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Abstract. We de�ne and describe a class of algebraic continued fractions

for power series over a �nite �eld. These continued fraction expansions,

for which all the partial quotients are polynomials of degree one, have a

regular pattern induced by the Frobenius homomorphism. This is an ex-

tension, in the case of positive characteristic, of purely periodic expansions

corresponding to quadratic power series.

x1. Introduction.

Let p be a prime number and q = p

s

where s is a positive integer.

Let F

q

be the �nite �eld with q elements. We consider the ring of polyno-

mials F

q

[T ], and the �eld of rational functions F

q

(T ), in an indeterminate

T with coe�cients in F

q

. There is an ultrametric absolute value de�ned on

F

q

(T ) by j0j = 0 and jP=Qj = jT j

degP�degQ

where jT j is a �xed real num-

ber greater than one. The �eld obtained by completion from F

q

(T ) for this

absolute value will be denoted by F(q). We call the elements of this �eld

formal numbers over F

q

. A non-zero element of this �eld is represented by

a power series in the following way

� =

X

k�k

0

�

k

T

k

where k

0

2 Z; �

k

2 F

q

and �

k

0

6= 0:

The absolute value extended to this �eld is then de�ned by j�j = jT j

k

0

.

We are concerned with the continued fraction algorithm in this

�eld F(q). A good survey on the main properties of this algorithm in

power series �elds can be found in Schmidt's article [S]. We recall that

each element � 2 F(q) can be expanded as a continued fraction which

we denote by � = [a

0

; a

1

; a

2

; : : : ; a

n

; : : : ] where the a

i

are polynomials in

F

q

[T ]. These polynomials are called the partial quotients of the expansion.

We have deg a

i

� 1 for i > 0. The expansion is �nite if and only if � is

rational. The analogue of Lagrange's theorem holds in F(q), that is to say

the sequence (a

i

)

i�0

is ultimately periodic if and only if � is quadratic

over the �eld F

q

(T ) (see [S]).

Baum and Sweet ([BS1] and [BS2]) were among the �rst to con-

sider the �eld F(2). Guided by the analogy with the �eld of real numbers,

they studied rational approximation to algebraic elements in F(2). They

could give an example of an algebraic and non-quadratic element having

a continued fraction expansion with partial quotients of bounded degree.

Later, Mills and Robbins [MR] have taken up this study in a more general

context. They were able to give such an example in F(p) for each prime

p greater than 3. In a �rst approach (q = 3, see [L1]) and in a more
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general context(see [LR]), we have shown the existence of elements in F(q)

algebraic over F

q

(T ) which have a continued fraction expansion with par-

tial quotients all of degree one. In this paper, we extend the study of

this general pattern of algebraic continued fractions. These elements are

obtained as �xed points of the composition of a linear fractional transfor-

mation with the Frobenius homomorphism. A special and classical case

of this pattern is obtained by replacing the Frobenius homomorphism by

the identity, which leads to quadratic numbers having a purely periodic

continued fraction expansion.

x2. De�nition and characterization of at formal numbers.

We consider the subset F

�

(q) = f� 2 F(q); j�j � jT j

�1

g. Clearly,

if � is an irrational element in F

�

(q) then we can expand it as the following

continued fraction

� = [0; a

1

; a

2

; : : : ; a

n

; : : : ] with a

i

2 F

q

[T ] for i � 1:

From the sequence (a

i

)

i�1

we de�ne both sequences (x

i

)

i��1

and (y

i

)

i��1

of elements of F

q

[T ] by the following recursion

�

x

�1

= 1; x

0

= 0 and x

n

= a

n

x

n�1

+ x

n�2

n � 1

y

�1

= 0; y

0

= 1 and y

n

= a

n

y

n�1

+ y

n�2

n � 1

(1)

We know that x

i

=y

i

= [0; a

1

; a

2

; : : : ; a

i

] for i � 1. The sequence (x

i

=y

i

)

i�0

is called the sequence of the convergents to �. For n � 1, we obtain from

(1), jy

n

j = ja

n

jjy

n�1

j and jx

n

j = ja

n

jjx

n�1

j. Consequently, for n � 2, by

induction we have

jx

n

j =

Y

2�i�n

ja

i

j and jy

n

j =

Y

1�i�n

ja

i

j (2)

