN pmq
2Brws

´m

Y

¯2

˛

‚

vpeq

ˆ

¨

˝

1

Y

ÿ

16măp{2

dN pmq
2Brws

ˆ

´m

Y

˙2
˛

‚

κ{2´vpeq

`Oε

ˆ

pε
?
p
Y κ{2 ` Y ´1{2`ε `

1
?
p
Y κ{2`ε

˙

if 2pN´1 ă X where

vpeq “ |t1 6 u 6 κ{2,
`

σ´1
u peq, σ

1
upeq

˘

“ p0, 2qu|

Applying twice Proposition 9.2 and (3.13), we derive Theorem C in the case N even.

9.3. Asymptotic expansion. This section is the analogue of Section 5 for the divisor func-
tions. For a smooth function B and Y ă Z, let

W pY,Zq “
1

Y

ÿ

16măZ

dN pmq
2B

´m

Y

¯

.

Proposition 9.2– We have

W pY,Zq “ Qplog pY qq `Oε,N

˜

Zε
ˆ

Y

Z

˙A

` Y ´1{2`ε

¸
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for all A ą 1, where Q is a polynomial of degree N2 ´ 1 given by

QpXq “
N2´1
ÿ

m“0

1

m!

¨

˚

˚

˚

˚

˚

˝

ÿ

m1`¨¨¨`mN2`k``“´1´m
m1,...,mN2>´1

k,`>0

N2
ź

j“1

γmj
H
pkq
N p1qM rBsp`q p1q

k!`!

˛

‹

‹

‹

‹

‹

‚

Xm, (9.9)

HN psq “
ź

qPP

`

1´ q´s
˘pN´1q2

PN pq
´sq

and the polynomial PN pT q is defined in Proposition C.2. In particular, the leading coefficient
of QεN rwspXq equals

HN p1q}B}
2

pN2 ´ 1q!
.

Moreover we have HN p1q ą 0.

Proof of proposition 5.1. Arguing as in the proof of Proposition 5.1, one gets

W pY,Zq “
1

Y

1

2iπ

ż

p3q
DdN psqY

sM rBs psqds`Oε,N

˜

Zε
ˆ

Y

Z

˙A
¸

(9.10)

for all A ą 1, where

DdN psq :“
ÿ

m>1

dN pmq
2

ms
“

ź

qPP

PN pq
´sq

p1´ q´sq2N´1
“ ζpsqN

2
HN psq

defines a meromorphic function on <e psq ą 1{2 with a pole at s “ 1 of order N2 by Proposition
C.2. The proposition follows from (9.10) by shifting the contour to Repsq “ 1{2` ε, hitting the
pole at s “ 1.

The fact that HN p1q ą 0 is clear here, since PN pq
´1q ą 0 for all prime numbers q. �

Appendix A. Computation of the residue of Rankin-Selberg L-functions

A formula for the residue of the Rankin-Selberg L-function Lpf ˆ f˚, sq in terms of the L2-
norm of f is implicit, but not fully stated in [6]. For convenience, we give the details of this
computation.

Proposition A.1– The residue of Lpf ˆ f˚, sq at s “ 1 is equal to

rf “
4πN

2{2

N Γα8pfq
||f ||2 ą 0

where

Γα8pfq :“
ź

16j6N

Γ

ˆ

1` 2<e pαj,8pfqq
2

˙

ź

16jăk6N

ˇ

ˇ

ˇ

ˇ

ˇ

Γ

˜

1` αj,8pfq ` αk,8pfq

2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

2

and the Petersson norm of f is given by

||f ||2 “
ż

SLN pZqzPSLN pZqzHN
|fpzq|2 d˚z,

with d˚z being the SLN pRq-invariant measure on HN » SLN pRq{SON pRq defined in [6, Propo-
sition 1.5.3].
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Proof of proposition A.1. The last equation Page 369 in the proof of [6, Theorem 12.1.4] tells
us that

xff̄ , π´Ns̄{2 ΓpNs̄{2qζpNs̄qEP p˚, s̄qy “ π´Ns{2 ΓpNs{2qGνpfqpsqLpf ˆ f
˚, sq (A.1)

where EP pz, s̄q is the maximal parabolic Eisenstein series defined in [6, Equation (10.7.1)] and

