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Note on naming

1. Introduction

After the selection of Rijndael as the AES, it was decided to change the names of some of its
component functions in order to improve the readability of the standard. However, we see that
many recent publications on Rijndael and the AES still use the old nhames, mainly because the
original submission documents using the old names, are still available on the Internet. In this
note we repeat quickly the new names for the component functions. Additionally, we remind
the reader on the difference between AES and Rijndael and present an overview of the most
important references for Rijndael and the AES.

2. References
[1] Joan Daemen and Vincent Rijmen, AES submission document on Rijndael, June 1998.

[2] Joan Daemen and Vincent Rijmen, AES submission document on Rijndael, Version 2,
September 1999. http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf

[3] FIPS PUB 197, Advanced Encryption Standard (AES), National Institute of Standards
and Technology, U.S. Department of Commerce, November 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[4] Joan Daemen and Vincent Rijmen, The Design of Rijndael, AES - The Advanced
Encryption Standard, Springer-Verlag 2002 (238 pp.)

3. Naming

The names of the component functions of Rijndael have been modified between the
publication of [2] and that of [3]. Table 1 lists the two versions of names. We recommend
using the new names.

Old naming New naming
ByteSub SubBytes
ShiftRow ShiftRows
MixColumn MixColumns
AddRoundKey AddRoundKey

Table 1: Old and new names of the Rijndael component functions

4. Range of key and block lengths in Rijndael and AES

Rijndael and AES differ only in the range of supported values for the block length and cipher
key length.

For Rijndael, the block length and the key length can be independently specified to any
multiple of 32 bits, with a minimum of 128 bits, and a maximum of 256 bits. The support for
block and key lengths 160 and 224 bits was introduced in reference [2].

AES fixes the block length to 128 bits, and supports key lengths of 128, 192 or 256 bits only.

Date: 9/04/2003 Page: 1/2



Joan Daemen
Vincent Rijmen

Note on naming Rijndael

5. Referencing

Reference [3] is the US Federal Information Processing Standard defining AES and hence the
definitive reference on AES.

Reference [4] is the definitive reference on Rijndael. It is a book we have written after the
selection of Rijndael as AES and was published in February 2002. It describes all aspects of
Rijndael and is only available on paper.

Reference [1] is the original Rijndael documentation submitted to AES and dates from June
11, 1998. Reference [2] is an improved version dating from September 3, 1999 that
supersedes reference [1]. Both were made available electronically in PDF formats on several
sites. Both references should be used only when referring to the actual historical documents.
Technical or scientific references should be restricted to [3] and [4].

We propose to use the following BibTex entries:

@Book{Daemen:2002:DRA,

author = "Joan Daemen and Vincent Rijmen",

title = "The design of {Rijndael}: {AES} --- the {Advanced
Encryption Standard}",

publisher = "Spring{\-}er-ver{\-}lag",

pages = "238",

year = "2002",

ISBN = "3-540-42580-2"

}

@misc{AES-FIPS,

title = "Specification for the Advanced Encryption Standard (AES)",
howpublished = "Federal Information Processing Standards Publication 197",
year = "2001",

url = " http://csrc.nist.gov/publications/fips/fipsl197/fips-197.pdf"
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1. Introduction

In this document we describe the cipher Rijndael. First we present the mathematical basis
necessary for understanding the specifications followed by the design rationale and the
description itself. Subsequently, the implementation aspects of the cipher and its inverse are
treated. This is followed by the motivations of all design choices and the treatment of the
resistance against known types of attacks. We give our security claims and goals, the
advantages and limitations of the cipher, ways how it can be extended and how it can be used
for functionality other than block encryption/decryption. We conclude with the
acknowledgements, the references and the list of annexes.

Patent Statement: Rijndael or any of its implementations is not and will not be subject to
patents.

1.1 Document history

This is the second version of the Rijndael documentation. The main difference with the first
version is the correction of a number of errors and inconsistencies, the addition of a motivation
for the number of rounds, the addition of some figures in the section on differential and linear
cryptanalysis, the inclusion of Brian Gladman’s performance figures and the specification of
Rijndael extensions supporting block and key lengths of 160 and 224 bits.

2. Mathematical preliminaries

Several operations in Rijndael are defined at byte level, with bytes representing elements in
the finite field GF(2®). Other operations are defined in terms of 4-byte words. In this section we
introduce the basic mathematical concepts needed in the following of the document.

2.1 The field GF(2 ®)

The elements of a finite field [LiNi86] can be represented in several different ways. For any
prime power there is a single finite field, hence all representations of GF(2%) are isomorphic.
Despite this equivalence, the representation has an impact on the implementation complexity.
We have chosen for the classical polynomial representation.

A byte b, consisting of bits b; bs bs by bs b, by by, is considered as a polynomial with coefficient
in {0,1}:

by X + b X+ bs X+ by X + by X+ by X + by X+ by

Example : the byte with hexadecimal value ‘57’ (binary 01010111 ) corresponds with
polynomial

X+xX+xX¥+x+1.
2.1.1 Addition

In the polynomial representation, the sum of two elements is the polynomial with coefficients
that are given by the sum modulo 2 (i.e., 1 + 1 = 0) of the coefficients of the two terms.
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Example: ‘57’ + ‘83’ = 'D4’, or with the polynomial notation:
(X+ X+ X+ x+ 1)+ (X +x+D) =X+ +xX+ X,

In binary notation we have: “01010111 " + “10000011 " = “11010100 ". Clearly, the addition
corresponds with the simple bitwise EXOR ( denoted by O ) at the byte level.

All necessary conditions are fulfilled to have an Abelian group: internal, associative, neutral
element (‘00’), inverse element (every element is its own additive inverse) and commutative.
As every element is its own additive inverse, subtraction and addition are the same.

2.1.2 Multiplication

In the polynomial representation, multiplication in GF(2%) corresponds with multiplication of
polynomials modulo an irreducible binary polynomial of degree 8. A polynomial is irreducible if
it has no divisors other than 1 and itself. For Rijndael, this polynomial is called m(x) and given

by
mix)=xX+x'+ X +x+1
or ‘11B’ in hexadecimal representation.
Example: ‘57« ‘83" =‘C1, or:
O+ X+ X +x+1) (X +x+1) XA XXX
X+xX+X+xX+x+
X+x+xX+x+1

= XX+ X+ X+ X+ X+ XX+

XX+ X+ X+ X+ + X+ X+ 1 modulo B+ X+ X+ x+1
= X+xX+1

Clearly, the result will be a binary polynomial of degree below 8. Unlike for addition, there is no
simple operation at byte level.