We recall an important property on the approximation of � by its conver-

gents. If � = [a

0

; a

1

; : : : ; a

n

; : : : ] 2 F(q) then we have

j�� x

n

=y

n

j = ja

n+1

j

�1

jy

n

j

�2

for n � 0: (3)

If a

0

= 0 then, by (3) for n = 0, we have j�j = ja

1

j

�1

. We consider the

sets E(q) = f�T +� j � 2 F

�

q

; � 2 F

q

g and E

0

(q) = f�T j � 2 F

�

q

g. Finally

we de�ne two subsets of irrational numbers in F

�

(q) by

E(q) = f� = [0; a

1

; a

2

; : : : ; a

n

; : : : ] j a

i

2 E(q) for i � 1g

and

E

0

(q) = f� = [0; a

1

; a

2

; : : : ; a

n

; : : : ] j a

i

2 E

0

(q) for i � 1g:

We observe that if � 2 E(q), from (2) and for n � 1, we have jx

n

j = jT j

n�1

and jy

n

j = jT j

n

.
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Proposition 1. Let l and r be two positive integers. Assume that r = p

t

with t � 0 and l � r. Let B = (a

1

; a

2

; : : : ; a

l

) 2 E(q)

l

and � 2 F

�

q

. Let

x

l

; y

l

; x

l�r

and y

l�r

be the polynomials obtained from B by (1). We

consider the following equation

x =

�x

l

+ x

l�r

x

r

�y

l

+ y

l�r

x

r

E(�;B)

Then we have:

1) E(�;B) has a unique solution in F

�

(q), denoted by �(�;B).

2) �(�;B) is an irrational number and �(�;B) = [0;B; : : : ].

3) If B 2 E

0

(q)

l

and �(�;B) 2 E(q) then �(�;B) 2 E

0

(q).

Proof: We denote by f the map de�ned on F

�

(q) by

f(x) =

�x

l

+ x

l�r

x

r

�y

l

+ y

l�r

x

r

:

If x 2 F

�

(q) we see that jy

l�r

x

r

j < jy

l

j and consequently j�y

l

+ y

l�r

x

r

j =

jy

l

j. Similarly we have j�x

l

+ x

l�r

x

r

j = jx

l

j. By (2) we also have jy

l

=x

l

j =

ja

1

j and thus jf(x)j = ja

1

j

�1

= jT j

�1

. Hence f is a map from F

�

(q) into

F

�

(q). For a; b 2 F

�

(q), by straightforward calculation and using the

Frobenius homomorphism if r > 1, we obtain

f(a)� f(b) =

�(y

l

x

l�r

� x

l

y

l�r

)(a� b)

r

(y

l�r

a

r

+ �y

l

)(y

l�r

b

r

+ �y

l

)

(4)

and by taking the absolute value

jf(a)� f(b)j = jy

l

x

l�r

� x

l

y

l�r

jjy

l

j

�2

ja� bj

r

: (5)

By (3) we have jx

l�r

=y

l�r

� x

l

=y

l

j = jy

l�r

j

�2

ja

l�r+1

j. This implies that

jy

l

x

l�r

� x

l

y

l�r

j = jy

l

y

l�r

jjy

l�r

j

�2

ja

l�r+1

j. Since ja

i

j = jT j for 1 � i � l,

(2) implies jy

i

j = jT j

i

for 1 � i � l. Finally we obtain

jy

l

x

l�r

� x

l

y

l�r

j = jT j

r�1

: (6)

Therefore (5) becomes

jf(a)� f(b)j = jT j

�2l+r�1

ja� bj

r

: (7)

For a; b 2 F

�

(q) we have ja� bj

r

� ja� bj, then (7) implies

jf(a)� f(b)j � jT j

�2

ja� bj: (8)

This shows that f is a contraction mapping from F

�

(q) into F

�

(q). Thus,

as F

�

(q) is a complete metric subspace of F(q), the equation x = f(x) has

a unique solution in F

�

(q), depending upon B and �.
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Assume now that this solution is rational, say � = a=b with a; b 2 F

q

[T ]

and gcd(a; b) = 1. Then a=b = f(a=b) implies

a

b

=

�x

l

b

r

+ x

l�r

a

r

�y

l

b

r

+ y

l�r

a

r

: (9)

We put u = �x

l

b

r

+ x

l�r

a

r

, v = �y

l

b

r

+ y

l�r

a

r

and w = x

l

y

l�r

� y

l

x

l�r

.

