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Abstract

An irrational power series over a finite field Fq of characteristic p is called hyperquadratic if it satisfies
an algebraic equation of the form x = (Axr + B)/(Cxr + D), where r is a power of p and the coefficients
belong to Fq [T ]. These algebraic power series are analogues of quadratic real numbers. This analogy makes
their continued fraction expansions specific as in the classical case, but more sophisticated. Here we present
a general result on the way some of these expansions are generated. We apply it to describe several families
of expansions having a regular pattern.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The study of continued fractions for certain algebraic power series over a finite field was
initiated about thirty years ago by Baum and Sweet [1] and carried on ten years later by Mills
and Robbins [8]. In the area of diophantine approximation and continued fractions, as in many
other areas in number theory, the analogies between the case of real numbers and the case of
power series over a finite field (i.e. the function field case in positive characteristic or formal
case) are striking. In the real case, quadratic elements are badly approximable by rationals and
it is conjectured that they are the only algebraic elements having this property. Nevertheless
diophantine approximation in the formal case appears to be more complex in some way than
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it is in the real case. This is due to the existence of the Frobenius isomorphism. We are led to
consider a special subset of algebraic elements containing the quadratic ones but also elements of
arbitrary large degree. Some of these elements (not only quadratic ones) are badly approximable
by rational functions, while others are very well approximable. Because of this analogy, the
elements of this subset are called hyperquadratic power series. For a general presentation of
continued fractions and diophantine approximation in the function field case, the reader may
consult W. Schmidt’s work [9], and also for historical comments on this subject, see [4].

We introduce now the definitions and notations concerning power series over a finite field. Let
p be a given prime number and Fq the finite field of characteristic p having q elements. Then
we denote by Fq [T ], Fq(T ) and F(q) respectively the ring of polynomials, the field of rational
functions and the field of power series in 1/T over Fq . So F(q) is the completion of Fq(T ) for
the ultrametric absolute value |P/Q| = |T |degP−degQ where |T | is a fixed real number greater
than one. For a nonzero element α ∈ F(q), we have the power series expansion

α =
∑
k�k0

ukT
k, where k0 ∈ Z, uk ∈ Fq, uk0 �= 0 and |α| = |T |k0 .

An irrational element of F(q) is called hyperquadratic if it satisfies an algebraic equation of the
form

x = (
Axr + B

)
/
(
Cxr + D

)
, where r = pt and t ∈ N,

the coefficients A,B,C and D belonging to Fq [T ]. For complements on hyperquadratic elements
the reader may consult [2].

We introduce now the definitions and notations concerning continued fractions for elements
of F(q). We recall that every irrational (rational) element of F(q) can be uniquely expanded as an
infinite (finite) continued fraction. Let (ai)i�1 be an infinite sequence of polynomials in Fq [T ]
with degai � 1 for i � 1. For i � 1, using the traditional notation, we denote by αi (with α1 = α

and |α| = |a1| � |T |) the following infinite continued fraction expansion in F(q),

αi = [ai, ai+1, . . . , an, . . .]. (1)

Consequently for j � i � 1 we can write

αi = [ai, ai+1, . . . , aj , αj+1]. (2)

Given the sequence of partial quotients (ai)i�1, we introduce the sequence of polynomials
(xi,k)i�−1, k�1 in Fq [T ] defined for k � 1 recursively by

x−1,k = 0, x0,k = 1 and xi,k = ak+i−1xi−1,k + xi−2,k for i � 1. (3)

For instance we have x1,1 = a1, x1,2 = a2 and x2,1 = a1a2 + 1. Actually for i � 1, xi,k is a poly-
nomial in i variables ak, . . . , ak+i−1. Observe that the first index i corresponds to the number
of variables and the second k is the lowest index of these variables. It is clear that if we denote
xi,k = 〈ak, . . . , ak+i−1〉 we have 〈ak, . . . , ak+i−1〉 = 〈ak+i−1, . . . , ak〉 for i � 1 and k � 1. We
also have xi,k = akxi−1,k+1 + xi−2,k+2 for i � 1 and k � 1. These polynomials, which are at
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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the heart of the continued fractions algorithm, are called continuants. We state below some clas-
sical and fundamental identities satisfied by these polynomials which can easily be proved by
induction. For n � 1 and for i � 1 we have

[a1, a2, . . . , an] = xn,1/xn−1,2 (4)

and

[an, an−1, . . . , a1] = xn,1/xn−1,1. (5)

For m � n � 0 and for k � 1 we have

xm+1,kxn,k+1 − xn+1,kxm,k+1 = (−1)nxm−n−1,k+n+2. (6)

Finally for m � n + 1 and n � 1 we also have

αn = (xm−n,nαm + xm−n−1,n)/(xm−n−1,n+1αm + xm−n−2,n+1). (7)

Now we consider a particular sequence of polynomials (Fn)n�−1 in Fp[T ]. This sequence
was introduced by Mills and Robbins [8, p. 400] and is linked to some continued fractions that
are studied in this note. It is defined recursively by

F−1 = 0, F0 = 1 and Fn+1 = T Fn + Fn−1 for n � 0.

This sequence is the analogue in the function field case of the Fibonacci sequence of integers.
We clearly have Fn/Fn−1 = [T ,T , . . . , T ] for n � 1. Thus we introduce

ω = [T ,T ,T , . . . , T , . . .] = lim
n→∞Fn/Fn−1.

Since we have ω = T + 1/ω, we see that ω is quadratic over Fp(T ). This element ω belongs
to F(p) for all p and is the analogue of the golden mean in the case of real numbers. Most of
the classical formulas concerning the Fibonacci sequence of integers in relation with the golden
number can be transposed in our context. We state below some of the corresponding formulas.
These assertions are easily obtained by induction and can probably be found in standard text-
books. We will not need them here, so we omit the proof. We only want to pay attention to the
last equalities (13)–(15) which are related to the Frobenius isomorphism. We have

Fn =
∑

0�k�n/2

(
n − k

k

)
T n−2k for n � 0, (8)

Fn−1 = (
ωn − (−1/ω)n

)
/(ω + 1/ω) for n � 0, (9)

ωk = lim
n→∞(Fn+k/Fn) for k � 0, (10)

ωn+1 = Fnω + Fn−1 for n � 0, (11)

ωn+1 + (−1/ω)n+1 = Fn+1 + Fn−1 for n � 0. (12)

Moreover, if p > 2 and r = pt with an integer t � 1, we also have
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
field, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.01.001
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Fr−1 = (
T 2 + 4

)(r−1)/2
, (13)

Fr + Fr−2 = T r, (14)

F ′
r−2 = −2

(
T 2 + 4

)(r−3)/2 (15)

(here as later on in this note we denote by P ′ the formal differentiation of the polynomial P ).
In [8, pp. 400–401], Mills and Robbins considered in the field F(p) for p > 3 an irra-

tional element which is hyperquadratic and whose infinite continued fraction expansion α =
[a1, a2, . . . , an, . . .] satisfies (a1, a2) = (aT ,−a(1 + 2a)−1T ) with a �= 0,−1,−1/2 and the
equality

