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Abstract. We study the influence of a thin split over the dynamic evolutof a
ferromagnetic body. A naive numerical simulation woulduieg a huge number of
cells to model the split. To avoid this problem, we introdaceequivalent boundary
condition which is obtained by a Taylor expansion in thekhiss of the split. We
prove the existence of solution to this new problem and tigoraously establish the
convergence of the expansion.

Introduction and notations

Ferromagnetism has been studied since antiquity. Nowadeysmagnetic materials are
widely used in the industfy Optimizing their form is important, as it strongly influesscthe
magnetic behavior. Among the possible configurations;ldjers and multi-layers are the
focus of recent research.

Ferromagnetic bodies may suffer from imperfections suchiasnclusions made of ma-
terials with different magnetic properties. Such impeiifats strongly alter their behavior. It
is important to estimate this alteration to either optintteeform or to compute the maximum
tolerance for the fabrication of an object. Such an evabmatian be done via a numerical
simulation. However, the thin imperfections are difficadtrhodel as their thickness is typ-
ically an order of magnitude less than that of the size of tieshm Using irregular meshes
is unsuitable because it hampers the performance of theati@ of the demagnetization
field via Fast Fourier transform and multidimensional Tdephatrices, see S. Labbé and
P. Leca [12] or S. Labbé [11]. Decreasing the step-size tehihe thickness of the imper-
fections would prohibitively increase the computationuiegments. The aim of this article
is to provide an efficient mean of computing the influence efttiickness of the split. To
compute the evolution of the magnetization, we will expdrgmagnetization up to the first
order in the thickness of the split. Then, we will derive fréinis expansion an equivalent
boundary condition.

In this article, we consider a simple geometry : two cyliondliferromagnetic bodies,
Figure 1, separated by a thin non-magnetic plane spaceravaithall but nonzero thickness.
As we may later want to extend the theory to more general gg@aewe should avoid, to
the maximum possible extent methods depending too stramgthis geometry. Especially,
we try to avoid scaling methods. The study of the influencentdractions able to cross the
split, such as super-exchange or surface anisotrmpyart 1l [21] of this article.

1LAmong applications of ferromagnetism, we find hard diskargatotection.

2See [3], [14] for some resullts.

3Interested readers may consult [13], [14], and [10], forrgroduction to this phenomenon, and [22] for
the proof of existence of solutions.
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Figure 1: The considered domains

The following notations will be used.
e the half thickness of the split.
B a bounded convex open set®f, with a smooth boundary.
L*, L~ two nonzero positive numbers.

Qf =Bx (e, LT)andQ; = B x (—L~,—¢) foralle < min(L~, L")/2 are domains
filled with ferromagnetic material.

Qt =B x (0,L7)andQ™ = B x (—L7,0).

Q=0"uUQ andQ. = QF UQ_ foralle < min(L~, L")/2.

I.= (=L ,—e)U (e, LT).

Q7 = Q. x (0,7) foralle < min(L~, LT)/2andQr = Q x (0,7).
I'= B x {£0}.

J. = B x (—¢,¢).

o m+, € % : Q+ m+’0
P o Tl . .
Qr omme * a m

sl =L

Figure 2: Initial domain and approximate domain

In this simple case, we want to make the simulation dvénstead of(2. using an approxi-
mate model.

First we introduce in section 1 the micro-magnetic model @Vt [4]. Then, we intro-
duce our original model and its formal expansion up to thé¢ dirder in section 2. We obtain
formally the equations satisfied by the terms of of@land1 and in particular the equivalent
boundary condition. Then, we prove, using Galerkin’s mdfhtbe existence and unique-
ness of strong solutions to these equations in section Z8.convergence is established in
section 3. Eventually, we supply some numerical simulatiorsection 4.
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1 The mathematical model
1.1 Some qualitative properties of ferromagnetic material

The micro-magnetic theofynodels magnetism at the mesoscopic scale where physieal val
ues are mean values over small domains occupied by sevdiiahsof atoms. The magnetic
state of a ferromagnetic body is given by its magnetizatemoded byM , a vector field null
outside the body. The magnetic excitation, denoteddy\characterize the magnetic state of
a point in the space. Typicall§ is the sum of an applied exteridf ,,,, and a field created
by the magnetizatiodd = #H (M ). The most common form of contributions #(M ) are
given in section 1.2. Another relation betweBhand M models the influence dff on M.
For some materials, this relation is linedf = y H, which happens in paramagnetic;>> 0,
and diamagneticy < 0, materials. In contrast, ferromagnetic materials can laavenzero
magnetization even in absence of any exterior excitatidmeyTalso have an hysteresis cy-
cle. Moreover, the resulting magnetization and thus thermagg radiation of ferromagnetic
materials is some order of magnitude larger than those @-pardia-magnetic materials.
This behavior can only be explained by quantum mecharidsbeing a local mean of the
spins of electrons. Recall forces ensure that the spin othbeigng electrons are parallel
enough for the magnetization to exist at the mesoscopie staide the ferromagnetic body,
the modulus of the magnetization has a constant local n@ignmnside and is null outside.
The evolution ofM is modeled by the Landau-Lifshitz equation [16] and eque({ib5a).
Hereafter, we denote by: the dimensionless varialen = M /M, with local norm1, and
the dimensionless excitatign= H /(o * M;), wherey, is the magnetic permeability.

1.2 Energies and associated operators

To study ferromagnetic materials, Brown [4] introduced thieiinal energies of ferromag-
netism. These energies allow a complete study of the stadlilgm. The equilibrium states
are local minima of the energy among the magnetic state$ywegithe non-convex con-
straint (1.6a).

To each interaction, we associate both an energy and a syiompéerator. We use the
following notations

e E,, the energy associated to a contribution

e 7, the operator associatedIfty by

E,(0) =0, DE,(m)-v=— /’Hp(m) -vde. (1.1)

e h, = H,(m) the magnetic excitation associated to interaction

We model only the exchange, anisotropy and demagnetizéétmhinteractions. Their ex-
pressions are

He(m) = AAm exchange
Ho(m) = —Km anisotropy

div(m+hd) = 0,

(1.2)
Ha(m) = hdverifying{ rot(hy) = 0

demagnetization field

I

“4For an introduction to micromagnetism, see Brown [4].
5See [11] for an explanation on the relation between physiedldimensionless variables.
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whereK is a smooth application fror® to the set of definite positive symmetric matrices
satisfying a uniform coercivity property. A common form afisotropy is the uniaxis one,
Km = K(m — (m - u)u) whereu is the privileged direction of magnetization afdisthe
anisotropy constant. The expressions of the energies are

Ec.(m) = % |Vm|2da: exchange
E.(m) = f -mdx anisotropy (1.3)
Eq(m) = 3 fRsWd m)|*dz, '

= —3 [, m-Hy(m)de demagnetization field

where O represents a generic open bounded subsét®of We keep this notation in this
article. We also define the total excitation and energy dpera

M =H,+ He + Ha, E=E, +E, +E, (1.4)

1.3 The dynamic model: theandau-Lifshitz equation

The Landau-Lifshitz equation models the evolution of thenedization [16].

aa_’? — —m x H(m) — a(m x (m x H(m)))inO x (0,T),  (15a)

with Neumann homogenous boundary condition

om

= =00no0 x (0,7, (1.5b)
and initial condition
m(-,0) = mygin O, (1.5¢)
and the constraints
lm|=1in O x (0,7T), m =0in(R*\ O) x (0,7T).

