Examen, 19 décembre 2014 (08:30 – 11:30)

Durée 3 heures. Notes de cours et programmes GP autorisés.

La clarté des programmes et la pertinence des commentaires est un élément important d'appréciation.

- Créer un fichier par exercice, intitulés login1.gp, login2.gp, etc.
- Pour rendre votre copie, taper ~kbelabas/copie dans un terminal, depuis le répertoire où se trouvent vos fichiers. (Vous pouvez rendre plusieurs fois votre copie : seule la dernière fait foi, les précédentes sont détruites.)

On rappelle la borne de Hasse : pour toute courbe elliptique E/\mathbb{F}_q , on a

$$|\#E(\mathbb{F}_q) - (q+1)| \leq 2\sqrt{q}.$$

Exercice 1 – Prouver que l'entier $9 \cdot 2^{500} + 19$ est composé.

Exercice 2 – Donner une preuve de primalité (par exemple p-1 ou méthode des courbes elliptiques) des entiers N suivants :

$$10^{50} + 151$$
, $10^{101} + 3$, $10^{199} + 153$.

Exercice 3 – Soit m > 0 un entier. On cherche une puissance q d'un premier p et une courbe elliptique E définie sur \mathbb{F}_q telle que $\#E(\mathbb{F}_q) = m$.

- 1) Dans quel intervalle faut-il chercher q?
- 2) Trouver un premier p et une courbe elliptique E/\mathbb{F}_p telle que $\#E(\mathbb{F}_p)=2014$.
- 3) Trouver q non premier et E/\mathbb{F}_q telle que $\#E(\mathbb{F}_q) = 2014$.

Exercice 4 – Construire explicitement une implantation minimale du protocole ElGamal (chiffrement et déchiffrement) basée sur une courbe elliptique « sure » de cardinal $\approx 2^{200}$. On ne se préoccupera pas d'assurer l'intégrite ou l'authenticité du message (via fonctions de hachage, etc.). Indiquer explicitement les attaques contre lesquelles vous vous prémunissez, et pour quelle raison.

Exercice 5 – Soit p un nombre premier impair et $a \in \mathbb{F}_p$ un carré. On désire calculer une racine carrée de a dans \mathbb{F}_p .

- 1)a) Si $p \equiv 3 \pmod{4}$, montrer que $a^{(p+1)/4}$ est une racine carrée de a.
 - b) Implanter l'algorithme correspondant. Quelle est sa complexité binaire?

- 2) Soit $u \in \mathbb{F}_p$ tel que $D := u^2 a$ ne soit pas un carré modulo p. a) Dans $\mathbb{F}_{p^2} \simeq \mathbb{F}_p[t]/(t^2 D)$, montrer que $t^p = -t$, puis que

$$(u+t)^{p+1} = u^2 - t^2 = a.$$

- b) En déduire une formule simple donnant une racine carrée de a.
- c) Implanter l'algorithme correspondant, en testant u = 0, 1, 2, ... On pourra poser $t = ffgen(t^2 - Mod(D,p)).$
- d) Quelle est sa complexité binaire?

Exercice 6 – Soit $p = 10^{20} + 39$.

- 1) Calculer l'ordre de 3 dans \mathbb{F}_p^* sans utiliser znorder.
- 2) Calculer x dans $\mathbb{Z}/(p-1)\mathbb{Z}$ tel que $3^x=5$ dans \mathbb{F}_p sans utiliser znlog.
- 3) Existe t'il y tel que $5^y = 3$ dans \mathbb{F}_p ?