FOURIER COEFFICIENTS OF GL(N) AUTOMORPHIC FORMS IN
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ABSTRACT. We show that the multiple divisor functions of integers in invertible residue classes
modulo a prime number, as well as the Fourier coefficients of GL(N) Maass cusp forms for all
N > 2, satisfy a central limit theorem in a suitable range, generalizing the case N = 2 treated
by E. Fouvry, S. Ganguly, E. Kowalski and P. Michel in [4]. Such universal Gaussian behaviour
relies on a deep equidistribution result of products of hyper-Kloosterman sums.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Problems concerning the asymptotic distribution of arithmetic functions in residue classes
are very classical in analytic number theory, and have been considered from many different
points of view. Recently, E. Fouvry, S. Ganguly, E. Kowalski and P. Michel [4] proved that the
classical divisor function, as well as Fourier coefficients of classical (primitive) holomorphic cusp
forms, satisfies a form of central limit theorem concerning the distribution in non-zero residue
classes modulo a large prime number.

It seems natural to explore the same type of statistical questions for higher divisor functions,
or Fourier coefficients of automorphic forms on higher-rank groups, especially because of the
philosophy which relates the distribution properties of primes in arithmetic progressions with
that of higher divisor functions. We will show that a suitable central limit theorem holds for
these divisor functions as well as for Fourier coefficients of cusp forms on GL(N) for all N > 2,
taken to be of full level over Q. To simplify the notation, we will not consider holomorphic cusp
forms in the case N = 2, since this case is treated in [4].
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We remark that there are not many statements of analytic number theory which are currently
known to hold for an individual (and not on average over a family) cusp form on GL(N) for
arbitrary N. The best known results of this type are the approximations to the Ramanujan—
Petersson—Selberg conjectures (see the paper of Z. Rudnick, W. Luo and P. Sarnak [18]), and
the distribution properties of zeros of the standard L-functions for test functions with suitable
restrictions (due to Z. Rudnick and P. Sarnak [24]). The present paper adds a further example
of such properties. It is interesting to note that we require a deep result of equidistribution of
hyper-Kloosterman sums to obtain a “universal” Gaussian behavior, which is derived from the
determination of the monodromy groups of Kloosterman sheaves, due to N. Katz [15]. As far
as we are aware, this is a new ingredient in such studies.

1.1. Statement of the results. We refer to the introduction of [4] for a survey of the literature
prior to that paper, and we now state our results. We fix throughout an integer N > 2.

Let p be an odd prime number. We will consider the group F of invertible residue classes
modulo p as a probability space with its uniform probability measure p,, so that

|E|
1.1.1. The case of GL(N) Maass cusp forms. We fix a Hecke-Maass cusp form f on GL(N) with
level 1. We denote by af(m1,...,mn—1) its Fourier coefficients, for integers myq, ..., mny_2 > 1
and my_1 € Z — {0}. We also use the shorthand notation
af(n) =ar(n,1,...,1) (1.1)
for n > 1, and we recall that we then have also
af*(m) zaf*(m,l,...,l) zaf(l,...,l,m) (1.2)

for m #+ 0 an integer, where f* is the dual of f. We also assume that f is arithmetically
normalized so that af(1) = 1. In particular, as(n) is then the eigenvalue of f for the n-th
Hecke operator T,.

We will fix a test function w : R} — R, which is a non-zero smooth function compactly
supported on an interval [zg,z1] < R%. For X > 1, we then define

SiXopa) = Y, apmw ()

n=>1
n=a mod p

M(X,p) = ;;1af(n)w<;).

The quantity M;(X,p) is a natural “fake” main term for the quantity S;(X,p,a), which
naturally occurs in the process but is extremely small in view of the use of the smooth weight.
Having in mind that the number of terms in S;(X,p, a) is roughly X /p, the square root cancel-
lation philosophy suggests to define

Sf(Xapa a) B Mf(X,p)
(X/p)'/2

Ef(Xapa CL) = (13)
for a an invertible residue class modulo p.

An important observation is that, in general, F¢(X,p,a) is not real-valued, and thus the
distribution results will involve probability measures on C. More precisely, recall that f is said
to be self-dual if f is equal to its dual form f*, which is equivalent with requiring that the
Fourier coefficients are real numbers, in which case E¢(X,p,a) is a real number. If f is not
self-dual then we define

Zy(X,p,a) = (Re (Ef(X,p,a)), Sm (Ef(X,p,a))) € R%.
We view these quantities as random wvariables a — Ef(X,p,a) and random vectors a —

Z¢(X,p,a) on the finite set of invertible residue classes modulo p endowed with the uniform
2



probability measure p, described above, and we will attempt to determine their distribution
when p is large, for suitable values of X.
We will use the method of moments to study their distribution. This allows us to prove results
of interest even in situations where we cannot currently prove an equidistribution statement.
For any pair (x, A\) non-negative integers, we define the (x, \)-th mized moment of E¢(X,p, a)
by

Mp(X,p, (5, 0) i= = S Ey(X,p,a) By (X, pra) - (1.4)

a mod p
(a,p)=1

The next theorem states an asymptotic expansion for these mixed moments in specific ranges
for X with respect to p. Before stating it, we recall that the k-th moment of a centered Gaussian
random variable with variance V = 02 > 0 is given by

k!
k/2 _ e k)2
mkV = 52‘k2k/2(k/2)!v .

Theorem A (Mixed moments)— Let f be an even or odd GL(N) Hecke-Maass cusp form, which
is not induced from a holomorphic form if N =2, and w : R} — R be a smooth and compactly
supported function. Let 2pN~1 < X < pV. Then we have

Mf(X,p, (H, )\)) = 5f:f*m,{+,\ (Qnyw)(H—H\)/Q + (5f¢f*5,€:,\2'i/€!6?7w

N-1\ (k+A)/2—1 1/2—60+¢ NN A e
X 1 /p 2
+0 e (p ) - () +— () 1.5
=P X pN VP \ X (1.5)

for alle > 0, where  =1/2 —1/(N? + 1) and cf,, > 0 is a constant given by

er  TrHp (1)
fw = 9

where ¢ is the residue at s = 1 of the Rankin-Selberg L-function L(f x f*,s) (see Proposition
A.1), |wllz is the L*-norm of w with respect to the Lebesque measure on R*, and Hy (1) is
an Euler product defined in Proposition 5.1.

2
[lwlf3,

In this theorem, the error term in (1.5) only tends to 0 as X and p tend to infinity in suitable
ranges. For instance, if X = p7” with N —1 <+ < N, then this theorem implies that

)(H"!‘)\)/Q

lim Mf(p'y,p, (k,A\)) = Of— prMycy ) (QCf,w + (5f¢f*(5,{:)\2'$/£!6?’w, (1.6)

p—>+00

for all kK and A such that x + A < ﬁ

The most restrictive error term in (1.5) is the last one, which we will see comes from deep
equidistribution theorems of hyper-Kloosterman sums. One can expect that the estimate for
this term is not best possible, and that the asymptotic formula for all moments should be valid
when X = p? with N —1 <y < N. This seems to be a rather difficult problem.

Nevertheless, the limit holds for all moments when X is a suitable function of p, and standard
techniques from probability theory then lead to central limit theorems for the random variables
E¢(X,p,*) and Z¢(X,p,*) for such functions X.

Corollary B (Central limit theorems)— Let f be an even or odd GL(N) Hecke-Maass cusp form,
which is not induced from a holomorphic form if N = 2, and w : R} — R be a smooth and
compactly supported function. Let X = pN /®(p) for a function ® : [2, +oo[— [1, +0o0[ satisfying

lim ®(z) =+w and &O(z)= 0.(z°)

r—+00

for all e > 0.



o If f is self-dual then the sequence of random variables E¢(X,p,*) converges in law to a
centered Gaussian random variable with variance 2cy,,, as p goes to infinity among the
prime numbers. In other words, for all real numbers o < 3, we have

1 1 B 22
lim —— |{aeFJ,a < Ef(X,p,a) <3 :J exp (—) dx.
P p—1 il d /| V27 % 2 Jrea 2 x 210

o If f is not self-dual then the sequence of random vectors Z(X,p,*) converges in law to
a Gaussian random vector with covariance matrix

Can (é ?) (17)

as p goes to infinity among the prime numbers. In other words, for real numbers ay < 1
and ag < B2, we have

lim —— HaeF , Zp(X,p,a) € [a, B1] x [az, B2]}|

peP p—
B1 22 4 42
Y
dx dy.
QWwaJ f eXp( 2f,w>xy

p—+0
Remark 1.1- (1) The same central limit theorem would follow for all X with 2p™V ! < X < pV

if one could prove that the limit (1.6) holds for all x and A in that range. At the very least, for

X =pY with N — 1 <~ < N, we obtain convergence of all moments up to k + A < ﬁ

(2) It is a very interesting question whether one can establish this result with the smooth
weight w(n/X) replaced by a characteristic function of 1 < n < X. For N = 2, Lester and
Yesha [17, Th. 1.1, Th. 1.2] have recently shown that this can be done. This is a non-trivial
fact, which has not been extended to N > 3 at the moment.

1.1.2. The case of the multiple divisor functions. The same techniques also enable us to study
a similar problem for the N-th multiple divisor function dy. The only notable difference is the
existence of a significant main term.

Thus, for an invertible residue class a in IF;;, we define

Say (X, p,a) — Mg, (X, p)
(X/p)\/? ’

EdN (X7p7 CL) =

where

Say(X,pa)= ) dy(nw (%) (1.8)

n=1
n=a mod p

Mgy, (X, p) Z dv(n)w (=) — J . log “)w(z) da (1.9)
k= 1

n>1

where w : R% — R is again a fixed non-zero smooth function compactly supported on [z, 1]
R* and Bj(p) are certain coeflicients that we will define precisely in Section 9. Once again, the
normalisation is suggested by the square root cancellation philosophy.

We will study the convergence in law of the sequence of random variables a — Eg, (X, p, a)
on F endowed with its uniform probabiblity measure p,.

For k a non-negative integer, let us define the x-th moment of Eq, (X, p,a) by

1
MdN(Xapv"{) = Z EdN(vava)H‘
a mod p
(a,p)=1
The next theorem states an asymptotic expansion for these moments in specific ranges for X

with respect to p.
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Theorem C (Moments for dy)— Let N > 3 and w : R — R be a smooth and compactly
supported function. If 2pN~1 < X < p" then

pN K/2
May (X, p, %) = muQ (log %)

N—1\ K/2—1 1/2+¢e N\ 5te
14e (P £ 1 pf
+0.; (p < < ) + (pN> o <X> ) (1.10)

for all e > 0, where Q is a polynomial of degree N> — 1 with leading coefficient

[Jwl[3 ov-12 SN -1\
(N2—21)! [ (1_5) X];0< k )pk

q prime

as a leading coefficient, where |w|z is the L?>-norm of w with respect to the Lebesgue measure
on R%.

As in the case of Maass cusp forms, we deduce a central limit theorem for Eg, (X, p,a) for a
large class of functions X.

Corollary D (Central limit theorems for dy)— Let N > 3 and w : RY — R be a smooth and
compactly supported function. Let X = pN /®(p) for a function ® : [2, +oo[— [1, +0o0[ satisfying

lim ®(z) =+ and @(z)= O (z%)

Y00
for alle > 0. Let
-2 TN -1\,
H:q;l;[me<l_q) xl;)( . >p > 0.
The sequence of random variables
Eqy (X, p, %)

\/ HlJw|2logV*~! (2(p))
N2

converges in law to a centered Gaussian random wvariable, whose variance is 1, as p goes to
nfinity among the prime numbers. In other words, for all real numbers o < 3, we have

1 Eqy (X 1 (8 2
PSRN PR N 3 TR L P
Sl \/HN(1)||w||3120gN21(¢(p)) V21 Jima 2

(N?=1)1

Remark 1.2— As a final remark, we note that it is possible to extend the Central Limit Theo-
rems, for cusp forms as well as for dy, to restrict the average over residue classes a which are
considered, in either of the following manners (which may be combined):

e We may assume that a ranges over the reduction modulo p of an interval I;, of integers
of length p'/2+% « |I,] < p—1 for any fixed § > 0;

e We may assume that a ranges over the set f(F,) of values in I, of a fixed non-constant
polynomial f € Z[X], for instance that a is restricted to be a quadratic residue.

This essentially only requires an extension of the results of Section 4, as recently discussed
by E. Fouvry, E. Kowalski and Ph. Michel in [5, Section 5.3].
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1.2. Strategy of the proof. The basic strategy follows that of E. Fouvry, S. Ganguly, E.
Kowalski and P. Michel [4] of applying the Voronoi summation formula, followed by equidis-
tribution theorems for hyper-Kloosterman sums. There is a significant increase in complexity
due to the context of GL(NN) automorphic forms, and to the fact that the Fourier coefficients
are not always real-valued. However, more importantly, a number of crucial facts which could
be checked relatively easily by direct calculations or ad-hoc methods in the GL(2) case (for
holomorphic forms or the divisor function) require much more intrinsic arguments. This is
the case for instance of the unitarity of the integral transform that appears in the Voronoi
summation formula, and also of certain multiplicity computations from representation theory
which seem very difficult to handle with explicit integrals. In addition, the computation of the
limiting variance is surprisingly delicate, and indeed is the only place where we need to invoke
an upper-bound for the Fourier coefficients of f, which goes beyond the “local” Jacquet-Shalika
bound, that follows from genericity of the local representations.

The most technical part of the argument is contained in Section 7, where we obtain the
asymptotic expansion of the moments. However, the idea underlying this computation can be
motivated using probabilistic analogies, and we do this at the beginning of that section.

1.3. Organisation of the paper. The general background on GL(N) Maass cusp forms is
given in Section 2. The Voronoi summation formula is introduced in Section 3, which also con-
tains the analytic and the unitarity properties of the generalized Bessel transforms occuring in
this summation formula. The algebraic ingredient required to prove the crucial equidistribution
result for products of hyper-Kloosterman sums is done in Section 4. The technical ingredient
needed to achieve the variance computation is proved in Section 5. The first steps in the proof
of Theorem A, such as the input of the Voronoi summation formula, are done in Section 6. The
combinatorial analysis in the proof of Theorem A appears in Section 7. Corollary B is proved
in Section 8 and Theorem C in Section 9. The general properties of Maass cusp forms, which
are stated in Section 2 without proof in [6], are proved in Appendix A. A generating series
involving a product of Schur polynomials (respectively a product of multiple divisor functions)
is studied in Appendix B (respectively in Appendix C).

Notations— As already mentioned, N > 2 is a fixed integer. We denote e(z) = exp(2inz) for
z € C. The sign of a non-zero real number z is denoted sgn(z) € {—1,1}.

‘P stands for the set of prime numbers. The main parameters in this paper are an odd prime
number p, which goes to infinity among P and a positive real number X, which goes to infinity
with p. Thus, if f and g are some C-valued functions on R? then the symbols f(p, X) «4 g(p, X)
or equivalently f(p,X) = Oa(g(p, X)) mean that |f(p, X)| is smaller than a constant, which
only depends on A, times g(p, X) at least for p a large enough prime number.