The multiplication defined above is associative and there is a neutral element (‘01"). For any
binary polynomial b(x ) of degree below 8, the extended algorithm of Euclid can be used to
compute polynomials a(x), ¢(x) such that

b(x)a(x)+ m(x)c(x)=1.
Hence, a(x) ¢ b(x) mod m(x)= 1 or
b (x) = a(x) mod m(x)
Moreover, it holds that a(x) ¢ (b(x) + ¢c(x)) = a(x) * b(x) + a(x) ¢ c(x).

It follows that the set of 256 possible byte values, with the EXOR as addition and the
multiplication defined as above has the structure of the finite field GF(2°).
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2.1.3 Multiplication by  x

If we multiply b(x) by the polynomial x, we have:
by X+ b X +bs X+ by X+ by X'+ b, X' + by X + by X

X * b(x) is obtained by reducing the above result modulo m(x). If b; = 0, this reduction is the
identity operation, If b; = 1, m(x ) must be subtracted (i.e., EXORed). It follows that
multiplication by x (hexadecimal ‘02’) can be implemented at byte level as a left shift and a
subsequent conditional bitwise EXOR with ‘1B’. This operation is denoted by b = xtime(a).

In dedicated hardware, xtime takes only 4 EXORs. Multiplication by higher powers of x can
be implemented by repeated application of xtime . By adding intermediate results,
multiplication by any constant can be implemented.

Example: ‘57’ ‘13’ = ‘FE'

‘577 '02’ = xtime(57) =‘AE
‘577 '04’ = xtime(AE) ='47’
‘577« '08’ = xtime(47) ='8F’
‘577 '10’ = xtime(8E) ='07’

‘57« 13"’ ='57"+ ('01’ 0 02’ 0 ‘10" ) =57’ 0 ‘AE O ‘07’ = ‘FE’

2.2 Polynomials with coefficients in GF(2 8)

Polynomials can be defined with coefficients in GF(2%. In this way, a 4-byte vector
corresponds with a polynomial of degree below 4.

Polynomials can be added by simply adding the corresponding coefficients. As the addition in
GF(2% is the bitwise EXOR, the addition of two vectors is a simple bitwise EXOR.

Multiplication is more complicated. Assume we have two polynomials over GF(2%):
ax)=as X+ a, X + a x+ apand b(x) = by X* + bp X + by x + by.
Their product c(x) = a(x)b(x) is given by

cx)=c X+ X+ X+ X+ X+ C X+ Co with
Co = ao* by Cs=az*b, 0 axb, O ai*bs
C1=ai*by 0 ap* by Cs = az*b, 0 a,*bs
Cr=axby 0 ar*b; O ap* b Cs = az* bs

C3 = asz* bo O aoe bl 0 aze bz 00 age b3
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Clearly, c(x) can no longer be represented by a 4-byte vector. By reducing ¢(x) modulo a
polynomial of degree 4, the result can be reduced to a polynomial of degree below 4. In
Rijndael, this is done with the polynomial M(x) = x* + 1. As

X¥mod X'+ 1= ¥4
the modular product of a(x) and b(x), denoted by d(x) = a(x) O b(x) is given by
d(x)=ds X’ + do X + dy X+ do with
0o = ap*bp O aze by O ax* by, O ai* bs
di = ai*by O age by O aze by, O as* bs
0o = axby 0 ar*b; O ape b, O aze bs
0;=az*by 0 ayeb; O ai*by, O ap* bs

The operation consisting of multiplication by a fixed polynomial a(x ) can be written as matrix
multiplication where the matrix is a circulant matrix. We have

Edog @, a5 & 31["130%
Ao & & arhp
ng gaz a, 3 alhU

0 0
00 @& & & %%ﬂ

Note: X' + 1 is not an irreducible polynomial over GF(2°), hence multiplication by a fixed
polynomial is not necessarily invertible. In the Rijndael cipher we have chosen a fixed
polynomial that does have an inverse.

2.2.1 Multiplication by x

If we multiply b(x) by the polynomial x, we have:
by X + by X + by X + b x
x O b(x) is obtained by reducing the above result modulo 1 + x*. This gives
by X* + by X + by X+ by

The multiplication by x is equivalent to multiplication by a matrix as above with all a; ='00’
except a; ='01'. Let c(x) = x Ob(x). We have:

[c,0 00 00 00 OLb,O

%152%)1 00 00 00k, -

c,0 00 01 00 OQIb,0
.0 Ho 00 o1 06,0

Hence, multiplication by x, or powers of x, corresponds to a cyclic shift of the bytes inside the
vector.
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3. Design rationale

The three criteria taken into account in the design of Rijndael are the following:
» Resistance against all known attacks;
» Speed and code compactness on a wide range of platforms;
» Design simplicity.

In most ciphers, the round transformation has the Feistel Structure. In this structure typically
part of the bits of the intermediate State are simply transposed unchanged to another position.
The round transformation of Rijndael does not have the Feistel structure. Instead, the round
transformation is composed of three distinct invertible uniform transformations, called /ayers.
By “uniform”, we mean that every bit of the State is treated in a similar way.

The specific choices for the different layers are for a large part based on the application of the
Wide Trail Strategy [Da95] (see Annex ), a design method to provide resistance against linear
and differential cryptanalysis (see Section 8.2). In the Wide Trail Strategy, every layer has its
own function:

The linear mixing layer : guarantees high diffusion over multiple rounds.

The non-linear layer : parallel application of S-boxes that have optimum worst-case
nonlinearity properties.

The key addition layer : A simple EXOR of the Round Key to the intermediate State.

Before the first round, a key addition layer is applied. The motivation for this initial key addition
is the following. Any layer after the last key addition in the cipher (or before the first in the
context of known-plaintext attacks) can be simply peeled off without knowledge of the key and
therefore does not contribute to the security of the cipher. (e.g., the initial and final permutation
in the DES). Initial or terminal key addition is applied in several designs, e.g., IDEA, SAFER
and Blowfish.

In order to make the cipher and its inverse more similar in structure, the linear mixing layer of
the last round is different from the mixing layer in the other rounds. It can be shown that this
does not improve or reduce the security of the cipher in any way. This is similar to the absence
of the swap operation in the last round of the DES.

4. Specification

Rijndael is an iterated block cipher with a variable block length and a variable key length. The
block length and the key length can be independently specified to 128, 192 or 256 bits.

Note: this section is intended to explain the cipher structure and not as an implementation
guideline. For implementation aspects, we refer to Section 5.

4.1 The State, the Cipher Key and the number of rounds

The different transformations operate on the intermediate result, called the State:
Definition: the intermediate cipher result is called the State.

