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Abstract. Let K be a field of char. p ≥ 3. We prove that a large
family of algebraic elements of degree 4 over K are hyperquadratic, i.e. they
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continued fractions in fields of power series.
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1 Introduction

Let p be a prime number and q = ps with a positive integer s. We consider
the finite field Fq with q elements. Then we introduce with an indeterminate
T , the ring of polynomials Fq[T ] and the field of rational functions Fq(T ). We
also consider the absolute value defined on Fq(T ) by |P/Q| = |T |deg P−deg Q

for P,Q ∈ Fq[T ], where |T | is a fixed real number greater than one. By
completing Fq(T ) with this absolute value we obtain a field denoted by F(q)
which is the field of formal power series with coefficients in Fq. Thus if α is
a non-zero element of F(q) we have

α =
∑

k≤k0

ukT
k with uk ∈ Fq, uk0

6= 0 and |α| = |T |k0.

There is a strong analogy between the classical construction of the field of
real numbers and the fields of power series which we are considering here.
The rôles of {±1}, Z, Q and R are played by F∗

q, Fq[T ], Fq(T ) and F(q)
respectively.

The study of rational approximation to algebraic elements in the field



F(q) was initiated by K. Mahler [M] by adapting a classical theorem of Li-
ouville concerning rational approximation to algebraic real numbers. In this
article Mahler pointed at the difference with the classical case by introduc-
ing an example. Given a prime p and an integer r = pt with t ≥ 1, the
element α ∈ F(p) defined by α =

∑

k≥0 T rk

does satisfy the algebraic equa-

tion α−αr = T−1. We know by Roth’s theorem that algebraic real numbers
are badly approximable by rational numbers but in the case of power series
over a finite field there is no analogue of Roth’s theorem and the element
introduced above appears to be a counterexample. Following Mahler’s work
it became progressively necessary to consider a special subset of algebraic
power series having particular properties of rational approximation. For the
reader who is interested in a survey on the different contributions to this
topic and for full references see for example [L] and [T] chap. 9.

We introduce a special subset of elements in F(q) which are algebraic
over Fq(T ). Let r = pt where t ≥ 0 is an integer. We denote by Ht(q) the
subset of irrational elements α in F(q) such that there exist A,B,C,D ∈
Fq[T ] with

α =
Aαr + B

Cαr + D
. (1)

We can observe that if α ∈ F(q) is irrational then so is αr and therefore we
have Aαr +B 6= 0 and Cαr +D 6= 0. Consequently we see that AD−BC =
(A − Cα)(Cαr + D) 6= 0. Now we put H(q) =

⋃

t≥0 Ht(q). Because of
further analogies with quadratic real numbers, we call the elements of this
subset hyperquadratic elements. In previous works the terminology algebraic
element of class I has been used but we think the present denomination
is more descriptive and also convenient for later precision. Observing the
shape of equation (1), H(q) can be viewed as the analogue of the subset of
quadratic real numbers, the Frobenius isomorphism being replaced by the
identity map. If α ∈ H(q) then it is a root of the following polynomial

uXr+1 + vXr + wX + z ∈ Fq[T ][X] with uz − vw 6= 0. (2)

These polynomials where the coefficients belong to an arbitrary field F of
characteristic p arise in other contexts of number theory and have been
studied from an algebraic point of view by Carlitz, Serre, Abhyankar, and
others; see [C], [A], and [B]. Note that if α ∈ Ht(q) then we have α =
f(αr) where f is the linear fractional transformation with integer coefficients
involved in equation (1). By iteration we obtain α = f((f(αr))r) = g(αr2

)
where g is another linear fractional transformation with integer coefficients.
Consequently recursively we see that if α is a root of a polynomial of type (2)



then it satisfies for all integers n ≥ 1 an algebraic equation of the following
type

unαrn+1 + vnαrn

+ wnα + zn = 0.