Then we obtain easily

uy

l�r

� vx

l�r

= �b

r

w and vx

l

� uy

l

= a

r

w: (10)

If we set � = gcd(u; v), since gcd(a; b) = 1, both equations (10) imply that

� divides w. Thus j�j � jwj and, by (6), j�j � jT j

r�1

. Since jvj = jy

l

jjbj

r

,

we obtain jv=�j � jT j

l�r+1

jbj

r

> jbj. Hence we have v=� 6= b and (9) cannot

hold. This brings a contradiction. Further if � 2 F(q)

�

and � = f(�), we

have seen that j�j = jT j

�1

. By (7) we can write

jf(�)� f(0)j = jT j

�2l+r�1

j�j

r

and this is clearly the same as

j�� x

l

=y

l

j = jT j

�1

jy

l

j

�2

:

This last equality proves that x

l

=y

l

is a convergent to � and moreover

ja

l+1

j = jT j. Since x

l

=y

l

= [0; a

1

; a

2

; : : : ; a

l

], we have � = [0;B; : : : ].

The last property to be shown is linked to the fact that, under the given

hypothesis, � is an odd function of T . An even element in F(q) is a function

of T

2

, and an odd element is the product of T by an even element. If p 6= 2,

and � 2 F(q) then � is an odd function of T if �(�T ) = ��(T ). Clearly

� is odd if and only if all the coe�cients of even degree in the power

series expansion of � are zero. Equivalently all the partial quotients in

the continued fraction expansion are odd polynomials of T . So if � is odd

and � 2 E(q) then � 2 E

0

(q). Now assume that B 2 E

0

(q)

l

. From (1) we

observe that x

i

is alternatively an odd (if i is even) or even (if i is odd)

polynomial of T , for 1 � i � l. The same is true for y

i

with the opposite

parity to x

i

. To prove that � is odd, we will have to distinguish two cases.

First suppose that r is odd, hence x

l

and x

l�r

have opposite parity and

(�1)

r

= �1. Consequently it is easy to check that

�(T ) = f(�(T )) implies ��(�T ) = f(��(�T )):

If we put �

�

(T ) = ��(�T ) then j�

�

j = j�j. Since x = f(x) has a unique

root in F

�

(q), we must have �

�

= �, i.e � is an odd function of T . Now

suppose that r is even, hence x

l

and x

l�r

have the same parity. Clearly �

r

is even. If x

l

is even then A = �x

l

+ x

l�r

�

r

is even and B = �y

l

+ y

l�r

�

r

is odd. If x

l

is odd then A is odd and B is even. In both cases, since

� = A=B and observing that the quotient of two numbers of opposite

parity is odd, it follows that � is odd. So the proof of Proposition 1 is

complete.
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Remark. Irrational solutions of equations of the type x = g(x

r

) where g

is a linear fractional transformation with integer coe�cients are called al-

gebraic numbers of class I. Various rational approximation properties of

these elements have been studied by di�erent authors, see [L2] for refer-

ences. Our aim is to show, with the above notations, how � and B can

be chosen such that the corresponding number � belongs to E(q). In this

case � is said to be badly approximable by rational numbers: indeed we

have j�� P=QjjQj

2

� jT j

�1

for all P;Q 2 F

q

[T ] with Q 6= 0.

De�nition. Let p; q; r be integers as above. If there is � 2 F

�

q

, an integer

l � r and B 2 E(q)

l

such that �(�;B) 2 E(q) then we say that �(�;B)

is a at formal number of order r. The subset of elements � 2 E(q) for

which there is � 2 F

�

q

, an integer l � r and B 2 E(q)

l

such that � satis�es

E(�;B) will be denoted by F(�; l; r; q). Further we use the notations

F(l; r; q) =

[

�2F

�

q

F(�; l; r; q) and F(r; q) =

[

l�r

F(l; r; q):

At last F(q) =

S

r=p

t

F(r; q) is called the set of at formal numbers in

F(q).