Multiplying scalarly equation (1.5b) by or H(m) yields

d\m!2 B

= 0, (1.6a)
d
3 (E(m) = —allm x H(m)|2 o) (1.6b)

Formally, the local norm remains constant and the energyedses over time, which is in
accordance with the qualitative model and the physicalwasens.

2 The limit problem

In this article,L”(O) = (L?(0))?. We also denote b*? () the Sobolev spaces as defined
in Adams [1].
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Definition 2.1. Let O C R™ be an open set. Let> 0 and1 < p < 4o0. Then, ifs is an
integer,s = m, W™P(Q) is the space whose derivatives of order upitare inL?(O) and

lullwmsioy = ID ullLs(0)-

la|<m

Otherwise, ifs = m+o with m an integer and < o < 1, W*?(Q) is the subset ofV""?(O)
for which the following quantity is finite

[Du(x) — Du(y)|
ullwerio) = l[ullwmro) + | D // dzdy
(0) 0) oJo |.’B _ y|n+ap

|a|=m
We defineWs?(0) = (W*?)3(0). We denote byi*(©O) the Sobolev spacé/*?(0) and
defineH*(0) as(H*(0))*. Fors > 3, we define

H*(0) = {u e H*(0), g—z = 0} (2.1)

andH(0) as(H(0))?. We also define anisotropic Sobolev spaces

H™*(B x (0,T)) = H*(0,T;L*(B)) N L*(0, T; H"(B)), (2.2)
H"*(B x (0,T)) = (H"*(B x (0,T)))* = H*(0, T;L*(B)) N L*(0, T; H"(B)).  (2.3)

By 1, we denote the characteristic function of the @et

2.1 The physical problem

We compare the solutions to Landau-Lifshitz system (1.5 wifferent ferromagnetic do-
mains, {2 or §2.. We search the solutions in the Sobolev spde&)). First, fore > 0

we consider a sequence of initial conditiomg® belonging toH2(¢2.), |m5”| = 1. We
suppose that there exists”) in H2(€2), andm" in H!(2) such that

Img” —m5 @z, = 01), [mg” —mg |z, = O(e), (2.42)
(0)e _ (0
Mo . Mo, ujg, = m" weakly inH' (2., for all £, > 0. (2.4b)

For alle > 0, we definem=(® as the solution to the Landau-Lifshitz equation oemwith
initial condition mg’@. We also definen(®) as the solution to the Landau-Lifshitz equation
over (2 with initial condition m(()o). These solutions exist by Theorem 3.4 in [22].
Remark2.2 The construction of such operators must be done for each gfepwn a case

by case basis. For our simple geometry, a scaling construatorks. For example, we may
use

C(z)m(()o)(x,y,e+ LZfz,t) onQt,

C(2)ymY (x,y, —e + L==2,1) onQ,

(x,y,2,t) — {

where( is a smooth real function with a compact support includegHi.—, L) and value
lin(—=L—/2,L"/2).
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2.2 Expansion up to the first order

We developm®(® up to the first order ia. Formallym=© =y, m© 4+ emW. Thus, if
we develop (1.5a) and isolate terms of ordend1 in £, we obtain

L) ) _ am® x (m© 0
e L H(m"™) — am'™ x (m"™ x H(m'™)), (2.5a)
Mm@ =1inQ x (0,7), (2.5b)
(0)
a’";‘/ — 00ndQ x (0,7), (2.5¢)
mO(-,0) =m”. (2.5d)
And
1
a?gt = —mY x Hm?) — mO x H(mW) —amb x (m@ x H(m®))
—am9 x (mY x Hm)) —am® x (m© x H(mWY))
(2.6a)
m©@ . m® =, (2.6b)
2m0
S 3(,291120 onT* x (0,7T),
5 om- onl'~ x (0,7), (2.6¢)
0 on(0Q\T) x (0,7),
m(-,0) = mg", (2.6d)

wherev is the normal exterior on the boundary. In equation (2.6&)denote bylo(I")) the
surface measure &f, 1’v isin Hz (T) andy’vdo (T) is in H~z (T'). Formally,Hq(7 vdo(T))
is the limit of 174(15x(—.,-ym?) ase tends tad. The limit will be justified by Lemma 2.11.
Equality (2.6¢) is formally derived from
Pm©®  dmD
5( e + m ('7'707')) )

0722 0z

A(mO + emW)

0~ .. .
az (7’767)

Q

wherez is the third variable of space.

2.3 Existence and uniqueness theorems

2.3.1 Inequalities on cylindrical domains and miscellare@sults

We recall some inequalities needed to prove the theoremsorire cases, we prove that
and (2. are sufficiently smooth for such inequalities to hold. It igfisient to verify these
inequalities in each connected part, thus in domains of ithe B x (0, L). In this part, we
denote byO the setB x (0, L) whereB is an open convex bounded seffof with a smooth
boundary.

Lemma 2.3 (Elliptic Regularity) Letv € H}, (0) = {v € L*(O) | Av € L*(0), 8% = 0},
thenwv belongs ta1?(0), and there exists a constafitnot depending o such that

o]0y < CllvllL20) + [ Av[lL20)),
for all v in H2(O).
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PROOF: QO is convex. Elliptic regularity holds for all convex domaintlwa constant
independent of the open set. See [9]. O

Lemma 2.4 (Sobolev injections) Sobolev embeddings hold for dom&h The constants
can be chosen independentloés long asL > L, > 0.

PrROOF: Those domains verify the cone property, i.e. there exi$tseal coneC' such
that, for all pointx in O, there exists a rotatioR with x + RC' € O. Therefore Sobolev
embeddings hold. See Adams [1], Theorem 5.4. 0

Lemma 2.5(Gagliardo-Nirenberg)There exist€' > 0 such that

1 1
IVllLaoy < Cllvllie o) 01520
for all v in H?(©). Moreover, the constant remains bounded as lond as L, > 0.

PROOF: Those domains verify the cone property and therefore GedgiNirenberg
inequality. See Maz’ja [20] page 69-70. O

Lemma 2.6. Let
X(0) = {u € L*(0),divu € L*(0), rotu € L*(O),u -v = 0}.
Then, X (0) = {u € H'(O),u - v = 0}. There exist&' > 0 such that for allu in X (0O),
[ullm o) < C ([lullizo) + [[divalliz o) + [rotulliz o) -
Moreover,C' can be chosen bounded as longlas- L, > 0.

PROOF: This result is well known for bounded sets with smooth baures, see [6].
We generalize the result to cylindrical open sets with a dmtaderal boundary. Fou =
(U, uy, u,] in X(O), we define

[Uy, Uy, =] (z,y, L —2) onB x (L,2L),
u(r,y,2) = Q [Ug, Uy, us] (2,9, 2) onB x (0, L),
[Ug, Uy, =00z (T, Y, —2) onB x (—L1,0).