The State can be pictured as a rectangular array of bytes. This array has four rows, the
number of columns is denoted by Nb and is equal to the block length divided by 32.
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The Cipher Key is similarly pictured as a rectangular array with four rows. The number of
columns of the Cipher Key is denoted by Nk and is equal to the key length divided by 32.

These representations are illustrated in Figure 1.

In some instances, these blocks are also considered as one-dimensional arrays of 4-byte
vectors, where each vector consists of the corresponding column in the rectangular array
representation. These arrays hence have lengths of 4, 6 or 8 respectively and indices in the
ranges 0..3, 0..5 or 0..7. 4-byte vectors will sometimes be referred to as words.

Where it is necessary to specify the four individual bytes within a 4-byte vector or word the
notation (a, b, c, d) will be used where a, b, ¢ and d are the bytes at positions 0, 1, 2 and 3
respectively within the column, vector or word being considered.

oo | 8oy | dop | do3|8dos|dos koo | Ko | Koz | Ko
dyg |8y |8yp| 813|845 Kio| K Kip | Kig
dyo |8y |8y | 8y3 |8y, |5 Koo | Kax | Ko | Ky
d30 | @3y |83,y | 833 |83, |dss Kso| Kaq | Ksp | Kag

Figure 1: Example of State (with Nb = 6) and Cipher Key (with Nk = 4) layout.

The input and output used by Rijndael at its external interface are considered to be one-
dimensional arrays of 8-bit bytes numbered upwards from 0 to the 4* Nb-1. These blocks
hence have lengths of 16, 24 or 32 bytes and array indices in the ranges 0..15, 0..23 or 0..31.
The Cipher Key is considered to be a one-dimensional arrays of 8-bit bytes numbered upwards
from 0 to the 4* Nk-1. These blocks hence have lengths of 16, 24 or 32 bytes and array
indices in the ranges 0..15, 0..23 or 0..31.

The cipher input bytes (the “plaintext” if the mode of use is ECB encryption) are mapped onto
the state bytes in the order ago, aio, a o, @so, 41, a11, @21, a1, das ... , and the bytes of the
Cipher Key are mapped onto the array in the order koo, K10, k2.0, k3.0, Ko1, K11, K21, Kz 1, Ka1 ... At
the end of the cipher operation, the cipher output is extracted from the state by taking the state
bytes in the same order.

Hence if the one-dimensional index of a byte within a block is n and the two dimensional index
is (/,j), we have:

i =nmod4 j=Mm/ 4] nN=i+4*]
Moreover, the index i is also the byte number within a 4-byte vector or word and j is the index
for the vector or word within the enclosing block.

The number of rounds is denoted by Nr and depends on the values Nb and Nk. It is given in
Table 1.
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Nr Nb=4 Nb=16 Nb=28
Nk =4 10 12 14
Nk =6 12 12 14
Nk =8 14 14 14

Table 1: Number of rounds (Nr) as a function of the block and key length.

4.2 The round transformation

The round transformation is composed of four different transformations. In pseudo C notation

we have:
Round(State,RoundKey)

{

ByteSub(State);

ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey);

The final round of the cipher is slightly different. It is defined by:

FinalRound(State,RoundKey)

{
ByteSub(State) ;
ShiftRow(State) ;

AddRoundKey(State,RoundKey);

In this notation, the “functions” (Round, ByteSub , ShiftRow , ...) operate on arrays to which

pointers (State , RoundKey) are provided.

It can be seen that the final round is equal to the round with the MixColumn step removed.

The component transformations are specified in the following subsections.
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4.2.1 The ByteSub transformation

The ByteSub Transformation is a non-linear byte substitution, operating on each of the State
bytes independently. The substitution table (or S-box ) is invertible and is constructed by the
composition of two transformations:

1. First, taking the multiplicative inverse in GF(2%), with the representation defined in
Section 2.1. ‘00’ is mapped onto itself.

2. Then, applying an affine (over GF(2) ) transformation defined by:

OO @ 0 0 01 1 1 1rx,0 0
O O O
0 100011 Iy dp
%/ZEEL1100011]D<25E®E
D’sD_% 111000 %@JE)D
4,00 111100 0D 0
D@D%lllllo%&m%m
0 011111 0 40
g {0 Oep do
B8 ® 0 01 1 1 1 g @5
The application of the described S-box to all bytes of the State is denoted by:
ByteSub(State)

Figure 2 illustrates the effect of the ByteSub transformation on the State.

4o | o1 | Qppldaal 8o,y ﬁﬁ,/ S-box — bo,o bO,l b0,° b., h0,4 bo,s
é T

dy0 | d1,1 | 4y, ai,j '{ a5 bl,O b1,1 w? bi,j 01,4 b1,5

dyo | dp1 | 8pp |83 |8y, a5 bz,o b2,1 b2,2 bz,a 2,4 b2,5

Q309|831 | 835|833 |83, |d35 bs,o b3,1 b3,2 b3,3 b3,4 b3,5

Figure 2: ByteSub acts on the individual bytes of the State.

The inverse of ByteSub is the byte substitution where the inverse table is applied. This is
obtaiged by the inverse of the affine mapping followed by taking the multiplicative inverse in
GF(2).

4.2.2 The ShiftRow transformation

In ShiftRow, the rows of the State are cyclically shifted over different offsets. Row 0 is not
shifted, Row 1 is shifted over C1 bytes, row 2 over C2 bytes and row 3 over C3 bytes.

The shift offsets C1, C2 and C3 depend on the block length Nb. The different values are
specified in Table 2.
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Nb C1 Cc2 C3
4 1 2 3
6 1 2
8 1 3 4

Table 2: Shift offsets for different block lengths.

The operation of shifting the rows of the State over the specified offsets is denoted by:
ShiftRow(State)

Figure 3 illustrates the effect of the ShiftRow transformation on the State.

mi|n | o|p|.. o Shift :> m. . n | o | p
J k I | .. Cyclic Shift by C1 (1) :> j

d e fl .. Syclic Shift by C2 (2) :> d e

w X y V4 cyclic shift byIC3 (3) ‘ ‘ :> w X y

Figure 3: ShiftRow operates on the rows of the State.

The inverse of ShiftRow is a cyclic shift of the 3 bottom rows over Nb-C1, Nb-C2 and Nb-C3
bytes respectively so that the byte at position jin row i moves to position (j + Nb-Ci ) mod Nb.

4.2.3 The MixColumn transformation

In MixColumn, the columns of the State are considered as polynomials over GF(2%) and
multiplied modulo X' + 1 with a fixed polynomial c(x), given by

c(x) =03" x>+ ‘01’ ¥ + ‘01’ x+ ‘02" .