So Ht(q) ⊂ Hnt(q) for all positive integer n. Now to be more precise, we
introduce the following terminology. If t is the smallest non-negative integer
such that α ∈ F(q) satisfies an equation of type (1) we will say that α is
a hyperquadratic element of order t. With our definition, a hyperquadratic
element of order zero is simply a quadratic element. We observe that el-
ements of F(q) which are quadratic or cubic over Fq(T ) belong to H1(q)
since then 1, α, αp, αp+1 are linked over Fq(T ) and consequently α satisfies
an algebraic equation of type (2). Moreover H(q) contains also elements of
arbitrarily large degree over Fq(T ). Indeed for the element α ∈ F(p) intro-
duced by Mahler and mentioned above with r = pt and t ≥ 1, it was proved
by arguments of diophantine approximation that it is algebraic of degree r
over Fp(T ) and also hyperquadratic of order t. On the other hand it will
become clear in the next section that not all algebraic numbers in F(q) are
hyperquadratic. We have to recall a general and simple property about the
subset H(q) : this subset is stable under any linear fractional transformation
with integer coefficients and also under the Frobenius isomorphism x → xp;
moreover both transformations preserve the algebraic degree of the element
as well as the hyperquadratic order.

If rational approximation to certain hyperquadratic power series is
well known this is also due to the possibility of describing explicitly their
continued fraction expansion. The first works in this area were undertaken
by Baum and Sweet [BS]. Later this has been done for many examples and
also for different subclasses of hyperquadratic elements (see in particular
[S]). Here again we must underline the analogy with the classical case of
real numbers: the continued fraction expansion for quadratic real numbers
is well known and this is due to the fact that these elements are fixed points
of a linear fractional transformation with integer coefficients. Nevertheless
the possibility of describing the continued fraction expansion for all hyper-
quadratic power series is yet an open problem. In [MR] Mills and Robbins
have studied this problem and they described an algorithm to obtain in
certain cases the continued fraction expansion for a hyperquadratic power
series. At the end of this article ([MR], p. 403) they considered the following
algebraic equation: x4 + x2 − Tx+ 1 = 0. They observed that this equation
has a unique solution in F(p) for all primes p. They noticed that for this
solution the continued fraction expansion has a remarkable pattern in both
cases p = 3 and p = 13. The expansion in the case p = 3 has been explicitly



described (see [BR]) and this implies that the solution is not hyperquadratic
(see [L] p. 226-227). In the case p = 13 the expansion was only conjectured
(see [BR] p. 342-344), but as we will see the solution is then hyperquadratic.
This fact may lead to a proof of this conjecture.

Since all algebraic power series of degree two or three are hyper-
quadratic, it is natural to ask for a quartic power series over Fq given by its
defining equation wether it is a hyperquadratic element or not. Inspired by
Mills and Robbins’ equation we have investigated this question. In the next
section we describe the connection between hyperquadratic power series and
differential algebra. From there we derive a necessary condition for quartic
power series to be hyperquadratic. In the last section we prove that under
a simple and general condition a quartic power series is hyperquadratic of
order one or two, depending on the different possible characteristics.

2 Derivation of algebraic power series

We consider the formal differentiation on Fq(T ) which can be extended to
F(q) . We have the usual rules for differentiation of sums and products of
elements in F(q) and if x ∈ F(q) then the derivative is denoted by x′. Observe
that because of the positive characteristic p the subfield of constants in F(q)
is the field of power series over Fq in T p.

Proposition 2.1. Let f(X) = Xn + an−1X
n−1 + · · ·+ a0 be a polynomial

in Fq(T )[X], irreducible over Fq(T ) and of degree n > 1. Let M be the n×n
square matrix with coefficients in Fq(T ) defined by

M =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 . . . −a0

1 0 0 0 . . . −a1

0 1 0 0 . . . −a2
...

. . .
...

0 . . . 1 0 −an−2

0 . . . 0 1 −an−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Let U0 = (u0,i)0≤i≤n−1 be the column vector with u0,0 = 1 and ui,0 = 0
for 1 ≤ i ≤ n − 1. Let (Um)m≥1 be the sequence of column vectors Um =
(um,i)0≤i≤n−1 in (Fq(T ))n defined by

Um = MmU0 for m ≥ 1.

Let A be the (2n − 1) × (2n − 1) square matrix with coefficients in Fq(T )



defined by

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 an−1 . . . a0 . . . 0
0 1 an−1 an−2 . . . 0
...

. . .
...