Di�erent examples of at numbers have already been given ( see

[MR], [L1] and [LR]). Moreover we recall that there is a special quadratic

number contained in F(l; r; q) for all possible triple (l; r; q). Indeed, let

q = p

s

and let e 2 E(q) be de�ned by

e = [0; T; T; : : : ; T; : : : ]:

If k � 1 and l � k are integers, we have shown [LR] that the following

equation holds

e =

(�1)

k�1

x

l

+ x

l�k

e

k

(�1)

k�1

y

l

+ y

l�k

e

k

:

Hence if r = p

t

with t � 0, replacing k by r in this equation and

since (�1)

r�1

= 1 in F

q

, we see, with our notations, that e belongs to

F(1; l; r; q). This formal number e should be viewed as the analogue of

the famous real number (

p

5� 1)=2 = [0; 1; : : : ; 1; : : : ].

In order to give a characterization of the sequence of the partial

quotients in the continued fraction expansion of a at number, we need

to investigate the polynomials x

n

and y

n

de�ned inductively from (1).

These are functions of the partial quotients a

i

, for i � n. A study of those

functions is to be found in Perron's classical treatise on continued fractions.

We use the results exposed there and similar notations (see [P] p.3-18).

We introduce a sequence of functions (K

n

)

n��1

. We put K

�1

= 0 and

K

0

= 1. For n � 1, K

n

is a function of n variables. We have K

1

(u

1

) = u

1

,

K

2

(u

1

; u

2

) = u

1

u

2

+ 1 and the recursive relation, for n � 1,

K

n

(u

1

; u

2

; :::; u

n

) = u

n

K

n�1

(u

1

; : : : ; u

n�1

) +K

n�2

(u

1

; : : : ; u

n�2

):
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It is interesting to remark that K

n

can be expressed by the following

determinant

K

n

(u

1

; u

2

; : : : ; u

n

) = det

�

�

�

�

�

�

�

�

�

�

�

�

u

1

�1 0 : : : 0

1 u

2

�1 0 : : : 0

0 1 u

3

�1 0 : : : 0

.

.

.

.

.

.

.

.

.

0 : : : 1 u

n�1

�1

0 : : : 0 1 u

n

�

�

�

�

�

�

�

�

�

�

�

�

(11)

From (1) and with these notations, it is clear that we have for n � 0

y

n

= K

n

(a

1

; a

2

; : : : ; a

n

) and x

n

= K

n�1

(a

2

; a

3

; : : : ; a

n

):

From� = [0; a

1

; : : : ] 2 E(q) and for k � 0, we de�ne �

k

= [0; a

k+1

; a

k+2

; : : : ].

Hence �

0

= �. Moreover, for k � 0 and n � 0, we set

y

n;k

= K

n

(a

k+1

; : : : ; a

k+n

) and x

n;k

= K

n�1

(a

k+2

; : : : ; a

k+n

):

Clearly (x

n;k

=y

n;k

)

n�0

is the sequence of the convergents to �

k

and we

have x

n;k

=y

n;k

= [0; a

k+1

; : : : ; a

k+n

], for n � 1 and for k � 0. From these

de�nitions, it is easy to check that we have

x

n;k

= y

n�1;k+1

for k � 0 and n � 0: (12)

It can also be established by induction that we have for n � m � 0

x

n

y

m

� y

n

x

m

= (�1)

m

y

n�m�1;m+1

= (�1)

m

x

n�m;m

: (13)

From (13), by shifting the sequence of the partial quotients, we obtain for

n � m � 0 and k � 0

x

n;k

y

m;k

� y

n;k

x

m;k

= (�1)

m

y

n�m�1;m+1+k

= (�1)

m

x

n�m;m+k

: (14)

From (13), we can also deduce, for n � m � 0,

y

n

= y

m

y

n�m;m

+ y

m�1

x

n�m;m

: (15)

At last, shifting the sequence of the partial quotients, (15) implies for

n � m � 0 and k � 0

y

n;k

= y

m;k

y

n�m;m+k

+ y

m�1;k

x

n�m;m+k

: (16)

With these notations we can characterize the sequence of the partial

quotients of a at formal number.
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Proposition 2. Let p; q; r be integers as above. Let � = [0; a

1

; a

2

; : : : ] 2

E(q). Then there exist � 2 F

�

q

and an integer l � r such that � 2

F(�; l; r; q) if and only if there exists a sequence (�

n

)

n�0

of elements in

F

�

q

, with �

0

= 1 and �

1

= �, such that we have one of the four equivalent

properties

(S

1

)

�

�

n+1

x

nr+l

= �y

r

n

x

l

+ x

r

n

x

l�r

�

n+1

y

nr+l

= �y

r

n

y

l

+ x

r

n

y

l�r

for n � �1:

(S

2

)

�

�

n+1

x

nr+l

= �

m+1

y

r

n�m;m

x

mr+l

+ �

m

x

r

n�m;m

x

(m�1)r+l

�

n+1

y

nr+l

= �

m+1

y

r

n�m;m

y

mr+l

+ �

m

x

r

n�m;m

y

(m�1)r+l

for n � m � 0 or m = 0 and n � �1.

