Partial Exam, October 19th 2015 (2pm – 4pm) Duration 2 hours. All documents allowed.

Clarity of programs and comments is a major factor in the rating scale.

- To answer the questions, create *a single* file per exercise, named *login1.gp*, then *login2.gp*, etc. (Type whoami in a terminal if you are unsure about your login.) For instance, kbelabas1.gp.
- To hand over your answers, type ~kbelabas/copy in a terminal, from the directory where your files are saved. (You may do this multiple times, only the last one matters : copies made previously are replaced.)

Exercise 1 – Find a primality certificate for the integer $300 \times 2^{2015} + 1$.

Exercise 2 –

1) Eratosthenes's basic sieve computes primes $\leq B$ via an array T of length B such that T[i] = 1 if and only if i is prime. For all consecutive primes p the sieve sets T[i] to 0 in a loop of type forstep(i = p², B, p, T[i] = 0). Program such a sieve.

2) Taking care not to forget the prime 2, it is useless to consider even numbers. Write a new program yielding an array T of length $\approx B/2$ such that T[i] = 1 if and only if 2i + 1 is prime. Note that if $p \ge 3$ is prime, then p^2 is odd and the $i = p^2 + p$, $p^2 + 3p$, $p^2 + 5p$, etc. are even, hence pointless. How much can we hope to gain compared to 1)?

3) Let's go further : fix δ invertible mod $30 = 2 \times 3 \times 5$.

a) Obtain the list of all primes of the form $30i + \delta$, via an array T (of length $\approx B/30$)

such that T[i] = 1 if and only if $30i + \delta$ is prime. How much can we hope to gain?

b) Obtain the list of all allowed $\delta \in (\mathbb{Z}/30\mathbb{Z})^*$.

 \star 4) Can one generalize further and continue to gain?

Around the Fast Fourier Transform (FFT).

Let n > 1 be an integer and let K be a commutative field containing a primitive n-th root of unity ω . In other words, ω has order exactly n in (K^*, \times) . We define $\omega^0 = 1$. If $K = \mathbb{F}_q$ is a finite field, such an ω exists if and only if $n \mid (q-1)$.

Exercise 3 – [EXAMPLES]

1) Prove that the characteristic of K can never divide n.

2) Find such an ω for $q = \text{nextprime(10^{60})}$ and n = q - 1.

3) Find such an ω of multiplicative order 2^{16} in a quadratic finite field \mathbb{F}_{p^2} , such that $\omega \notin \mathbb{F}_p$.

4) Fix $n = 2^{32}$; find a prime p such that $n \mid p - 1$, then an ω of order n in \mathbb{F}_p^* .

Exercise 4 – [FOURIER TRANSFORM]

Let $(a_i: 0 \leq i < n) \in K^n$; by abuse of notation, we identify such a vector with the polynomial $f = \sum_{0 \leq i < n} a_i X^i$ in $K[X]_{< n}$. The Fourier Transform of (a_i) relatively to ω is the vector

$$\mathcal{F}((a_i), \omega) = \mathcal{F}(f, \omega) := (b_j : 0 \leq j < n) \in K^n, \text{ where } b_j = f(\omega^j).$$

If $k \in \mathbb{Z}$, we have $\sum_{0 \leq i < n} \omega^{ik} = 0$ if $n \nmid k$, and that sum is n otherwise. It follows that

$$\mathcal{F}((b_j: 0 \leq j < n), \omega^{-1}) = (na_i: 0 \leq i < n),$$

which yields a simple formula for the inverse transform $\mathcal{F}^{-1}(\cdot, \omega) = \frac{1}{n}\mathcal{F}(\cdot, \omega^{-1})$. **1)** Program a naive algorithm to compute the Fourier transform of (a_i) using $O(n^2)$ operations in K (additions and multiplications).

2) Same question for the inverse transform.

Exercise 5 – [FFT]

We assume from now on that $n = 2^k$, for some integer $k \ge 1$. Let $f \in K[X]_{< n}$, whose degree is less than n, we define f_{even} and f_{odd} by

$$f = \sum_{i=0}^{n-1} a_i X^i = f_{\text{even}}(X^2) + X \cdot f_{\text{odd}}(X^2).$$

Let

$$(u_i: 0 \leq i < n/2) := \mathcal{F}(f_{\text{even}}, \omega^2),$$
$$(v_i: 0 \leq i < n/2) := \mathcal{F}(f_{\text{odd}}, \omega^2).$$

By abuse of language, we extend u_j and v_j to $j \in \mathbb{Z}$ by periodicity modulo n/2. We then have $f(\omega^j) = u_j + \omega^j v_j$ for all $j \in \mathbb{Z}$.

1) Program a recursive algorithm for $\mathcal{F}(f,\omega)$ using the previous formulae.

2) If your original program did not do so, write a new version assuming that the vector of all ω^i , i < n, are precomputed.

3) The FFT algorithm uses $O(n \log n)$ opérations in K. For a few well-chosen fields, determine experimental thresholds where the recursive algorithm beats the naive one.