Partial Exam, October 19th 2015 (2pm - 4pm)
 Duration 2 hours. All documents allowed.

Clarity of programs and comments is a major factor in the rating scale.

- To answer the questions, create a single file per exercise, named login $1 . \mathrm{gp}$, then login $2 . g p$, etc. (Type whoami in a terminal if you are unsure about your login.) For instance, kbelabas1.gp.
- To hand over your answers, type ~kbelabas/copy in a terminal, from the directory where your files are saved. (You may do this multiple times, only the last one matters : copies made previously are replaced.)

Exercise 1 - Find a primality certificate for the integer $300 \times 2^{2015}+1$.

Exercise 2 -

1) Eratosthenes's basic sieve computes primes $\leqslant B$ via an array T of length B such that $T[i]=1$ if and only if i is prime. For all consecutive primes p the sieve sets $T[i]$ to 0 in a loop of type forstep $\left(i=p^{\wedge} 2, B, p, T[i]=0\right)$. Program such a sieve.
2) Taking care not to forget the prime 2 , it is useless to consider even numbers. Write a new program yielding an array T of length $\approx B / 2$ such that $T[i]=1$ if and only if $2 i+1$ is prime. Note that if $p \geqslant 3$ is prime, then p^{2} is odd and the $i=p^{2}+p, p^{2}+3 p$, $p^{2}+5 p$, etc. are even, hence pointless. How much can we hope to gain compared to 1)?
3) Let's go further : fix δ invertible $\bmod 30=2 \times 3 \times 5$.
a) Obtain the list of all primes of the form $30 i+\delta$, via an array T (of length $\approx B / 30$) such that $T[i]=1$ if and only if $30 i+\delta$ is prime. How much can we hope to gain?
b) Obtain the list of all allowed $\delta \in(\mathbb{Z} / 30 \mathbb{Z})^{*}$.
4) Can one generalize further and continue to gain?

Around the Fast Fourier Transform (FFT).

Let $n>1$ be an integer and let K be a commutative field containing a primitive n-th root of unity ω. In other words, ω has order exactly n in $\left(K^{*}, \times\right)$. We define $\omega^{0}=1$. If $K=\mathbb{F}_{q}$ is a finite field, such an ω exists if and only if $n \mid(q-1)$.

Exercise 3 - [ExAMPLES]

1) Prove that the characteristic of K can never divide n.
2) Find such an ω for $q=$ nextprime (10^60) and $n=q-1$.
3) Find such an ω of multiplicative order 2^{16} in a quadratic finite field $\mathbb{F}_{p^{2}}$, such that $\omega \notin \mathbb{F}_{p}$.
4) Fix $n=2^{32}$; find a prime p such that $n \mid p-1$, then an ω of order n in \mathbb{F}_{p}^{*}.

Exercise 4 - [Fourier transform]

Let $\left(a_{i}: 0 \leqslant i<n\right) \in K^{n}$; by abuse of notation, we identify such a vector with the polynomial $f=\sum_{0 \leqslant i<n} a_{i} X^{i}$ in $K[X]_{<n}$. The Fourier Transform of $\left(a_{i}\right)$ relatively to ω is the vector

$$
\mathcal{F}\left(\left(a_{i}\right), \omega\right)=\mathcal{F}(f, \omega):=\left(b_{j}: 0 \leqslant j<n\right) \in K^{n}, \quad \text { where } \quad b_{j}=f\left(\omega^{j}\right)
$$

If $k \in \mathbb{Z}$, we have $\sum_{0 \leqslant i<n} \omega^{i k}=0$ if $n \nmid k$, and that sum is n otherwise. It follows that

$$
\mathcal{F}\left(\left(b_{j}: 0 \leqslant j<n\right), \omega^{-1}\right)=\left(n a_{i}: 0 \leqslant i<n\right)
$$

which yields a simple formula for the inverse transform $\mathcal{F}^{-1}(\cdot, \omega)=\frac{1}{n} \mathcal{F}\left(\cdot, \omega^{-1}\right)$.

1) Program a naive algorithm to compute the Fourier transform of (a_{i}) using $O\left(n^{2}\right)$ operations in K (additions and multiplications).
2) Same question for the inverse transform.

Exercise 5 - [FFT]
We assume from now on that $n=2^{k}$, for some integer $k \geqslant 1$. Let $f \in K[X]_{<n}$, whose degree is less than n, we define $f_{\text {even }}$ and $f_{\text {odd }}$ by

$$
f=\sum_{i=0}^{n-1} a_{i} X^{i}=f_{\text {even }}\left(X^{2}\right)+X \cdot f_{\text {odd }}\left(X^{2}\right)
$$

Let

$$
\begin{aligned}
\left(u_{i}: 0 \leqslant i<n / 2\right) & :=\mathcal{F}\left(f_{\text {even }}, \omega^{2}\right) \\
\left(v_{i}: 0 \leqslant i<n / 2\right) & :=\mathcal{F}\left(f_{\text {odd }}, \omega^{2}\right)
\end{aligned}
$$

By abuse of language, we extend u_{j} and v_{j} to $j \in \mathbb{Z}$ by periodicity modulo $n / 2$. We then have $f\left(\omega^{j}\right)=u_{j}+\omega^{j} v_{j}$ for all $j \in \mathbb{Z}$.

1) Program a recursive algorithm for $\mathcal{F}(f, \omega)$ using the previous formulae.
2) If your original program did not do so, write a new version assuming that the vector of all $\omega^{i}, i<n$, are precomputed.
3) The FFT algorithm uses $O(n \log n)$ opérations in K. For a few well-chosen fields, determine experimental thresholds where the recursive algorithm beats the naive one.