Gνpfqpsq “

ż `8

y1,...,yN´1“0
|WJacquetpy, νpfq, ψ1,...,1q|

2
N´1
ź

j“1

y
pN´jqs
j

N´1
ź

j“1

y
´jpN´jq
j

dyj
yj

where WJacquet stands for the Jacquet Whittaker function defined in [6, Equation (5.5.1)]. In
particular,

Gνpfqp1q “

ż `8

y1,...,yN´1“0
WJacquetpy, νpfq, ψ1,...,1qWJacquetpy, νpf

˚q, ψ1,...,1q (A.2)

ˆ

N´1
ź

j“1

yN´jj

N´1
ź

j“1

y
´jpN´jq
j

dyj
pyj

(A.3)

“
1

2πNpN´1q{2 ΓpN{2q

ź

16j,k6N

Γ

ˆ

1` αj,8pfq ` αk,8pf
˚q

2

˙

(A.4)

“
1

2πNpN´1q{2 ΓpN{2q

ź

16j6N

Γ

ˆ

1` 2<e pαj,8pfqq
2

˙

(A.5)

ˆ
ź

16jăk6N

ˇ

ˇ

ˇ

ˇ

ˇ

Γ

˜

1` αj,8pfq ` αk,8pfq

2

¸ˇ

ˇ

ˇ

ˇ

ˇ

2

(A.6)

by Stade’s formula ( [6, Proposition 11.6.17]) and (2.20). By [6, Proposition 10.7.5], s ÞÑ

π´Ns{2 ΓpNs{2qζpNsqEP pz, sq :“ E˚P pz, sq has a simple pole at s “ 1 but the accurate value of
this residue is not computed. Let us show quickly that

ress“1E
˚
P pz, sq “ 2{N

which concludes the proof. The last equation in the proof of [6, Theorem 10.7.5] tells us that

E˚P pz, sq “ detpzqs
ż `8

u“0

«

ÿ

aPZN
fupazq ´ 1

ff

uNs{2
du

u

where

fupxq :“ e´πpx
2
1`¨¨¨`x

2
N qu  pfupxq “ u´N{2f1{upxq

for u ą 0. Breaking the u-integral into two parts r0, 1s and r1,`8r, changing the variable
u ÞÑ 1{u in the second part and applying the Poisson summation formula given in [6, Equation
(10.7.2)], one gets

E˚P pz, sq “ detpzqs
´2{N

s
` detpzqs´1 2{N

s´ 1
`

ż `8

u“1

«

ÿ

aPZN
fupazq ´ 1

ff

uNs{2
du

u

`

ż `8

u“1

«

ÿ

aPZN
fupa

tz´1q ´ 1

ff

uNp1´sq{2
du

u
.

�
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Appendix B. Generating series involving Schur polynomials

Our goal here is to state a precise form of an identity involving Schur polynomials that we
used in Section 5.

Notations– The following notations will be used throughout this section. For k “ pk1, . . . , kN q
a N -tuple of non-negative integers and x “ px1, . . . , xN q a N -tuple of indeterminates, we define
the N ˆN matrix

xpkq “
”

xkij

ı

16i,j6N
,

and note that

det pxpkqq “
ÿ

σPσN

εpσqxk1σp1q . . . x
kN
σpNq

vanishes if two components of kmatch. Recall that em stands for them’th elementary symmetric
polynomial defined in (2.6).