αp = Fp−1α3 − Fp−2. (16)

According to (13) and (15), we have

αp = (
T 2 + 4

)(p−1)/2
α3 + 2

T∫
0

(
x2 + 4

)(p−3)/2
dx. (17)

In the same article, pp. 403–404, they also considered the unique root in F(13) of the equa-
tion x4 − T x3 + x2 + 1 = 0. See Buck and Robbins work [3, p. 342] for complements on the
conjectured continued fraction for this element and also [2] for more explanations on this quar-
tic equation. This root β is hyperquadratic. It can be shown that the infinite continued fraction
expansion for β satisfies (a1, a2, a3, a4, a5, a6) = (T ,12T ,7T ,11T ,8T ,5T ) and the equality

β13 = (
T 2 + 8

)4
β7 + 4

T∫
0

(
x2 + 8

)3
dx. (18)

Comparing (17) and (18), we observe that both definitions for α and β are rather similar. This
observation was the starting point for this work. For the first example α, Mills and Robbins
proved that the partial quotients in the continued fraction expansion are all linear. While for the
second example β , it has been checked by computer on the beginning of the continued fraction
expansion that eight out of nine from these partial quotients are linear. In this paper we give a
common explanation to both phenomenons.

In Section 2 we state first a general result on certain hyperquadratic continued fractions, The-
orem 1. Then we describe a first family of hyperquadratic expansions having a regular and simple
pattern, Theorem 2. With Theorem 3, we describe an example of an expansion belonging to a
second family which includes the toy examples introduced by Mills and Robbins. The proofs of
Theorems 1 and 2 are in Section 3. In the last section we study this second family and we give
the proof of Theorem 3.

2. Results

Theorem 1. Let p be a prime number, q = ps with an integer s � 1 and r = pt with an integer
t � 0. Let l be an integer with l � 1. Let (a1, . . . , al) ∈ (Fq [T ])l be given with degai > 0 for 1 �
i � l. Let P,Q and R be polynomials in Fq [T ]. We assume that PR �= 0 and degQ < degP < r .
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
field, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.01.001
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Then there is a unique infinite continued fraction α = [a1, . . . , al, αl+1] in F(q) satisfying the
following equality

(∗) Rαr = Pαl+1 + Q.

This element α is the unique root, in F(q) with |α| � |T |, of the following algebraic equation

x = (
Axr + B

)
/
(
Cxr + D

)
,

where

A = Rxl,1, B = Pxl−1,1 − Qxl,1, C = Rxl−1,2 and D = Pxl−2,2 − Qxl−1,2.

It results from the above theorem that the continued fraction satisfying (∗) is determined
by the first l partial quotients and the triple (P,Q,R). We will say that such an expansion is
of type (r, l,P ,Q,R). These l partial quotients can be viewed as a basis which is reproduced
with a deformation induced by the triple (P,Q,R). In some simple cases the expansion can
be completely and explicitly described and it has a very regular pattern. The simplest case has
already been studied by W. Schmidt [9, p. 154]. Taking R = 1, P = ε ∈ F∗

q and Q = 0, l � 1
and given (a1, a2, . . . , al) an arbitrary l-tuple of non-constant polynomials in Fq [T ], then the
sequence of partial quotients satisfying (∗) is easily determined. In fact it is clear that the relation
αr = εαl+1 is equivalent to al+i = ε(−1)i ar

i for i � 1. Note that in Schmidt’s work a finite number
of polynomials has been added to the beginning of the expansion. Indeed if we add a finite
number of partial quotients at the head of a hyperquadratic expansion then the resulting expansion
is obtained as the image of the first one by a linear fractional transformation and consequently it
is still hyperquadratic. This remark leads us to ask the following natural question:

Let α ∈ F(q) be a hyperquadratic element. Does there exist an integer i � 1 such that αi is an
expansion of type (r, l,P ,Q,R)?

The answer to this question is positive in two cases. First if r = 1, because it is known that all
quadratic power series over a finite field have an ultimately periodic continued fraction expan-
sion. Secondly if the polynomial AD−BC is of degree zero, after Schmidt’s work [9, Theorem 4,
p. 154].

We now describe expansions corresponding to R = 1, P = ε1T and Q = ε2, where ε1 and
ε2 are nonzero constants in the base field. If we assume that the first l partial quotients have no
constant term, we obtain a very regular expansion. We have the following theorem.

Theorem 2. Let p be a prime number, q = ps with an integer s � 1 and r = pt with an integer
t � 1. Let l be an integer with l � 1. Let (a1, a2, . . . , al) be an l-tuple of polynomials in Fq [T ]
with degai > 0 and ai(0) = 0 for 1 � i � l. Let (ε1, ε2) ∈ F∗

q × F∗
q . If α is the infinite continued

fraction α = [a1, . . . , al, αl+1] in F(q) satisfying

αr = ε1T αl+1 + ε2,

then the sequence of partial quotients (ai)i�l+1 in (Fq [T ])N is defined for k � 1 recursively by
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
field, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.01.001
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al+4k−3 = (ε1T )−1ar
k, al+4k−2 = −ε1ε

−1
2 T ,

al+4k−1 = −ε2
2(ε1T )−1ar

k+1 and al+4k = ε1ε
−1
2 T .

We remark that W. Schmidt, in the same article mentioned above [9, p. 159] has obtained by
other arguments the sequence given in this proposition in the case l = 1 and a1 = T . We have
seen in this section two types of expansions which have a very regular pattern. With the above
notations in both cases (up to a multiplicative constant) we have R = 1 and the first family cor-
responds to the choice (P,Q) = (1,0) (algebraic elements of Class IA introduced by Schmidt)
while the second family corresponds to the choice (P,Q) = (T ,1) (Theorem 2). Note that in the
second case we have had to introduce a condition on the basis (a1, . . . , al) to obtain the regular-
ity of the expansion. In the last theorem we consider an example of expansion where R = 1 and
(P,Q) = (T 2 − 1, T ). Here we take l = 1 and again the first partial quotient is chosen to ensure
the regularity of the expansion.

Theorem 3. Let p be a prime number with p � 5. Let α be the infinite continued fraction α =
[a1, . . . , an, . . .] in F(p) satisfying

αp = (
T 2 − 1

)
α2 + T and a1 = 3T .

Then, denoting by v3(m) the largest power of 3 dividing m, we have

an = λnAv3(2n−1)+1 with λn ∈ F∗
p for n � 1,

where (Ai)i�1 is the sequence of polynomials in Fp[T ] defined recursively by

A1 = T and Ai+1 = [
A

p
i /

(
T 2 − 1

)]
for i � 1

(here the square brackets denote the integer part of a rational function). More precisely, set-
ting kn = [ln(2n − 1)/ ln 3] + 1 for n � 1 and introducing the sequence (ln)n�1 in Z defined
recursively for n � 1 by

l1 = 1, l3n−1 = ln − 1, l3n = −ln and l3n+1 = ln + 1,

we have for the sequence (λn)n�1 in F∗
p ,

λ1 = 3, λ3n−1 = λn, λ3n = (−1)kn+12−ln and λ3n+1 = (−1)kn2ln .