This polynomial is coprime to X' + 1 and therefore invertible. As described in Section 2.2, this
can be written as a matrix multiplication. Let b(x ) = ¢(x ) O a(x),

b,0 02 03 01 O0l&,0

0 0
@)lng)l 02 03 Oif,p
b,0 01 01 02 03,0

Eufgg %)3 01 01 O 3E

The application of this operation on all columns of the State is denoted by
MixColumn(State)

Figure 4 illustrates the effect of the MixColumn transformation on the State.
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a bOj
oo | Qo1 dp3 | @04 | os = ( ) boo | bo bos | bos|bos
C(X
A0 [ Q11| “1 %31,4 a5 %% 1j |b1a | Pra|bys
dy0 4821 a, dy3| 84|95 byo| by, sz by 3| by4|bys
dzo| 431 d33| 834|435 byo| by, by 3| b4 | bss
a,, by

Figure 4: MixColumn operates on the columns of the State.

The inverse of MixColumn is similar to MixColumn. Every column is transformed by multiplying
it with a specific multiplication polynomial d(x ), defined by

(‘03" X’ +01' X + 01" x+ 02" ) O d(x) = ‘01" .
It is given by:
d(x)="'0B' X’ + ‘0D’ X + ‘09’ x + ‘OE’ .

4.2.4 The Round Key addition

In this operation, a Round Key is applied to the State by a simple bitwise EXOR. The Round
Key is derived from the Cipher Key by means of the key schedule. The Round Key length is
equal to the block length Nb.

The transformation that consists of EXORing a Round Key to the State is denoted by:
AddRoundKey(State,RoundKey)

This transformation is illustrated in Figure 5.

a0‘0 aO‘l aO‘Z a0‘3 aO‘A aO‘S kO‘O kO‘l kO‘Z k0‘3 kO‘A k0‘5 bO‘O bO‘l bO‘Z b0‘3 bO‘A bO‘S
al‘O al‘l al‘z al‘3 al‘A al‘S D kl‘O kl‘l kl‘Z kl‘3 kl‘A kl‘S _ bl‘O bl‘l bl‘Z bl‘3 bl‘A bl‘S
aZ‘O az‘l aZ‘Z a2‘3 aZ‘A a2‘5 k2‘0 kz‘l k2‘2 k2‘3 k2‘4 k2‘5 bZ‘O bz‘l bZ‘Z b2‘3 bZ‘A b2‘5
aS‘O aS‘l aS‘Z a3‘3 aS‘A a3‘5 kS‘O kS‘l kS‘Z k3‘3 kS‘A k3‘5 bS‘O bS‘l bS‘Z b3‘3 bS‘A b3‘5

Figure 5: In the key addition the Round Key is bitwise EXORed to the State.

AddRoundKey is its own inverse.
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4.3 Key schedule

The Round Keys are derived from the Cipher Key by means of the key schedule. This consists
of two components: the Key Expansion and the Round Key Selection. The basic principle is
the following:

» The total number of Round Key bits is equal to the block length multiplied by the
number of rounds plus 1. (e.g., for a block length of 128 bits and 10 rounds, 1408
Round Key bits are needed).

» The Cipher Key is expanded into an Expanded Key.

* Round Keys are taken from this Expanded Key in the following way: the first Round
Key consists of the first Nb words, the second one of the following Nb words, and so
on.

4.3.1 Key expansion

The Expanded Key is a linear array of 4-byte words and is denoted by WNb*(Nr+1) ]. The
first Nk words contain the Cipher Key. All other words are defined recursively in terms of words
with smaller indices. The key expansion function depends on the value of Nk: there is a
version for Nk equal to or below 6, and a version for Nk above 6.

For Nk < 6, we have:
KeyExpansion(byte Key[4*Nk] word W[Nb*(Nr+1)])

for(i = 0; i < NK; i++)
WI[i] = (Key[4*i],Key[4*i+1],Key[4*i+2],Key[4*i+3]);

for(i = Nk; i < Nb * (Nr + 1); i++)
{
temp = W[i - 1];
if (i % Nk ==0)
temp = SubByte(RotByte(temp)) * Rcon[i / NK];
WI[i] = WJi - Nk] * temp;

}

In this description, SubByte(W) is a function that returns a 4-byte word in which each byte is
the result of applying the Rijndael S-box to the byte at the corresponding position in the input
word. The function RotByte(W) returns a word in which the bytes are a cyclic permutation of
those in its input such that the input word (a,b,c,d) produces the output word (b,c,d,a).

It can be seen that the first Nk words are filled with the Cipher Key. Every following word Wi ]
is equal to the EXOR of the previous word Wi-1 ] and the word Nk positions earlier Wi-Nk ].
For words in positions that are a multiple of Nk, a transformation is applied to Wi-1 ] prior to
the EXOR and a round constant is EXORed. This transformation consists of a cyclic shift of
the bytes in a word (RotByte) , followed by the application of a table lookup to all four bytes
of the word (SubByte ).
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For Nk > 6, we have:

KeyExpansion(byte Key[4*Nk] word W[Nb*(Nr+1)])
{

for(i = 0; i < NK; i++)
WI[i] = (key[4*i],key[4*i+1],key[4*i+2],key[4*i+3]);
for(i = Nk; i < Nb * (Nr + 1); i++)
{
temp = W[i - 1];
if (i % Nk == 0)
temp = SubByte(RotByte(temp)) * Rcon[i / Nk];
else if (i % Nk == 4)
temp = SubByte(temp);
WI[i] = WJi - Nk] * temp;

}

The difference with the scheme for Nk < 6 is that for i-4 a multiple of Nk, SubByte is applied
to Wi-1 ] prior to the EXOR.

The round constants are independent of Nk and defined by:
Rcon[i ] = (RC [i ],'00",'00’,'00")

with RC[I] representing an element in GF(2%) with a value of X'~ so that:
Rd1] = 1 (i.e.'01)
Rdi]= x (i.e.'02) *(RC[i-1 )=x @

4.3.2 Round Key selection

Round key i is given by the Round Key buffer words WNb*i ] to WNb*(i+1 )]. This is
illustrated in Figure 6.

10 11 12 13 14

Round key 0 Round key 1

Figure 6: Key expansion and Round Key selection for Nb =6 and Nk = 4.

Note: The key schedule can be implemented without explicit use of the array WNb*(Nr+1) ].
For implementations where RAM is scarce, the Round Keys can be computed on-the-fly using
a buffer of Nk words with almost no computational overhead.
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4.4 The cipher

The cipher Rijndael consists of
« an initial Round Key addition;
* Nr-1 Rounds;

» a final round.