0 . . . 1 . . . a2 a1 a0

n (n − 1)an−1 . . . a1 . . . 0
0 n (n − 1)an−1 . . . 0
...

. . .
...

0 . . . n . . . 3a3 2a2 a1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Let Ai,j be the matrix obtained from A by deleting the i-th row and j-th
column. For 0 ≤ k ≤ 2n − 2, we set

ck =

i+j=k
∑

0≤i,j≤n−1

(−1)ja′i det(A2n−1−j,2n−1)

and also for 0 ≤ k ≤ n − 1

bk = ck +

2n−2
∑

i=n

ciui,k.

Finally we denote by D(f) the discriminant of the polynomial f . Then if
α ∈ F(q) is such that f(α) = 0 we have

α′ = ((−1)n(n−1)/2+1/D(f))

n−1
∑

k=0

bkα
k.

Proof. Let α ∈ F(q) be such that f(α) = 0. Then α is algebraic over
Fq(T ) of degree n and αm ∈ Fq(T, α) for m ≥ 0. Consequently we have
αm =

∑n−1
i=0 vm,iα

i for a vector Vm = (vm,i)0≤i≤n−1 of (Fq(T ))n. From αm =
∑n−1

i=0 vm,iα
i mutiplying by α and using the relation αn = −

∑n−1
i=0 aiα

i, we
obtain Vm+1 = MVm where M is the matrix defined in the proposition.
Since V0 = U0 we see that Um = Vm and that Um = MmU0 holds for
m ≥ 1. We introduce the polynomials of Fq(T )[X] defined by f ′

X(X) =
nXn−1+(n−1)a1X

n−2+· · ·+an−1 and f ′
T (X) = a′1X

n−1+a′2X
n−2+· · ·+a′n.

Consequently, by formal differentiation of the equality f(α) = 0, we obtain

α′f ′
X(α) + f ′

T (α) = 0. (1)



Since the extension field Fq(T, α) of Fq(T ) is separable we have f ′
X(α) 6= 0.

Therefore (1) implies
α′ = −f ′

T (α)/f ′
X(α). (2)

Now we introduce the resultant R(f, f ′
X) of both polynomials f and f ′

X in
Fq(T )[X]. This resultant is the determinant of the square matrix A defined
in the proposition. Since f is unitary this resultant is known to be equal
to (−1)n(n−1)/2D(f) where D(f) is the discriminant of the polynomial f .
Moreover since the extension Fq(T, α) is separable this discriminant is not
zero. Now we know that there are two polynomials P1 and P2 of Fq(T )[X]
such that

R(f, f ′
X) = P1(X)f(X) + P2(X)f ′

X(X). (3)

Therefore replacing X by α in (3) we have (−1)n(n−1)/2D(f) = P2(α)f ′
X(α).

Combining this last equality and (2) we obtain

α′ = ((−1)n(n−1)/2+1/D(f))f ′
T (α)P2(α). (4)

Then the explicit expression for P2(X) is a classical result. Indeed with the
notations introduced in the proposition we have

P2(X) =

n−1
∑

j=0

(−X)j det(A2n−1−j,2n−1) (5)

¿From (5) and the expression for f ′
T (X), we obtain

P2(α)f ′
T (α) =

2n−2
∑

k=0

ckα
k (6)

where ck is defined as in the proposition for 0 ≤ k ≤ 2n − 2. Clearly (6)
becomes

P2(α)f ′
T (α) =

n−1
∑

k=0

ckα
k +

2n−2
∑

k=n

ck(

n−1
∑

i=0

uk,iα
i) (7)

Finally (7) implies

P2(α)f ′
T (α) =

n−1
∑

k=0

bkα
k (8)

where bk is defined as in the proposition for 0 ≤ k ≤ n− 1. Now combining
(4) and (8) we see that α satisfies the desired differential equation.



Proposition 2.2. Let α ∈ F(q) be a hyperquadratic element of algebraic
degree n > 3. Then in the differential equation satisfied by α with the above
notations we have bk = 0 for 3 ≤ k ≤ n − 1. In this case the differential
equation satisfied by α is called a Riccati differential equation.