We will prove:

Proposition B.1– Let N > 2, x “ px1, . . . , xN q, y “ py1, . . . , yN q and T be indeterminates.
(1) One has

ÿ

k>0

S0,...,0,kpxqS0,...,0,kpyqT
k “

PN px,y, T q
ś

16j,k6N p1´ xjykT q

for some polynomial PN px,y, T q P Zrx,y, T s.
(2) If

0 ă t ă min
16j,k6N

1

|xj ||xk|
(B.1)

then PN px,x, tq ą 0.
(3) We have the formula

PN px,y, T q “ 1`

NpN´1q
ÿ

m“2

p´T qm
min pm,N´1q

ÿ

k“1

ÿ

16m1,...,mk6min pm,Nq
m1`¨¨¨`mk“m

ˆ

k
ź

j“1

emj pyq
ÿ

26J1ă¨¨¨ăJk6N

rS
pJ1,...,Jkq
pm1,...,mkq

pxq

with

rS
pJ1,...,Jkq
pm1,...,mkq

pxq “
1

V pxq
det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

J1 Ñ

Jk Ñ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

xN´1
1 . . . xN´1

N
...

...
...

xN´J1`m1
1 . . . xN´J1`m1

N
...

...
...

xN´Jk`mk1 . . . xN´Jk`mkN
...

...
...

1
... 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

for 1 6 k 6 N , 2 6 J1 ă ¨ ¨ ¨ ă Jk 6 N and m1, . . . ,mk > 1.

Remark B.2– For example, for N “ 2,

P2px,y, T q “ 1´ e2pxqe2pyqT
2
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whereas for N “ 3,

P3px,y, T q “ 1´ e2pxqe2pyqT
2

`

˜

e3pxq
ÿ

16k1‰k263

yk1y
2
k2 ` e3pyq

ÿ

16j1‰j263

xj1x
2
j2 ` 4e3pxqe3pyq

¸

T 3

´ e1pxqe3pxqe1pyqe3pyqT
4 ` e3pxq

2e3pyq
2T 6.

Remark B.3– In general, rS
pJ1,...,Jkq
pm1,...,mkq

pxq can be related to a Schur polynomial as follows. Let us

assume that Jk ă N (a similar process also works if Jk “ N) for simplicity. The finite sequence

p´1, . . . ,´J1 `m1, . . . ,´Jk `mk, . . . ,´pN ´ 1qq :“ pu1, . . . , uN´1q

of length N ´ 1 can be ordered increasingly as

uτp1q 6 . . . 6 uτpN´1q

where τ is the appropriate permutation in σN´1. One can check that

rS
pJ1,...,Jkq
pm1,...,mkq

pxq “ εpτqSpuτp1q`N´1,uτp2q´uτp1q´1,...,uτpN´1q´uτpN´2q´1qpxq.