In pseudo C code, this gives:
Rijndael(State,CipherKey)

KeyExpansion(CipherKey,ExpandedKey) ;
AddRoundKey(State,ExpandedKey);

For(i=1; i<Nr; i++) Round(State,ExpandedKey + Nb*i) ;
FinalRound(State,ExpandedKey + Nb*Nr);

}

The key expansion can be done on beforehand and Rijndael can be specified in terms of the
Expanded Key.
Rijndael(State,ExpandedKey)

{

AddRoundKey(State,ExpandedKey);

For(i=1; i<Nr; i++) Round(State,ExpandedKey + Nb*i) ;
FinalRound(State,ExpandedKey + Nb*Nr);

}

Note: the Expanded Key shall always be derived from the Cipher Key and never be specified
directly. There are however no restrictions on the selection of the Cipher Key itself.

5. Implementation aspects

The Rijndael cipher is suited to be implemented efficiently on a wide range of processors and
in dedicated hardware. We will concentrate on 8-bit processors, typical for current Smart Cards
and on 32-bit processors, typical for PCs.

5.1 8-bit processor

On an 8-bit processor, Rijndael can be programmed by simply implementing the different
component transformations. This is straightforward for RowShift and for the Round Key
addition. The implementation of ByteSub requires a table of 256 bytes.

The Round Key addition, ByteSub and RowShift can be efficiently combined and executed
serially per State byte. Indexing overhead is minimised by explicitly coding the operation for
every State byte.

The transformation MixColumn requires matrix multiplication in the field GF(2®). This can be
implemented in an efficient way. We illustrate it for one column:

Tmp=a [0]”a [1]"a [2]~a [3];/*ais abyte array */

Tm=a [0] *a [1]; Tm = xtime(Tm); a [0O]A~=TmA"ATmp ;
Tm=a [1] *a [2]; Tm = xtime(Tm); a [A]A~=TmA"ATmp ;
Tm=a [2] *a [3]; Tm = xtime(Tm); a [21»=TmA"Tmp ;
Tm=a [3]*a [0]; Tm = xtime(Tm); a [B]*=Tm~Tmp;
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This description is for clarity. In practice, coding is of course done in assembly language. To
prevent timing attacks, attention must be paid that xtime is implemented to take a fixed
number of cycles, independent of the value of its argument. In practice this can be achieved by
using a dedicated table-lookup.

Obviously, implementing the key expansion in a single shot operation is likely to occupy too
much RAM in a Smart Card. Moreover, in most applications, such as debit cards or electronic
purses, the amount of data to be enciphered, deciphered or that is subject to a MAC is
typically only a few blocks per session. Hence, not much performance can be gained by
expanding the key only once for multiple applications of the block cipher.

The key expansion can be implemented in a cyclic buffer of 4*max( Nb, Nk) bytes. The
Round Key is updated in between Rounds. All operations in this key update can be
implemented efficiently on byte level. If the Cipher Key length and the blocks length are equal
or differ by a factor 2, the implementation is straightforward. If this is not the case, an
additional buffer pointer is required.

5.2 32-bit processor

5.2.1 The Round Transformation

The different steps of the round transformation can be combined in a single set of table
lookups, allowing for very fast implementations on processors with word length 32 or above. In
this section, it is explained how this can be done.

We express one column of the round output e in terms of bytes of the round input a. In this
section, a;; denotes the byte of a in row / and column j, a; denotes the column j of State a. For
the key addition and the MixColumn transformation, we have

[, 0 @IO,D ko, 0 OO0 02 03 01 OLT,,O

e i Em dgjlylg H1 02 03 O g
k,

e, 0" mz,D ;0% ;0701 01 02 O3k, 0
D O 0, O 0 %) O
00 a0 o0 UjsJD 3 01 01 021%s;
For the ShiftRow and the ByteSub transformations, we have:
[Cy,; [ Dbo,,- D
% o
lJD lelD d
D t%l S{a”]
[ﬂ)ZJCZ
|j:3JD %)3103D

In this expression the column indices must be taken modulo Nb. By substitution, the above
expressions can be combined into:

®,0 02 03 01 0 S[ao,j]g Ky, O

0

%,D_g)l 02 03 0 a“._mg]aqm
Egm[mmozo 5 &, O
%) az,J—CZD %JD

3 01 01 0 |

JD ae,j—csg 3,j [
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The matrix multiplication can be expressed as a linear a combination of vectors:

Eeo,m 020 m)sm mlm m)lm H(O’E
JD_ = Ja, ]%ED E[awl] %j sﬁaz,“] %j {;aalﬂmsm Ek;,%
%%,JH %335 %315 %315 %)ZD 3 D

The multiplication factors S[a;] of the four vectors are obtained by performing a table lookup
on input bytes a;;in the S-box table S[256].

We define tables Toto T3 :

E$[a] ozm [Ha]+ 030 0 9a] B D da] O
o -0 3 Oy -0y a0 o ddl o

0 dal 070 da) 07 e 020 T ¥al- 03
Halc033 gdal g gdal g Hal-o

These are 4 tables with 256 4-byte word entries and make up for 4KByte of total space. Using
these tables, the round transformation can be expressed as:

o =taJorfa e JorfacJorfac oy

Hence, a table-lookup implementation with 4 Kbytes of tables takes only 4 table lookups and 4
EXORs per column per round.

It can be seen that T{a] = RotByte(T:;[a]). At the cost of 3 additional rotations per round per
column, the table-lookup implementation can be realised with only one table, i.e., with a total
table size of 1KByte. We have

e =k O To[b)yj]D Rotbyte(l’o[ b c l]D RotbyteTO[bZH: 2]D Rotbyté’(([ (S J )

The code-size (relevant in applets) can be kept small by including code to generate the tables
instead of the tables themselves.

In the final round, there is no MixColumn operation. This boils down to the fact that the S table
must be used instead of the T tables. The need for additional tables can be suppressed by
extracting the S table from the T tables by masking while executing the final round.

Most operations in the key expansion can be implemented by 32-bit word EXORs. The
additional transformations are the application of the S-box and a cyclic shift over 8-bits. This
can be implemented very efficiently.

5.2.2 Parallelism

It can be seen that there is considerable parallelism in the round transformation. All four
component transformations of the round act in a parallel way on bytes, rows or columns of the
State.

In the table-lookup implementation, all table lookups can in principle be done in parallel. The
EXORs can be done in parallel for the most part also.
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The key expansion is clearly of a more sequential nature: the value of Wi-1 ] is needed for the
computation of Wi ]. However, in most applications where speed is critical, the KeyExpansion
has to be done only once for a large number of cipher executions. In applications where the
Cipher Key changes often (in extremis once per application of the Block Cipher), the key
expansion and the cipher Rounds can be done in parallel..