Proof. Since α is algebraic of degree n it is clear that the differential equation
obtained in the previous proposition is unique. Now if α is hyperquadratic
then we have α = f(αr) where f is a linear fractional transformation with
coefficients in Fq[T ]. Thus we have αr = f−1(α). By derivating this last
equality and recalling that we have (αr)′ = 0, we see that α does satisfy a
Riccati differential equation.

The introduction of Riccati differential equations in the study of dio-
phantine approximation in positive characteristic goes back to Osgood’s
works [O]. We must add that the statement of the above proposition was
first observed by Voloch in [V] p. 218.

Proposition 2.3. Let p be a prime with p > 2 and q be a power of p.
Let α ∈ F(q) be hyperquadratic and algebraic of degree four. Then there is
u ∈ Fq(T ) such that β = α + u satisfies the following algebraic equation

β4 + aβ2 + bβ + c = 0

with a, b and c in Fq(T ) and we have

(∗) (9b2 + 2a3 − 8ac)(a2 + 12c)′ − 4(3b′b + a′a2 − 4a′c)(a2 + 12c) = 0.

Proof. If α ∈ F(q) is algebraic of degree four then we have

α4 + Aα3 + Bα2 + Cα + D = 0

with A,B,C and D ∈ Fq(T ). If we put β = α + A/4 then we have

β4 + aβ2 + bβ + c = 0 with a, b and c ∈ Fq(T ).

Now α is hyperquadratic if and only if β is so. Thus, according to the
second proposition, β satisfies a differential Riccatti equation. Therefore in
the differential equation described in Proposition 2.1 we have b3 = 0. Using
the same notations as above we have b3 = c3 + c4u4,3 + c5u5,3 + c6u6,3 and
finally

b3 = −a′ det(A6,7) + b′ det(A5,7) + (aa′ − c′) det(A4,7). (9)



Now if we compute the three determinants of A6,7, A5,7 and A4,7 we obtain

det(A4,7) = 4(9b2 + 2a3 − 8ac) det(A5,7) = 4b(a2 + 12c) (10)

and
det(A6,7) = 2(21b2a + 32c2 − 24ca2 + 4a4). (11)

Finally from (9), (10) and (11) we can see that b3 = 0 is equivalent to the
condition (∗) stated in the proposition.

This last proposition gives a necessary condition (∗) on the coeffi-
cients of the algebraic equation satisfied by β for this element to be hyper-
quadratic. It is clear that (∗) is satisfied in two simple cases: if (1) a = b = 0
or if (2) a2 + 12c = 0. We will see in the next section that both conditions
(1) or (2) are sufficient for the element to be hyperquadratic. We recall
Mills and Robbins’ algebraic equation x4 + x2 − Tx + 1 = 0 which has a
unique solution in F(p) for all primes p. In the case p = 13 we see that this
condition (2) is fulfilled and therefore the solution is hyperquadratic.

3 Hyperquadratic power series of degree 4

The definition of hyperquadratic can be extended to any field K of char. p.
Namely, a separable algebraic element α ∈ K will be called hyperquadratic
if and only if it satisfies an equation α = γ(αr) for some γ ∈ PGL2(K),
where r is a power of p. In this wider context, we can prove that a large
family of algebraic elements of degree 4 are hyperquadratic.

Theorem 3.1. Let p be a prime number with p ≥ 5. Let r = p if p = 1
(mod 3) and r = p2 if p = 2 (mod 3). Let K be a field of char. p. Let
a, b ∈ K and f ∈ K[X] with f(x) = x4 + ax2 + bx − a2/12. Then there is a
nontrivial polynomial g ∈ K[x] of the form g(x) = Axr+1 + Bxr + Cx + D
such that f(x) divides g(x).

Note that if AD − BC 6= 0, then a root of f will be hyperquadratic,
because g(α) = 0 implies α = −(Bαr + D)/(Aαr + C). In particular,
AD−BC is nonzero whenever f has an irrational root α, since AD−BC =
(A − Cα)(Cαr + D) 6= 0.

The proof of our theorem, as a consequence of the lemma below, is
obtained by reducing the statement to the case of a finite field K.

Lemma 3.2. Suppose that Theorem 3.1 holds when K = Fr. Then it holds
for all fields K of char. p.