The Mellin transform of a function 1 : R — C is denoted M([¢] and is given by

+00 dz
S

M) = | bl

z=0
for all complex numbers s for which the integral exists. If G is a holomorphic function defined
for s € C with real part > o¢p > —oo and with fast enough decay as the imaginary part grows,
then M~1[G] will denote its inverse Mellin transform defined by
1 d
MIE) @) = 5= | G
2im J (o) s
for a fixed ¢ > oy and for all positive real number z.
If E is a finite set then |E| stands for its cardinality.
If Q is an assertion then the Kronecker symbol dg equals 1 if Q is true and 0 otherwise.
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2. QUICK REVIEW OF GL(N) AUTOMORPHIC FORMS

A convenient reference for this section is [6]. Let f be a GL(N) Hecke-Maass cusp form of
level 1 and let f* be its dual. If N = 2, we require (for convenience) that the corresponding
classical modular form is not holomorphic.

For positive integers my1, ..., my_o and a non-zero integer muy_1, we denote by
af (ml, ey mN_l)
the (my,...,my_1)’th Fourier coefficient of f. We assume that f is arithmetically normalized,

namely ar(1,...,1) = 1. Since f is a Hecke eigenform, the multiplicity 1 theorem shows that f
is either even or odd, i.e., that

af (ml,...,—mN_l) =€faf (ml,...,mN_l) (2.1)
where
e = +1 %f f %S even, (2.2)
—1 if fisodd

by [6, Proposition 9.2.5, Proposition 9.2.6]. More precisely, a GL(N) Maass cusp form of level
1 is always a linear combination of an even and an odd one by [6, Definition 9.2.4]. If N is odd,
then it is known that a GL(N) Maass cusp form of level 1 is always even (see [6, Proposition
6.3.5]). If N is even and f is a GL(NN) Hecke-Maass cusp form of level 1 then one can check
that f and K(f) defined by

K(f)(z) == f(diag(—1,1,...,1)z)

for z in the generalized upper-half plane have the same Hecke eigenvalues (this follows from the
fact that K commutes with the Hecke algebra). Since K is an involution, the multiplicity 1
theorem implies the result (see [14, Theorem 6.28] and [6, Section 9.2] for more details).

The Fourier coefficients satisfy the Ramanujan-Petersson bound on average, by Rankin-
Selberg theory. Recall that the Rankin-Selberg L-function of f and another GL(N) Hecke-
Maass cusp form g of level 1 is the Dirichlet series

Z af (ml,...,mN_l)ag(ml,...,mN_l)

( N—-1, N-2

L(f x g,8) = ((Ns) mN1m my-1)*
NIl =2 oy

mi,....,my—1>1

This L-function has an analytic continuation to C if g # f*, and a meromorphic continuation to
C with a simple pole at s = 1 if g = f* (see [6, Theorem 12.1.4]). The residue of L(f x f*,s) at
s = 1is denoted ry. It is a positive real number, and it may be expressed in terms of invariants
of f, see Proposition A.1.

The Rankin-Selberg L-function has also an Euler product of degree N? given by

. 6% -1
Lifxgs) =] [I (1—%(” ’“"Z(g)) (23)

qS
qeP 1<j,k<N
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by [6, Proposition 12.1.3] where the o 4(f)’th are the complex roots of the monic polynomial
£ —1 terms

—_—

N—-1
XN 3 (=Dfap(1,. 1 g1, XN ()N e C[X] (2.4)
(=1

(where the Fourier coefficient corresponding to ¢ has index ¢ at the ¢-th position).
For a prime number ¢, we denote for convenience

aq(f) ={ayq(f), 1 <j < N} (2.5)
and we remark that (2.4) and (2.14) imply that

ag(f*) = {1 <j < N}
From (2.4), we also find that

-1
—_—

ar(1,.. . 1,q,1,...,1) = es(ag(f)) == M aa(f) - agg(f) (2.6)

1<j1<-<je<N

for 1 < ¢ < N — 1. More generally, it follows from the works of Shintani and of Casselman—
Shalika (see also [27, Proposition 5.1]) that, for a prime number ¢ and N — 1 non-negative
integer ki,...,kn_1, we have

k kn_
af (q Lo gt 1) = Skn_1,kr (@1,4(f)s - ang(f)) (2.7)
where
xiv_1+kN71+...+kl o x%—l-ﬁ-k‘]\rfl-‘r“'-‘rk‘l
IS ( ) 1 det TR ' T
xr R = —— de N-—-1 N-—-2 N-1 N-—-2
knN—1,..0,k1 \L15 y LN V(.’L’l, ] ;xN) T - T
I+kn_1 I+kN—1
x . Ty
1 s 1
(2.8)
is a Schur polynomial and where V(x1,...,zy) stands for the usual Vandermonde determinant
V(zy,...,zN) = H (@i — ;).
1<i<j<N

We will need the following property, which we will explain in Proposition B.1: there exist

polynomials Py (x,y,T), where = (x1,...,zn) and y = (y1,...,yn) are indeterminates, such
that
PN z,Yy, T
> So,..0k(®)So, 0 k(y)T" = ( l ) T (2.9)
k=0 H1<j,k<N (1 —zjuT)
The analytic properties of the Rankin-Selberg L-functions are known to imply that
> lag (my,...,my_1)* «cp X1F° (2.10)
mi,...,mN-121
miv_lmév_zum]v,ng

for all real number X > 1 and € > 0. This bound on average for the Fourier coefficients of f is
strong enough in all the analytic estimates in this work, except when computing the variance in
Section 5, which requires a non-trivial individual bound for Satake parameters which is stronger
than what is implied by this bound.

More precisely, recall that W. Luo, Z. Rudnick and P. Sarnak have proved in [18] and [19]
that

P < g2 2.11
max Jaj,(f)] <4 (2.11)

8



for all Hecke-Maass cusp forms f of level 1 and all prime numbers ¢. (The Ramanujan-Petersson
conjecture claims that this should hold with 1 on the right-hand side, and the Jacquet-Shalika
local bound shows that it does with ¢/? instead).

By [6, Theorem 9.3.11], the Fourier coefficients of f satisfy the multiplicativity relations

micN MacCl MN_1CN—2
ar(m,1,...,Dayg(my,...,mn_1) = Z af< o o e ) (2.12)
Hzlzvﬂcé:m

cjlm;j(1<G<N—1)

for positive integers m,my, ..., my_o and non-zero integer my_; (there is no typo), as well as
!/ / !/ /
ay (maml,...,my_1miy_1) = ay (m1,...,my—1)ay (my,...,my_1) (2.13)
for positive integers mi,m},...,my_2, m/y_,, and non-zero integers my_1, m’y_; such that

(m1 .. .mN_l,m& . .m’N_l) =1.
We also mention that, for positive integers mq,..., my_1, we have
aps(my,...,my_2,my_1) = af(mMyN_1,MN_2,...,m1) (2.14)

by [6, Theorem 9.3.11, Addendum]. Using the fact that f is a Hecke eigenfunction, one derives
by Mobius inversion the relation

ag(mi,...,mn_2,my_1) = af (MN_1,MN_2,...,M1), (2.15)

(see [6, Theorem 9.3.6, Theorem 9.3.11, Addendum]) and in particular, we see that the Fourier

coefficients of f are real if f is self-dual, i.e., if f = f*. Recalling the definition ((1.1) and (1.2)),
we see that

ag(m)=asr(m,1,...,1) =ap(1l,...,1,m) = ap«(m) (2.16)

for m > 1.
We now consider analogues of some of these properties at the infinite place. We denote by

v(f) = (i (f),...,un_1(f))eCN!

the type of f. The components of the type of f are complex numbers characterized by the
property that, for every invariant differential operator D in the center of the universal enveloping
algebra of GL(N,R), the cusp form f is an eigenfunction of D with the same eigenvalue as the
power function I,,s) which is defined in [6, Equation (5.1.1)].

On the other hand, we denote by

aw(f) ={ajn(f),1 <j < N}

the Langlands parameters® of f.
The Langlands parameters are obtained as a set of affine combinations of the coefficients of
the type. They satisfy

N
N ajon(f) = 0. (2.17)
j=1
and
ao(f*) = —ax(f) (2.18)

since the type of f*is v(f*) = (vn—1(f),vn—2(f),...,v1(f)) (see [6, Proposition 9.2.1]).
We also have the unitarity property (see [24, Equation A.2])

ac(f) = —aw(f) (2.19)

or equivalently

aw(f*) = ax(f) (2.20)

1For reference, we note that aj.00(f) is denoted \;(v) and o, (f*) is denoted :\\;(1/) in [6].



by (2.18). It is known that

1 1

(see [18,19]), and this analogue of (2.11) will also be used.

3. GENERALIZED BESSEL TRANSFORMS FOR GL(N)

3.1. The Voronoi summation formula. The first case of the Voronoi summation formula
beyond GL(2) is due to S.J. Miller and W. Schmid, for GL(3) cusp forms (see [21]; note that
according to [12, Section 1.2] and [8, Page 4], P. Sarnak and T. Watson had developed before a
version of the Voronol summation formula for GL(3) for prime denominators). D. Goldfeld and
X. Li developed a Voronof summation formula for GL(N) for prime denominators in [7] and for
general denominators in [8]. Independently, S.J. Miller and W. Schmid found a more general
version of the Voronoi summation formula for GL(N) in [22].

The version we use is both a particular case and a slightly renormalized version of the formulas
given in [7, Theorem 4.1] and in [12, Theorem 1], which, among other things, takes into account
the properties (2.1) and (2.15) satisfied by the Fourier coefficients of f.

In order to state the formula, we first define the required integral transforms.

Given an N-tuple a = (a1, ..., an) of complex numbers and an integer k € {0, 1}, we denote
Tkals) = H I'r(s+a;+k)
ISGSN

where I'r(s) :== 7~%/2(s/2) for all complex number s. We write a* = &@ = (@;)1<j<n-
Given a smooth function w with compact support on R* , we then define

_ L[ _Trals) _ 48
Bi.o|w](z) == 207 Ny oo (1 S)M[w](l s) e (3.1)
ot g Trals) _
=M {s Treee (1 — S)M[w](l s)| (z) (3.2)
for all positive real number z and o > maxi<j<n (— Re (o)), and
1 1
Ba[w] == 5 (BO,a[w] + Z.NBLa[w]> ) (3.3)

which are functions defined for x > 0, and finally
Balwl(z) = B [w](|z) (3.4)

for all non-zero real numbers z.
Moreover, we recall the definition of hyper-Kloosterman sums. For » > 1 a positive integer,
F a finite field of characteristic p with |F| = g and u € F, we denote

Keg) = — Y te(aa e+ ), (3.5)

q ? (Il,..,,IT)E(F*)T

T1...Tr=1

where iYr denotes the additive character given by

Trw/ip (z) > '

Yr(z) =€ (

Proposition 3.1 (Voronoi summation formula for GL(N))— Let N > 2 be an integer and f a
Hecke-Maass cusp form on GL(N) of level 1. Let w : R¥ — R be a smooth and compactly
10



supported function. Let p be a prime number and let b be an integer. If p does not divide b then

Yl ag(ne (?) w(n) = & >, agps(m)Kn—1(bm,p)Ba,, () [w] <Tv>

n>1 P? pepx P
-1
N-2 041
(_1) — m
+ef ), p M oap @A p L L m) B g [w] ) (39
/=1

where b denotes the inverse of b modulo p. The second sum is zero if N = 2.

Proof of proposition 3.1. When N is odd, (3.6) can be deduced directly from [7, Theorem 4.1].
Let us assume then that NNV is even and let us check that (3.6) can be deduced from [12, Theorem
2]. The explicit links between their notations and ours are given in [12, Remark 3]. Let 7(f)
be the automorphic cusp form of GL(N, Ag) associated to f and let m(f) be its archimedean
component. For y € {1,sgn} one of the two unitary characters of R*, the duality between w
and B, s)[w] is given by

+00 s
[ il ) + Bup ol -x-) v

+00

DYy (1= s, () X v the) f wly)x @)y

y=0
according to [12, Lemma (5.2)] for all s of real part sufficiently large, where
L (s, 70 (f) X X)
L(1—s,me(f*) x x)

Y (1= 8, T (f*) X Xs %) = € (8, Moo (f¥) X X, Yen)
by [12, Section 5.1]. Consequently,
My = Ba,(plwl(ey)] (s) = M[w](1 - s)

1 _
x5 (Y (1= 8,70 (f7), 9ho0) + & X (=1)V 1y (1= 5, 70 (£7) % sgn, )
for e = +1. We have
5(837Too(f*)7w<x)) = £&f,
e(s,mo(f*) x sgn, o) = epi’
and
N
L(s,m0(f)) = []Tr(s+eml(f),
j=1
N
L (s,mo(f) x sgn) H (s +ajo(f)+1).
Noting that
1
N—1:N
(_1) v = _'L.W’
the formula follows as stated. O

The following useful lemma relates the Bessel transforms for f and its dual.

Lemma 3.2- Let k € {0,1} and w : RY — R a smooth and compactly supported function. One
has

By (1 [w] = B, (1) [w]
and

BE plwl =B W w]  and  Ba, () [w](@) = Bay (g [w] (-1)Nx)

for all non-zero real number x.
11



Proof of lemma 3.2. The second and third equalities are direct consequences of the first one by
(3.3) and (3.4). Let us quickly check the first one. Denote o = o (f) so that ax(f*) = o*
by (2.20). By (3.1), we have

Bealul(®) = 5 . Ff(fj)M[wm_)d

_ ?j _Dral®) g -5
2w (o) Fk,ﬁ(l —3) T
= 1f 71%’0‘*(57) Mw 5 ds
2T () Fk,a(l —3) s
= B o (%) [w]
by (2.20). O

3.2. Unitarity of the generalized Bessel transforms. A key ingredient in the computa-
tion of the variance in Sections 7.5.1, 7.5.2, 7.6.1 and 7.6.2 below will be the unitarity of the
generalized Bessel transforms in the following sense.

Proposition 3.3 (Unitarity of the generalized Bessel transforms)— If w : R¥ — R is a smooth and
compactly supported function and k € {0,1} then

[1Bk,aco () [l = [[wl]] (3.7)

where the L?-norms are computed with respect to the Lebesque measure dz on R .