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Given an l-tuple (a1, . . . , al) ∈ (Fq [T ])l with degai > 0 for 1 � i � l, we
introduce the following subset of F(q),

E1 = {
α ∈ F(q): α = [a1, . . . , al, αl+1] with |αl+1| � |T |}.

Thus if α ∈ E1, with the above notations and according to Eq. (7) of Section 1, we can write

α = (xl,1αl+1 + xl−1,1)/(xl−1,2αl+1 + xl−2,2). (1)
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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Note that (∗) is equivalent to αl+1 = (Rαr −Q)/P . Combining this equality with (1) we see that
if α ∈ E1 satisfies (∗) then α satisfies

α = (
Rxl,1α

r + Pxl−1,1 − Qxl,1
)
/
(
Rxl−1,2α

r + Pxl−2,2 − Qxl−1,2
)
. (2)

Conversely, if α ∈ E1 and α satisfies (2), then, combining (1) and (2), we see easily that α satis-
fies (∗). Thus we only need to prove that there is a unique irrational element α in F(q) satisfying
(2) with α ∈ E1. We put B = Pxl−1,1 − Qxl,1 and D = Pxl−2,2 − Qxl−1,2. We introduce a
complete metric subspace of F(q) defined by

E = {
x ∈ F(q): |x| � |T |}.

It is clear that we have E1 ⊂ E. We introduce the map f from E into F(q) defined by

f (x) = (
Rxl,1x

r + B
)
/
(
Rxl−1,2x

r + D
)
.

We will first prove that Eq. (2) has a unique solution in E. This will be obtained by showing
that f is well defined and is a contracting map from E into E. Then the fixed point theorem in
a complete metric space implies that the equation f (x) = x, i.e. Eq. (2), has a unique solution
in E. First we observe that |xl−1,1| < |xl,1|, |xl−2,2| < |xl−1,2| and |Q| < |P | imply

|B| < |Pxl,1| and |D| < |Pxl−1,2|. (3)

Moreover, if x ∈ E and since |P | < |T |r , we have∣∣Rxl−1,2x
r
∣∣ �

∣∣xl−1,2T
r
∣∣ > |Pxl−1,2| (4)

and ∣∣Rxl,1x
r
∣∣ �

∣∣xl,1T
r
∣∣ > |Pxl,1|. (5)

Thus, combining (3)–(5), we obtain∣∣Rxl,1x
r + B

∣∣ = ∣∣Rxl,1x
r
∣∣ and

∣∣Rxl−1,2x
r + D

∣∣ = ∣∣Rxl−1,2x
r
∣∣. (6)

Equalities (6) imply that for x ∈ E we have Rxl−1,2x
r + D �= 0 and furthermore |f (x)| =

|xl,1/xl−1,2| � |T |. Thus f is well defined and maps E into E. Now we need to prove that
f is a contracting map. Assume that x1, x2 ∈ E, then we have

f (x1) − f (x2) = R(xl,1D − xl−1,2B)(x1 − x2)
r

(Rxl−1,2x
r
1 + D)(Rxl−1,2x

r
2 + D)

. (7)

We also have

xl,1D − xl−1,2B = P(xl,1xl−2,2 − xl−1,1xl−1,2) = (−1)lP . (8)

Combining (6)–(8), we obtain∣∣f (x1) − f (x2)
∣∣ = |P ||R|−1|xl−1,2|−2|1/x1 − 1/x2|r−1|x1x2|−1|x1 − x2|. (9)
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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Since x1, x2 ∈ E, we have |1/x1 − 1/x2| � |T |−1. By the hypothesis we also have |P | � |T |r−1,
therefore we get

|P ||R|−1|xl−1,2|−2|1/x1 − 1/x2|r−1|x1x2|−1 � |T |−2|R|−1|xl−1,2|−2. (10)

Consequently (9) and (10) imply

∣∣f (x1) − f (x2)
∣∣ � |T |−2|x1 − x2|.

So we have proved the existence and the unicity of α ∈ E satisfying (2). To prove that α ∈ E1
we need to check that 0 < |xl−1,2||xl−1,2α − xl,1| < 1. A direct computation, with (8), gives

α − xl,1/xl−1,2 = f (α) − xl,1/xl−1,2 = (−1)l+1P/
(
xl−1,2

(
Rxl−1,2α

r + D
))

.

Using (6) and since |P/(Rαr)| < 1, taking the absolute value on both sides we obtain the desired
inequality. Finally we shall prove that the solution of (2) is irrational. We assume that it is rational
and we shall obtain a contradiction. So we can write α = a/b with a, b ∈ Fq [T ], gcd(a, b) = 1
and |a| > |b|. From the equality a/b = f (a/b) we obtain

a/b = a∗/b∗ (11)

with a∗ = Rxl,1a
r + Bbr and b∗ = Rxl−1,2a

r + Dbr . Using (8), we have

a∗xl−1,2 − b∗xl,1 = (−1)l+1Pbr and a∗D − b∗B = (−1)lPRar . (12)

If we introduce c = gcd(a∗, b∗), we see that (12) and gcd(a, b) = 1 imply |c| � |P |. Besides (6)
gives |a∗| = |Rxl,1a

r |. Consequently, recalling that |P | � |T |r−1, |a| � |T | and |xl,1| � |T |, we
obtain

|a∗/c| � ∣∣Rxl,1a
r−1/P

∣∣|a| � |xl,1||a| > |a|. (13)

Finally we observe that (11) and (13) are contradictory. So the proof of the theorem is com-
plete. �

Before giving the proof of the second theorem, we state a basic and technical lemma con-
cerning continued fractions. This lemma will be used here and also in the next section. The idea
involved in this lemma seems to appear for the first time in works of Mendès France on finite
continued fractions in the context of real numbers [7, p. 209]. We recall the proof which is very
short.

Lemma 3.1. For n � 2, let a1, . . . , an and x be n + 1 indeterminates. Then we have

[[a1, a2, . . . , an], x
] = [a1, a2, . . . , an, x

′],

where

x′ = (−1)n−1x−2
n−1,2x − xn−2,2x

−1
n−1,2.
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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Proof. By (7) of the introduction, we can write

[a1, a2, . . . , an, x
′] = (xn,1x

′ + xn−1,1)/(xn−1,2x
′ + xn−2,2).

Consequently, with (6) of Section 1, we have

[a1, a2, . . . , an, x
′] = (xn,1/xn−1,2) + (−1)n−1/

(
x2
n−1,2x

′ + xn−2,2xn−1,2
)
.