Thus,w belongs taX (B x (—L,2L)). Let¢ be a smooth real function di such that

There exists a bounded open €&t with a smooth boundary such thBtx (-1L,3L) C

Oy C B x (—L,2L). Thus,x — ((2)u(x) belongs taX (O,). We apply the already known
result onO,. (u belongs toH'(O,). The restrictionu belongs toH'(O). The constants
depend only on thé&> norms of¢, {’. With a good choice of, the constant can be chosen
bounded as long ak > L, > 0. O

We generalize the previous lemma. Eéfﬁ&%(@@) be the set of functions belonging to
L2(9O) whose restrictions 08B x (0, L), B x {0} andB x {L} belong toH™"z.
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Lemma 2.7. The following trace application
A HA(O) — H2 <B X {0}) x H? (aB % (0, L)) x H3 (B x {L}) = H3(90),
(2w 0u O
“ 0z ov’ 0z)’
is onto and has a continuous right inverse.

PrROOF: By local map and partition of the unity, we reduce the probletme half plane
and its trace map

7 HAR, x R x RY) — H2 (R, x Rf) x H2(R, x RY)
ou ou
—> — - 0 . B 0
u (ay( ) ) )’ az( P )) Y

We define
3

7°:HY(R, x R} x RY) — H3(R, x R¥) x H
u— (u(-,0,),u(--,0))

By Lions-Magenes [18].fo, g0, f1, 91 iS in the image ofH?*(Q2) by +°,+! if and only if
fo(-,0) = go(-,0) and [[gi(-,0) — 8, fo(-,0)|%2 and [|fi(-,0) — .90(-,0)|9 are finite.
There are no direct compatibility relations betwefgrandg, thus we only need to construct
fo andgy. Given f;, we defineg, asgo(&,y) = C(yv/1+1€%) fy f1(§, 2)dz, where( is a
smooth real function satisfying, < ¢ < 1, with Supp(¢) C [0,2] and¢ = 1in [0,1]. We
constructf, by the same formula anf}, go, f1, g1 has satisfy all compatibility relations and
the mapy! is thus onto. As every closed set of a Hilbert spaces has #ogipal supplemen-
tary, there is a right inverse O

(Ry x RY)

Obviously, the result extends to the vectorial case andl*(0)) = Hr%nm(a(’)). The
following theorem was proved by C. Foias and R. Temam wieis a bounded open set
with a smooth boundary.

Theorem 2.8.Letm > 1. Let
X™(0) = {u € L¥0),divu € H"1(O), rotu € H™ (O), u - v € Hiat (90)}.
Then, X™(O) = H™(O). And there exists a constafit> 0 such that

ullino) < € (lulzo) + ldivalln o) + [rotulsn o) + vl o)

The constan€’ can be chosen independently/oés long asl, > Lg > 0.

PROOF: The proof is adapted from Foias-Temam [7], with no fundatalechanges in
this case. We proceed by recursion over

1. If m = 1. Let G be the closed subset &f(O) of all gradients of real functions in
H'(O). The orthogonal of7 is HD = {f € L*(O),div(f) =0, f - v = 0}. Letu be
in X1(0), let Vp the orthogonal projection af ontoG. Then,p is defined by

Ap = div(u) in O,
dp

8—V:u-l/|n8(’).

Thus, by elliptic regularityp belongs toH?(O) sincew - v belongs toy! (H?*(0)).
Moreover,u — Vp verifies the hypothesis of Lemma 2.6. Thus- Vp belongs to
H!(O) as well asu.
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2. If m > 1. Suppose the theorem holds for — 1. By the recursion hypothesis,
belongs toH™~!(O). Let D™~! be a differential operator with an order — 1, then
v = D™ lu belongs td.?(0), div(v) belongs td.?(©) androt(v) belongs tdL?(O).
Furthermore,

m—1 ' ' 1
v-v=D"u v)- Z D'vD™ ' € Haore (00).

i=1
Thus,v belongs tdH!' (©) andu belongs tdi™(O).
U

Corollary 2.9. Letm > 1. The set{v € H'(O), Av € H"1(0), 2 =0} is equal to
ﬁm“((’)). Moreover, there exists a constaritdepending only o such that

[ollams0) < C([[oflee + [[Vollee + | Av]|m-1) .
Moreover,C' remains bounded as long ds> L, > 0.

PROOF: Apply Theorem 2.8 withu = V. O
As a corollary, the eigenfunctions of the Laplace operaitit Weumann boundary condition

belong toH™(O) for all m > 0 and thus are i€>(O).
The last lemmas establish regularity results for the demt@zation field operator.

Lemma 2.10.For all 1 < p < +o0, H,4 is @ continuous operator frof?(O) to L?(0O), and
fromW'?(O) to W'»(0O).

PROOF: See M.J. Friedman [8], O. Ladyzhenskaya [15], or G. CarbalRafrabrie [5].
U

Lemma 2.11.1f v belongs td! (B x (0, L)), then theL?(Bx (+¢, L)) norm ofHd(TBX(O#E)m)
is dominated by near zero. As a direct consequengg,(y°vds(T)) isinL?(B x (0, L)).

PROOF: We denote by:. the homothecy that sends
H'(B x (0; L)) — HY(B x (g, L))
. {v(m,y,ﬂw—s» in Q..

0 iNnR3\ Q.
Then, if we denote by* the characteristic function a8 x I,

1Ha(T 1 oy0) 2y < IHa(To1yv) — Ha(Tf 1yv) L2,
< [Ha(Ti 1)) — he(Ha(1]y 1)) 120
y )
+ 1he(Ha(Tfo 1y0) = Halhe( 1y0) iz @7)

17

+ [ Halhe (T y0) = a0z

117
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Terms and /11 areO(e) becausél! is stable by the actiof,. Estimating// whene is
nearo, is the same as estimating

w = Ha(To 1)v) = ho Ha(he (Lo 1yv)) Iz

The equation satisfied by is

810564_8102,jL L Ow, € ovv, + h,
ox oy L—e¢ 0z L—c¢ 0z ’

ow, L ow, e Ohy

oy L—c 8z  L—¢c 0z’

L—c0z Or L—¢cdz’
ow, 8ww_0

ox dy

whereh = H,(v). A simple Fourier analysis proves that thé norm of this term is domi-
nated bye nearo0. O

2.3.2 Existence and uniquenesswof’)

m(©) satisfies equation (2.5) ové). G. Carbou et P. Fabrie proved the existence of strong
solutions to the Landau-Lifshitz equation and their uniggsgs in [5]. In this sectior? is a
bounded open set.

Theorem 2.12(Regular solutions for Landau-Lifshitz equatior§uppose? bounded and
“regular” enough. If the initial conditionmm, belongs td?(©) and satisfies

]m(]]:linO, m0:0inR3\O,

then, there exist$™ > 0 and a unique solutiomn to systen{l.6a) (1.5a) (1.5b)and(1.5c),
belonging for alll’ < 7™ to L?(0, T; H3(O)) N C(0, T; H2(0)).

PROOF: See the proof of Carbou-Fabrie [5]. O

We improve slightly Theorem 2.12.
Remark2.13 The solutionm to system (1.5). belongs ¢ (0, 7'; H3(©))nHz (0, T; L2(O))N
CY(0,T;L*(0)) forall T < T*.