5.2.3 Hardware suitability

The cipher is suited to be implemented in dedicated hardware. There are several trade-offs
between area and speed possible. Because the implementation in software on general-
purpose processors is already very fast, the need for hardware implementations will very
probably be limited to two specific cases:

» Extremely high speed chip with no area restrictions: the T tables can be hardwired
and the EXORs can be conducted in parallel.

e Compact co-processor on a Smart Card to speed up Rijndael execution: for this
platform typically the S-box and the xtime (or the complete MixColumn) operation
can be hardwired.

5.3 The inverse cipher

In the table-lookup implementation it is essential that the only non-linear step (ByteSub) is the
first transformation in a round and that the rows are shifted before MixColumn is applied. In the
Inverse of a round, the order of the transformations in the round is reversed, and consequently
the non-linear step will end up being the last step of the inverse round and the rows are shifted
after the application of (the inverse of) MixColumn. The inverse of a round can therefore not be
implemented with the table lookups described above.

This implementation aspect has been anticipated in the design. The structure of Rijndael is
such that the sequence of transformations of its inverse is equal to that of the cipher itself, with
the transformations replaced by their inverses and a change in the key schedule. This is
shown in the following subsections.

Note: this identity in structure differs from the identity of components and structure in IDEA
[LaMaMu91].

5.3.1 Inverse of a two-round Rijndael variant

The inverse of a round is given by:
InvRound(State,RoundKey)

{
AddRoundKey(State,RoundKey);
InvMixColumn(State);
InvShiftRow(State);
InvByteSub(State);

The inverse of the final round is given by:
InvFinalRound(State,RoundKey)

{
AddRoundKey(State,RoundKey);
InvShiftRow(State);
InvByteSub(State);
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The inverse of a two-round variant of Rijndael consists of the inverse of the final round
followed by the inverse of a round, followed by a Round Key Addition. We have:

AddRoundKey(State,ExpandedKey+2*Nb);

InvShiftRow(State);

InvByteSub(State);

AddRoundKey(State,ExpandedKey+Nb);

InvMixColumn(State);

InvShiftRow(State);

InvByteSub(State);

AddRoundKey(State,ExpandedKey);

5.3.2 Algebraic properties

In deriving the equivalent structure of the inverse cipher, we make use of two properties of the
component transformations.

First, the order of ShiftRow and ByteSub is indifferent. ShiftRow simply transposes the bytes
and has no effect on the byte values. ByteSub works on individual bytes, independent of their
position.

Second, the sequence

AddRoundKey(State,RoundKey);
InvMixColumn(State);

can be replaced by:

InvMixColumn(State);
AddRoundKey(State,InvRoundKey);

with InvRoundKey obtained by applying InvMixColumn to the corresponding RoundKey. This is
based on the fact that for a linear transformation A, we have A(x+k)= A(x )+A(K).

5.3.3 The equivalent inverse cipher structure

Using the properties described above, the inverse of the two-round Rijndael variant can be
transformed into:

AddRoundKey(State,ExpandedKey+2*Nb);

InvByteSub(State);

InvShiftRow(State);

InvMixColumn(State);
AddRoundKey(State,| ExpandedKey+Nb);

InvByteSub(State);
InvShiftRow(State);
AddRoundKey(State,ExpandedKey);

It can be seen that we have again an initial Round Key addition, a round and a final round. The
Round and the final round have the same structure as those of the cipher itself. This can be
generalised to any number of rounds.
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We define a round and the final round of the inverse cipher as follows:
|_Round(State,|_RoundKey)

{

InvByteSub(State);
InvShiftRow(State);
InvMixColumn(State);
AddRoundKey(State,| RoundKey);

}
|_FinalRound(State,|_RoundKey)

{

InvByteSub(State);
InvShiftRow(State);
AddRoundKey(State,RoundKeyO0);

The Inverse of the Rijndael Cipher can now be expressed as follows:

|_Rijndael(State,CipherKey)

|_KeyExpansion(CipherKey,| ExpandedKey) ;
AddRoundKey(State,| ExpandedKey+ Nb*Nr);
For(i=Nr-1;i>0 ;i-- ) Round(State,|_ExpandedKey+ Nb*i) ;
FinalRound(State,|_ExpandedKey);

}

The key expansion for the Inverse Cipher is defined as follows:
1. Apply the Key Expansion.
2. Apply InvMixColumn to all Round Keys except the first and the last one.

In Pseudo C code, this gives:
|_KeyExpansion(CipherKey,| ExpandedKey)

KeyExpansion(CipherKey,| ExpandedKey);
for(i=1;i<Nr;i++)

InvMixColumn(l_ExpandedKey + Nb*i) ;
}

5.3.4 Implementations of the inverse cipher

The choice of the MixColumn polynomial and the key expansion was partly based on cipher
performance arguments. Since the inverse cipher is similar in structure, but uses a MixColumn
transformation with another polynomial and (in some cases) a modified key schedule, a
performance degradation is observed on 8-bit processors.

This asymmetry is due to the fact that the performance of the inverse cipher is considered to
be less important than that of the cipher. In many applications of a block cipher, the inverse
cipher operation is not used. This is the case for the calculation of MACs, but also when the
cipher is used in CFB-mode or OFB-mode.
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5.3.4.1 8-bit processors

As explained in Section 4.1, the operation MixColumn can be implemented quite efficiently on
8-bit processors. This is because the coefficients of MixColumn are limited to 01’, ‘02" and ‘03’
and because of the particular arrangement in the polynomial. Multiplication with these
coefficients can be done very efficiently by means of the procedure xtime() . The coefficients
of InvMixColumn are ‘09’, 'OE', '0OB' and '0D'. In our 8-bit implementation, these multiplications
take significantly more time. A considerable speed-up can be obtained by using table lookups
at the cost of additional tables.

The key expansion operation that generates Wis defined in such a way that we can also start
with the last Nk words of Round Key information and roll back to the original Cipher Key. So,
calculation 'on-the-fly' of the Round Keys, starting from an “Inverse Cipher Key”, is still
possible.

5.3.4.2 32-bit processors

The Round of the inverse cipher can be implemented with table lookups in exactly the same
way as the round of the cipher and there is no performance degradation with respect to the
cipher. The look-up tables for the inverse are of course different.

The key expansion for the inverse cipher is slower, because after the key expansion all but two
of the Round Keys are subject to InvMixColumn (cf. Section 5.3.3).