It follows that

[a1, a2, . . . , an, x
′] = [a1, a2, . . . , an] + 1/x = [[a1, a2, . . . , an], x

]
and the proof of the lemma is complete. �
Proof of Theorem 2. We start from the relation

αr = ε1T αl+1 + ε2. (14)

This can be written as [ar
1, α

r
2] = ε1T αl+1 + ε2 or again[(

ar
1 − ε2

)
/(ε1T ), ε1T αr

2

] = αl+1. (15)

Since T divides a1 and r > 1, we have (ar
1 − ε2)/(ε1T ) = [ar

1(ε1T )−1,−ε1ε
−1
2 T ]. Then we

apply Lemma 3.1 with n = 2 and we have[
ar

1(ε1T )−1,−ε1ε
−1
2 T ,−ε2

2(ε1T )−1αr
2 + ε2(ε1T )−1] = αl+1. (16)

Since r > 1 and degα2 � 1, we have |ε2
2(ε1T )−1αr

2 − ε2(ε1T )−1| > 1. It follows that

al+1 = ar
1(ε1T )−1 and al+2 = −ε1ε

−1
2 T . (17)

Moreover, we can write αl+3 = −ε2
2(ε1T )−1αr

2 + ε2(ε1T )−1 or equivalently

αr
2 = −ε1ε

−2
2 T αl+3 + ε−1

2 . (18)

Now we introduce the map φ from F∗
q × F∗

q into itself defined by φ(ε1, ε2) = (−ε1ε
−2
2 , ε−1

2 ). It
is clear that φ is an involution. The same arguments which were used above to obtain (17) and
(18) from (14), replacing the pair (ε1, ε2) by the pair φ(ε1, ε2), show that (18) implies

al+3 = −ε2
2(ε1T )−1ar

2, al+4 = ε1ε
−1
2 T (19)

and also

αr
3 = ε1T αl+5 + ε2. (20)

Hence, by (17) and (19), the initial conditions, i.e. k = 1, stated in the proposition for the se-
quence of partial quotients are satisfied. Since (20) has the same shape as (14) and observing that
ai(0) = 0 for l + 1 � i � l + 4, the proof of the theorem follows by induction. �

Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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4. Expansions of type (r, l, k) and proof of Theorem 3

In this section we study expansions of type (r, l,P ,Q,R) for R = 1, P = (T 2 + u)k and
Q = ∫ T

0 (x2 +u)k−1 dx, where k is a positive integer and u ∈ F∗
q . Here the characteristic p is odd

and in order to have Q well defined, we make the restriction k � (p − 1)/2. Note that the two
examples mentioned in the introduction as well as the example described in Theorem 3 belong
to this family. Our study is based upon the following identity in the field of rational functions
over Q. We are not aware of the existence of this formula in the literature, even though there
are many classical formulas concerning continued fraction expansions for rational functions or
power series over Q, so we give a proof.

Proposition 4.1. Let k � 1 be an integer. We have in Q(x) the following continued fraction
expansion

(
x2 − 1

)k

( x∫
0

(
t2 − 1

)k−1
dt

)−1

= [u1x,u2x, . . . , u2kx],

where ui ∈ Q∗ for 1 � i � 2k. For 1 � i � 2k, we have

ui = (2k − 2i + 1)

( ∏
1�j<i/2

(2j)(2k − 2j)
/ ∏

1�j<(i+1)/2

(2j − 1)(2k − 2j + 1)

)(−1)i

(where as usual an empty product is equal to 1). Moreover, if we set

ωk = −16k−1(2k − 1)−2
(

2k − 2

k − 1

)−2

,

then we also have

u2k+1−i = ω
(−1)i+1

k ui for 1 � i � 2k,

and consequently

ωk

(
x2 − 1

)k

( x∫
0

(
t2 − 1

)k−1
dt

)−1

= [u2kx,u2k−1x, . . . , u1x].

Proof. As often in this area we will use the classical method of the Riccati differential equation.
We put y1(x) = (x2 −1)k(

∫ x

0 (t2 −1)k−1 dt)−1. For k = 1 we simply have y1(x) = (x2 −1)/x =
[x,−x] and the proposition is clearly true with ω1 = −1. So we assume that k > 1. In the sequel
the degree of a rational function means the difference between the degrees of its numerator and
of its denominator. It is easy to check that y1 satisfies the following differential equation

y′
1

(
x2 − 1

) − 2kxy1 + y2
1 = 0. (E1)
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
field, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.01.001
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Observe that (x2 − 1)k and
∫ x

0 (t2 − 1)k−1 dt are coprime polynomials and y1 is an odd rational
function over Q. Furthermore, the leading terms of the numerator and denominator of y1 are
respectively x2k and x2k−1/(2k − 1). Consequently we can write y1 = (2k − 1)x + 1/y2, where
y2 is another odd rational function of degree greater or equal to one. If we replace y1 = (2k −
1)x + 1/y2 into Eq. (E1), we obtain another differential equation satisfied by y2, which is

y′
2

(
x2 − 1

) − 2(k − 1)xy2 + (2k − 1)y2
2 = 1. (E2)

Comparing the degrees of the rational functions on both sides of Eq. (E2), we see that we must
have deg(y2) = 1. Hence, since k > 1, there exists u2 ∈ Q∗ such that y2 = u2x + 1/y3, where y3
is another odd rational function of degree greater or equal to one. Now we will use induction. We
assume that, for 2 � i � 2k, we have y1 = [u1x,u2x, . . . , ui−1x, yi], where yi is an odd rational
function satisfying the differential equation

y′
i

(
x2 − 1

) − 2(k − i + 1)xyi + viy
2
i = wi, (Ei )

where vi,wi are rational numbers. So the hypothesis is true for i = 2 with v2 = 2k − 1 and
w2 = 1. Now comparing the degrees of the rational functions on both sides of Eq. (Ei) we
see that we must have deg(yi) = 1. Therefore, since yi is odd, there exists ui ∈ Q∗ such that
yi = uix if i = 2k or yi = uix + 1/yi+1 if i < 2k, where yi+1 is another odd rational function
of degree greater or equal to one. If i = 2k, then replacing yi = uix into (Ei) and equating the
degrees in both sides of this equation, we obtain viui = 2k − 2i + 1 and the process terminates.
Otherwise, replacing yi = uix + 1/yi+1 into Eq. (Ei), we obtain another differential equation
satisfied by yi+1,

y′
i+1

(
x2 − 1

) − 2(viui − k + i − 1)xyi+1 + (ui + wi)y
2
i+1 − zix

2y2
i+1 = vi,

where zi = (viui −2k+2i −1)ui . If deg(yi+1) = n and if zi �= 0, then the degree of the left-hand
side of this equality is 2n + 2, while the degree of the right-hand side is zero. Therefore we must
have zi = 0 or equivalently viui = 2k − 2i + 1. Consequently the above differential equation
becomes

y′
i+1

(
x2 − 1

) − 2(k − i)xyi+1 + (ui + wi)y
2
i+1 = vi, (Ei+1)

which is of the desired form with vi+1 = ui + wi and wi+1 = vi . Thus we have proved by
induction that y1(x) = [u1x, . . . , u2kx]. Moreover, we have

ui = (2k − 2i + 1)/vi for 1 � i � 2k, (1)

and also, if 2 � i < 2k, vi+1 = ui + vi−1. It follows that the sequence (vi)1�i�2k is defined
recursively by

vi+1 = (2k − 2i + 1)/vi + vi−1 with v1 = 1 and v2 = 2k − 1.