Proof of proposition 3.3. Denote a = ao(f). One gets successively

IBealulls = |

+00

By [w] ()] da
0

+o0 -
= f Bro|w](2)Bi o [w](x) dz

=0

+o0

= By a|w] () B [w](z) dz

z=0
by Lemma 3.2. Then, the Parseval formula for the Mellin transform (namely the fact that the
(suitably renormalized version of the) Mellin transform is a unitary operator) asserts that

IBealwll? = 5 f( M B} (M [Bre ] 1= )

for o large enough (see [26, Theorem 1.17]). By (3.2),

2 1 IE))
- | ke 1- .
Bralull = 5 | st Mt ) (38)
I'c.a* (1 — S)
’ Mlwl](1 —(1—s))ds 3.9
e M= (1= 8) (39
1
= — M[w](1 = s)M[w](s) ds (3.10)
2 (o)
= ||wlf3 (3.11)
once again by the Parseval formula for the Mellin transform. O

Corollary 3.4— Let w : R} — R be a smooth and compactly supported function.
e If N is odd then
2
> M| [Basolwll | (1) = flull5 (3.12)
ge{f.f*}
12



e Independently of the parity of N,

5 M (B2l @) = 513)

ee{£1}

Proof of corollary 3.4. By Lemma 3.2, we have
9 2
M[Boolol] (0 = M 852 01 | )
for g = f, f* and

+00 NN

: 2 c (-1)Ne
ol | 0 = [ B @B o) as

for g = f, f* and € = +1. A straightforward computation reveals that

|

2
M8zl 0 = 3 (1o [0l + 151 o o)
- WM [BO,aoo(g*)[w]Bl,aw(g) [w] + (_1)N80,o¢oo(g) [w]Bl,aoo(g*)[w]] (1)
Proposition 3.3 implies both (3.12), if N is odd, and (3.13). O

3.3. Asymptotic behaviour of the generalized Bessel transforms. Bounds for the gen-
eralized Bessel transforms B;—roo ) [w] both for small and large arguments are required in this

work.

Proposition 3.5— Let w : R — R be a smooth and compactly supported function, x be a positive
real number and K be a positive integer. Let o = o (f) for some cusp form f as before.
e If 0 <z <1 then

BE[w](z) « max 2@l
1N

In particular, if 0 <x <1 then
Bcix[w](x) « x7(1/271/(N2+1))

by (2.21).
o Ifx >0 then

1
B [w](z) <A ZA
for all positive real number A.
Proof of proposition 3.5. For the first part, we can shift the contour in (3.1) to the left, passing
through simple poles at z = —2n — a; — k for all non-negative integers n and 1 < j < N, the
largest contribution occuring when n = 0.

For the second part, we can shift the contour to the right to Re (s) = A without encountering
any singularity. O

For the next corollary, we recall the definition ((1.1) and (1.2)) of ay(m) for all integers
m > 1.

Corollary 3.6— Let Z be a positive real number, My > 1 be a real number, 1 < M < My < 40
and w : R — R be a smooth and compactly supported function. One has

5 asn) B nlo ()| s szeanait (2

meZ*
Mi<|m|< Mo

7\ 12
+ <z 2+ Oy ez My T ()
My
for all e > 0 and all real number A > 1.
13



Proof of corollary 3.6. Let us assume that Z > M; and My = +00. Then, Proposition 3.5 tells
us thatfor all positive real number A, the m-sum is bounded by

| |
iy el gy et

Mi<m<Z m>Z

By the Cauchy-Schwarz inequality, the first term is bounded by

1/2 ) 1/2
<z (3 wr) (3 1)

Mi<m<Z Mi<m<Z

1/2

e s 71/2 (Z1+s) /
_ Z1+€

for all € > 0 by (2.10). By summation by parts, the second term equals

+o +o0
z* [ﬂ 2 |af<m>|] #AZ0 [ 3 lagm)lds,

1<m<z =2 = 1<m<Lz

Choosing A > 1, the Cauchy-Schwarz inequality and (2.10) ensure that this quantity is also
« Z1*e,
Let us assume that Z < M; and Ms = 4+00. Similarly, the m-sum is bounded by

Z A
Ml-i-a 0
(M1>
by summation by parts and (2.10).
The argument in the case where M> is a real number are essentially the same. U

4. EQUIDISTRIBUTION OF PRODUCTS OF HYPER-KLOOSTERMAN SUMS

This section contains the crucial algebraic ingredient involved in the determination of the
asymptotic behaviour of certain combinations of hyper-Kloosterman sums which will arise in
Section 7.4.

Let k > 1 be a positive integer, let m = (mq,...,mg), n = (n1,...,ng) be two tuples of
non-negative integers, and let ¢ = (c1,...,¢) € (F;)k be given.
We define i
1 ) .
Sm;n(c;p) = Z HKN(aCjap>n]KN(_acjap)mJa (41)
P e j=1

where we recall that Ky (x,p) denotes the normalized hyper-Kloosterman sum defined in (3.5).
We will determine the behavior of these sums as p tends to infinity.
For G either the special linear group SLy or the symplectic group Spy (if N is even), we
denote by
Std : G — GLy

the standard N-dimensional representation of G. When G = SLy, we denote by Std the
contragredient of the standard representation.

Theorem 4.1- Let p be an odd prime number, k > 1, ¢ = (¢1,...,¢x) € (F;)k and let m =
(my,...,mg) and n = (nq,...,ng) be two tuples of non-negative integers.
o If N is odd and if the parameters c;’s are distinct in Fy, /{£1} then

Smn(€p) = Amm + O(p~?)

where the implied constant depends only on (k, N, m,n) and where

k
Am,n = H Amj,n]-7
=1

14



with Ap, n = 0 given by the multiplicity of the trivial representation of SLy in the tensor
product

pmm = St @ Std®”

for all non-negative integers m and n.
o If N is even and if the parameters c;’s are distinct in Fy; /{£1}, then

(—1)*Smin(€;p) = Bmm + O(p~"/?) (4.2)
where
s= > (mj+mny),
1<j<k

the implied constant depends only on (k, N,m,n), and where

k
Bm,n = H Bm]'ana
j=1
with By, 2 0, for m > 0, given by the multiplicity of the trivial representation of Spy
in pm = Std®™.

Remark 4.2— (1) Note that the “main terms” A, , and By, » are independent of the tuple ¢
(with their respective restrictions). However, this independence is only meaningful when these
main terms do not vanish.

(2) Opening all the hyper-Kloosterman sums in Sy, (c;p), we can transform this sum into

an additive character sum in
k

1+ (N =1) ) (mj +ny)
j=1

variables over F. Comparing the normalization shows that Theorem 4.1 is equivalent to uniform
square-root cancellation over primes for these sums whenever the main term vanishes.

This is the analogue of [4, Proposition 3.2], and proceeds along similar lines. Let us decompose
the proof in several steps. We begin with a lemma.

Lemma 4.3— Let F be a finite field with |F| = q elements, let r > 1 be an integer, and let a € F*.

We have
exp( Y 3 (X Rolo @) lana)) ) = o e

v>1 el

as a formal power series in C[[T]], where F,, denotes the extension of degree v of F and

Pu(T) = 1 ifa$1
)14+ ¢qT ifa=1.

Proof of lemma 4.3. Let
Sr(avlF) = Z Kr(l’, q)KT(ax, Q)
ref*
for r > 1.
A straightforward application of the definition of Kloosterman sums and of orthogonality
of characters (see [15, p. 170] for a similar computation) shows that, for » > 2, we have the
relation

- 1
ST((I,F) = Sr‘fl(a’F) - qrfl'
Since it is clear that
-1 ifa=1
Si(am)y =777 "¢
-1 ifa +1,

15



we obtain, by induction on r first, and then by replacing F by F, for v > 1, the formula
S Vel—q V= =g’ ifa=1,

Z Kr(l'aqV)Kr(axqu) = {q_l . 7Vq_ o Z,(Tq,1) if a :+: 1

el q q ’

Summing over v and taking the exponential, the result follows. (One could also invoke the
Plancherel formula for the discrete Mellin transform, and the fact that the Mellin transforms of

hyper-Kloosterman sums are products of Gauss sums, see [16, 8.2.8,8.2.9]). O

The next proposition is the key to Theorem 4.1.

Proposition 4.4— Let p be an odd prime number, k > 1, ¢ = (¢1,...,¢k) € (F;)k. Let 0 + p
be a prime number, and let Ky be the rank N Kloosterman £-adic sheaf on the multiplicative
group over I,
o If N is odd and the parameters c;’s are distinct in F;/{£1} then the arithmetic and
geometric monodromy groups of the sheaf

Fle) = [xc1]*KN D - ® [xck]*Kn

coincide and are equal to SL?V (the direct product of k copies of SLy ).
o If N > 2 is even and the parameters c;’s are distinct in Fy/{+1} then the arithmetic
and geometric monodromy groups of the sheaf

Gle) = [xa1]*KND® - ®[xck]* KN B [x(—c1)|"KN D -+ D [x (—cx)[*Kn
coincide and are equal to Sp?\]f (the direct product of 2k copies of Spy ).

Proof. In both cases, we will apply the Goursat-Kolchin-Ribet criterion [16, Proposition 1.8.2],
much as in [20].

We consider first the case when N is odd. Then, for each 1 < j < k, the geometric and arith-
metic monodromy group of [x¢;|*/Cn coincide and are equal to SLy (as proved by N. Katz [15,
Theorem 11.1]). It follows that there is a natural inclusion of the geometric and arithmetic
monodromy groups of F(¢) in SL?V in that case. We thus need to prove that this inclusion is
an isomorphism.

The Goursat-Kolchin-Ribet criterion shows that this follows if there does not exist a rank 1
sheaf £ such that either

[XCz’]*,CN ~ [XCj]*ICN®£ or [XCz’]*,CN ~ [XCj]*ICN®£ (4.3)

for any 1 < i # j < k, where ~ denotes geometric isomorphism and Ky is the dual of Ky
(see [16, Proposition 1.8.2] and [16, Example 1.8.1]).

We therefore assume that there exists a rank 1 sheaf £ satisfying (4.3) for some 1 < i # j < k;
we will find a contradiction.

If we have a geometric isomorphism

[xe*Kn =~ [x¢;]*Ky ® £
then we also get an isomorphism
[xa]* Ky =~ [x(=¢)"Kn ® L
since Ky ~ [x(=1)]*Ky for N odd.
Hence the assumption implies that there is a geometric isomorphism
[xa]*Kny ~Kn® L

for some (possibly different) rank 1 sheaf £ with a = ¢;/c; or a = —¢;/c;.

From this geometric isomorphism, as in [20, Lemma 2.4], it would follow that £ is tame at
o (because the unique slope of the Kloosterman sheaf is 1/N < 1, whereas the unique slope of
the rank 1 sheaf £, if it were wildly ramified, would be a positive integer). Tensoring with Ky,
we deduce that an isomorphism as above implies an equality of Swan conductors at infinity

Swan ([xa]* Ky ® Kn) = Swany, (Ky ® Ky ),
16



where the point is that £ has disappeared because tensoring with a tame sheaf leaves the Swan
conductor unchanged.

Again as in [20, Lemma 2.4], the Swan conductors are the degrees of the corresponding zeta
functions, as rational functions, i.e., they are the degrees of

exp(Z %( Z KN(x,pV)KN(ax,p”)>T”)

v>1 xEF:V
and .
— v 4 1%
eXP(Z V( > KEn(z,p")Kn(z,p ))T )
v>1 xEIF:,,

But Lemma 4.3 shows that these degrees differ except if a = 1, since the first is N for a + 1,
and the second is N + 1. Thus, we get a = 1, and hence ¢; = +c¢;, a contradiction to our
assumption on c¢ that concludes the case where N is odd.

Let us now assume that N > 2 is even. We denote ¢; = —c¢;_j for kK + 1 < i < 2k. Again
N. Katz [15, Th. 11.1] has show that, for each 1 < j < 2k, the geometric and arithmetic
monodromy groups of [x¢;|*/ICn coincide and are equal to Spy, and it follows that there is a
natural inclusion of the geometric and arithmetic monodromy groups of G(c) in Sp?\’f. To prove
that this is an isomorphism using the Goursat-Kolchin-Ribet criterion, we need to show that
there does not exist a rank 1 sheaf £ and a geometric isomorphism

[xci " Ky ~ [xcj]*ICN®[, or [x¢|*"Kn >~ [x¢|"Kn® L

for some 1 < i + j < 2k. Since Ky ~ Ky for N even (the arithmetic monodromy group being
self-dual), this reduces to checking that we can not have

[xc]*"Kn ~ [x¢;"KN® L  or  [xG]* Ky =~ [x(—¢))]["Kn® L

for 1 < i #+ j < k. But this follows by the same reasoning as for N odd, taking advantage of
the fact that the ¢; are distinct modulo +1. O

Now, we can get back to the proof of Theorem 4.1.

Proof of theorem 4.1. We only consider the case when N is odd, since the proof is similar for N
even, using the second part of Proposition 4.4 instead of the first.
The point is that, for some isomorphism ¢ : Qp ~ C, we have

Smin(€ip) = Y t(Tr(Frobay | pmn(F(€)))),
acF}

where
k

Pm,n = anj,nj
j=1
is a representation of the arithmetic monodromy group of F(c), and Frob,, is the geomet-
ric Frobenius conjugacy class at a relative to F,,. Indeed, this follows immediately from the
definition of the Kloosterman sheaves, which implies that, for a suitable ¢, we have

((Tr(Frob,, | Kn)) = (1) Kn(a;p).

By Proposition 4.4, the arithmetic and the geometric monodromy group of F(¢) coincide and
are equal to SL’fV. Thus, Katz’s effective version of the Deligne equidistribution theorem for
curves (see [15, Section 3.6]) shows that

Sm;n(c; p) =p+ O(p_1/2)

where p is the multiplicity of the trivial representation of the geometric monodromy group in the

representation pp, n, where the implied constant depends only on k, N and m, n (the crucial

property of independence of the implied constant on p arises from the fact that, for p varying,

the sheaf F(c) always has the same rank, number of singularities and Swan conductors). O
17



It is now essential to determine when the leading terms A, n, and By, 5 are non-zero. This
happens in very special configurations only.

Proposition 4.5— Let N > 2.
(1) We have

A07() =1, By=1

for N odd or N even, respectively.

(2) Let m and n be non-negative integers with (m,n) # (0,0).
e For N odd, A1y =1 and Ay, = 1 if and only if N divides m — n.
e For N even, By =1 and B, > 1 if and only if 2 divides m.

Proof of proposition 4.5. The first point is clear since poo (resp. po) is the one-dimensional
trivial representation.

We come to the second point, first when N is odd.

Then A; ; is the multiplicity of the trivial representation of SLy in Std ® Std ~ End(Std).
Since Std is an irreducible representation of SLy, Schur’s Lemma implies that A;; = 1.

We now consider the action of the center of SLy on py,,. This group is isomorphic to
the cyclic group of N-th roots of unity. Since a generator £ of this group acts on Std by
multiplication by &, and on the contragredient by multiplication by £~!, we see that ¢ acts
on pp,., by multiplication by £"~"™. But the action of the center must also be trivial on any
subrepresentation, and therefore {"~™ = 1if A,, , > 1, i.e., m = n mod N whenever A,,,, > 1.

Conversely, assume N | m —n. We can assume (up to exchanging (m,n) with (n,m), which
we can since A, , = Ay m, simply because the contragredient of py, ,, is pp m) that n > m, say
n =m + ¢N with ¢ > 0. Then

Pm.n ~ End(Std)®™ @ Std®7V.