Proof. Let R = K[x]/(f) be the 4-dimensional K-vector space spanned by

1, x, x2, x3. In particular, there are unique m
(n)
i ∈ K such that

xn = m
(n)
1 x3 + m

(n)
2 x2 + m

(n)
3 x + m

(n)
4

where the equality holds in the ring R. Obviously the m
(n)
i depend on a

and b. The theorem is equivalent to the assertion that xr+1, xr, x and 1 are
linearly dependent in R. Since x and 1 are linearly independent, a linear
relation would have to involve xr+1 and/or xr. Then it is clear that the

theorem holds if and only if m
(r+1)
1 m

(r)
2 − m

(r+1)
2 m

(r)
1 = 0.

Let w, z be transcendentals over Fp, and let F = x4 + wx2 + zx − w2/12 ∈
Fp[w, z, x]. This is a special case of the polynomial f , taking a, b to be
transcendental quantities. Assign w a weight of 2, z a weight of 3, and x a
weight of 1. Then F is homogeneous of weight 4. In the ring Fp[w, z, x]/(F ),
we may write, for k ≥ 4, xk as −xk−4(wx2 + zx−w2/12), and the resulting
polynomial still has weight k and is still a polynomial in w, z, and x. Contin-
uing in this manner, we see that xk (mod F ) has the form

∑3
i=0 hi(w, z)xi,

where each hi is either zero or is a homogeneous polynomial in w and z

of weight k − i. In particular, each m
(k)
i (w, z) belongs to Fp[w, z], and

m
(k+1)
1 ,m

(k+1)
2 ,m

(k)
1 ,m

(k)
2 have weights (k + 1) − 3, (k + 1) − 2, k − 3, and

k−2, respectively (or they are zero). It follows that m
(k+1)
1 m

(k)
2 −m

(k+1)
2 m

(k)
1

is either zero, or it is a polynomial Hk(z,w) of weight 2k − 4. If a, b are
arbitrary elements of a field K in char. p, then f is the specialization of

F to w = a, z = b. Thus, m
(k)
i may be obtained by specializing the

above polynomials at w = a, z = b. It follows that there is a polyno-
mial Hr(w, z) ∈ Fp[w, z], depending on p but not on K, a, or b, such that

m
(r+1)
1 m

(r)
2 − m

(r+1)
2 m

(r)
1 = Hr(a, b) and Hr(w, z) has the form

∑

hijw
izj ,

where the sum is over all i, j ≥ 0 such that 2i + 3j = 2r − 4.
If the theorem holds when K = Fr, then Hr(α, β) = 0 for all α, β ∈ Fr.
Let β ∈ Fr. Then Hr(w, β) =

∑

hijβ
jwi ∈ Fr[w] is a polynomial of degree

at most (2r − 4)/2 = r − 2, yet it has at least r roots. Thus, H(w, β) is
identically zero. This shows that

∑

j hijβ
j is zero for each i and for each

β ∈ Fr. Thus,
∑

j hijz
j has at least r roots, for each i. But its degree is at

most (2r − 4)/3, and so it must also be identically 0. It follows that all hij

are zero, and so Hr(w, z) is identically zero. But then Hr(a, b) is zero for
a, b belonging to any field of char. p, and so the theorem holds for all fields
of char. p.



To finish the proof of Theorem 3.1, it remains only to prove it when
K = Fr. We do a case-by case analysis, depending on how f factors and
using the following lemma.

Lemma 3.3. Let f(x) = x4 +ax2 + bx−a2/12 ∈ Fr[x]. Then f(x) factors
over Fr in one of the following ways:

(i) f(x) = (x − u)3(x + 3u) with u ∈ Fr. (This happens if and only if
8a3 = −27b2, in which case u = −3b/(4a).)

(ii) f(x) is the product of four distinct linear factors.

(iii) f(x) is the product of two distinct irreducible quadratics.

(iv) f(x) is the product of a linear factor and an irreducible cubic.

Proof. The discriminant of f is −3 · (8a3/9+3b2)2. Note that −3 is a square
in Fp if and only if p = 1 mod 3. Thus, −3 is always a square in Fr. It
follows that the discriminant of f is a square in Fr.