PROOF: In [5], itis proved thatm belongs taH' (0, 7; H'(O)) and toL?(0, T; H*(O)).
By interpolation,m belongs toC([0,7*); H2(0)) and toHz ([0, T*); H2(O)), see Lions-
Magenes [19]. Thus,

m € C([0,T%); L>(0)), Am € C([0,T%); L*(0)),
Ha(m) € C([0,T7); L*(0)), Ha(m) € C([0,T7); L*(0)).
But 2 = —mxH(m)—amx (mxH(m)), thus2® belongs t ([0, 7*); L*(0)). Hence

m belongste' ([0, 7%); L?(0)). We apply corollary 2.15 ang®* belongs tdiz (0, T; L2(O)).
0
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Lemma 2.14. The bilinear form(m, f) — m x f from (Hz N L°)(0, T;L>°(O)) x (Hz N
L>°)(0, T; L2(0)) to (Hz N L>=)(0, T; L2(©)) is continuous.

PROOF: We recall that théiz (0, 7'; X) norm is equivalent to the norm

T
T
i = [ [ O g
7=0 Jo= T 0|

See Lions-Magenes [19]. Then, we have

Hm X fH]LOO(O,T;ILQ(O)) < HmHlLoo 0,T;L°(0) HfHLoo (0,T;L2(0))-

T |lm(r) x f(r) = m(o) x f(9)ll2(0)
lm x JCHH7 (0,TL2(0)) /T 0/ P dodr

/ /T lm (7 ”JLOO(O)”f<T>_f<O-)H%‘2(O)dUdT
7=0Jo

|7 — o|?

dodr

T £(0)ayo () — m(0) |2 o
*lo T = o

< CHmH(meH%)(o,T;Lw(O))Hf“(LoomH%)(o,T;LQ(O))'

Il
Furthermore? is linear continuous fronfi.>°>NHz2)(0, T; H2(0)) to (L*°NHz ) (0, T; L2(O)).
Thus, as a corollary, we have

Corollary 2.15. The applicationm — —mxH(m)—amx(mxH(m)) fromH! (0, T; H' (O))N
L2(0,T; H3(0)) to (Hz N L>®)(0, T;L2(O)) is continuous.

Remark2.16 The inverse of the time of existen¢&*) ! and theH3 norm of the solution
m© remain bounded by a function of tfi# norm ofmo This function can be chosen
independently of. as long ad. > Ly > 0.

PrROOF: T* and the estimates on the size of the solutions depend onzihefsihe ini-
tial condition and on the constants of the inequalities afiea 2.3.1. Since those constants
remain bounded fof. > Ly > 0, bothT™, and the size of the solutions remain bounded as
long asL > Ly > 0. O

Remark2.17. The application that sends the initial condition to the soluto the Landau-
Lifshitz equation is continuous frofi2(O) to H*2 (O x (0,T)). Moreover, the application
mo — 2™ is continuous fronH2(O) to C(0, T; L2(O)).

PROOF. Theorem 2.12 established in [5] asserts the continuity @b, 7'; H?*(0)).

However, the provided proof also proves the continuity int@), 7'; H3(O)). By interpola-
tion, there is continuity inttHl(O T;H'(0O)). Using corollary 2.15, we obtain the continuity

of applicationm — 22 into C(0, T; L%(©)) N Hz (0, T; L.2(0)). O

The following result is necessary for the proof of the existe of solutions of the lin-
earized Landau-Lifshitz equation.

Remark2.18 For allT < T*, ||[Vm/||rs(o. 1L (0)) < +00.

1 1 .
PROOF: UL~ < C’||u||ﬂﬁp(0)||u||§ﬂ2(0). Since

m® belongs td.?(0, T; H*(0)) and toL.>= (0, T'; H?(0)), Vm® belongs td.*(0, T; L=(0)).
U
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Remark2.19 Theorem 2.12, and Remarks 2.16, 2.13, 2.17 and 2.18 hold tordeal open
sets with a smooth boundary and for cylindrical open setsraf B x (0, L). These results
also hold for disjoint finite unions of such open sets. Inipatar, the theorem holds fae
and for(2..

PROOF: The demonstration of Carbou-Fabrie is valid if the Sobojgaces oveO sat-
isfy some inequalities and the demagnetization field opefd} is regular. This was verified
in section 2.3.1. OJ

2.3.3 Existence and uniquenessof"

Theorem 2.20.Letm”) be a solution to probler(2.5). If
my) € H'(Q), m(” - mg =0,

then, Syster(2.6) has a unique solutiom ) which for all T < T* —T"* time of existence of
m®— belongs td.?(0, T; H?(2)) N H'(0, T; L?(2)). Moreover, the following application
IS continuous
H> (Q x (0,7T)) x H'(€) — H>'(Q),
(m@ m{y - m®.
PROOF: System (2.6) is equivalent to

om)
ot

— aAAMY = —mO x AAMY —m® x AAMO + 20 4(VmM . VmD)m©®

+ aA|VmOPmY —m® x Hy  (mO) = m@ x Hy,(mD)
—m@ x Hy("mOdo (1)) — am® x (m? x Hy(m©))
—am? x (mY x Hy,(m©)) — am© x (MmO x Hy,(mD))

_ am(o) X (m(o) X Hd(’}/om(o)da(r)))7

(2.8a)
m® . m® = 0, (2.8b)
om® [ 2mD  onpE i (0,7),
_ (2.8¢)
ov 0 on(0Q\T') x (0,7),
m1(-,0) = mg", (2.8d)

wheret,, = Hq + H,.. To prove the theorem, our plans comprise n steps

1. Prove the redundancy of (2.8b) in System subeq:LandshitzZSympOrdrel when
m” - m". This is done in Lemma 2.21.

2. We prove that there exists an expansjoim H2!(Q x (0, 7)) to the boundary condi-
tion 2.8c.

3. We use the expansigh to reduce the well-posedness problem to the case where the
boundary condition 2.8c is replaced with the standard zexanNann boundary condi-
tion. This is done by considering the equation satisfiedr3y — f.

4. Finally, we prove the well posedness of this latter systantheorem 2.24.
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Il
Lemma 2.21. Condition(2.8b)may be derived from the other equations of sy{2i®).
PROOF:
@ . m©
O(m 8tm ) _aa (AmD - m©) 4 2/vmO P(m® . mO)) . (2.9)
Butm{” - m{" = 0 and2m-m™) _ ( on 9. This is obvious oM \ . ONT,
I(m© . m) omW 0*m
— om0 . — (0.
ov m ov m ov?
0 (MmO Y, ai(@)22)  gmon?
- ov a ( v ) =0
We then multiply (2.9) byn(" - m(©), and we integrate oveé? x (0, 7).
{/!m 2da:] —l—aA/ |V(m(1) ~m(0))’2dw
Qr
= 2aA/ VMmO (m® . m@)2de,
T
< QaA/ VMmO g /|m D 12dg.
By Gronwall’s inequality
T
Im® - mO|220)(T) < [lmg” - mg” |22 ) exp (2aA / HVm(O)Hioo(Q)dac)
0
Hencem™ - m© = 0 almost everywhere. O
Also, we have an extension result.
Lemma 2.22. There existgf in H2!(Q x (0,T)) for all T < T*, such that
F ?m0 +
of _ )T onl= x (0,7), (2.10)
ov 0 on(0Q\T') x (0,7),
PROOF: Definef as
- om© :
Fla,y,2,1) = =((2) 55— (2,5, 2,£) in O, (2.12)
~ (0)
Froot) =€) a2 ) in 0 212
z
with ¢ a smooth real function with support included (irZ—, L) and with valuel in a
neighborhood o6. 0