The first tensor factor always contains the trivial representation, and therefore it is enough
to show that the second does for any ¢ > 0. By writing

Std®Ne = (Std®N)®4,

we then reduce to the case of Std®"V. But this representation contains the trivial representation,
as one can most easily see by considering the contragredient, which acts on the space of N-
multilinear forms on CV, and contains the space of antisymmetric N-linear forms on CV, in
which the determinant is a non-trivial invariant vector for the action of SL .

Consider finally the case when N is even. Since Std is then self-dual, we have By = 1 again
by Schur’s Lemma. The center of Spy contains —1, and considering its action shows that 2 | n if
B, > 1. Finally, if 2 | n, we see as above that B,, > 1 because By > 1 (which may be interpreted
by the existence of the invariant alternating bilinear form on the standard representation of the
symplectic group.) O

Remark 4.6— In particular, note that if N is even and
Bimn + 0,
then s = >}, . (m; +n;) is even, and therefore the formula (4.2) becomes
Smin(€:p) = Bmn + O(p™"?).

Remark 4.7—For N = 3, G. Djankovi¢ (see [3]) has computed the first few moments of hyper-
Kloosterman sums and found that

1
So:1(1;p) = el So2(1;p) = R Sia(lip)=1—~-— & — —

3\\1 3 2 1
So;a(1;p =1—(1+<>> —————— -,
(L) P p p?> p> pt



for all odd prime numbers p. He also proved elementarily the upper-bound

1
Sou(1p) « —
VP
(already known due to the results of N. Katz). Of course, these results are compatible with
Theorem 4.1 and Proposition 4.5.

G. Djankovi¢ observed that “curiously there is no cancellation in the sum” Sp.3(1;p). But
Proposition 4.5 explains this feature, simply by the fact that the trivial representation occurs
in Std®3.

We also note that D. Wiirsch, in his (unpublished) 2011 Master Thesis at ETH Ziirich,
computed S(z2)(1;p) for N = 3 in terms of the number of points on a certain elliptic surface.

Remark 4.8— One can use character theory and explicit descriptions of the Haar measure on
the relevant maximal compact subgroups of the monodromy groups to give “concrete” integral
formulas for A,,, and B,,. Since we will not use such descriptions, we omit the details.

5. ASYMPTOTIC OF SUMS RELATED TO THE VARIANCE

In this section, we find the asymptotic behavior of certain sums, which will allow us to finalize
the proof of our main results, by identifying the main terms with data depending on the input
cusp form f and test function w. The proof may be skipped in a first reading. As before, f is
a cusp form on GL(N) with level 1 and w is smooth and compactly supported on R .

For g e {f, f*}, Y, Z some positive real numbers and B a smooth function on R, we consider

the sum

Vigg (Y, Z) = % Z ar(m)ay(m)B (%) )

1<m<Z

We will use Rankin-Selberg theory to derive the following asymptotic expansion of such sums.
Because the result might be applicable in other contexts, we include a parameter in the state-
ment measuring the approximation to the Ramanujan-Petersson conjecture at finite places; in
our case, taking = 1/2—1/(N?+1) is possible by the work of Luo, Rudnick and Sarnak [18,19].

Proposition 5.1— Let 6 €]0,1/2[ be a real number such that the Satake parameters of f satisfy

()] < ¢’
for all primes q and 1 < j < N.
Let 0 <Y < Z be real numbers. If the function B satisfies the bounds
B(z) « 27" for0 <z <1, (5.1)
for some 0 <n <1 and
B(z) «a 2™ for x>0, (5.2)

for all positive real numbers A, then we have

y\4
Virg (Y, 2) = (5f*¢f + 5f*—f) riHy p+ (D)M[B] (1) + Oc ¢ (ZE <Z> + Y_1/2+9+8> (5-3)
g=r*

for all A > 0, where ry is the residue at s = 1 of the Rankin-Selberg L-function L(f x f*,s)
and

Hype(1) = [ | Pn(ag(f*), q(f), 0),

qeP
in terms of the polynomials Py(x,y,T), which are defined by (2.9). Furthermore, we have
Hﬁf*(l) > 0.
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Remark 5.2— We illustrate here the special cases N =2 and N = 3:
(1) If N =2 then

6
Hf’f*(l) = ﬁ > 0.

by Remark B.2.
(2) On the other hand, if N = 3, then we have

Hype(1) =[] (1 _ |af(q;1)\2 L 204(0,9) \af(qi1)|2 . 1)

3
qeP q q q

lagtg 0P 2( @ DY) P 1

2 3 4 6
> q q q q
1\? 1+ .1 1 1-— .1 1
I (1- ) (1 R lee 0l 1 (g 2 lesal 1)
P q q q q q
by Remark B.2, (2.6), (2.4) and the formula
Sia(@1, 22, 23) = (21 + 22) (21 + 23) (22 + 23) = Z xgliﬂ + 2e3(w1, z2,73)

1<j1#52<3

where e3 is defined in (2.6).

In particular, one can see immediately that Hy s« (1) > 0, using the fact that Satake param-
eters GL(3) cusp forms are bounded by ¢/2=1/10,
Proof of proposition 5.1. By the Cauchy-Schwarz inequality, summation by parts, (2.10) and
(5.2), one gets

v\ A1
V(f,g)(Y,Z)=V(fg)(Y Z)+ O ¢ ( <Z) > (5.4)
for all A > 1 since Y > Z and where
1 m
Vi) = 5 25 as(mlay(m)B ()

is the extension to the sum over all the positive integers m.
Using Mellin inversion, we obtain

0 _ 1 J .
V(fvg) (Y) - Y 2im 3) Df’g(S)Y M [B] (3) ds

where the Dirichlet series
af(m)ag(m)
Dygls)i= 2, fmisg
m>=1

is absolutely convergent on Re (s) > 1, by (2.10), and defines a holomorphic function on this
half-plane.

In addition, since m — a¢(m)aq(m) is a multiplicative function by (2.13), we have an Euler
product expansion given by

a
Df7 H Z f H Dy, q
qeP k=0 qeP
By (2.7), (2.5), (2.14) and (2.9), we have the formula

Pr(aq(f); aq(9),a7°)

H1<j,k<3 (1 — ajq(flak,g(9)g*)
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for any prime number q. As a consequence, the quotient

D —5
fj = [ [ Pr(aq(£), q(9),qa*) = Hyg(s)
9,8 qeP

defines a holomorphic function on Re (s) > 1/2 + 6.
Moreover, the Mellin transform of B is holomorphic on e (s) > 7 since

1)1 when £ is close to 0,

M [B] (s)z* 7" « {xA+§Re (s)-1

when z is close to +o0

for all A > 0.
Going back to the integral formula (5) for V((} g)(Y), we can shift the integral to the line

Re (s) =max (1/2+6,n) +e <1

(the assumptions # < 1/2 and n < 1 are crucial here). Using the properties of the Rankin-
Selberg L-function, we see that we encounter at most a simple pole at s = 1, and that the latter
exists if and only if

(f*# fand g = f*) or (f*=f)
(recall that g is either f or f*).
The residue at s = 1, in case there is a pole, is equal to

reHp p+(1)M[B] (1)

where 77 is the residue at s = 1 of the Rankin-Selberg L-function L(f x f*,s).
Hence, we have

g=r*
and (5.3) follows from (5.4) and (5.5).
Finally, the positivity property H ¢«(1) > 0 holds since Hy s« (1) is an absolutely convergent

Euler product, and each term is positive by Proposition B.1 below, since the assumption (B.1)
is satisfied in view of (2.11). O

V(Y. 2) = (51‘*# + 5f*=f) reHy (M [B] (1) + O (Y*I/M*E) : (5.5)

6. APPLYING THE VORONOI FORMULA

We continue with a fixed Hecke-Maass cusp form f on GL(N) of level 1. Since f is fixed, we
will denote & = a(f).

We recall the definition (1.3) of the error terms Ef(X,p,a), for an invertible residue a class
in F7, which depend on the choice of a fixed text function w : R} — R, which is assumed to be
non-zero, smooth and compactly supported on [zg, 1] < R%. To simplify notation, we denote

Bao(x) = Baw](z).

In this section, we perform the first steps of the analysis of these sums before computing their
moments.

Proposition 6.1— Let o = ao(f) for some cusp form f as before. If a is an invertible residue
class in B then

m
X, p, afx( —am,p)Ba | ——=
( P, @ ) \/ngzj* f p) <pN/X>
Z 1
m
+ ey Z p(g_H Wmezz* af 1 p)17"'517m)B(x (M) . (6.1)
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In particular,
m p°
Ef(vaa ) \/W ZZ* a’f* am7p)8a <pN/X> + OE,f (ﬁ) (62)
me

and hence we have

D 1/2+€
Ef(X,p, a) Le,f (X) (63)

for alle > 0.

Remark 6.2— Note that the normalised hyper-Kloosterman sum Ky (u,p) is a real number if N
is even and a complex number if N is odd, whose complex conjugate is Ky (—u,p). Hence, in
all cases, we have

Kn(u,p) = Ky ((—I)Nu,p) . (6.4)

If f is self-dual then the left-hand side of 6.1 is obviously a real number by (2.15). One can
check directly that each m-sum in the right-hand side is a real number too by (6.4) and by
Lemma 3.2.

To get the previous proposition, we will use the fact that P. Deligne proved in [2] that this
normalised hyper-Kloosterman sum satisfies

|Kn(u,p)| < N. (6.5)

Proof of proposition 6.1. Using additive characters to detect the congruence class a modulo p,
and isolating the contribution of the trivial character, we have

sirnn -t 3 () S (3)(5)

pbmodp n=1
1 * ab bn n
=Mi(X,p) + — E e(—)éane<>w,
3 ) pbmodp P/ = 7(n) P (X)

*
where ) restricts the sum to invertible residue classes.

The Voronoi summation formula (Proposition 3.1) may be applied to each sum over n, with
wx () = w(z/X). In this case, we have

Biolwx](z) = XBj o|w](Xx)
for k € {0,1}. This leads to

Sf<X7p7a) = Mf(X,p)

N—-2 /+1
X -1 ——— mX * ab
+€f7 ( )g Z a’f(]'?"'ﬂ]-apa]-a”'717m)Ba <Z> Z 6<_>
/=1 p mez* p b mod p b
X mX ab
p mez* p b mod p P

In the second term, the sum over b is a Ramanujan sum, equal to —1. In the last term, the
sum over b is easily computed: we have

* _ b
> Ky_1(bm,p)e (—2) = p'?Kn(—am,p).

b mod p
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We therefore deduce
-1

— X
Z ar(T T 1p 1., 1,m)Ba (7’;>

XN

X mX
+ gfm Z ap+(m)Kn(—am,p)By <pN> ’
meZ*

which is (6.1).
Furthermore, for N > 3 and 1 < ¢ < N — 2, (2.13) tells us that if we write m = pPm’ with
(p,m') =1 and k > 0, then we have
-1 -1
— —/\—
af(f...,_lp,l,...,l,m) :af(f...,l,p,l,..., 1,p )af( o Lm).

As a consequence, the second term in (6.1) is

N-—2 1) ’
; EH/Q\/WBZ
where o N
- L(f*8) (9 ol o eBTwll (s) d
Bg o 2T (o) FZ(S)Lp(f*’S) <X> M[B;[ ]+5Ba[ ]]( )d

by the Mellin inversion formula, where L(f*,s) is the Godement-Jacquet L-function of f*
(see [6, Definition 9.4.3]), with p-factor given by

ar(l 10"y (g ()Y
Ly(f*,s) =, -E = = [ (1 - =22
k>0 p j=1 p
(see [6, Equation 9.4.2]) and

/-1

—

ar(l,...,1,p,1,...,1,p")
Fg(S) = Z pks :
k>0

By Lemma 6.3 below, we can shift the contour to the line e (s) = 1/2 + € for any € > 0
without encountering any pole. This gives the bound

Y 1/24¢
By « p£/2+8 (%;() )

which proves (6.2).
More directly, the first term in (6.1) is bounded by

NN\ A—1/2 NN 1/2+e€ NN 1/2+e
KON x b +0,N>x b « (B
P X Pz X X

by Corollary 3.6 and (6.5), which is (6.3). O
We used the following lemma:

Lemma 6.3— Let 1 <L < N —2 for N > 3. The series

-1
N

af(i:"':I7p717""1’pk)
FZ(S):Z ks

k>0 p
defines a holomorphic function on Re (s) = 1/2 + € for any € > 0, which satisfies
Fg(S) « p€/2+e

for Re(s) =1/2 +¢.
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Proof of proposition 6.3. We prove this lemma by induction on £. If £ = 1 then

1
A = (a1 ) = ) L)
since
ap(1,..., l,pk)af(p, L...,1) =a¢(p,1,..., ka) +ar(1,..., 1,pk71)

by (2.12) for all positive integer k. The result follows from the Jacquet-Shalika bound

lajq ()] < a'?

and (2.6).
If2< <N —2then
f/—i
Fy(s) = ap(1,.. . 1,p, 1, DL (f*,8) + — Fri(s)
since
-1 (-1

— —_—A—

k k
ap(L,...,L,p%)ap(1,...,L,p,1,...,1) =ap(1,...,1,p,1,...,1,p")
{—1

N
+ le(i—, .,—i,p,]-,”wlapkil)

for all positive integers k by (2.12). Once again, the result follows from the Jacquet-Shalika
bound and (2.6). O

7. ASYMPTOTIC EXPANSION OF THE MIXED MOMENTS

This long section is the heart of the paper, since we will prove Theorem A. Before we begin
the proof, we explain how the computation can be understood in probabilistic terms, in analogy
with Lindeberg’s proof of the usual Central Limit Theorem for triangular arrays of random
variables using the method of moments.

7.1. Notation. We now come back to Theorem A, and begin by recalling and fixing some
notation. Thus f is a fixed cusp form of level 1 on GL(N), and w is a compactly supported
smooth test function. We denote

(by (2.20), and
Bo(z) = Bo|w](z), Bos (x) = B [w](x).

We consider the mixed moment M = M¢(X, p, (k, A)) for fixed non-negative integers x and A
and an odd prime p.

The following notation will also be used througout this section. We will denote v = k+ A and
P=(p—-1)/2. Bym = (my...,m,), we will always denote a v-tuple of non-zero integers, by
3 = (j1,--.,Jv) a v-tuple of integers in {1,..., P}, and by e = (e; ..., e,) a v-tuple of elements
in {+1}.