5.3.4.3 Hardware suitability

Because the cipher and its inverse use different transformations, a circuit that implements
Rijndael does not automatically support the computation of the inverse of Rijndael. Still, in a
circuit implementing both Rijndael and its inverse, parts of the circuit can be used for both
functions.

This is for instance the case for the non-linear layer. The S-box is constructed from two
mappings:

S(x) =1f(g(x)),
where g(x) is the mapping:
x0O x'in GF(2%)
and f(x) is the affine mapping.

The mapping g(x) is self-inverse and hence S™(x) = g™ (f *(x)) = g(f *(x)). Therefore when we
want both S and S, we need to implement only g, f and f*. Since both f and f* are very
simple bit-level functions, the extra hardware can be reduced significantly compared to having
two full S-boxes.

Similar arguments apply to the re-use of the xtime transformation in the diffusion layer.

Document version 2, Date: 03/09/99 Page: 22/45



Authors:

Joan Daemen The Rijndael Block Cipher ~ AES Proposal

Vincent Rijmen

6. Performance figures

6.1 8-bit processors

Rijndael has been implemented in assembly language for two types of microprocessors that
are representative for Smart Cards in use today.

In these implementations the Round Keys are computed in between the rounds of the cipher
(just-in-time calculation of the Round Keys) and therefore the key schedule is repeated for
every cipher execution. This means that there is no extra time required for key set-up or a key
change. There is also no time required for algorithm set-up. We have only implemented the
forward operation of the cipher. Implementation efforts by other people have indicated that the
inverse cipher turns out to be about 30 % slower. This is due to reasons explained in the
section on implementation.

6.1.1 Intel 8051

Rijndael has been implemented on the Intel 8051 microprocessor, using 8051 Development
tools of Keil Elektronik: uVision IDE for Windows and dScope Debugger/Simulator for
Windows.

Execution time for several code sizes is given in Table 3 (1 cycle = 12 oscillator periods).

Key/Block Length | Number of Cycles Code length
(128,128) a) 4065 cycles 768 bytes
(128,128) b) 3744 cycles 826 bytes
(128,128) c) 3168 cycles 1016 bytes
(192,128) 4512 cycles 1125 bytes
(256,128) 5221 cycles 1041 bytes

Table 3: Execution time and code size for Rijndael in Intel 8051 assembler.

6.1.2 Motorola 68HCO08

Rijndael has been implemented on the Motorola 68HC08 microprocessor using the 68HC08
development tools by P&E Microcomputer Systems, Woburn, MA USA, the IASM08 68HC08
Integrated Assembler and SIML8 68HCO08 simulator. Execution time, code size and required
RAM for a number of implementations are given in Table 4 (1 cycle = loscillator period). No
optimisation of code length has been attempted for this processor.
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Key/Block Length | Number of Cycles | Required RAM Code length

(128,128) a) 8390 cycles 36 bytes 919 bytes
(192,128) 10780 cycles 44 bytes 1170 bytes
(256,128) 12490 cycles 52 bytes 1135 bytes

Table 4: Execution time and code size for Rijndael in Motorola 68HC08 Assembler.

6.2 32-bit processors

6.2.1 Optimised ANSI C

We have no access to a Pentium Pro computer. Speed estimates for this platform were
originally generated by compiling the code with EGCS (release 1.0.2) and executing it on a
200 MHz Pentium, running Linux. However, since this report was first published further
performance figures have become available and those published by Brian Gladman are
reported below.

The AES CD figures are for ANSI C using the NIST APIl. The figures reported by Brian
Gladman are for the Pentium Pro and Pentium |l processor families using a more efficient
interface. These results were obtained with the Microsoft Visual C++ (version 6) compiler that
provides fast intrinsic rotate instructions. The ability to use these instructions within C code
provides substantial performance gains without incurring significant portability problems since
many C compilers now offer equivalent facilities. The speed figures given in the tables have
been scaled to be those that would apply on the 200MHz Pentium Pro reference platform.

Algorithm set-up takes no time. Key set-up and key change take exactly the same time: the
time to generate the Expanded Key from the Cipher Key. The key set-up for the inverse cipher
takes more time than the key set-up for the cipher itself (cf. Section 5.3.3).

Table 5 lists the number of cycles needed for the key expansion.

# cycles AES CD (ANSI C) Brian Gladman (Visual C++)
(key,block) Rijndael Rijndael™ Rijndael Rijndael™
length
(128,128) 2100 2900 305 1389
(192,128) 2600 3600 277 1595
(256,128) 2800 3800 374 1960

Table 5: Number of cycles for the key expansion

The cipher and its inverse take the same time. The difference in performance that is discussed
in the section on implementation, is only caused by the difference in the key set-up. Table 6
gives the figures for the raw encryption, when implemented in C, without counting the
overhead caused by the AES API.
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(key,block) AES CD (ANSI C) Brian Gladman (Visual C++)
length

speed (Mbits/Sec) | # cycles/block | speed (Mbits/Sec) | # cycles/block
(128,128) 27.0 950 70.5 363
(192,128) 22.8 1125 59.3 432
(256,128) 19.8 1295 51.2 500

Table 6: Cipher (and inverse) performance

6.2.2 Java

We gratefully accepted the generous offer from Cryptix to produce the Java implementation.
Cryptix provides however no performance figures. Our estimates are based on the execution
time of the KAT and MCT code on a 200 MHz Pentium, running Linux. The JDK1.1.1 Java
compiler was used. The performance figures of the Java implementation are given in Table 7.

We cannot provide estimates for the key set-up or algorithm set-up time.

Key/Block length Speed # cycles for Rijndael
(128,128) 1100 Kbit/s 23.0 Kcycles
(192,128) 930 Kbit/s 27.6 Kcycles
(256,128) 790 Kbit/s 32.3 Kcycles

Table 7: Performance figures for the cipher execution (Java)

7. Motivation for design choices

In the following subsections, we will motivate the choice of the specific transformations and
constants. We believe that the cipher structure does not offer enough degrees of freedom to
hide a trap door.

7.1 The reduction polynomial m(x)

The polynomial m(x ) (‘11B’) for the multiplication in GF(2°) is the first one of the list of
irreducible polynomials of degree 8, given in [LiNi86, p. 378].
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7.2 The ByteSub S-box

The design criteria for the S-box are inspired by differential and linear cryptanalysis on the one
hand and attacks using algebraic manipulations, such as interpolation attacks, on the other:

1. Invertibility;

2. Minimisation of the largest non-trivial correlation between linear combinations of
input bits and linear combination of output bits;

3. Minimisation of the largest non-trivial value in the EXOR table;
4. Complexity of its algebraic expression in GF(2%);
5. Simplicity of description.