Now f has a repeated root if and only if the discriminant is zero,
which happens if and only if 8a3 = −27b2. In that case, the reader can
verify that (i) holds.

If the discriminant of f is a nonzero square, then by Stickelberger’s
Theorem (see, for example, [Be] p. 164), the degree of f minus the number
of factors of f must be even. That is, f has an even number of factors, and
so one of the factorizations (ii), (iii), or (iv) holds.

Now we prove Theorem 3.1 with K = Fr in each case of Lemma 3.5.

Proof. Case (i): We have f(x + u) = x3(x + 4u) = x4 + 4ux3. Then
xr+1 + 4uxr ≡ 0 mod f(x + u). It follows that (x − u)r+1 + 4u(x − u)r ≡
0 mod f(x). Since (x−u)r+1 = (xr −u)(x−u) = xr+1 −uxr −ux+u2, this
gives the relation:

xr+1 + 3uxr − ux − 3u2 = 0 mod f(x).

Case (ii): f(x) =
∏

(x − ui) with ui ∈ Fr. Since xr − x vanishes at each
ui, and the ui are distinct, we see that f(x) divides xr − x.

Case (iii): f(x) = (x − ζ)(x − ζr)(x − λ)(x − λr), where ζ, λ belong to
F2

r \ Fr. Let

M =

(

ζ · ζr λ · λr

ζ + ζr λ + λr

)

∈ M2(Fr).



If M is singular, then there exists a row vector (A B) ∈ F2
r such that

(A B) ·M = (0 0). In that case, ζ and λ both satisfy Axr+1 +Bxr +Bx = 0.
The conjugates ζr, λr would also satisfy this equality. Thus, each linear
factor of f divides Axr+1+Bxr+Bx, and so f itself divides that polynomial.

If M is nonsingular, then there exists a vector (A B) ∈ F2
r such that

(A B)M = (1 1). In that case, f divides Axr+1 +Bxr +Bx−1 by the same
reasoning as above.

Case (iv): Let ζ be a root of the cubic factor, and denote the other two
roots by ζ ′ = ζr and ζ ′′ = ζr2

. Let τ1, τ2, τ3 denote the elementary symmetric
functions of ζ, ζ ′, ζ ′′. Let u denote the rational root of f . Then

x4 + ax2 + bx − a2/12 = (x − u)(x3 − τ1x
2 + τ2x − τ3),

which gives the identities u = −τ1, a = τ2 − τ2
1 , b = τ1τ2 − τ3, τ1τ3 = a2/12.

Consequently,
12τ1τ3 = (τ2 − τ2

1 )2.

Let µ = ζ − u, µ′ = µr = ζ ′ − u, and µ′′ = µr2

= ζ ′′ − u. Let σ1, σ2, σ3

denote the elementary symmetric functions in µ, µ′, µ′′. Then

f(x + u) = x(x3 − σ1x
2 + σ2x − σ3).

We compute:
σ1 = µ + µ′ + µ′′ = τ1 − 3u = 4τ1

σ2 = (ζ − u)(ζ ′ + ζ ′′ − 2u) + (ζ ′ − u)(ζ ′′ − u) = τ2 − 2uτ1 + 3u2 = τ2 + 5τ2
1

σ3 = (ζ − u)(ζ ′ − u)(ζ ′′ − u) = τ3 − uτ2 + u2τ1 − u3 = τ3 + τ1τ2 + 2τ3
1 .

We claim that
3σ1σ3 = σ2

2 .

Indeed, 3σ1σ3 = 12τ1τ3 + 12τ2
1 τ2 + 24τ4

1 = (τ2 − τ2
1 )2 + 12τ2

1 τ2 + 24τ4
1 =

(τ2 + 5τ2
1 )2 = σ2

2. Since Fr3 is a 3-dimensional Fr-vector space with basis
1, µ, µ′, we know there are A,B,C in Fr such that

µµ′ = Aµ′ + Bµ + C. (1)

Taking the trace to Fr, we find

σ2 = (A + B)σ1 + 3C. (2)

On multiplying equation (1) through by µ′′ and then taking the trace, we
find

3σ3 = (A + B)σ2 + Cσ1. (3)



Now subtract σ1 times equation (3) from σ2 times equation (2). Since σ2
2 =

3σ1σ3, the left sides cancel, and we obtain

C(3σ2 − σ2
1) = 0.