7.2. Probabilistic analogy. For simplicity, we denote by E, the random variable a — E;(X;p, a).
We can then interpret the Voronoi summation formula as giving an approximate decomposition

E, = Z Tpm + O(pil/%e)
meZ*

for any € > 0, where T}, ,,, is also viewed as a random variable given by

9

\/pjgﬁaf* (m)Ba (pN”;X) Kpm
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with Kp m(a) = Kn(—am;p). It is easy to restrict the sum to 1 < |m| < p/2 (using (6.5) and
Corollary 3.6), getting a random variable

&= > Tym
1<|m|<p/2
Now our computations can be interpreted as comparing the moments of £, with those of
&p = Z Tpm
1<|m|<p/2
where
~ Ef my
Tym(a) = ——=—=ar(Mm)Bo | = | Z
P,m( ) \/m f*( ) Ot(pN/X) DM
where the Z, ,, are, for a given p, random variables (defined on a different probability space) of
the form

Zpm = Tr(Opm),

where (@p,m)meF; are Haar-distributed random variables on

Go = USpy(C) if N is even,
M TASUN(C)  if N s odd,

and where we assume:
e if N is even, that the (@pm)em are independent;
e if V is odd, that the variables (®p7m)1<m<p/2 are independent, and furthermore

Op—m = "0,
for all m.

Indeed, one may interpret Theorem 4.1 as expressing the fact that

E(ﬁ K m) _ E(ﬁ Zp,mi) (1 n O(p_l/Q)
=1 i=1

for all v-tuples m of integers with 1 < |m;| < p/2 (where E(:) denotes expectation on the
relevant probability space).

Using this, it is not too difficult to prove Corollary B by exploiting the fact that the cor-
responding central limit theorem holds for gp as p tends to infinity, with X = p¥ /®(p) as in
that corollary. In turn, this probabilistic statement follows easily from the Lindeberg-Feller
Theorem for triangular arrays with independent rows (see, e.g., [1, Th. 27.2, §30]), after taking
into account the relation Z, _,, = Z, ,, if N is odd.

However, proceeding in this manner, even if it leads to an elegant proof of the Central Limit
Theorem, would not give the more precise asymptotic of fixed moments in Theorem A, valid (for
given k and \) in a wider range of p and X (at least, we are not aware of suitable probabilistic
references that would give such a result). We therefore implement the idea by computing
explicitly the asymptotic behavior of the moments. The reasoning above is however a good
motivation and check that the combinatorial extraction of the main terms is done correctly.

7.3. Initial cleaning. We begin by assuming that x, A > 1, since the remaining cases are
easier. We also denote Y = p" /X to lighten the notation (in the setting of the Central Limit
Theorem of Corollary B, this is Y = ®(p), which the reader should therefore think as a quantity
that grows rather slowly with p). We assume throughout that Y < p/2, which corresponds to
the assumption 2p"¥~! < X in Theorem A.
By (2.15), we have
E¢(X,p,a) = Eg«(X,p,a)
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for all integers a coprime with p. Thus, applying Proposition 6.1 to E¢(X, p, a) and its conjugate,
and then expanding the x-th (resp. A-th) power, we obtain the expression

M= (L) 25T 5 [Taptmokn(om b ()

amodp me(Z*)” k=1
e P w-1)2
x 1_[ a’f(mf)KN(amZap)Ba* -+ 057]0 <Y > ,
l=r+1 ( Y ) /P

where the sum over a is restricted to a coprime to p (note that we made a change of variable
a — —a, and that we used the fact (2.16) that

aps(m)=ap(l,...,1,m)=asr(m,1,...,1)

in the expansion of the conjugates).
We then split this expression into

ps v—1)/2
M=%1+%+0 (Y(
Ezf \/ﬁ
where 37 is the contribution of the v-tuples m where |mg| < p/2 for all k, and X9 is the
remaining contribution.
By (6.5) and Corollary 3.6, we easily estimate Y9 as follows: we have

v—1
> lagml [Ba (5)[ || 2 las=0m)l|Ba (57), (7.1)
Im|>p/2 Im|>1
Loy Y>A (1+¢)(v—1)
< sz c (p ytre (7.2)
« pite <pN_1>Ayz//21+s (7.3)
% .

for all A > 1 and if 2p™V~1 < X.
Thus, the core of the proof is to determine the asympotic behaviour of ;. In order to
rearrange conveniently this expression, we first normalize the tuples m that remain in 3.
Each component of the v-tuple m ranges over a finite set of representatives of the invertible
residues classes modulo the odd prime number p, namely

{Q1=p)/2,..., -1 +1,...,(p = 1)/2}.
We can uniquely write
m = (eljl, .. .’eyjl/>7

where the components of the v-tuple e = (eq, ..., ex4+x) belong to {£1} and those of the v-tuple
J = (J1,---,Jx+x) belong to the subset R = {1,..., P}.
Using this parameterization, we get

5, - ( > SN S [ Lot Entackion) [] ot En(aeinn (1.4
amodp€€{+1}” JeRY k=1 {=k+1
where we have defined
eLm epm
ge(m) = ape(m)Ba (E2)  gi(m) == as(m)Bax (5F)

for integers m and for 1 < k< kand k+1 < £ <v.



7.4. Combinatorial rearranging. If we exchange the order of summation in our last expres-
sion for ¥ in order to sum over a first, we encounter sums which are very close to those of
Section 4, but which differ because there is no provision for the factors egji or egj, to be distinct,
or distinct modulo +1, as required to apply Theorem 4.1.

We therefore rearrange the sums via a combinatorial rearrangement. Assume that s and ¢
are two positive integers with s < ¢t. We denote by P(t, s) the set of surjective functions

o:{l,...,t} > {1,...,s}
which satisfy the conditions
Vie{l,...;t}, o(j)=1 or 3Fk<j, o(j)=o(k)+1. (7.5)

These conditions ensure that P(s,t) parameterizes bijectively the partitions of a set of ¢
elements into s nonempty subsets, namely into the pre-images o~1(j) for 1 < j < s.
In particular, by a formal rearranging, we obtain the following lemma (see [11, Lemma 7.3]):

Lemma 7.1- Let t > 1 be a positive integer. If f : V' — C is any function, where V is a finite
set, then we have

t
Z f(jlv"'ajt Z 2 Z f(ja(l)v"'aja(t))'

Jevit s=10eP(t,s) (Ji1,...,Js)EVS
distinct

We will apply this to the sum over j € R” in the formula (7.4) for ¥;. Doing so, we get

(L)Y ¥R Y %

a mod p ee{£1}¥ s=10€P(v,s) (j1,....js )ER®
distinct

H ) K (aerjo H 97 (o)) Kn(aeejo(e), 0)-
k=1 E Kk+1

We can now collect terms in the products which are equal. This must be done while keeping
track of the signs e, and of the distinction between the indices j which range from 1 to x and
those which range from k + 1 to v, and hence a certain amount of bookkeeping is required.

For 1 <s<wv,o0€ P(y,s) and any u € {1,..., s}, we denote first

Ou = |U_l<u)’7
so that, by definition, we have
S
oy >1 and Z Oy = V. (7.6)
We next count the pre-images of u according to which of the two intervals they belong: for
1 <u<s, welet
g R, T k) - UH
Yo ={k+1<l< K+ AN o(l) :u}] >0,
noting that these depend on o. Hence, we have
Bu+ Y =0y > 1. (77)

Finally, we count the preimages j with a given sign e;, both their total number, and the
number in the two subintervals. For 1 < u < s, for ¢ = £1 and e € {£1}", we let

ou,(e) = {1 <a<v,0(a) =uea =e}| >0, (7.8)
u(e)zl{l\ §I€ (k)—u,ek=5}|>0 .
vo(e) ={k+1<Ll<v,0l) =u,e =c}| > 0. (7.10)
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These non-negative integers satisfy the following set of properties.

Bule) +vu(e) = oy(e) = 0, (7.11)
Bale) + B, (e) =Bu=0,  vile)+7, ' (e) = >0, (7.12)
ou(e) +0,'(e) = oy =1, (7.13)

forl<u<s, e==1, ee{£l1}".
In terms of these data, by appealing to Lemma 3.2 and the definition (4.1), we can collect
terms in order to express Y1 in the form

v s
9 . .
2 (2) 23 Y% [leruat
ee{£1}¥ s=10€eP(v,s) (j1,...,js)ER® u=1
dlstlnct

1

s N\ Yule) ] 771( )
Ju —Ju N ;

where j = (j1,...,Js), and we have defined the tuples o!(u) and o~!(e) in the sum of Kloost-
erman sums by

al(e) = (ou(@)icucs, 0 () = (0, (€))1<uss-
We note that the parameters j, which now appear in this last sum are not only distinct, but

also distinct modulo {£1} in F;. In particular, we can now apply Theorem 4.1. This requires
us to distinguish between the cases of odd N and even N.

7.5. The combinatorial analysis for N odd. In this entire section, N is odd. We recall
that, in this case, we have ey = 1. From (7.14), after applying Theorem 4.1 (to estimate the

sums S‘(ﬁz(e) o1(e) (7:p)) and Proposition 4.5 (to isolate the main terms), and Lemma 3.2 (to
clean-up the weight functions), one gets

v

5= ) ZV] 3 Si(oe) + O \}ﬁyl/z 3 ;af*(m)”zsa(%)\ (7.15)

ec{+1}¥ s=10eP(v,s) 1<|m|<p/2
where
1 .
Yi(o,€) = Ve Z H a g (]u)ﬁuaf(]uﬁu
% (j1ynjs)ERS 1<u<s
distinct  N|ok(e)—oz'(e)
Bl(e) 7~ (© L\ ) T P (@)
Ju Ju Ju Ju (N)
(67 (o7 (o7 ey o <5 A —
b <Y> 5 <Y> B <Y) b <Y) olle)ou(e)
(the integer AN being defined in Theorem 4.1).

al(e)ou'(e)
Note that, according to Corollary 3.6, the error term in (7.15) satisfies

1 1 m 1
s By (— 7YV/2+6
VY 1<m2<p/2 sl fe ()] ) < VP

for all e > 0 if 2pV 1 < X.
Our next step is to show that the main term in X; arises from the contribution of the terms
Y1(0,e), where o is in P(v,s) for some s with 1 < s < v and e is in {+1}”, and they satisfy

o l(e)=0l(e)=1 (7.16)
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for all w € {1,...,s}. We call such data (o, e) resonant.
First of all, if the condition N | ol(e) — o, *(e) in the product over u in the sum (o, e) is
not satisfied for one u at least, then Corollary 3.6 gives immediately

1

2]1(0'7 e) <<€7f m

Next, we claim that if (o, e) is non-resonant, with o € P(v, s) and e € {£1}" such that
N|oy(e) =o' (e)

for all u, then

v—1

5 (7.17)

Indeed, note first that if u satisfies (7.16), then we have o, = 2 by (7.13). On the other hand,
if u does not satisfy (7.16), then in view of the conditions N | ol(e) — o, !(e) and

s <

gu(e) + o t(e) =0y 21,
we see that either o, '(e) = ol(e) > 2, and then o, > 4, or ol(e) + o, '(e) > N > 3. Thus, in
all cases, we have

Ou =3

unless u satisfies (7.16). Denoting by U the set of those u which do satisfy (7.16), we note that
if o is not resonant, we have |U| < s, and hence

s — |U1) > 2(s — [U]) +1.
and we obtain

v= Y, ou= Y 0ut Y 0u22U[+3(s—|U|) 2 2/U[+2(s — [U]) + 1 > 25 + 1,
1<u<s uelU ug¢U
which gives (7.17).
Using Corollary 3.6, we see that

1

Yi(o,e) <z f yiz—<

(7.18)

for (o, e) non-resonant, provided 2pV 1 < X.
Observe that if (o, e) is resonant, then each o, is equal to 2, hence v = 2s is even. We can
therefore write

1
Si=0, ), ), Si(0,e)+ 0y (Y—1/2+8+\fyv/2+a>

ee{T1}¥ oeP(m)2) p
o resonant

if 2pN~1 < X, and the corresponding X (o, e) are given by

v/2
1 . .
Yi(o,e) = VT > [ [ ar(u)  ar(u)™
(j17“‘1ju/2)eRy/2 u=1
distinct
. L) u () . 1(e) ———Bu ' (e)
xBa‘L“ﬁu()Ba]—“ B*‘L“%()B*Jl
Y Y *\Y *\Y
by the condition A(lf\lf) =1 (see Proposition 4.5).
By (7.16) and (7.11), for all w with 1 < u < s = v/2, the 4-tuple
wu(e) = (51:1(6% 71:1(6% Bi(e)a 7&(8)) (719)
(which also depends on o) is one of the four tuples in the set w = {w1, w2, ws,ws}, where
w1 = (0,1,1,0), we = (1,0,0,1), (7.20)
ws = (1,0,1,0),  ws=(0,1,0,1). (7.21)
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The sum ¥ (o, e) almost factors as a product of four independent terms. Indeed, if we sum
over all 7, relaxing the condition that 5 has distinct components, we only introduce sums whose
contributions is dominated by the error terms already present. Hence we have

- 1
El _ 52|y Z Z 21(0_’ e) + Og,f <Y1/2+€ 4 \/ﬁyl//2+6>
ec{+1}” ceP(v,v/2)

resonant
if 2pV-1 < X, where

Ul (e)

Sice)= [ X g [Ba ()]

(b2 oot )
(3 3 e )
(3 3 s @E@) . o

with exponents given by
up(e) = {1 <u<v/2, wule) = wp}l

for 1 < b < 4 (again, these depend on o).

The four terms in the product are of the type considered in Section 5, but note that they
will actually look different if f is self-dual and when f is not. So we split into two cases
again. We begin with the case when f is not self-dual, which we think of as the generic case.
(When N = 3, the GL(3) self-dual cusp forms are the symmetric square lifts of GL(2) forms, as
explained in [23], and hence are very special; similar characterizations of self-dual representations
of GL(N) for all N > 3 are expected to hold, but are not known in full generality).

7.5.1. The non self-dual case for N odd. In this subsection, we assume that f is not self-dual,
namely f* # f.

We then show that the main term in 3; in (7.22) comes from the contribution of the resonant
31 (0, e) where (o, €) is such that

wy(e) = wy or wy(e) = wsy (7.23)
for all we {1,...,v/2}, i.e., those where
uz(e) = ua(e) =0,

which we call the focusing pairs.

Indeed, each of the four sums in (7.22) can be estimated asymptotically using Proposition 5.1,
applied with (Y, Z) = (Y,p/2) (recall that p/2 > Y), § = 1/2 —1/(N? + 1) and suitable smooth
functions B, namely

B(y) = 1Ba(®)>, B(y) = [Bax(®)]>, B(y) = Ba(y)Bax(y), B(y) = Bal(y)Bax(y)
in the four successive terms. These satisfy the assumption of Proposition 5.1 with

2
(N2 +1)

n = 2max | Re(aja0(f))] < 1 - <1,

by Proposition 3.5 and (2.21).
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Proposition 5.1 leads to the estimate
S1(o,e) « Y(T1/2H0+e)(us(e)+ua(e))

)

and hence .
21(0,7 e) & Y*1/2+9+€’
unless us(e) + ug(e) = 0, i.e., unless (o, e) is focusing, since uz(e) and u4(e) are non-negative
integers.
From Proposition 5.1, using the notation introduced there, we now deduce that, for X >

2p™V 1 we have

Y1 =0y, (T‘fHﬁf*(l))V/? Z Z (./\/l [|Ba|2] (1))U1(e) (./\/l [|Ba*|2] (1))u2(e))

ee{£+1}¥ oeP(v,v/2)
us(e)+us(e)=0

+ Og,f (Y1/2+9+5 + Y71/2+5 + 1yu/2+5) (724)

P
by (5.3) (we also used the properties r¢ = 7+ and Hy p+(1) = Hypx (1))

The remaining set of focusing pairs (o, e) has now a very clean structure. We state this as a
lemma.