Also, we have the following

Lemma 2.23.The quantityn(?) x H(7°mQde (T')) +am© x (m© x H(1*m©do(T)))
isinL2(Q x (0,7)) forall T < T*.
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PrRooF: m(? belongsifL>®(Qx(0,7*)). We only need to prove thadt ;(y*m©do(I'))
isinL%(Q2 x (0,7)) for all T < T*. This is a consequence of Lemma 2.11. O

We have to consider the following system and proved its weedness under certain
conditions.

dw _ aAAw = —m® x AAw —w x AAMY + 20A(Vm? . Vw)m© + aA|VmO 2w

ot
—w X Hd,a(m(o)) —m© x Hao(w) — aw X (m(o) X ”Hdﬂ(m ))

—am? x (w x Haga(m?)) —am? x (m® x Ha(w)) + 6,

(2.13a)

9 _ 50000 x (0,7). (2.13b)
ov

w(-,0) = wy. (2.13c)

Theorem 2.24.Letm(© in H*2(Q x (0,T)) for all T < T*. Let3 be inL2(dQ x (0, T))

such that there existg in H2'(Q x (0,7)) with 5 = 2. Let be inL2(Q x (0,T)). Then,
systen{2.13)has a unique solutiomw that belongs td&*! (2 x (0, T')). Moreoverw depends

continuously on the daté,w, f andm©

PROOF: First, we reduce the case fo= 0, we notice that ifw exists thenw — JN” must
verify system (2.13) once we have replagely 0, w, by wy — f(-,0), andé by

0—%_f+aAAf+2aA(f m)mO + aA|lVmOPf —m® < H(f) - f x H(m)

—af x (Mm? x Hyo(m)) — am® x (F x Hao(m®)) — am© x (m©® x Hyo(F)).

which belongs td.?(Q2 x (0,7)) by Holder inequality. Conversely, if this new system has a
unique solution, which we denote hy', w' + } is the unique solution of the more general
system. We now prove the existence, uniqueness and stabiigns = 0, i.e.. when the
Neumann boundary condition is homogenous.

Preliminary inequalities For each contributiop, we define

2 (w) = —w x Hy(m®) —m x H,(w) — aw x (m” x H,(m))
—am® x (w x H,(m?)) — am® x (MmO x H,(w)).
(2.14)
We need the following inequality for the term defined in egquat2.14)
| F5” (w) ) < C'(1+ [l ) [l 0. (2.15)

This is a consequence of Holder inequality &nel®| = 1 over(Q.

Galerkin's method We recall thatm (¥ belongs tdH* 3 (2 x (0, T')). and is a known strong
solution to the Landau-Lifshitz equation.

Let (w;);en- be the eigenfunctions of the Laplace operator with Neumanmdbary
condition with (\;);en+ the corresponding eigenvaluesw; ) en+ IS an orthonormal
basis of.?(2) and also an orthogonal basisIf ({2). By Lemma 2.3, ifO is an open
set with a smooth boundary or a convex doméih, = H? and the eigenfunctions;
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are inC>(0). We defineV,, asVect(w, . .., w,) for eachn > 0. We defineP,, as the

orthogonal projection offy,, in L2, the projection is also orthogonal It andH2. We
look for w™ in V,, ® C>(0, T'; R?)) such that

0;1; n (—Aw” X Am(o) _ Am(O) % Aw" + 204A(Vm<0) . vwn)m(o))
P (@Al VmO P+ Pl w) +6)
(2.16a)
w"y = P (wy). (2.16b)

We decomposev™ = Y 7" | ¢%(t)w; wherey, are functions from(0, T') to R?. Sys-
tem (2.16) is equivalent to

©;(0) = (wo,ws) Vi € [,n],

pi(t) = —ANpl(t) + AZ Ajpl(t) x / mOww;dx — AZ @5 (t) x / AmOyw;de
— 0 — Q
n 3
+ ozAZ (go?(t) /Q|Vm(0)|2ijidaz + QZgogL’k(t) /Q(Vm“);k -ij)m(o)widaz>
j=1 k=1
+ ZZgo (/ Fiﬁgin(ukwj)widm> + / Qw;dz pourtouti, 1 < i <n,
Q

7=1 k=1
where(uy,) is the canonical basis @.

This is an ordinary differential linear equation ¢@!); whose coefficients depend
continuously on the time. The affine term isTin(0, 7). Thus, there is local and
global existence ofv™ over [0, T*) whereT™ is the time of existence af2(?). We now
estimate the size ab”. In these estimates, is a positive number that can be chosen
arbitrarily small. C' is a generic constant depending only on domain uniformly
bounded as long as< ¢y = min(L*, L™7).

First estimate We multiply (2.16) byw™, integrate, and obtain using Green'’s formula

A n
2dt/|w[da:—|—a /[V'w\dw

= —A/(m 0 % A'w”)-w”dw+ozA/|Vm(0)\2|w"|2dw
Q Q

~\~ ~\~
1

11

+2aA/(Vm(O) Vw")(m? - w )d:v+/0 w”d:v+/Fad(01;n w") - w'dx
0 0

J/

v~

117 1V

<1

(2.17)

Let's estimate each separate term of the sum. First, weatgtin= [,,(m® x Aw")-

w"dx.
o x " om®©

< IVm | @ | w" |z | V" iz

1| =

(2.18a)

1 ] )
< Eva(o)Hﬁoo(me 20 + 1l Vo™ |2 -
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We evaluatd I = [,,|Vm© ?|w"*dz.
11| < ||Vm(°)||iw(9)|]w”||i2m). (2.18b)

Estimating/I] = [,(Vm© - Vw")(m® - w")dz yields
(1] < —||Vm NIE o @ 1w 1220y + 1l V0" £ (2.18c)
Then, we estimatéV = [, 6 - w"dx
1 2 1 n||2
1V] < S1161a(@) + 51" g (2.18d)

Using inequality (2.15) o = [, F*%"(w") - w"dz, we obtain

a,d,lin n n
VI < [F " (w") [z lw” L2
< C (14 [[m|m o) ||’wn||12u2(9) +C (14 [mO g ) IV 2@ lw™ 2@

1
<0 (142) (14 ImOlBugy) Ty + 110" B
(2.18e)

Combining inequalities (2.18), we obtain for alt> 0

n n 1 n
2dt/|w Pa+ad [ [Vurfde < C (1+ n) (ITmO 2 + [m® ) w2

+ HOHIL?(Q) + 77||an||11242(9)‘
(2.19)

We choose; = %. By Gronwall’s inequality, for alll’ < 7™, there existCr > 0
such that for alh > 0

|w"{|Le0r12(0) < Crs [Vw"||L20.7x0) < Cr, (2.20)

whereT™* is the time of existence af(¥)

Second estimateWe multiply (2.16) by by —/Aw™ and obtain

/Vw”| dx + ozA/|A'w”| de = /(w” x Am©) . Aw"da
2dt o

J/

~
I

—20A /(Vm(o) -Vw") - Aw"dex —aA/|Vm(O)|2w" - Aw"dx — / 0 - Nw"dx
Q Q 0

J/

v e v~

11 117 v

/ Fo(w") - Aw'dz (2.21)

|4
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We estimatd = [,,(w" x AmY)) - Aw"dx.
1] < " [a | AmOlsgo) [ Aw” |2
1 n n
S —||Am s llw™ 230y + nll Sw [E2)

S—HAm s lw" I @) + 1l Aw"|[E2(q)

Then, we estimaté/ = [,(Vm(® - Vw") - Aw"da.