This implies

vi+1vi = 2k − 2i + 1 + vivi−1 with v1v2 = 2k − 1.
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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Finally we have

vi+1vi =
∑

1�j�i

(2k − 2j + 1) = i(2k − i) for 1 � i � 2k − 1. (2)

From here, for 1 � i � 2k we easily get

vi =
( ∏

1�j<i/2

(2j)(2k − 2j)
/ ∏

1�j<(i+1)/2

(2j − 1)(2k − 2j + 1)

)(−1)i+1

. (3)

Combining (1) and (3), we have the formula for ui stated in the proposition. Moreover, by (2),
we obtain

vi+1vi = v2k−i+1v2k−i for 1 � i � 2k − 1, (4)

and also

vivi−1 = v2k−i+2v2k−i+1 for 2 � i � 2k. (5)

Combining (4) and (5), we obtain

vi+1v2k−i+2 = vi−1v2k−i .

Thus, we have

v2k = v2k

v1
= v2k−2

v3
= · · · = v2

v2k−1

and this can be written as

v2k−i+1 = v
(−1)i+1

2k vi for 1 � i � 2k. (6)

Now, by (3), we have

v2k =
( ∏

1�j�k

(2k − 2j + 1)
/ ∏

1�j�k−1

(2k − 2j)

)2

or equivalently

v2k = 161−k(2k − 1)2
(

2k − 2

k − 1

)2

= −ω−1
k . (7)

Therefore combining (1), (6) and (7) we have

u2k−i+1 = ω
(−1)i+1

ui for 1 � i � k. (8)
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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That is the second formula of the proposition. The last formula follows immediately. Indeed,
according to (8), we have

[u2kx, . . . , u1x] = [
ωku1x,ω−1

k u2x, . . . ,ω−1
k u2kx

] = ωk[u1x, . . . , u2kx].

So the proof of the proposition is complete. �
Now we return to the positive characteristic and we have the following corollary.

Corollary 4.2. Let p be an odd prime number. For an integer k, with 1 � k � (p − 1)/2, we
define two polynomials Pk and Qk in Fp[T ] by

Pk(T ) = (
T 2 − 1

)k
and Qk(T ) =

∑
0�i�k−1

(−1)k−i−1
(

k − 1

i

)
(2i + 1)−1T 2i+1.

Then there exists a 2k-tuple (ui, u2, . . . , u2k) ∈ (F∗
p)2k such that

Pk/Qk = [u1T ,u2T , . . . , u2kT ].

There exists ωk ∈ F∗
p such that

ωk[u1T ,u2T , . . . , u2kT ] = [u2kT ,u2k−1T , . . . , u1T ].

With the notation for the continuants used in the introduction, we have

〈u1T ,u2T , . . . , u2kT 〉 = (−1)kPk

and

〈u1T ,u2T , . . . , u2k−1T 〉 = (−1)kω−1
k Qk.

Moreover, if k = (p − 1)/2 then we have ui = 2(−1)i for 1 � i � 2k.

Proof. It is clear that Q′
k(T ) = (T 2 − 1)k−1 and also Qk(0) = 0. Thus, according to Proposi-

tion 4.1, we have for Pk(T )/Qk(T ) the above continued fraction expansion in Q(T ). But, since
p > 2k, all the rational numbers involved have no factor p in their denominators or numerators.
Consequently by reduction modulo p, we have the continued fraction expansion in Fp(T ) given
in the corollary, where we have kept the same notations for ui ∈ Q∗ and its reduction in F∗

p .
By reducing modulo p the relation between ui and u2k+1−i in Proposition 4.1, we obtain the
same relation replacing ωk by its reduction in F∗

p . This implies the proportionality between the
continued fraction and the continued fraction obtained reversing the order. Thus we can write

〈u1T ,u2T , . . . , u2kT 〉〈u2T , . . . , u2kT 〉−1 = Pk/Qk.

Since the denominators on both sides have the same degree, the numerators are proportional.
Comparing the constant terms of the numerators, we have 1 in the left side because the continuant
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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has an even number of terms and (−1)k on the right side. Therefore we have the third equality
stated in the corollary. Since we have [u2kT ,u2k−1T , . . . , u1T ] = ωkPk/Qk , we can write

〈u2kT ,u2k−1T , . . . , u1T 〉〈u2k−1T , . . . , u1T 〉−1 = Pk/
(
ω−1

k Qk

)
.

Recalling that the continuants are stable by taking the reverse order of the terms and using the
previous equality, we deduce

〈u1T ,u2T , . . . , u2k−1T 〉 = (−1)kω−1
k Qk.

Thus we have obtained the fourth equality. For the last statement, if k = (p − 1)/2, formu-
las (1) and (2) in the proof of Proposition 4.1 become in Fp ui = −2i/vi and (vi+1/(i + 1)) ×
(vi/i) = −1. Since v1 = 1, by induction, we obtain easily the formula given for ui in the
corollary for 1 � i � 2k. So the proof is complete. �

Now we introduce the following definition.

Definition 4.3. With the notations of Theorem 1 and of Corollary 4.2, we say that a continued
fraction expansion is of type (r, l, k) if it is of type (r, l,P ,Q,R) with P = ε1Pk , Q = ε2Qk and
R = 1, where (ε1, ε2) ∈ F∗

q × F∗
q .

Let us come back to the pair of examples mentioned in the introduction. If we denote by u an
element of Fp2 such that u2 = −4, according to the last statement of Corollary 4.2, we can write

P(p−1)/2/Q(p−1)/2 = (u/2)[uT ,uT , . . . , uT ] = (u/2)Fp−1(uT )/Fp−2(uT ).

Thus, comparing the degree and the constant term of the polynomials in the rational fractions on
both sides of this equality, we obtain

P(p−1)/2 = (−1)(p−1)/2Fp−1(uT ), Q(p−1)/2 = (−1)(p−1)/2(−u/2)Fp−2(uT ).

This gives a proof of the equalities (13) and (15) stated in the introduction in the case r = p.
Also if α is the element in F(p) with p > 3, introduced by Mills and Robbins and described in
the introduction (17), we can establish that letting γ (T ) = uα(uT ), then γ is of type (p,2, (p −
1)/2) with the pair (ε1, ε2) = (1,2). Note that the restriction 2k < p was only sufficient to ensure
the existence of the pair (Pk,Qk) in Fp[T ] with Q′

k = Pk−1, but not necessary. One could for
instance consider this pair for k = (r − 1)/2. Such expansions of type (r, l, (r − 1)/2) have
actually been studied in a different approach (only for l � r) in [5] and [6]. Moreover, if β is the
element in F(13), also introduced by Mills and Robbins and mentioned in the introduction (18),
we can establish again that letting δ(T ) = vβ(vT ) with v ∈ F169 and v2 = 5, then δ is of type
(13,6,4) with the pair (ε1, ε2) = (−1,−4).