Proof of proposition B.1. Let us denote by Σ the generating series. By (2.8),

Σ “
1

V pxqV pyq

ÿ

k>0

det pxpN ´ 1` k,N ´ 2, . . . , 1, 0qqdet pypN ´ 1` k,N ´ 2, . . . , 1, 0qqT k

“
1

V pxqV pyq

ÿ

pσ,τqPσ2
N

εpστq
`

xσp1qyτp1q
˘N´1

. . . xσpN´1qyτpN´1q

ÿ

k>0

`

xσp1qyτp1qT
˘k

“
1

V pxqV pyq

ÿ

pσ,τqPσ2
N

εpστq

`

xσp1qyτp1q
˘N´1

. . . xσpN´1qyτpN´1q

1´ xσp1qyτp1qT

“
1

V pxqV pyq

ÿ

σPσN

εpσqxN´1
σp1q . . . xσpN´1qF py, xσp1qT q

where

F py, Zq “
ÿ

τPσN

εpτq
yN´1
τp1q . . . yτpN´1q

1´ yτp1qZ

where Z is an indeterminate. One has

F py, Zq “
1

ś

16k6N p1´ ykZq

ÿ

τPσN

εpτqyN´1
τp1q . . . yτpN´1q

N
ź

k“2

`

1´ yτpkqZ
˘

“
V pyq

ś

16k6N p1´ ykZq

by Lemma B.4 below. Thus,

Σ “
1

V pxq

ÿ

σPσN

εpσq
xN´1
σp1q . . . xσpN´1q

ś

16k6N

`

1´ ykxσp1qT
˘

“
1

ś

16j,k6N p1´ xjykT qV pxq

ÿ

σPσN

εpσqxN´1
σp1q . . . xσpN´1q

ź

26j6N
16k6N

`

1´ xσpjqykT
˘

:“
1

ś

16j,k6N p1´ xjykT qV pxq
Qpx,y, T q
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As a function of x, Qpx,y, T q is a skew-symmetric polynomial. As such, V pxq | Qpx,y, T q.
For σ P σN , Let say that the quantities xσpjqyk (2 6 j 6 N , 1 6 k 6 N) are ordered lexico-
graphically, namely

pj1, k1q ă pj2, k2q if j1 ă j2 or j1 “ j2 and k1 ă k2.

Once again,

ź

26j6N
16k6N

`

1´ xσpjqykT
˘

“ 1`

NpN´1q
ÿ

m“1

p´1qmem
` 

xσpjqyk, 2 6 j 6 N, 1 6 k 6 N
(˘

Tm

where

em
` 

xσpjqyk, 2 6 j 6 N, 1 6 k 6 N
(˘

:“
ÿ

26j1,...,jm6N
16k1,...,km6N

pj1,k1qă¨¨¨ăpjm,kmq

xσpj1qyk1 . . . xσpjmqykm .

The condition pj1, k1q ă ¨ ¨ ¨ ă pjm, kmq is equivalent to saying that there exists 1 6 k 6
min pm,N ´ 1q and some positive integers 1 6 mj 6 min pm,Nq (1 6 j 6 k) satisfying

k
ÿ

j“1

mj “ m

and

j1 “ ¨ ¨ ¨ “ jm1
:“ J1 and 1 6 k1 ă ¨ ¨ ¨ ă km1 6 N,

jm1`1 “ ¨ ¨ ¨ “ jm1`m2
:“ J2 and 1 6 km1`1 ă ¨ ¨ ¨ ă km1`m2 6 N,

...
...

...

jm1`¨¨¨`mk´1
“ ¨ ¨ ¨ “ jm1`...mk :“ Jk and 1 6 km1`¨¨¨`mk´1

ă ¨ ¨ ¨ ă km1`¨¨¨`mk 6 N

with 2 6 J1 ă ¨ ¨ ¨ ă Jk 6 N . Consequently,

Qpx,y, T q “ V pxq `

NpN´1q
ÿ

m“1

p´T qm
min pm,N´1q

ÿ

k“1

ÿ

16m1,...,mk6min pm,Nq
m1`¨¨¨`mk“m

ˆ

k
ź

j“1

emj pyq
ÿ

26J1ă¨¨¨ăJk6N

ÿ

σPσN

εpσqxN´1
σp1q . . . xσpN´1qx

m1

σpJ1q
. . . xmkσpJkq.

We now check that coefficient of T in the previous equation is 0. This coefficient equals
´e1pyq times the determinant of the matrix

J1 Ñ

¨

˚

˚

˚

˚

˚

˚

˚

˝

xN´1
1 . . . xN´1

N
...

...
...

xN´J1`1
1 . . . xN´J1`1

N
...

...
...

1
... 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

We note that the pJ1 ´ 1q-th and the J1-th rows of this matrix are equal, and therefore its
determinant vanishes.
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Finally, we prove the positivity of PN px,x, tq if t satisfies (B.1). We have

0 ă 1`
ÿ

k>1

|S0,...,0,kpxq|
2 tk “ PN px,x, tq

ˆ

¨

˝

ź

16j6N

´

1´ |xj |2t
¯

ź

16jăk6N

´

1´ 2<e pxjxkqt` |xj |2|xk|2t2
¯

˛

‚

´1

.