11} < VM oo 0| Vo [z | Aw" |20

1 n
—n\!Vm () I V" [z () + 1l Aw"[[F2(q)-

| A

Then, we evaluatél] = [,|[Vm©2w" - Aw"dx
11T < [VmO|F <o) [w" 2@ | Aw" 20
< 2 19O [0 gy + 1l S0 gy
Estimating/V = |, 6 - Aw"dx yields

(V] < _||0||L2 )l Aw[Ezq)-

Using inequality (2.15)" = [,, F*%" (w") - Aw"dz, we obtain

a,d,lin n n
VI < [F o (w") [z o) | Aw” ||z

m(0)

< O+ [m o)) 1w |z o | A" 2

Q

— (1 + MmOl @) w0 i @) + nll Aw"[|E2(q)-

77

Combining equations (2.22), we obtain

C
n|2 n
2dt/Ww |d:v+aA/|A'w I?da < <

(2.22a)

(2.22D)

(2.22c)

(2.22d)

(2.22¢€)

(VMmO + Mm@ 3s) w172

C n n
+ o Ve [ + Mm@ [5) Va0 122 q)

+ U||Awn’|u%2(9) + ||9||n%2(9)

Choosing; small enough, we obtain

(2.23)

d n n n n
G [Ivw s [(swrpde < 50+ gtt) [ [VerPde nlsw s,
Q Q Q

wheref andg belongs td.' (0, T"). By Gronwall's inequality, there existS; > 0 such

that for alln > 0

vanHL"O(O,T;LQ(Q)) < Cr, ”AwnHL?((O,T)XQ) < Cr.
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Convergence of the sequence to the solutiowe have proved that for all’ < 7%, there
existsCr such that

||wn||L°°(O,T;]L2(Q)) S CT, ||V'w”||Loo(07T;Lz(Q)) S CT7

ow™
ot

< Cp.

| Aw" || 20,r200)) < O, H
L2(0,T5L2(2))

The last inequality being a consequence of the other estsratd the contractivity
of P, in L? in equation (2.16a). According to elliptic regularity Lerarg.3 over,
|[D*w"||12((0,r)x0) < Cr. Thus, there exists a subsequence such that, far allT™,
w} converges weakly ta in H*!(Q x (0,7)). SincelJ,-, V,, is dense ir.?(Q2) and
in HY(Q2), w is a solution to system (2.13).

UniguenessLet w andw’ be solutions to the system (2.13) thée = w’ — w is solution
to (2.13) with affine tern® = 0 and initial conditionw, = 0. After multiplying this
equation byyw and integrating ove®2 x (0,7), we obtain the following estimate

d
G | wdataa—n) [ 5vwbde < Cm (Im® e + 19mO e ) 15wl

The uniqueness follows from choosing= «A/2 and using Gronwall’s lemma.

Stability We define byS the map that sendsn ), wy, 6) to the solutiomw. S(m©, - .)
is linear continuous and its norm only depend on the sizex# in H*2. ThusS is
continuous in(wy, @), uniformly whenm(® remains bounded. Thus, to prove tisat
is Lipschitz, we only need to prove thatis Lipschitz when onlym(® vary. Given
(m©, wy,, 8) and(m©’, wy, #), we definew andw’ as the solutions to the linearized
Landau-Lifshitz equation with datan(©), w,, 8) and(m©’, w}, 8'). If the data re-
main bounded, so does the solution. We define

dw =w —w, om

Sincew andw’ both satisfies (2.13a), we make estimates by subtractirty dupia-
tions. Then, we can prove the stability making the followesgimates.

o We multiply this equation byw and integrate ove®. This gives an estimate on
theL>°(0, T;1L3(2)) norm ofw and thel.?(Q x (0, 7)) norm of Vaw.

e We multiply this equation by\jw and integrate ovef2. This gives an estimate
on theL.>(0, 7;1L3(€2)) norm of Vw and thel.?(Q2 x (0, 7)) norm of Aw.

Reusing the equation, we obtain an estimate ofL#{€ x (0,7")) norm of 2. Those
estimates proves the stability and are very similar to thesarecessary to prove the
existence.

O

We make the following remark on whehverify the extension criteria in Theorem (2.24).

Remark2.25 The image of the trace applicatiort : f > g is the space of functions

whose restriction t& x {0} and todB x (0, +oo) are respectively iftiz:1 (B x {0}) and in
H21(9B x (0, +00)).

PrROOF: This can be proved by the same kind of arguments as in Lemrtiia (Zhe
complete proof is in the appendix of Part 2 of this article[21§. OJ
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3 Convergence of the expansion
3.1 Convergence ah©) tom©

To prove the convergence, we must first introduce an ariifieran of first order to discard
some boundary condition. We need the following proposition

Proposition 3.1. Let

m©® ¢ H*3(Q x (0,7)), m® € H"3 (2 x (0,7)),
BT € HZ’Z(B x {0} x (0,7)), B € HZ’Z(B x {0} x (0,7)),
m{’ e H'(Q x (0,T)), 6 € L2(Q x (0,7)).

Then, the following equation with unknowa on Q.

om

ot

D= —Am® x Am© — Am©" x Am® + aAlVmO Pm®
+aA(Vm© + vm®"y . vm)m @ — m® x 1, ,(m©®)
—mO" x Hyo(m®) — am® x (m© x Hyo(mM))
—am@ x (m® x Hyo(m®)) — am® x (m® x Hy,(m®)) + 6,

(3.1)
and both initial and boundary conditions
o [T ONBx {+e) x (0.77),
f= onB x {—e} x (0,T%), (3.2
0 ondQ\ (B x {xe} x (0,7%)),
has a unique solution if* 1(Q x (0,T)). Moreover, the solution is stable #i*! (2 x (0, 7))
with respect to the datam©) m©’ 3+ ﬁ—,mél), 0). Furthermore,

e the application that senc{mm),m(o)/,ﬁﬁﬁjmo ) to the solutionm ™ is Lipschitz
over bounded sets.

e Lipschitz constants depend on the operntietut they remain bounded whenends
to 0.

PROOF: This is a straightforward adaptation of the proof of Theoi2 20. O

Proposition 3.2. Let 1, be the characteristic function @. Letm®(!) be the solution over
Q2. to systen{3.1)with data

1 ~ 1 ~
0 = gm(o) X Haa(Ipx(—erom?) + gozm(o) x (M x Hgo(Tpy(crom?)),

miM =0, m@ =moO, MmO = p0O),
10m© 19m©
+ —
= - 'a'7+67' ) = - yy TEy )
B =50 ( ), B =50 (- )

Then,m®(") exists and is unique i[> (2.) with a H>!(£2.) norm that remains bounded
whene tends ta0.
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PROOF: The initial data and the boundary conditions are in the irequspaces. We
apply Proposition 3.1. The size of the data remains bourtdedyoundary condition remains
bounded because

om©
Ha—y(Ow&O) < |7—em® — m O |l (5 (0,400 % (0,7

31
H2'7

(0)
< ellm™la 3 5y 00yx 0y

after extension ofn®) over B x R** x (0, T') and wherer_. is the translation operator over
the third coordinate of space definedhy f = (z,y,2,t) — f(z,y,z + ¢,t). The affine
term@ remains bounded by Lemma 2.11. O

We definedom = m=© — m© andsim = m>© — mO® — em=U. Then, we esti-
matedm. Direct estimates ofan would be more difficult because of the nonhomogenous
boundary conditions.