Thus, either C = 0 or 3σ2 = σ2
1.

First assume C = 0. Then, we have a relation µµ′ = Aµ′ + Bµ, so
that µr+1 −Aµr −Bµ = 0. Then (ζ − u)r+1 −A(ζ − u)r −B(ζ − u) = 0. It
follows that ζ satisfies the polynomial xr+1 − (u + A)xr − (u + B)x + u2 +
Au + Bu. Then ζ ′, ζ ′′ also satisfy this polynomial. Furthermore, u satisfies
this polynomial. Since all roots of f satisfy this polynomial, we conclude
that f divides this polynomial, and so the theorem holds for f .

Next assume C 6= 0, so therefore 3σ2 = σ2
1 . We also know 3σ1σ3 = σ2

2 .
If σ1 = 0 then σ2 = 0 also, so a = 0, and f(x) = x4 + bx. In that case,
x5 = bx2 (mod f), x6 = bx3 (mod f), x7 = b2x (mod f), and so on. Note
that r = 1 (mod 3), and thus xr = cx (mod f) for some constant c. Thus,
f divides xr − cx, showing the theorem holds in this case. If σ1 6= 0, then
σ2 = σ2

1/3, σ3 = σ2
2/(3σ1) = σ3

1/27. It follows that σ1/3 is a root of
x3 − σ1x

2 + σ2x − σ3, contradicting that this polynomial is an irreducible
cubic.

We have completed the proof that the theorem holds when K = Fr

and this implies the general form of the theorem.

Theorem 3.4. Let p be a prime with p > 2 and let q be a power of p. Let
α ∈ F(q) be an algebraic element of degree four. Then there exists u ∈ Fq(T )
such that β = α + u satisfies the following algebraic equation

(∗∗) β4 + aβ2 + bβ + c = 0

with a, b and c in Fq(T ). We have
(1) if a = b = 0 then α is hyperquadratic of order one
(2) if a2 + 12c = 0 then α is hyperquadratic of order one for p = 3 or p = 1
(mod 3) and of order at most two for p = 2 (mod 3).

Proof. As in Proposition 2.3, it is clear that there is β ∈ F(q) as stated in the
theorem satisfying (∗∗). Since β = α + u we know that α is hyperquadratic
if and only if β is so and with the same order. In case (1) the result is clear
for p = 3. Now if p = 4k + 1 we have βp − (−c)kβ = 0 and if p = 4k + 3
we have βp+1 − (−c)k+1 = 0 so the result follows. In case (2) the result is
also clear for p = 3 since the condition reduces to a = 0 and (∗∗) becomes



β4 + bβ + c = 0. If p > 3 then the result follows immediately from Theorem
3.1 with K = Fq(T ).

In the above theorem, case (1) is trivial: β is then a fourth root of
a rational function. Such power series n-th root of rational functions were
first considered in diophantine approximation by Osgood (see [O] p. 109).
In case (2) a natural question arises: if p (mod 3) = 2 what is the exact
order of β ? With the notations of Lemma 3.2, we have seen that Hp2(a, b)
is identically zero. This implies that β is hyperquadratic of order less than
two, but this order is one if and only if Hp(a, b) = 0. For instance if p = 5 a
simple computation gives H5(a, b) = a3−b2. But then D(f) the discriminant
of f given in Lemma 3.3 is 3(a3 − b2)2. Since β is algebraic of degree four
we have D(f) 6= 0 and therefore H5(a, b) 6= 0, which implies that β has
order two. In the same way we have computed the polynomials Hp(a, b) for
p = 5, 11, 17 and 23 and in each case we have checked that the following
equality H2

p = −3(D(f))(p−2)/3 holds. So we know with the same argument
as above that in these cases β has order two. It is then natural to conjecture
that if β satisfies (∗∗) with a2 + 12c = 0 and p > 3 then β is hyperquadratic
and its order is the residue of p modulo 3. A last and important question
remains open : may β be hyperquadratic without conditions (1) or (2) ?
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