Lemma 7.2— With notation as above, for any (o, e) which is a focusing pair, we have k = X\ =
v/2. Furthermore, the map
(0,e) — (d,8),

where & is the restriction of o to {k + 1,...,v} and é is the r-tuple (ey)i1<u<n, 1 a bijection
between the set of focusing pairs (o,e) and the product set S, x {£1}", where S, is the set of
bijections from {k +1,...,v} to {1,...,Kk}.

We then have, for all such (o,e€), the relation

ui(e) ={u, 1<u<k andé, =1}, (7.25)
and uz(e) = k — uy(e).

One important consequence of this lemma is that the exponents u;(e) and ug(e) in (7.22)
are independent of o when ug(e) = us(e) = 0. We will denote u;(e) by ui(é).

Proof. Using (7.12) and the definition of wy, wa, the focusing assumption us(e) + us(e) = 0
imply that for all v we have

Bu=Pule) + B (e) =1, vu="le) + ' (e)=1.

By definition of 3, (resp. 7,), the first property (resp. second) implies that the restriction
of o to {1,...,k} (resp. to {k+1,...,1}) is surjective (resp. surjective). In particular, K > v/2
and A > v/2. Using v = k + A, this means that K = A = v/2.

In turn, the two restrictions of o are then surjective maps from and to sets of size v/2, and
hence are bijections. In particular, the map & is indeed an element of the set Sy, and (7, é€)
belongs to S, x {+1}".

We next show that the map is injective. Indeed, the condition (7.5) imposed on all elements o
of P(v,v/2) implies, by an elementary induction, that the restriction of o to the initial segment
{1 ...,k} is the identity map. Thus o is entirely determined by &.

The condition (7.23) and the definition (7.19) of w,(e) and (7.20) of the permitted four-tuples
w1 and we imply that

€~—1(u) = —€y (726)

for K + 1 < wu < v. Indeed, for all u with 1 < u < v/2, we have either

wi(e) =Bule) =

or



Assume the first holds: this means, by (7.9) and (7.10), that (i) there exists a single ¢ with
k+1<{l<v, o) =u,and e = 1; (ii) there exists a single k with 1 < k < &, o(k) = u,
and ey = —1. Since o is the identity on {1,...,x}, we have o(k) = k = u. Then, since ¢ is a
bijection, we have £ = 671 (u) = 671 (k), and hence ez-1(,) = €g = =1 = —e = —e.

The other case is similar, and we obtain (7.26) for all u. Thus e is entirely determined by é,
and we conclude that the map (o, e) — (&, €) is injective.

We now show that it is surjective. Given (7, €) € Sy, x {£1}", we can define a surjective map
o from {1,...,v} to {1,...,v/2} by extending & by the identity on {1,...,x}. Then we define
a v-tuple e using (7.26) and the bijectivity of 6. It is clear that this pair (o, e) is mapped to
(6,€), but we must check that o satisfies (7.5) in order to conclude. This condition is indeed
true: for 1 < j < k, this is because o(j) = j, which satisfies (7.5), and for k + 1 < j < v, this
is because k = o(j) is between 1 and s, and hence, if & & 1, we have 0(j) =k =o0(k—1) + 1
with k — 1 < k < j.

Finally, we obtain (7.25) because ui(e) is the number of k with 1 < k < k where ¢, = 1
(since, by (7.26), this is also the number of ¢ with x + 1 < ¢ < v for which ¢y = —1). By
assumption, we have

v/2 =ui(e) + uz(e) + us(e) + ua(e) = ui(e) + uz(e),
hence the formula for us(e). O

Using this lemma, the main term in (7.24) becomes

Spr (rpHppe(1)™ 30 Y (M[\Ba|2](1)>u1(é) (M[IBa*Iz](l))H_ul(é)

GeSy es{+1}r
= 5k (erf,f*(l) (M [|Ba|2] (1) + M [|Ba*’2] (D))K’

since, as we observed, ui(é) is independent of & in this double sum. Appealing finally to
Corollary 3.4, this expression is equal to

umrrit (1 Hy g (1) e][3)

K

N—1

To conclude this section, we have shown that, for X > 2p , we have

Hy (1 & 1
S = 6,_x2k! Lf*()uwyﬁ + O, (YTVHOre Ly —l24e |~ yv/2He) L (7.97)
9 2 f \/f)

in the case of a form f which is not self-dual, and of odd N.

7.5.2. The self-dual case for N odd. We now consider the case where f is self-dual, namely
f* = f, which is simpler. Indeed, in this case, the four terms in (7.22) are all equal, and since

wr(e) + uz(e) + us(e) + uale) = 7.
we obtain

v/2

-t (b5 ol ()]

1<m<p/2
1
% 1+ 0. (Y—1/2+a + YV/2+8> ]
) ! NG

ec{t1}” oeP(v,v/2)
resonant

for X > 2pN 1.
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By another application of Proposition 5.1 and Corollary 3.4, we conclude that

reH (1 v/2
21=52y<f f;*<)lw!|§> DDV

ee{t1}¥ oceP(v,v/2)
resonant

1
+0 (Y—1/2+0+8 + Y—1/2+a + YV/Q-HS) ]
- NC

We now have a (standard) lemma:

Lemma 7.3— With notation as above, the number of pairs (o, e) which are resonant is

v!
(v/2)8
Proof of lemma 7.3. We must count the pairs (o, e), where o € P(v,v/2), e € {£1}”, such that
the resonance condition
ou(e) =o' (e) =1

holds for 1 < u < v/2. This condition means exactly that, for each u, there exists exactly one
J, 1 <j<v,suchthat o(j) =vande; =1, andone k, 1 <k <v Wlth o(k) =u and e; = —1.
This means that o is an element of P(v, V/2) such that each we{l,...,v/2} has two preimages
in {1,...,v}.

Given such a fized o, a pair (o, e) is resonant if and only if the signs associated to the two
elements of 0~1(u) are opposite for each u. If we fix a subset I < {1,...,v}, of size v/2, such
that o restricted to I is bijective, the tuples e are determined by e;, j € I, and these signs can
be chosen arbitrarily. Thus, for every fixed o satisfying the condition, there are exactly 2v/2
tuples e with (o, e) resonant.

It remains to count the number of o € P(v,v/2) such that each u € {1,...,v/2} has two
preimages in {1,...,v}. As we observed after introducing (7.5), this amounts to counting the
set P(v,v/2) of partitions of {1,..., v} in v/2 subsets of size 2, and this set has order equal to

v!
2v/2 (v/2)!
(indeed, the symmetric group &, acts transitively on P(v, #/2), and the stabilizer of the element
{{1,2},...,{v—1,v}} of P(v,v/2) is isomorphic to (Z/27Z)"/? x &, /2 (one can also, for instance,
apply [25, Example 5.2.6 and Exercice 5.43]). O

Thus, if X > 2pN ~1 we have

v/2
_ 2 —1/2+0+¢
21 52‘,/2’//2 w/2)! (Tfo,f*(l)HwHZ) + Oc ¢ (Y +
if f is self-dual, and N is odd.

7.5.3. End of the proof of Theorem A for N odd. Equations (7.3) and (7.29) imply Theorem A
if f is self-dual.

Equations (7.3) and (7.27) imply Theorem A if kA # 0 and f is not self-dual. To conclude,
we briefly indicate what happens if f is not self-dual and A = 0 (the case k = 0 being similar).
Arguing as before, the understanding of M¢(X, p, (k,0)) boils down to the estimation of

1
Y, = 62|/€ Z Z 21(0_? 6) + Os,f (Y1/2+€ + \@Yﬂ/2+s)
ee{t1}" oeP(k,x/2)

resonant

(7.28)

\}ﬁyv/’z“) (7.29)

where
K/2

i (o,€) = 31’1@%/2 ags(m)Ba (1) B (1) ]

and we see that each such sum is subsumed in the error term by Proposition 5.1 for f £ f*.
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7.6. The combinatorial analysis for N even. In this entire section, N is even. We recall
that, in this case, ey may be either 1 or —1. We will then, in addition to Ba(z) and Bax (),
use the notation

B (x) = B w](2),  Bg(z) = By '[w](w)
(recall the definition (3.4)).
The general flow of the argument is similar to that of the previous section, but the combina-
torics involved differs slightly.
We begin as in the case of odd N. By (7.14), after applying Theorem 4.1 (to estimate the
sums S((lel)(e)pl(e) (75p)) and Proposition 4.5 (to isolate the main terms), and Lemma 3.2 (to
clean-up the weight functions), one gets

v

=) i 3 Si(o.e)+0 \}ﬁyiﬂ 3 |af*(m)\’8a($)‘ (7.30)

ec{+1}¥ s=10eP(v,s) 1<|ml<p/2
where
v
€ ' .
El(o-a e) = <\/§7> Z H af* (ju)ﬁuaf(ju)’yu
(J1,--»Js)ER® 1<u<s

distinct 2|y t(e)+0lk(e)

-\ Bi(e) -\ Bu'(e) N\ vale) C o\ Y (e)
Ju —Ju Ju —Ju (N)
Bal§) B F) T Ee(3) B (3) A

((TZIV()eHU,l © being defined in Theorem 4.1.

As earlier, according to Corollary 3.6, the error term in (7.30) is

the integer B

& Lyl//2+€
/D
for all € > 0 if 2pN~1 < X.

We now show that the main term in 3; comes from the contribution of pairs (o, e) where o
in P(v,s) and e in {+1}" satisfy

(on ' (e),0u(e)) € {(2,0),(0,2)} . (7.31)
for all w e {1,...,s}. As before, we call these pairs resonant.
Indeed, as in the case of N odd, we first see that if the condition that o (e) and o, !(e) be
even, in the product over  in the sum ¥ (o, e), is not satisfied for one u at least, then Corollary
3.6 gives (7.18). Thus, as before, it is enough to prove that

v—1
s <
2

if (0,€) is non-resonant and o.(e), o, !(e) are even for all u, since this leads to the same
bound (7.18), for 2pV~! < X, as in the odd case.

If u satisfies (7.31), then we have o, = 2 by (7.13). If u does not satisfy (7.31), then since
ol(e) and o, !(e) are even and o (e) + o, t(e) = 0, > 1, we must have ol(e) > 2, o, (e) > 2,
and therefore o, = ol(e) + o, !(e) > 4. Denoting by U the set of those u which satisfy (7.31),
so that |U| < s if o is not resonant, we get

v= Z Oy = Zau—l—Zau>2|U|+4(s—|U|)22\U|+2(s—\U|)+122s+1,
1<u<s uelU ugU

as desired.
If (o,v) is resonant, then v is even and s = v/2 by (7.6). It follows therefore that

- 1
21 _ 52|V Z Z 21(0_’ e) + Os,f <Y1/2+€ 4 \/7Yl//2+€>

ee{T 1} oeP()2) p
resonant
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if 2pV—1 < X, where

v/2

- 1 . .
Yi(o,e) = —» Z H Qarx (]u)ﬁuaf(]uyyu
Y2 (jlv"'vju/2)€Ru/2 u=1
distinct
-\ Bule) -\ Bul(e) -\ Tule) S\ v (e)
Ju —Ju Ju —Ju

by Proposition 4.5 (i.e., the condition B{™) = 1).

Defining the 4-tuple wy(e) for 1 < v < v/2 as in (7.19), there are now 6 possibilities for
wy(€e), namely

wi = (1,1,0,0), ws = (0,0,1,1), (7.32)

ws =(2,0,0,0), wq=(0,0,2,0), ws=(0,2,0,0), ws=(0,0,0,2). (7.33)

If we sum in X, over all the possible v/2-tuples (i, ..., Jus2) instead of those with distinct

components, we only introduce a difference with is dominated by the error term. Thus, collecting
identical terms in the product, and denoting

up(e) = {1 <u<v/2,wi(e) = wp}l
for 1 < b < 6, similarly to the case of N odd, we can write

~ 1
Zl _ 52|V 2 Z 21(0_’ 6) + Oaj <Y—1/2+6 + \/}3YV/2+E>
ec{t1} oeP(v,v/2)

resonant
if 2pV-1 < X, with
uy(e
~ 1 —-m —m
21(0', 6) = ? Z |G,f*(m)‘28a (Y) B (Y)
1<m<p/2
uz(e)
1 9 m m
<5 X lape(m)PBa (?)Ba* (?)
1<m<p/2
) uz(e) ug(e)
1 9 -m 1 9 my 2
<5 X amm) Ba< = > =Y ap(m)?Ba(5)
1<m<p/2 1<m<p/2
) us(e) ug(e)
1 9 -m 1 9 my 2
1<m<p/2 1<m<p/2

7.6.1. The non self-dual case for N even. We must again distinguish between the case where
f is not self-dual, and the self-dual case. Here, we assume that f is not self-dual, namely
f*# .

First, note that we can apply again Proposition 5.1 for suitable functions B to the six sums
in (7.34), leading to the bound

21(0_’ 6) <« Yv(—1/2-&-6’+5)(u;>,(e)+u4(¢2)+u5(e)+ue(e))7
and hence all terms in (7.34) such that one of us(e), ug(e), us(e) or ug(e) is non-zero contribute
to the error term. We will say that (o, e) is focusing if ug(e) = --- = ug(e) = 0.
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It follows by (5.3), again for X > 2p™V~!, that we have

uz(e)

2= by, (el )2 Y (M[BaP )™ (MB R )"
ee{£1}¥ O'?P(V.V/Q)
ocusing

1
+ Oa,f <Y—l/2+9+6 + Yl//2+€> (735)

/P
(we also used the properties 7y = rp+ and Hy g+ (1) = Hpx (1).)

As we did in the case of N odd, we determine in a lemma, similar to Lemma 7.2, the focusing
pairs.

Lemma 7.4— With notation as above, for any (o, e) which is a focusing pair, we have Kk = X\ =
v/2. Furthermore, the map

(0,e) — (5,e),
where & is the restriction of o to {k + 1,...,v} and & is the k-tuple (ey)1<u<k, IS a bijection
between the set of focusing pairs (o,e) and the product set S, x {£1}*, where Sy is the set of
bijections from {k + 1,...,v} to {1,... Kk}
We then have, for all such (o,e€), the relation

ui(e) ={u, 1 <u<k andé, = —1}|, (7.36)
and ug(e) = k —uy(e).
As in the earlier case, the point is that uj(e) and usz(e) are, for every focusing pair (o, e),

e
independent of 0. We will denote u;(e) by u;(é).