The denominator in the previous equation is a positive real number when the constraint (B.1)
is satisfied. �

We used the following elementary observation:

Lemma B.4– Let Y be an indeterminate and x “ px1, . . . , xN q. We have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

xN´1
1 . . . xN´1

N

xN´2
1 p1´ x1Y q . . . xN´2

N p1´ xNY q
...

...
...

x1p1´ x1Y q . . . xN p1´ xNY q
1´ x1Y . . . 1´ xNY

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ V pxq.

Proof of lemma B.4. Of course, the determinant in the previous lemma equals

ÿ

σPσN

εpσqxN´1
σp1q . . . xσpN´1q

N
ź

`“2

`

1´ xσp`qY
˘

.

Then,

N
ź

`“2

`

1´ xσp`qY
˘

“ 1`
N´1
ÿ

m“1

p´1qmem
`

xσp2q, . . . , xσpNq
˘

Y m

where em is the m’th elementary symmetric polynomial defined in (2.6). Thus, the previous
determinant equals

N´1
ÿ

m“1

p´Y qm
ÿ

26j1ă¨¨¨ăjm6N

det pxpN ´ 1, N ´ 2` ε2pjq, . . . , 1` εN´1pjq, εN pjqqq

` det pxpN ´ 1, N ´ 2, . . . , 0qq

where

ε`pjq :“

#

0 if @k, jk ‰ `,

1 otherwise.

for 2 6 ` 6 N . The last determinant in the previous equals is nothing else than V pxq. All the
other determinants vanish: indeed, if

`0pjq :“ min t2 6 ` 6 N, εpjq “ 1u

then

det pxpN ´ 1, N ´ 2` ε2pjq, . . . , 1` εN´1pjq, εN pjqqq

“ det pxpN ´ 1, N ´ 2, . . . , N ´ p`0pjq ´ 1q, N ´ `0pjq ` 1, . . . , 1` εN´1pjq, εN pjqqq “ 0,

since there are two identical rows in the matrix. �
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Appendix C. Generating series involving the multiple divisor functions

We begin by recalling a formula for the value of the multiple divisor functions at prime
powers.

Lemma C.1– For N > 2, k a non-negative integer and a prime number q,

dN pq
kq “

ˆ

N ´ 1` k

k

˙

“
NpN ` 1q ¨ ¨ ¨ pN ` k ´ 1q

k!
. (C.1)

Proof of lemma C.1. This amounts to the formula for the number of monomials of degree k in
N variables, which is well-known. �

We now prove a formula for the generating function of the square of the divisor function:

Proposition C.2– For q a prime number, one has
ÿ

k>0

dN pq
kq2T k “

PN pT q

p1´ T q2N´1

where

PN pT q “
N´1
ÿ

k“0

ˆ

N ´ 1

k

˙2

T k P ZrT s.

In particular, we have PN ptq ą 0 for t ą 0. Moreover, the constant term of PN pT q is equal
to 1 and the coefficient of T is pN ´ 1q2.

Proof of proposition C.2. Let

2F1pu, v; 1; zq “
ÿ

k>0

upu` 1q ¨ ¨ ¨ pu` k ´ 1qvpv ` 1q ¨ ¨ ¨ pv ` k ´ 1q

pk!q2
zk

denote (a special case of) the classical Gauss hypergeometric function. By the previous lemma,
we have

ÿ

k>0

dN pq
kq2T k “ 2F1pN,N ; 1;T q.

Since
N´1
ÿ

k“0

ˆ

N ´ 1

k

˙2

T k “
ÿ

k>0

ˆ

N ´ 1

k

˙2

T k “ 2F1p´pN ´ 1q,´pN ´ 1q; 1;T q,

the formula we claim is

2F1p´pN ´ 1q,´pN ´ 1q; 1;T q “ p1´ T q2N´1
2F1pN,N ; 1;T q,

which is a special case of the formula known as Euler’s transformation for the hypergeometric
function (see, e.g., [10, 9.131.1 (3)]). �
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