In the following lemma we introduce a sequence (Ai)i�1 of polynomials in Fp[T ] which is
linked to the pair (Pk,Qk).

Lemma 4.4. Let k,p,Pk,Qk be as in Corollary 4.2. Let q = ps and r = pt with s, t � 1. Let
(Ai)i�1 be the sequence of polynomials in Fp[T ] defined by

A1 = T and Ai+1 = [
Ar

i /Pk

]
for i � 1
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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(the square brackets denote the integer part of the rational function). We set

θk = (−1)k21−2k

(
2k − 1

k

)
∈ F∗

p.

Then we have

Ai+1Pk − Ar
i = 2kθi

kQk for i � 1.

Let λ,μ ∈ Fq , X ∈ F(q) and set δ = 2kθi
kλ + μ. Then we have:

(∗) if δ �= 0,

[(
λAr

i − μQk

)
/Pk,X

] = [
λAi+1,−δ−1u1T ,−δu2T , . . . ,−δu2kT ,X′],

where X′ = XP −2
k + Qk(δωkPk)

−1;
(∗∗) if δ = 0,

[(
λAr

i − μQk

)
/Pk,X

] = [λAi+1,X].

Proof. By induction we can easily check that Ai is an odd polynomial with degree di =
(ri−1(r − 1 − 2k)+ 2k)/(r − 1). Observe that, if r = p and k = (p − 1)/2, then we have Ai = T

for i � 1. For i � 1, considering the euclidean division of Ar
i by Pk , we can write

Ar
i = Ai+1Pk + Ri, (9)

where Ri is an odd polynomial with deg(Ri) � 2k − 1. Taking derivatives on both sides of (9),
we obtain

(
2kT Ai+1(T ) + A′

i+1(T )
(
T 2 − 1

))(
T 2 − 1

)k−1 + R′
i (T ) = 0. (10)

Since deg(R′
i ) � 2k − 2, we see that 2kT Ai+1(T ) + A′

i+1(T )(T 2 − 1) must be constant. There-
fore, we have

2kT Ai+1(T ) + A′
i+1(T )

(
T 2 − 1

) = 2kAi+1(1). (11)

Combining (10) and (11), we obtain

R′
i (T ) = −2kAi+1(1)

(
T 2 − 1

)k−1 = −2kAi+1(1)Q′
k(T ).

Since (Ri + 2kAi+1(1)Qk)
′ = 0, deg(Ri + 2kAi+1(1)Qk) < p and also Ri and Qk being odd

polynomials, the last equality implies

Ri(T ) = −2kAi+1(1)Qk(T ). (12)

Besides, since Ai(1) ∈ Fp and consequently Ar
i (1) = Ai(1), (9) and (12) imply

Ai(1) = −2kQk(1)Ai+1(1). (13)
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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Now an elementary computation gives

Qk(1) = (−1)k−14k−1(2k − 1)−1
(

2k − 2

k − 1

)−1

= (−2kθk)
−1. (14)

Hence (13) becomes Ai+1(1) = θkAi(1). Since A1(1) = 1, by iteration, we get

Ai+1(1) = θi
k. (15)

Combining (9), (12) and (15), we have proved the first part of the lemma. For the second part,
from Ar

i = Ai+1Pk − 2kθi
kQk and with the notations of the lemma, we clearly have

(
λAr

i − μQk

)
/Pk = λAi+1 − δQk/Pk. (16)

In the first case (∗), if δ �= 0, we can write

(
λAr

i − μQk

)
/Pk = λAi+1 − δ[u1T , . . . , u2kT ]−1,

or again

(
λAr

i − μQk

)
/Pk = [

λAi+1,−δ−1u1T ,−δu2T , . . . ,−δu2kT
]
. (17)

Now, in order to obtain the desired statement, we need to transform

[[
λAi+1,−δ−1u1T ,−δu2T , . . . ,−δu2kT

]
,X

]
. (18)

We will use Lemma 3.1. With the same notations and n = 2k + 1, (18) can be written as

[
λAi+1,−δ−1u1T ,−δu2T , . . . ,−δu2kT ,X′], (19)

where

X′ = x−2
n−1,2X − xn−2,2x

−1
n−1,2, (20)

and xn−1,2 and xn−2,2 are the following continuants:

xn−1,2 = 〈−δ−1u1T ,−δu2T , . . . ,−δu2kT
〉
, (21)

xn−2,2 = 〈−δ−1u1T ,−δu2T , . . . ,−δ−1u2k−1T
〉
. (22)

The continuant xn−1,2 has an even number of terms, therefore (21) becomes

xn−1,2 = 〈u1T ,u2T , . . . , u2kT 〉.

Thus, according to Corollary 4.2, we have

xn−1,2 = (−1)kPk. (23)
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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Since the continuant xn−2,2 has an odd number of terms, (22) becomes

xn−2,2 = −δ−1〈u1T ,u2T , . . . , u2k−1T 〉.

Finally, using Corollary 4.2, we obtain

xn−2,2 = −δ−1ω−1
k (−1)kQk. (24)

Thus combining (20), (23) and (24) we have X′ = XP −2
k + (δωkPk)

−1Qk . Together with (17)
and (19) we have the statement (∗). Besides, if δ = 0, (16) implies directly the statement (∗∗).
So the proof of this lemma is complete. �

We have noticed that, in the extremal case k = (p − 1)/2 and if r = p, the sequence (Ai)i�1
introduced above is constant and we have Ai = T for i � 1. We will see further that, if α is a
continued fraction expansion of type (r, l, k) and if the first l partial quotients are linear and well
chosen, then this sequence (Ai)i�1 is the core of the expansion and all other partial quotients are
linear up to a certain point. Hence in the extremal case they are all linear up to a certain point. In
the sequel the notations will be as in Corollary 4.2, Definition 4.3 and Lemma 4.4. We need one
more lemma.

Lemma 4.5. For n � 1 we set f (n) = (2k + 1)n + l − 2k. Let α ∈ F(q) be irrational with
α = [a1, . . . , an, . . .]. Assume that for an index n � 1 we have

an = λnAi, where λn ∈ F∗
q and i � 1,

and also

αr
n = ε1,nPkαf (n) + ε2,nQk, where (ε1,n, ε2,n) ∈ F∗

q × F∗
q .