Proof of lemma 7.4. The focusing condition on (o, e) means that, for every u with 1 < u < &,
either w, (e) = w; or wy(e) = we. By definition, the condition wy,(e) = w; is equivalent with the
property that u has exactly one pre-image j under o with 1 < j < k, and one pre-image £ with
k +1 < /¢ < v, and that furthermore e; = ¢, = —1.

Similarly, w,(e) = we means that that u has exactly one pre-image j under o with 1 < j < &,
and one pre-image ¢ with x + 1 < £ < v, and that furthermore e; = ¢y = —1.

Arguing as in the proof of Lemma 7.2, we deduce that kK = A = /2 and that the restriction
of o to {1,...,k} is the identity, and the restriction ¢ of o to {k +1,...,r} is an element of S,.

In addition, the signs e; for the two pre-images of u always coincide, which means that
€5-1(w) = €u for 1 < u < k. Thus the map (0,e) — (7, e) is injective. We then check as in
Lemma 7.2 that it is surjective, and that the formula (7.36) holds. O

Using this lemma, it follows that the main term in (7.24) equals

D=1 (TfHﬁf* Z 2 |B | ( )) 1(€) % (M [|B;|2] (1))n7u1(é)’

GeSy ee{£1}*r

which is equal to

Sl (rpHy px (1) (M [|B5 ] (1) + M[[BE?] (1)),

because u1(€) depends only on é.
By Corollary 3.4, this is equal to

K
il (v Hy po(1)]|w]3)

and we conclude that, if X > 2pV—1, then we have
H 1 "
21 — 5[{:)\2,‘6/{! (Tf f,2f*( )Hw‘B) + Og}f (Y—1/2+9+€ +

36

\jﬁwmf) : (7.37)



7.6.2. The self-dual case for N even. In this section, f is self-dual, namely f* = f and N is
even. Note that this corresponds formally to the case treated in [4] of holomorphic cusp forms
with trivial nebentypus for N = 2 (although, as we have already discussed, the restriction to
holomorphic forms means that the cases we consider are disjoint.)

In this case, (7.34) and (once more) Proposition 5.1 lead to

Y1 = 52‘1, (Tfo f* Z Z (./\/l [|B;‘2] (1>)v(e) (M UB;FF] (1))1//2—’1)(6)
ee{+1}¥ oeP(v,v/2)
focusing

+ Oa,f <Y—1/2+0+8 + 1yu/2+8> (738)

VP

if 2pV! < X, where

U(e) = |{1 Su< V/27 (0'1:1(6)7011;(6» = (270)}|
so that
v/2—v(e) = [{l <u<v/2, (qul(e),ai(e)) =(0,2)}].

Note that v(e) depends on o. To go further, we observe that if o € P(v,v/2) occurs in a
focusing pair, it must satisfy

o =0 (u)| =2

for all we {1,...,v/2}. Conversely, assume o satisfies this condition. Then from the definition
of w; and wo, it follows that a tuple e is such that (o, e) is focusing if and only if, for each u, we
have e,, = e,, where 0~ (u) = {m,n}. This means that there are precisely 2*/? focusing pairs
(0, e) with o fixed, corresponding to arbitrary assignments of signs to the v/2 pairs of elements
with the same image under o.

In this context, v(e) is equal to the number of u for which the corresponding sign e,, = e, is
—1, and in particular, for any r, the number of tuples e for which v(e) = r is equal to

()

corresponding to the choice of r pairs of elements with common sign —1.
Formally, it follows that for any complex numbers z; and zo, we have

Z Z Zf(e)zg/%v(e): Z Z Zﬁf(@)zg/%v(E)

ec{+1}¥ 0eP(v,v/2) oeP(v, V/Q) (0,€) fgcusing
focusing Oy= ’

v/2

_ Z Z<V/2> r V/2 r

o€P(v,v/2) r=0
ou=2

= (21 4 22)"*|{o € P(v,1v/2) 7, = 2 for all u}|
!
_ v/2
Gyt
(where the last step follows from (7.28), which is established in the proof of Lemma 7.3).
Applying this formula and using Corollary 3.4, we derive

v/2 vl _
¥y = 52|1/ (TfHﬁf*(l)H’ng) 200N + OE,f <Y 1/2+0+¢ +

73 1Y"/2+€> (7.39)

VP

if 2pN 1 < X
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7.6.3. End of the proof of Theorem A for N even. Equations (7.3) and (7.39) imply Theorem
A if f is self-dual.

Equations (7.3) and (7.37) imply Theorem A if kA # 0 and f is not self-dual. It is once
more easy to check the result when x or A = 0. For instance, if A = 0 (and f is not self-dual),
understanding M (X, p, (k,0)) boils down to understanding

1
b 2, 2, (@) +0cy (Ylmf + \FYK/M)

ee{T1}F 0eP(mr/2) p
resonant
where X1 (o, e) is given by
) v(e) . ) v/2—v(e)
1 m —m
v 5 armiBa(y) y 2 ar(m’Ba < v )
1<m<p/2 1<m<p/2

These terms are all dominated by the error term, by Proposition 5.1 (this is because L(f x f, s)
does not have a pole at s = 1 if f is not self-dual).

8. PROOF OF THE CONVERGENCES IN LAW

This section is devoted to the proof of Corollary B. Thus, X = p’¥/®(p) for a function ®
that tends to infinity but satisfies ®(x) « z° for all € > 0.

8.1. The non self-dual case. In this section, we assume that f is not self-dual. In order
to finish the proof of Corollary B, it is enough to apply the following probabilistic lemma to
Zp(X,p, ).

Lemma 8.1- Let (X,)n>1 be a sequence of complex-valued random wvariables, let o > 0 be a
positive real number. Then (X,)n>1 converges in law to a Gaussian vector with covariance

matrix
o 0
0 o

if and only if, for any non-negative integers k, A = 0, we have

lim E (X;;XQ) = 52" klo".
n—+00
Proof of lemma 8.1. This is presumably standard, but we give a quick proof for lack of a suitable
reference.
The necessity follows by an easy argument from the fact that for a Gaussian variable Z with
the stated covariance matrix, we have

E(Z"Z%) = §,,2"klo"

(this is straightfoward since it can be evaluated using the explicit density of Z with respect to
Lebesgue measure; after checking that this is non-zero if and only if K = A, one can also notice
that E(]Z|**) is the 2k-th moment of a so-called Rayleigh distribution with parameter o, and
check its value in any table of probability distributions.)

For sufficiency, write X,, = A,, + i B, where the random variables A,, and B,, are real-valued.
By a well-known result (see, e.g., [4, Lemma 5.1]), convergence to the Gaussian holds provided,
for any k, [ > 0, we have

E(AﬁBfl) — J(k+l)/2mkml.
But, denoting M (k,\) = E(X£X?), we have

B(AKBL) — QJZ,A D (—1)4’(’;) @)M(y k=L k1)

0<k<k
o<l

since, as recalled above, the assumption means that

My —k—1Lk+1) - E(Z"Z")
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where Z is the Gaussian as above. Denoting Z = A + iB, we deduce that

1 K by _
E(AFBL) — o (-1t (k) < g)E(Z“ZA) — E(A*BY = o502 mymy

(by rewinding the first formula). O

Remark 8.2— This result, easy as it is, implies the following combinatorial identities, by writing
all expectations of Gaussians in “numerical” terms: for any integers x, A > 0 satisfying 2 | v,

we have
2 (3)() - g

0<k<k 2|\ )

0<I<A

k+4=v/2
where 0 = min (k, A). These identities are not so easy to establish directly and are just stated
without proof in [9, Formulas (3.58) and (3.80)].

8.2. The self-dual case. In this section, we assume that the cusp form f is self-dual. The
k-th moment of E¢(X,p,*) is M¢(X,p, (k,0)) for all non-negative integer k. By Theorem A,
we get

1
My (X, p, (k,0)) = myg (2¢5.0)"* + 0. <(1>>

(p)1/2—0+e
such that
lim M¢(X,p, (k,0)) = my (2Cf’w)k/2 .
peEP
p—+0m

By standard results, convergence to a centered Gaussian random variable is equivalent to con-
vergence of the moments. Hence the sequence of random variables E(X,p, *) converges in law
to a centered Gaussian random variable with variance is 2cy .

9. THE CASE OF THE MULTIPLE DIVISOR FUNCTIONS

In this section, we will give a sketch of the proof of Theorem C, which is very similar to the
self-dual case of Theorem A, the additional ingredient being the presence of main terms arising
from the positivity of the divisor functions.

We begin by stating the corresponding version of the Vornoni summation formula. A. Ivié
proved such a formula for dy, when N > 3, in [13, Theorem 2]. The following statement is
both a simplified (but not straightforward) statement for prime denominators and a slightly
renormalised version of this formula.

We note that we could use a less precise version, as far as understanding the main term is
concerned, but we give the full version as it might be potentially useful for other purposes.

We will need for this the constants =, («) defined by v_1(a) = 1 and

(=)™ <i log" (k+a) log" ™t (m + a))

= li
(@) n! m—lgrloo = k+ «a n+1

forn > 0 and 0 < o < 1. For a = 0, these are the Stieltjes numbers =, for n > 0, for instance
Y0 = 7 is the Euler-Mascheroni constant. These numbers occur in the Laurent expansion of
C(s) at s = 1.

We will denote by B[w] the Mellin transform Bp[w] as in (3.4) for & = 0 = (0,...,0). Note
that 0* = 0. We also extend dy to non-zero integers by defining dy(m) = dy(|m|) if m < —1.

Proposition 9.1 (Voronof summation formula for dy)— Let N > 2 be an integer. Let w : R} — R
be a smooth and compactly supported function. Let p be a prime number and let b be an integer.
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If p does not divide b then

nadN ( ) J ~0 ,;1 ﬁk log" ™! (w)w(z) dx

N/2 >} dn(m)Kn—1(bm, p)Blw ](%)

mezL* p

BT g (5)

mezL*

where b denotes the inverse of b modulo p and

- 5 ()

1<a,....,an<p

mm

Ly ey Hv< Hiog" () (92)

m=0 ni,...,ny=—1
ni+..ny=—k—m

for1 <k <N.

Proof of proposition 9.1. We use the notation of A. Ivié¢ in [13, Theorem 2]. Note that A. Ivi¢
considers the case N = 3 in [13, Page 211], but there are a number of typos in this argument.
First, we compute explicitly

resy_1 M[w](s) Ex (3, 2) .

By [13, Equations (2.2) and (2.3)], we have

N

9 - 1 Bk(bap) s
En <s,p> _pk;(s_l) + H(s) (9.3)

where H(s) is an entire function on C and S (b, p) is defined in (9.2) for 1 < & < N. These
coefficients do not depend on b for the following reason. Let us fix 0 < m < N — k and
ni,...,ny = —1 satisfying ny + --- + ny = —k — m. Obviously, there exists at least one
1 < jo < N such that nj, = —1, for which 7y, (aj,/p) = 1. Performing the summation over aj,
n (9.2), one gets

bal...aN ng n;

2o oelm—) Il wm()=r 2 [T wm )

1<ay,...,an<p p 1§j§N p 1<an,.a55—1,a5p+15-+ aNéplg_jgN p
J#Jo p|a1...a]-0_1aj0+1...aN J#Jjo

Ea

This last equality also implies that

Br(b,p) = Br(p) < p°

for 1 < k < N and for all ¢ > 0. Finally, (9.3) also implies that this residue equals the first
term in (9.1).
Then, let us compute explicitly



for all positive integers n, where

C§<n7b> = Z O+< b>
p ni..nN=n

b nxy+...nyry +bri...xN
¥ (ns 2

T1,...,cy mod p p

where n = (n1,...,ny). Let us fix ny,...,ny satisfying n = ny...ny.
If pfn, then we find

b +bxy...
C]J{/ <n, p> . Z . (nlxl +...nyzN * bz xN> (9.4)

Z2,...,z N mod p p
T2...xN=Fbni mod p

— pVPKn_1(Fbn,p). (9.5)
On the other hand, if p | n, then there exists 1 < kg < N such that p divides ny,. Thus,
Ci (n b)_p Z e<n1$1+...+nk0:):k0+...nNmN> (96)
N 9 - .
p T1,..., ;t/k\o,...,xN mod p p
plz1 ~Tho TN
N—2
_ (_1)N72p + Z (_1)€+N72p€+1 Z H p|nk (97)
/=1 1<k <<ky<N j=1

V1<i<t,ki#ko
by a simple induction on N, using the notation ~ as usual to omit a term.

The contribution of (9.5) and of the first term in (9.7) leads to the second term in (9.1), after
a suitable renormalisation of the integral transforms given in [13, Equations (3.9) and (3.10)].
The contribution of the other terms in (9.7) leads to the third term in (9.1). O

We recall from Section 1.1.2 that for an invertible residue class a in F;, we have

Sd (X7p’a)_Md (X’p)
EdN(X7p7a) = = (X/p)l/Q = ’

where Sy, (X,p,a) and Mg, (X, p) are defined in (1.8) and (1.9).
For k > 1, we consider

1 * o
May (X,p,5) = = Y. Eay(X,p,a)".

a mod p

As in the case of cusp forms, we denote Y = X/pV. Then, detecting the congruence
n = a mod p using additive characters and applying the Voronoi summation formula for dy
(Proposition 9.1), we get

Eq\(X,p,a) = Z dn(m (—am,p)B[w] <%>
meZ*

* e_Zj <N€_1> e+1)/2m gzl* <Xn/1p) (98)

The second term in (9.8) is then seen to be « p~'/2. Thus, we have

*

May (X.008) = 0 3, > L dw i) K (am,p) B1u) (%)

a mod p 1<Imil,...,|mi|<p/2 k=1

(pe /2, 1+ pN ! . /2-1+
+0. [ =Y +p € yr/2—1+e
/P X

41




if 2pV—1 < X, for all A > 1, by the decay properties of the generalized Bessel transforms.
Using again the combinatorial identity in Lemma 7.1, we rearrange this into

Moo=k X8 N [Tt

ec{+1}" s=10€eP(k,s) (j1,.--,js )ER® u=1
distinct

N\ oule) _ineu@® g s s . 1
x Blw] <]Yu> Blw] <}‘Zu) (1; Z H Ky (aju,p)7® Ky (—aju, p)7® (e))

a mod pu=1

(105 s ase [PV 4 /2-1+
o (Zn e (B) yor).
\/P X

where we use the same notation as in Section 7.4.

9.1. The combinatorial analysis for NV odd. Arguing precisely along the same lines as in
Sections 7.5 and 7.5.2 (the self-dual, N odd, case), we obtain

K/2

My (Xopr) = b | 5 30 o L] ()]
L o <p/2

p* K/2 —1/24¢ 1 H/2+E>
+0. (—=Y"?4+Y + Y
) (\/J3 VP
if 2pN~1 < X. Using Proposition 9.2 below and
[l
M|IBlwlP | (1) = 152
(by (3.12)), we derive Theorem C for N odd.