Theorem 3.3. We have
[m® — m® — em=W||gei 001y = O(e),

”m(o) — ms’(O)HHz,l(QEX(QT)) = O(€>

PROOF: Sincem=W is bounded inH>!'(Q2 x (0,7))) independently of, the sec-
ond inequality is a consequence of the first. We prove the ifisjuality. §'m satisfies
equation (3.1) with9 = 0. TheH'(©2) norm of the initial condition is dominated ky by
hypothesis (2.4a).

Estimates on anisotropic and demagnetization field termave define
SIF Y = —5Im x Hyo(m©@) — m=O) x Uy, (6Im)
— am®® x (m>© x Hy,(6/m))

—am®® x (6'm x Hyo(m?)) — adlm x (m@ x Hyo(m)).

But#,., = H.+ g4 is continuous fronL.? to L9 for all 1 < ¢ < +o0, and in particular
for ¢ = 4 or ¢ = 6. Moreover,m=W, m© andms© belongs toL.>=(0, T;L%(£2.))
and toL.>°(0, T; L*(9.)), for all T < T*. Thus, for allT < T*, there exist<(T)
independent of such that

18220y < C(T)[|02m e oy

First estimate We multiply equation (3.1) by'm and integrate oveR

1d L aq o0lm om0 .
§a/sza|5gm| d:c+ozA/Q£|V5§Tn! de = AzZ:/ﬂ ( o, X o -o,mdzx

/

~
1

£

+ aA/ (Vm9 . V(m® + ms0)(m>O . §lm)da
Qe

J/

v

11

+aA [ |[VmO?5im|2de + / SFe . Simdx . (3.4)

QE £
N

N

~

117 v
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First, we estimatd = 3, [, (‘925:” X E(O)> Smde.

1] < IIVm o,

m||r2) | Voimliz .

(3.5a)
< —IIV’m(O [ ||5 [E2(0.) + 1l Vom|[2q,
We also estimaté! = [, (Vm® .- V(m® + m=©))(m=©) . §m)dx
11 <—v O 4 msO) |12, o ||160m]|2,
11 IV(m )E @) 10ml[2q.) (3.5b)
+77HV(5§7n)HL2(Q
Estimating/ /1 = [, [Vm©?|glm[*dz yields
(11| < [ VMmO |2 g, 182m ] 22q . (3.5¢)
We estimate V' = [, §1F*?- §!mdz.
[IV| < [[62F |2 () 102m |2 00
(3.5d)

1
<c (1 ; 5) 61m 20, + I V8m 2

We combine all inequalities (3.5), we choagemall enough. By Gronwall’'s lemma,
there exists a constadt; such that

[52m |1 (0,7:2.2(0) < Cre IVomizoriz@) < Cre (3.6)

Second estimateWe multiply equation (3.1) by- Adlm and integrate oveR

V( 51'm, 2dw—i—aA A (51'm, dec—
2dt

A/ (A’m(o) x Adm) - Simdzx —aA/ (Volm - V(m®>© + mO)m© . Agkm)dz
Q. Q

€

g

1 11

—aA [ |[VmOP5m - Adimdx — / SIF . Adtmdx . (3.7)
Qe e

111 1V

We estimatd = [, (Am©® x Adlm) - §mda.
1] < | AmO us o) | A(8m) |2, 16ml|usq.)

1
4 0))12 12 Loy (|2
< 4nHﬁm m||is .y + 1A 0m) |2, (3.8a)

C
< E||Am(0)||i3(95)||5§7n||%1(95) + )| A0 2
Then, we estimaté/ = [, (Valm - V(m=© + m©@))m . Adlm)dx

1] < —HV( 5O 4 m )H]?PO(QS)”V(S;mHiQ(QE) + 77||A551m”12L2(Q€)- (3.8b)
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Estimating/ /7 = [, [Vm©?§!m - Ajlmde yields
1
[I1] < E||Vm(0)||ﬁoo(95)||5§m||i2(95) +nllA8iml[E,)- (3.8¢)

Then, we estimatéV’ = [, 61F*?- Ajlmde.

[IV] < I02F* [n2(0.) | A6 |12,

C (3.8d)
< EH@’"H%}(QE) +nllAdm|Zz .-

We combine all equations (3.8), choagemall enough. By Gronwall's lemma, there
exists a constartt’; such that
IV6im| Lo, < €Cr A8 |1 20120)) < eCr (3.9)
Thus by elliptic regularity th&.?(0, T; 1L?(Q2)) of D?§'m is also bounded bg’.c.
Estimate of the time derivative It only remains to estimat&™. The previous estimates

ot
and (3.1) imply thaH 23m s S0

3.2 Convergence @i — m( — e

To compare solutions existing dn or 2., we need a sensible comparison criteria. We
introduce an extension operator in order to compare® andm® over(). We define
me = Prol.(m>©) by reflection.

me©) onq).,
me(z,y,2) = s moO(z,y,e —z) onB x (0,e) x (0,T),
m>O(z,y, —e —2) onB x (—¢,0) x (0,7).

Then,m¢ belongs tdH*: (Q x (0, T)), verifies the Neumann homogenous boundary condi-
tion over the lateral boundary and also almost verifies Lardéshitz equation with a small
correction for the demagnetization field operator.

Lemma 3.4. Our extension operator satisfy

[Prol.(myq.)||lw2(e) < Cllmlluz@) + Cellm|lus @),
[Prole(myq.)[lL20) < [lmlizie) + Cellmlm q).-

€ etz a
|Prol.(m)[|2 < 2| +2// / om i
I' Jz=0 s=e—z az

2e 2
< 2ml% +452//
I' Jz=0

PrRooF: The result follows from

2
dzdo(x),

om

o dzdo(x).
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(m=(9))—m(0)

Theorem 3.5. The quantity™*% converges weakly tor(V) in H>'(Q x (0,T)).

PrROOF: According to Theorem 3.3m=(© — m© ||y, is aO(e) thus according to
Lemma 3.4|m¢ — m©@||=1 = O(e). Thus, there exists a subsequensgg,cy andm®) in
H21(Q x (0,7)) such that,

—

men — m(o)

. 1 weakly inH>!(Q x (0,7)).