We set δn = 2kθi
kλ

r
n + ε2,n. Then we have:

(∗) if δn �= 0,

af (n) = λr
nε

−1
1,nAi+1, af (n)+i = −(

δnε
−1
1,n

)(−1)i
uiT for 1 � i � 2k,

and

αr
n+1 = ε1,n+1Pkαf (n+1) + ε2,n+1Qk,

where

ε1,n+1 = ε−1
1,n and ε2,n+1 = −(δnωk)

−1;

(∗∗) if δn = 0,

af (n) = λr
nε

−1
1,nAi+1, af (n)+1 = ε1,nPka

r
n+1 and αr

n+2 = ε1,nPkαf (n)+2.
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Proof. We have αr
n = [ar

n,α
r
n+1]. Hence the hypothesis implies

[
λr

nA
r
i , α

r
n+1

] = ε1,nPkαf (n) + ε2,nQk

or equivalently

[
(ε1,nPk)

−1(λr
nA

r
i − ε2,nQk

)
, ε1,nPkα

r
n+1

] = αf (n). (25)

Now we apply Lemma 4.4 with λ = λr
nε

−1
1,n, μ = ε2,nε

−1
1,n and δ = δnε

−1
1,n. Thus, if δn �= 0, we can

write

αf (n) = [
λAi+1,−δ−1u1T ,−δu2T , . . . ,−δu2kT ,X′], (26)

where

X′ = (
ε1,nPkα

r
n+1

)
P −2

k + Qk(δωkPk)
−1,

or simply

X′ = ε1,nP
−1
k αr

n+1 + Qk(δωkPk)
−1.

But, we also have

αf (n) = [
af (n), af (n)+1, . . . , af (n)+2k, αf (n+1)

]
. (27)

We observe that |Qk| < |Pk| < |T |p � |αr
n+1| and consequently |X′| � |T |. Thus, by compar-

ing (26) and (27), we obtain the values given in the lemma for the partial quotients from af (n)

to af (n)+2k and also the equality

αf (n+1) = ε1,nP
−1
k αr

n+1 + Qk(δωkPk)
−1.

Finally we see that this last equality can be written as

αr
n+1 = ε−1

1,nPkαf (n+1) − (δnωk)
−1Qk.

So the case (∗) is established. For the case (∗∗) we apply Lemma 4.4 with δ = 0. Since ε2,n =
−2kθi

kλ
r
n and Ar

i + 2kθi
kQk = PkAi+1, (25) becomes

[
λr

nε
−1
1,nAi+1, ε1,nPkα

r
n+1

] = αf (n). (28)

This implies af (n) = λr
nε

−1
1,nAi+1 and αf (n)+1 = ε1,nPkα

r
n+1. But we have

ε1,nPkα
r
n+1 = [

ε1,nPka
r
n+1, (ε1,nPk)

−1αr
n+2

]
.

Since |(ε1,nPk)
−1αr

n+2| > 1, we obtain af (n)+1 = ε1,nPka
r
n+1 and αf (n)+2 = (ε1,nPk)

−1αr
n+2.

So the proof of the lemma is complete. �
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This last lemma shows that for an expansion of type (r, l, k) if a1 = λ1A1 and (∗) is satisfied
then the 2k +1 partial quotients from al+1 on are known and are of the same type that is multiple
of Aj for j = 1 or j = 2. Moreover, α2 is also an expansion of type (r, f (2)−1, k) and so we can
eventually iterate the process. So, if the l first partial quotients are multiples of T and as long as
condition (∗) is satisfied, each partial quotient generates a group of 2k + 1 new partial quotients.
This allows us to describe the expansion up to a certain point. In the following proposition we
give this description of the continued fraction assuming that the l first partial quotients are linear
polynomials.

Proposition 4.6. Let Λ = (λ1, . . . , λl) be given in (F∗
q)l . For 1 � i � l we set ai = λiT . Let

α ∈ F(q) be an irrational element with α = [a1, . . . , al, αl+1]. Assume that α is an expansion of
type (r, l, k) with the pair (ε1, ε2) ∈ F∗

q × F∗
q . For n � 1 we set f (n) = (2k + 1)n + l − 2k and

f (∞) = ∞. Then there exist a sequence of positive integers (i(n))n�1 and N ∈ N∗ ∪ {∞} such
that

an = λnAi(n) with λn ∈ F∗
q for 1 � n � f (N).

The sequence (λn)l+1�n�f (N) is defined in the following way:

λf (n) = ε
(−1)n

1 λr
n for 1 � n � N,

and

λf (n)+i = −ε
(−1)n+i

1 δ(−1)i

n ui for 1 � i � 2k and 1 � n � N − 1,

where the sequence (δn)1�n�N is defined recursively by

δn = 2kθ
i(n)
k λr

n − (δn−1ωk)
−1 for 1 � n � N,

and δ0 = −(ωkε2)
−1. If N ∈ N∗, then we have δN = 0 and

af (N)+1 = ε
(−1)N+1

1 Pka
r
N+1.

Moreover, the sequence (i(n))1�n�f (N) is defined recursively by

(I) i
(
f (n)

) = i(n) + 1 for 1 � n � N,

and the initial conditions

(II) i(n) = 1 if 1 � n � l or n − l + 2k �≡ 0 (mod 2k + 1).

Finally, given two integers m > 1 and n � 1, we denote by vm(n) the largest power of m divid-
ing n. If 1 � l � 2k, then we have

i(n) = v2k+1(2kn + l − 2k) + 1 for 1 � n � f (N).
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Proof. We have αr = ε1Pkαl+1 + ε2Qk and ai = λiT for 1 � i � l. Thus we have i(n) = 1 for
1 � n � l. We set δ1 = 2kθkλ

r
1 + ε2. If δ1 = 0 we put N = 1. We apply Lemma 4.5 case (∗∗)

and obtain af (1) = ε−1
1 λr

1A2 and af (1)+1 = ε1Pka
r
2. Thus we have i(f (1)) = 2 = i(1) + 1 and

the proposition is clearly true. If δ1 �= 0 then we apply the case (∗) of this lemma. Thus we have
i(f (1)) = 2 and i(n) = 1 for l + 1 � n � l + 2k + 1 and an = λnAi(n) where the λn are as
stated in the proposition. By repeated application of the same case (∗) of Lemma 4.5 we build
a sequence δn satisfying the recursive formula stated in the proposition, until we eventually find
an integer N such that δN = 0. If there is no such an integer we put N = ∞. So all the partial
quotients an have the desired form λnAi(n) for a certain integer i(n) with the values of λn as stated
in the proposition up to f (N). In the case N ∈ N∗ we obtain the values for af (N) and af (N)+1
applying the case (∗∗) of this lemma. The integer i(n), according to this lemma, satisfies clearly
the property i(f (n)) = i(n) + 1 and also the initial conditions stated in this proposition. So all
what is left to show is the last formula given for the integer i(n) if 1 � l � 2k. We observe that
if 1 � n � f (N) and n is not as indicated in (II) then there exists an integer m with n = f (m)

and 1 � m � N so that (I) can be applied. We put j (n) = v2k+1(2kn + l − 2k) + 1. To prove the
equality i(n) = j (n) we will show that j (n) satisfies the same recurrence formula (I) and also
the same initial conditions (II) as i(n). Indeed we have 2kf (n)+ l −2k = (2k +1)(2kn+ l −2k)

and this implies j (f (n)) = j (n) + 1. Moreover, if 2kn + l − 2k ≡ 0 (mod 2k + 1) then by
simple computation we have 2k(n− l +2k) ≡ 0 (mod 2k +1) and consequently n− l +2k ≡ 0
(mod 2k + 1). Thus j (n) = 1 if n − l + 2k �≡ 0 (mod 2k + 1). Finally if 1 � n � l � 2k then
2kn + l − 2k = (2k + 1)n + u with −2k � u � −1. Consequently we have 2kn + l − 2k �≡ 0
(mod 2k + 1) and therefore j (n) = 1. So the proof of the proposition is complete. �

In the previous proposition the value of N will depend upon the choice of the l-tuple
(λ1, . . . , λl) and of the pair (ε1, ε2). Of course we are mainly interested in the case N = ∞
and then we will say that the expansion for α is perfect. The existence of perfect expansions is a
consequence of Mills and Robbins work [8], with the first example in F(p) for p > 3 mentioned
in the introduction. This example corresponds to the case r = p, l = 2 and k = (p − 1)/2. As we
observed above, this case is particularly remarkable because then all the partial quotients are lin-
ear and that is why it was first introduced. In previous works, Ruch and the author [6] have studied
in a different approach continued fraction expansions of this type with all partial quotients linear.
It results from this study that the problem of the existence of infinite sequences in F∗

q satisfying
the description given in Proposition 4.6 (at least in the case k = (p − 1)/2, r = p and l = p) is
complex in general, as there can be singular solutions for certain finite fields Fq which are not
prime (see [6, p. 564]). Concerning the second example in F(13), introduced by Mills and Rob-
bins and mentioned in the introduction, we have seen that it is (up to a simple transformation)
of type (13,6,4). The continued fraction expansion for this element was checked by computer.
The conjecture made about this expansion (see [8, p. 404] and [3, p. 343]) is in agreement with
the description given in Proposition 4.6 for the first 547 partial quotients, so that N � 61. Yet it
is an open question whether this expansion is perfect or not.

Now we turn to the proof of Theorem 3 which brings out an example of a perfect expansion
of type (p,1,1).

Proof of Theorem 3. Let α = [a1, . . . , an, . . .] be the infinite continued fraction expansion
in F(p) defined by a1 = 3T and the equality αp = (T 2 − 1)α2 + T . Using the previous
notations with k = 1, we have P1 = T 2 − 1, Q1 = T , (u1, u2) = (1,−1), ω1 = −1 and
θ1 = −1/2. Also (ε1, ε2) = (1,1). With the notations of Proposition 4.6 and l = 1, we have
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
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f (n) = 3n − 1 and i(n) = v3(2n − 1) + 1. So according to this proposition the partial quotients
are an = λnAv3(2n−1)+1 for 1 � n � 3N − 1. The first element λ1 ∈ F∗

p is given and the sequence
(λn)2�n�3N−1 in F∗

p satisfies

(A) λ3n−1 = λn for 1 � n � N,

and

(B) λ3n = −δ−1
n , λ3n+1 = δn for 1 � n � N − 1,

where the sequence (δn)1�n�N is defined recursively by

(C) δn = −λn(−2)−v3(2n−1) + δ−1
n−1 and δ0 = 1.

To show that α has the required continued fraction expansion, we give the explicit expression
for δn and this proves that N = ∞. Indeed, setting δn = (−1)kn2ln for n � 1, we shall prove that
the sequences (λn)n�1 and (δn)n�1 in F∗

p satisfy the equalities (A), (B) and (C) stated above for

n � 1 with the initial conditions λ1 = 3 and δ0 = 1. For n � 1 we put xn = (−2)v3(2n−1)(δ−1
n−1 −

δn). Thus, (C) will be satisfied if we prove that xn = λn for n � 1. We observe that x1 = δ−1
0 −

δ1 = 1 + 2 = λ1 and also x2 = (−2)(δ−1
1 − δ2) = (−2)(−1/2 − 1) = x1. To prove the equality

of these sequences, we have to show that (xn)n�1 satisfies (A) and (B). A simple verification
shows that, if n � 1 and k � 0 are integers with 2n − 1 ∈ [3k;3k+1[, then the three integers
6n − 3,6n − 1 and 6n + 1 belong to the interval [3k+1;3k+2[. Consequently we have

k3n−1 = k3n = k3n+1 = kn + 1 for n � 1.

Combining these equalities with the recurrence formulas for the sequence (ln)n�1, we obtain

δ3n−1 = (−2)−1δn, δ3n = −δ−1
n and δ3n+1 = −2δn for n � 1.

Using these recurrence formulas for (δn)n�1, for n � 2 we can write

x3n−1 = (−2)v3(6n−3)
(
δ−1

3n−2 − δ3n−1
)

= (−2)v3(2n−1)+1((−2)−1δ−1
n−1 − (−2)−1δn

) = xn.

So the sequence (xn)n�1 satisfies (A) for n � 1. Moreover, for n � 1 we have

x3n = (−2)v3(6n−1)
(
δ−1

3n−1 − δ3n

) = −2δ−1
n + δ−1

n = −δ−1
n

and

x3n+1 = (−2)v3(6n+1)
(
δ−1

3n − δ3n+1
) = −δn + 2δn = δn.

So the sequence (xn)n�1 satisfies (B) for n � 1. This completes the proof of the theorem. �

Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
field, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.01.001



ARTICLE IN PRESS YFFTA:610
JID:YFFTA AID:610 /FLA [m1+; v 1.69; Prn:15/02/2007; 7:53] P.22 (1-22)

22 A. Lasjaunias / Finite Fields and Their Applications ••• (••••) •••–•••
References

[1] L. Baum, M. Sweet, Continued fractions of algebraic power series in characteristic 2, Ann. of Math. 103 (1976)
593–610.

[2] A. Bluher, A. Lasjaunias, Hyperquadratic power series of degree four, Acta Arith. 124 (2006) 257–268.
[3] W. Buck, D. Robbins, The continued fraction of an algebraic power series satisfying a quartic equation, J. Number

Theory 50 (1995) 335–344.
[4] A. Lasjaunias, A survey of diophantine approximation in fields of power series, Monatsh. Math. 130 (2000) 211–229.
[5] A. Lasjaunias, J.-J. Ruch, Flat power series over a finite field, J. Number Theory 95 (2002) 268–288.
[6] A. Lasjaunias, J.-J. Ruch, On a family of sequences defined recursively in F∗

q (II), Finite Fields Appl. 10 (2004)
551–565.

[7] M. Mendès France, Sur les fractions continues limitées, Acta Arith. 23 (1973) 207–215.
[8] W. Mills, D. Robbins, Continued fractions for certain algebraic power series, J. Number Theory 23 (1986) 388–404.
[9] W. Schmidt, On continued fractions and diophantine approximation in power series fields, Acta Arith. 95 (2000)

139–166.
Please cite this article in press as: A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite
field, Finite Fields Appl. (2007), doi:10.1016/j.ffa.2007.01.001