In [Ny94] several methods are given to construct S-boxes that satisfy the first three criteria. For
invertible S-boxes operating on bytes, the maximum input/output correlation can be made as
low as 27° and the maximum value in the EXOR table can be as low as 4 (corresponding to a
difference propagation probability of 27°).

We have decided to take from the candidate constructions in [Ny94] the S-box defined by the
mapping x 0 x " in GF(2%).

By definition, the selected mapping has a very simple algebraic expression. This enables
algebraic manipulations that can be used to mount attacks such as interpolation attacks
[JaKn97]. Therefore, the mapping is modified by composing it with an additional invertible
affine transformation. This affine transformation does not affect the properties with respect tot
the first three criteria, but if properly chosen, allows the S-box to satisfy the fourth criterion.

We have chosen an affine mapping that has a very simple description per se, but a
complicated algebraic expression if combined with the ‘inverse’ mapping. It can be seen as
modular polynomial multiplication followed by an addition:

b(X)=(X'+ X+ ¥+ Y+ & Y X+ R+ X+ K+1)mod %+1

The modulus has been chosen as the simplest modulus possible. The multiplication polynomial
has been chosen from the set of polynomials coprime to the modulus as the one with the
simplest description. The constant has been chosen in such a way that that the S-box has no
fixed points (S-box(a) = a) and no 'opposite fixed points' (S-box(a) = a).

Note: other S-boxes can be found that satisfy the criteria above. In the case of suspicion of a
trapdoor being built into the cipher, the current S-box might be replaced by another one. The
cipher structure and number of rounds as defined even allow the use of an S-box that does
not optimise the differential and linear cryptanalysis properties (criteria 2 and 3). Even an S-
box that is “average” in this respect is likely to provide enough resistance against differential
and linear cryptanalysis.
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7.3 The MixColumn transformation

MixColumn has been chosen from the space of 4-byte to 4-byte linear transformations
according to the following criteria:

1. Invertibility;
Linearity in GF(2);
Relevant diffusion power;

Speed on 8-bit processors;

a r w D

Symmetry;
6. Simplicity of description.

Criteria 2, 5 and 6 have lead us to the choice to polynomial multiplication modulo x'+1. Criteria
1, 3 and 4 impose conditions on the coefficients. Criterion 4 imposes that the coefficients have
small values, in order of preference ‘00’, '01’, '02’, '03"...The value ‘00’ implies no processing
at all, for ‘01’ no multiplication needs to be executed, ‘02’ can be implemented using xtime
and ‘03’ can be implemented using xtime and an additional EXOR.

The criterion 3 induces a more complicated conditions on the coefficients.

7.3.1 Branch number

In our design strategy, the following property of the linear transformation of MixColumn is
essential. Let F be a linear transformation acting on byte vectors and let the byte weight of a
vector be the number of nonzero bytes (not to be confused with the usual significance of
Hamming weight, the number of nonzero bits). The byte weight of a vector is denoted by W(a).
The Branch Number of a linear transformation is a measure of its diffusion power:

Definition: The branch number of a linear transformation Fis

min,.,(\W(@)+WF())).

A non-zero byte is called an active byte. For MixColumn it can be seen that if a state is applied
with a single active byte, the output can have at most 4 active bytes, as MixColumn acts on the
columns independently. Hence, the upper bound for the branch number is 5. The coefficients
have been chosen in such a way that the upper bound is reached. If the branch number is 5, a
difference in 1 input (or output) byte propagates to all 4 output (or input) bytes, a 2-byte input
(or output) difference to at least 3 output (or input) bytes. Moreover, a linear relation between
input and output bits involves bits from at least 5 different bytes from input and output.

7.4 The ShiftRow offsets

The choice from all possible combinations has been made based on the following criteria:
1. The four offsets are different and CO = 0;
2. Resistance against attacks using truncated differentials [Kn95];
3. Resistance against the Square attack [DaKnRi97];
4. Simplicity.
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For certain combinations, attacks using truncated differentials can tackle more rounds
(typically only one) than for other combinations. For certain combinations the Square attack
can tackle more rounds than others. From the combinations that are best with respect to
criteria 2 and 3, the simplest ones have been chosen.

7.5 The key expansion

The key expansion specifies the derivation of the Round Keys in terms of the Cipher Key. Its
function is to provide resistance against the following types of attack:

» Attacks in which part of the Cipher Key is known to the cryptanalyst;

» Attacks where the Cipher Key is known or can be chosen, e.g., if the cipher is used
as the compression function of a hash function[Kn95a];

» Related-key attacks [Bi93], [KeScWa96]. A necessary condition for resistance
against related-key attacks is that there should not be two different Cipher Keys that
have a large set of Round Keys in common.

The key expansion also plays an important role in the elimination of symmetry:

e Symmetry in the round transformation: the round transformation treats all bytes of a
state in very much the same way. This symmetry can be removed by having round
constants in the key schedule;

* Symmetry between the rounds: the round transformation is the same for all rounds.
This equality can be removed by having round-dependent round constants in the
key schedule.

The key expansion has been chosen according to the following criteria:

« It shall use an invertible transformation, i.e., knowledge of any Nk consecutive words
of the Expanded Key shall allow to regenerate the whole table;

e Speed on a wide range of processors;
» Usage of round constants to eliminate symmetries;
 Diffusion of Cipher Key differences into the Round Keys;

» Knowledge of a part of the Cipher Key or Round Key bits shall not allow to calculate
many other Round Key bits.

« Enough non-linearity to prohibit the full determination of Round Key differences from
Cipher Key differences only;
« Simplicity of description.

In order to be efficient on 8-bit processors, a light-weight, byte oriented expansion scheme has
been adopted. The application of SubByte ensures the non-linearity of the scheme, without
adding much space requirements on an 8-bit processor.

7.6 Number of rounds

We have determined the number of rounds by looking at the maximum number of rounds for
which shortcut attacks have been found and added a considerable security margin. (A shortcut
attack is an attack more efficient than exhaustive key search.)
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For Rijndael with a block length and key length of 128 bits, no shortcut attacks have been
found for reduced versions with more than 6 rounds. We added 4 rounds as a security margin.
This is a conservative approach, because:

Two rounds of Rijndael provide “full diffusion” in the following sense: every state bit
depends on all state bits two rounds ago, or, a change in one state bit is likely to
affect half of the state bits after two rounds. Adding 4 rounds can be seen as
adding a “full diffusion” step at the beginning and at the end of the cipher. The high
diffusion of a Rijndael round is thanks to its uniform structure that operates on all