We now prove thain(!) = m®) and that the whole sequence converges.
We introducey'm = ™= ""< . Then, for allk > 0

98, m .
5; — AN, m = —mF x ANSL, m — 8. m x AAm© + aA[VmO 5. m

+aA(Vm© + Vme) - V. m)m® — 5. m x Ha,(m?)
— ’I:Y\Jla X Hda(5/ m) — oz(ﬁnkm X ( 0) X Hd ( (0)))

—am? x (6. m x Hago(m ) —ame x (mé x Hao(. m))

Eny, Eny,

—m© x ng(q,&s)m(O)) —am©® x (m© x gﬂdupm)m Nin Q.. (3.10)

We take the limit in the sense of distributions, in (3.18)(}) satisfies equation (2.6a). Since

oL, m - (m + m#) = 0, m() satisfies constraint (2.6b). Moreover, ot \ T', we have

86; m
— = (). Thus,m( satisfies equation (2.6¢) @2\ I'. OnT,

2

om© ome
— (@, e, t) + 0+ t)| do(x)dt
//W @ 1) + 0 (@,07,1)] do(a)
€ 82 (0) 2
// / 2m )(a:,z,t)dz dadt
z=0
2=~ 2 — a0 2
gg/// 0 (me — m )(w,z,t) dzdzdt < &3 m
2=0 € [H0,2,0
Thus, )
10m© 10m:
t) + = T8 d dt =
[ [ e + 1o w00 astaiai =000
Hence,
om™ 1 Ome 1 om© 9*m©
L0%, ) = lim — 0F,), = — lim ———(-,¢,"), = — L0,
0z (7 ’ ) Eklgo €k 0z (’ ’ )7 Eklglo Ek 0z (’8’ )’ 022 (’ ’ )

Hence,m() satisfies (2.6¢) oir. By equality (2. 4b);m also satisfies (2.6d). Thusp ()
is the unique solution to system (2.6). Thus{) = m(). The whole sequence converges.

4 Numerical simulations

We now have an equivalent boundary condition that allow usirtmulate the evolution of
a ferromagnetic body crossed by a thin split. The finite vausecheme introduced by
S. Labbé [11] is adapted to the first order equation.
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4.1 Space discretization

The space discretization is done via finite volume. We usgu@aae cubic mesh. This choice
is primordial to compute the demagnetization field exaitatria Toeplitz matrices. We must
discretize the anisotropy operator, the exchange opewatbrboth kind of Neumann con-
ditions and the demagnetization field operator. All this kvoan be found in [11]. The
exchange operator is discretized as the standard Laplagatop with Neumann homoge-
nous boundary condition. We also discretize the anisotag®srator, denoting b¥; the
mean ofK over celli.

Haopm; = Kymg, H ) Z (4.1)
jGV
whereV/ (i) is the set of all the neighbors of celin the mesh. We also define the discretiza-
tion of the correction of the exchange operator with condgi(2.6c).

co A
AL (m)s = 0(i) = (mly, —m(”). (4.2)

whered (i) is 1 if cell 7 is adjacent to the interfade, and0 otherwise. In the former case,
cell N(i) is the adjacent cell to cell such that cell is between cellNV (i) andT". This
discretization require at least two cells of depth in them@s each side of the split.

The discretization of the demagnetization field operatdoise by defining the operators

Ry:R" = L*Q), p,. ]LQ(Q) — R"

"~ 4.3
U) — Z Uilw“ Ph | / ( )
=1

wheren is the number of cells. We would ideally defit, , asF;, o Hqo Ry,. In practice P,
is computed by Gauss integration with some correctionedimsingularities The operator
is Toeplitz and can thus be computed by fast Fourier transfor

4.2 Time discretization

The equation is discretized in time by a second order scheme.

At;?
m{ —m” = AFy(m”) + = Fy(m,”),

F,(m9) = —m® x H2(m©) — am® x (m x H)(m)).

H}) being equal t&y, + Han + Hg’h. The time step size is chosen to maximize energy loss.
For the first order term, we use an analogous scheme.

miy; —miY = ALF (m”, m” HE (m”) — Hyp(7°mVdo (1))
At;?
2

o Fym” m® H(m”) - Fi(m”)

W(m, Fi(m®, m®" HE(m")),

]

HEO(F(m”)) = Hap(V°Fr(m”)do(I)))),

5The interested reader should refer to [11] or [12] for dstail
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where
Fi(m!” m{® he) = —m{) x (Hy(my) + h) — m{) x Hy(m))
—amy) x (m})) x (Hy(mj)) + b))
—am{’) x (mf) x Hy(m))) — am) x (mi) x Hy,(mi)).

g g )

We use the same step size for the first order as for the zera orde

4.3 Simulations: results

In our simulations, the aim is to compute final equilibriuratss for various initial conditions.
Thus, we are only interested in the final states of the dynamnicerical simulation. We stop
the simulation when the derivative of the discrete energgsia threshold. By, we denote
the space step-size.

4.3.1 Physical parameters

We consider a thin plate with a me856 x 128 x 1, hence32768 grid points, with a step size
of 2.3nm. Their magnetic parameters are

M, = 1.4x10°, A =10""/pe, K =0.

For initial conditions and the position of the split, we ceBecamong those represented in
Figure 3, and Figure 4. We prefer to represent’) instead ofm (" in the numerical results.
We make the following simulations

Simulation Oa First initial condition without spilit.
Simulation Ob Second initial condition without split.
Simulation 1 First initial condition and longitudinal split.

Simulation 2 Second initial condition and transversal split.

First initial condition Second initial condition

Figure 3: Possible initial conditions fan(*)

Simulations0Oa et 0b, Figure 5, serve as a basis of comparison. In each simujatien
iterated 7000 times. The analysis of the energy graph int@y we are reasonably close
from equilibrium after a thousand iterations. On a PC withngle processor an@d84 Mo

of RAM, the Fortran program needédhours to compute the equilibrium states for each
configuration.
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Longitudinal split Transversal split

Figure 4: Possible positions for the spacer

4.3.2 Analysis of the results

We first compare the results between geometries with anautgplits. First, in the presence
of a split, final energies are lower. Magnetization reveisahbsier across the split. Also, the
magnetization at the equilibrium states lies parallel sotthin plate.

We analyze the equilibrium state of the magnetization olethduring the first simulation,
Figure 6. Like the initial state, the final state is symmetvith respect to the split. We notice
a reversal of the magnetization when crossing the splitrd hee two vortices in the whole
ferromagnetic body. Walls are thick except when crossirgstlit. We also offer a zoom
on the center left, Figure 7, and we notice that the vortexretched along the split. The
correction term is almost entirely concentrated on thet.spiour incomplete vortices are
present, two on each side of the split at one fourth of thetleafithe split and the same pair
at the three fourth on the split.

We analyze the equilibrium state of the magnetization oletiduring the second simu-
lation, Figure 8. The initial term of ordéris antisymmetric with respect to the transversal
axis. This antisymmetry remains in the equilibrium statee &n see one global vortex in
the whole plate and the split is clearly visible. We also pres zoom on the central vortex,
Figure 9. We notice that the vortex is stretched in the divecdf the split. This is due to
the absence of exchange between both faces of the splis &edlyze the correction term.
It is almost entirely concentrated on the split. Two incoet@lvortices appear on the split at
respectively one third and two third of the length of the tsplihe size of the correction is
small.

Conclusion

We have established an equivalent boundary condition #etjuations of micromagnetism.
We can now compute the behavior of a ferromagnetic mateitalbwt having to mesh the
split. Our next work will include in this model physical imgetions such as super-exchange
and surface-anisotropy as presented in [14]. This will lsescond part of this article. We
could also consider the same configuration in the non quasoesary case with the full
Maxwell's equations and some other generalizations sudlb@aplane splits and a split filled
with a magnetic material.
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