9.2. The combinatorial analysis for N even. Arguing precisely along the same lines as in
Section 7.6 and Section 7.6.2 (the self-dual, N even, case, with A = 0 so that v = k), we get

v(e)

May (X, p, ) = bgj 2 Z % Z dy (m)*Bw] (%)2

ec{+1}" oeP(k,x/2) 1<m<p/2
focusing
) K/2—v(e) .
—m P° K/2 —1/2+¢ K/2+e
dn (m)?B[w] <> +0 <Y 24y +—Y )
lgrép/Q Y ] \/ﬁ \/ﬁ

if 2pV—1 < X where

v(e) = [{1 <u < #/2, (07 (e). oh(e)) = (0.2)}

Applying twice Proposition 9.2 and (3.13), we derive Theorem C in the case N even.

9.3. Asymptotic expansion. This section is the analogue of Section 5 for the divisor func-
tions. For a smooth function B and Y < Z, let

oy X aere(E)

Proposition 9.2— We have

A
W(Yv Z) = Q(Iog (Y)) + Oz—:,N (Zs <};> + Y—1/2+5>
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for all A > 1, where Q is a polynomial of degree N*> — 1 given by

N2-1 N2 (k )
1 Hy (HM[B]Y (1) m
QX)= ) — > [ T, o Xm(9.9)
m! k!
m=0 my+--+mye+k+f=—1-m j=1
mi,...,mpy22—1
k.20

Hy(s) = [[(—a) " Pulg™)

qeP

and the polynomial Pyn(T) is defined in Proposition C.2. In particular, the leading coefficient
of Q% [w](X) equals

Hy(1)|BJ?
(NZ—1)

Moreover we have Hy(1) > 0.

Proof of proposition 5.1. Arguing as in the proof of Proposition 5.1, one gets

WY, Y - J Day ()Y M[B] (s)ds + O. n (ZE (;)A> (9.10)

for all A > 1, where

m 2 -s 2
Day(s) = 3 N PN(q)}v — ((s) H(s)

s _
m>=1 m qeP (1 q

defines a meromorphic function on Re (s) > 1/2 with a pole at s = 1 of order N2 by Proposition
C.2. The proposition follows from (9.10) by shifting the contour to Re(s) = 1/2 + ¢, hitting the
pole at s = 1.

The fact that Hy(1) > 0 is clear here, since Py(¢~!) > 0 for all prime numbers q. O

APPENDIX A. COMPUTATION OF THE RESIDUE OF RANKIN-SELBERG L-FUNCTIONS

A formula for the residue of the Rankin-Selberg L-function L(f x f*,s) in terms of the L?-
norm of f is implicit, but not fully stated in [6]. For convenience, we give the details of this
computation.

Proposition A.1- The residue of L(f x f*,s) at s =1 is equal to

4N /2
ry=~——IIfIF >0
Nram(
where
2
. 1+ 2%Re (a;,0(f)) 1+ ajoo(f) + agoo(f)
Lo () = H F( 9 : H ’ 9
1<G<N 1<j<k<N
and the Petersson norm of f is given by
17 = | P,
SLn(Z)2eSLn (Z)\HN

with d*z being the SLy(R)-invariant measure on HY ~ SLx(R)/SON(R) defined in [6, Propo-
sition 1.5.3].
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Proof of proposition A.1. The last equation Page 369 in the proof of [6, Theorem 12.1.4] tells
us that

(fF. 7 NP D(N5/2)((N5)Ep(x,5)) = 7 N> D(Ns/2)Gp)(s)L(f * f*,5) (A1)

where Ep(z,5) is the maximal parabolic Eisenstein series defined in [6, Equation (10.7.1)] and

+00

N-1
dy
Gl/(f)(s) = f ‘WJacquet(yvl/(f)ﬂpl,..‘,l)‘z H yj H i) 255

Y1,--YyN—1=0 j=1 j=1

where Wiacquet stands for the Jacquet Whittaker function defined in [6, Equation (5.5.1)]. In
particular,

+00
Gl/(f)(l) - J 0 WJacquet(y7 (f)? ¢1,_._71)WJvauet (y’ V(f*)7 wl,...,l) (A2)
Y1, YN—1=
oo (N —j) dY;j
» | yj j yjj J Ty] (A 3)
7j=1 j=1 J
- 1 14+ oo f) + apeo(f*)
T 2xNIN-D2(N/2) K]l_klgNF( 2 ) .
B 1 1-|-2§R€(aj,oo(f))
— 2rNIN=D2 (N /2) KlJ;INF < 2 ) o
2
< T7 I (1 + aj,oo(fg + ak;,oo(f)) | (A.6)
1<j<k<N

by Stade’s formula ( [6, Proposition 11.6.17]) and (2.20). By [6, Proposition 10.7.5], s
7 Ns2T(Ns/2)((Ns)Ep(z,s) = E5(z,s) has a simple pole at s = 1 but the accurate value of
this residue is not computed. Let us show quickly that

ress—1Ep(z,8) = 2/N
which concludes the proof. The last equation in the proof of [6, Theorem 10.7.5] tells us that
* Ns/2 du
E%(z,8) = det(z Z fulaz) —1
acZN
where
fu(w) — e—rr(a:f+-~~+x?\,)u — ﬁt(w) _ U_N/Qfl/u(x)

for u > 0. Breaking the wu-integral into two parts [0,1] and [1, 40|, changing the variable
u +— 1/u in the second part and applying the Poisson summation formula given in [6, Equation
(10.7.2)], one gets

Ep(z,s) = det(z)° 2N, det(z)*~* YN | +OO [ 3 fulaz) ] Nsj2du

S s — 1 U
acZN

J_ [ S fula ]uN(l—s)/2CZ/’.

acZN
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APPENDIX B. GENERATING SERIES INVOLVING SCHUR POLYNOMIALS

Our goal here is to state a precise form of an identity involving Schur polynomials that we
used in Section 5.

Notations— The following notations will be used throughout this section. For k = (k1,...,kn)
a N-tuple of non-negative integers and & = (x1,...,xy) a N-tuple of indeterminates, we define
the N x N matrix
x(k) = [mkl] ,
(k) I J1<ij<nN

and note that
det (z(k)) = ), e(0)ryy, .- :c?(\’N)

OEON

vanishes if two components of k match. Recall that e, stands for the m’th elementary symmetric
polynomial defined in (2.6).

We will prove:

Proposition B.1- Let N > 2, ¢ = (x1,...,2n), Y = (y1,...,yn) and T be indeterminates.

(1) One has
PN(wa Y, T)
So....0k(®)S0,..0k(y)T* =
/go [Ticjren (1 = 25ueT)
for some polynomial Py(x,y,T) € Z[x,y,T].
(2) If
1

0<t< min
1<k [@;]| |

(B.1)

then Py (x,@,t) > 0.
(3) We have the formula

N(N-1) min (m,N—1)
m=2 k=1 1<my,...,mg<min (m,N)
mi+--+mrp=m
: (1)
lem@) 20 SETa, @)
7=1 2< 1< <Jp <N
with
xivfl e x%il
xi\/—jﬁ-ml ] ] x%—jﬁ-ml
S(Jl ..... Jk) ( ) = 1 det J1— : : :
(m1,...,my) V(x) N—Jp+my, N—Jp+my,
Jk - xl “e JZ'N
1 1

fori<kE<N,2<Ji<---<Jy <N and mq,...,mp > 1.
Remark B.2— For example, for N = 2,

P2(m7ya T) =1- 62($)62(y)T2
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whereas for N = 3,

Py(z,y,T) = 1 — es(x)e2(y)T?

+ (63(30) Z yklyli + e3(y) Z %1‘?2 + 463(33)63(’9)) T

1<k1#k2<3 1<j1#52<3
— e1(x)es(x)er(y)es(y) T + es(x)?es(y)*T°.

Remark B.3—In general, S ((7‘7];1’"121)(56) can be related to a Schur polynomial as follows. Let us
assume that Jp < N (a similar process also works if J;, = N) for simplicity. The finite sequence

(—=1,...,=J1+my,...,—Jpg +mp,...,—(N—=1)) == (u1,...,un—1)
of length N — 1 can be ordered increasingly as
Ur(1) S -+ S Up(N-1)
where 7 is the appropriate permutation in ox_1. One can check that

S(J1yee5 k) _
S(mlv-"vmk)(m) o 5\(7—)‘5'('“7'(1)""]\[_177‘7'(2)_u‘r(l)_la"'/uﬂ'(N—l)_'U“r(N—2)_1) (m)

Proof of proposition B.1. Let us denote by ¥ the generating series. By (2.8),

1
Y= —— Y det(@(N—-1+kN-2,...,1,0))det (y(N =1+ k,N—2,...,1,0)T*
V<w)v(y>2 (a( )) det (y( )

k>0
1 N-1 k
= STNUTS 2 (o) (Zo(1y¥r(1)) e To(N=1)Yr(N-1) Z (zoyy-)T)
V(z)V(y) ) =
(o,1)e0%; 20
1 Z (o7) (%(1)117(1))]\[71 e Te(N=1)Yr(N—-1)
= —_— eE\oT
V(x)V ) 1 —250)yr ()T
(0,1)e0c%;
1 N—1
= — .. F T
V(a:)V(y) U;N E(G)xa(l) $0(N—1) (y7 xo‘(l) )

N-1
Yray -+ Yr(N-1)
l—y,Z

F(y,2)= )] &(7)

TEON

where Z is an indeterminate. One has

F(y,Z) =

N
1 N-1

1)y, o Yr(NZ 1—y (2

[Tichen (1 —yrZ2) T;N () (1) (N 1)}[[2( (k) )

by Lemma B.4 below. Thus,

N-1
Y=o £(o)
V(z) J;ZN [Tichen (1 = wrzomyT)

1 N—1
= e(o)r )y - To(n-1 1— 2oy
1<k<N
1

Qz,y,T)
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As a function of x, Q(x,y,T) is a skew-symmetric polynomial. As such, V(x) | Q(z,y,T).
For o € oy, Let say that the quantities z4(;)yk (2<j<N,1< k< N) are ordered lexico-

graphically, namely
(J1, k1) < (Jas ko) if j1 < j2 or j1 = j2 and k1 < ko.

Once again,
N(N-1)
[T O=zopuel) =1+ > (=1)em ({2oyum2 <j < N, 1<k N} T™
2<G<N m=1
1<k<N
where
em ({To(yur, 2 <J< N, 1<k < N}) = 2 To(j1) Yk - To () Yhm -

2< 1,0 Jm <N
1<k, km <N
(j17k1)<"'<(jm7km)

The condition (j1,k1) < -+ < (Jm, km) is equivalent to saying that there exists 1 < k <

min (m, N — 1) and some positive integers 1 < m; < min (m, N) (1 < j < k) satisfying

7j=1
and
j1='--=jm1 2=J1 and 1<k‘1<--'<k‘m1 gN,
jm1+1 == jmﬁ-mg = J2 and 1 < km1+1 < < kml-i-mg < N7

jm1+---+mk,1 = ... = jm1+-~~mk =J, and 1< km1+---+mk,1 < ...

with 2 < J; < --- < Jp < N. Consequently,

N(N-1) min (m,N—1)
.y D) =V(@+ ) (D" 3 2
m=1 k=1 1<my,...,mi<min (m,N)

mi+-+mp=m

mg

k
N-1 m
X H em; (Y) Z Z e(a)xa(l) ST (N gy T
j=1

2<J1< <IN o€oN

We now check that coefficient of T in the previous equation is 0. This coefficient equals
—e1(y) times the determinant of the matrix

N-1 N-1
] N
N—Ji1+1 N—Ji+1
I ] N
1 : 1

We note that the (J; — 1)-th and the J;-th rows of this matrix are equal, and therefore its

determinant vanishes.
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Finally, we prove the positivity of Py(x,T,t) if ¢ satisfies (B.1). We have

0<1+4 |5, 0k@)*t" = Py(z, 1)
k>1
-1

X H <1 — ]mj\2t> H <1 — 2 e (z;7x)t + \xj\2]mk\2t2)

1<GEN 1<j<k<N

The denominator in the previous equation is a positive real number when the constraint (B.1)
is satisfied. O

We used the following elementary observation:

Lemma B.4— Let Y be an indeterminate and x = (x1,...,xyx). We have
x{v_l x%_l
Y21 —aY) ... 2N (1 —anY)
: : : = V().
1’1(1—:61Y) :CN(l—J,’NY)
1-— le N 1-— wNY

Proof of lemma B./4. Of course, the determinant in the previous lemma equals

N
Z E(U)xiv&)l - To(N-1) H (1 — SUU(@)Y) .

oEON {=2
Then,
N N—-1
[T 2Y) =1+ 3 (=1)"em (To(2)s- - To(n)) Y™
=2 m=1

where e, is the m’th elementary symmetric polynomial defined in (2.6). Thus, the previous
determinant equals

N-1

(=)™ > det (£(N —1,N =2+ 9(5), ..., 1 +en_1(4),en(4)))

m=1 2<j1<<jm<N

+det (x(N —1,N —2,...,0))

where

, 0 if Yk, ji # £,
ee(d) =

1 otherwise.

for 2 < £ < N. The last determinant in the previous equals is nothing else than V(x). All the
other determinants vanish: indeed, if

lo(g) =min{2 <L < N,e(g) =1}
then
det (®(N —1,N —2+&5(5),..., 1 +en_1(4),en(4)))
=det (&x(N —1,N—-2,....N—(lo(g) —1),N —ly(4) +1,....,.1+en_1(J),en(]))) =0,

since there are two identical rows in the matrix. O
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APPENDIX C. GENERATING SERIES INVOLVING THE MULTIPLE DIVISOR FUNCTIONS

We begin by recalling a formula for the value of the multiple divisor functions at prime
powers.

Lemma C.1- For N > 2, k a non-negative integer and a prime number q,

N—-1+k NN+1)---(N+k—-1
dn(q") = _ M ) ), (C.1)
k k!
Proof of lemma C.1. This amounts to the formula for the number of monomials of degree k in
N wvariables, which is well-known. O

We now prove a formula for the generating function of the square of the divisor function:

Proposition C.2— For g a prime number, one has

Py (T
I e

where Vot
LN -1\
Py(T) = ) < i > TF e Z[T].
k=0

In particular, we have Pn(t) > 0 for t > 0. Moreover, the constant term of Py(T) is equal
to 1 and the coefficient of T is (N — 1)2.

Proof of proposition C.2. Let

o Fy(u,03132) = ) u(u+1)“'(u+k_(1k)"‘)jgv+1)"'(v+k—1)zk
k=0 :

denote (a special case of) the classical Gauss hypergeometric function. By the previous lemma,
we have
Z dn(¢")*T* = [y (N, N; 1; 7).
k>0
Since

NEI <N/<;_ 1>2Tk -2 (Nk_ 1>2Tk =21 (=(N = 1), =(N = 1); ,T),

k=0 k>0
the formula we claim is
2Fi(—(N —1),=(N = 1); ,T) = (1= T)*N"', Fy(N,N; 1;7),

which is a special case of the formula known as Euler’s transformation for the hypergeometric
function (see, e.g., [10, 9.131.1 (3)]). O
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