(S

3

) �

n+1

�

n

0

+1

x

(n�n

0

)r;n

0

r+l

= �

m+1

�

m

x

r

n�n

0

;n

0

x

r;(m�1)r+l

for n � n

0

� m � 0 or m = 0 and n � n

0

� �1.

(S

4

)

�

�

n+1

�

n�1

x

2r;(n�2)r+l

= �a

r

n

x

r;l�r

�

n+1

�

n

x

r;(n�1)r+l

= �x

r;l�r

for n � 1:

Remark. The case r = 1, i.e. when the Frobenius homomorphism is re-

placed by the identity, is the most simple and also already known since

then � is quadratic (see [S] p.141-142) . In that case this proposition

implies

� = [0; a

1

; a

2

; : : : ] 2 F(1; q), (a

i

)

i�1

is purely periodic.

Assume that � = [0; a

1

; a

2

; : : : ] 2 F(1; q). By (S

4

), we have for n � 1

�

�

n+1

�

n�1

a

n+l

= �a

n

�

n+1

�

n

= �:

From the second equation we get �

2n+1

= � and �

2n

= 1 for n � 0.

Hence the �rst equation becomes a

n+l

= �

(�1)

n+1

a

n

. By iteration we

obtain a

n+2l

= �

u

n;2

a

n

with u

n;2

= (�1)

n+1

+ (�1)

l+n+1

. If l is odd

u

n;2

= 0 and thus a

n+2l

= a

n

for n � 1. Otherwise, by further iteration

we obtain a

n+kl

= �

u

n;k

a

n

with u

n;k

= (�1)

n+1

+ (�1)

l+n+1

+ � � � +

(�1)

(k�1)l+n+1

and since l is even u

n;k

= k(�1)

n+1

. Hence �

u

n;k

= 1 at

least for k = q�1 and consequently a

n+(q�1)l

= a

n

for n � 1. Reciprocally

if � = [0; a

1

; : : : ; a

L

; a

1

; : : : ; a

L

; a

1

; : : : ] then it is well known that � =

(x

L

+ x

L�1

�)=(y

L

+ y

L�1

�) and therefore � 2 F(1; q) .

Proof: First we shall prove that � 2 F(�; l; r; q) if and only if (S

1

) holds.

Assume that � = [0; a

1

; : : : ; a

n

; : : : ] 2 E(q) and satis�es � = f(�) where

f(x) = (�x

l

+ x

l�r

x

r

)=(�y

l

+ y

l�r

x

r

). For n � 0, we set

�

u

n

= �x

l

y

r

n

+ x

l�r

x

r

n

v

n

= �y

l

y

r

n

+ y

l�r

x

r

n

(17)
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Thus we have for n � 0

u

n

v

n

= f

�

x

n

y

n

�

: (18)

According to (7) we can write for n � 0

j�� u

n

=v

n

j = jf(�)� f(x

n

=y

n

)j = jT j

�2l+r�1

j�� x

n

=y

n

j

r

:

Since � 2 E(q) implies j� � x

n

=y

n

j = jT j

�1

jy

n

j

�2

and clearly jv

n

j =

jy

l

jjy

n

j

r

, this becomes

j�� u

n

=v

n

j = jT j

�1

jv

n

j

�2

: (19)

It is known that if j� � P=Qj < jQj

�2

then P=Q is a convergent to �.

Thus there exists an integer m such that u

n

=v

n

= x

m

=y

m

. Since we

also have j� � x

m

=y

m

j = jT j

�1

jy

m

j

�2

, we deduce jv

n

j = jy

m

j. Further

jy

m

j = jT j

m

and jv

n

j = jT j

rn+l

shows that m = rn + l. Consequently

u

n

=v

n

= x

rn+l

=y

rn+l

, with gcd(u

n

; v

n

) = 1. This implies that there exists,

for n � 0, �

n+1

2 F

�

q

such that

�

�

n+1

x

nr+l

= �x

l

y

r

n

+ x

l�r

x

r

n

�

n+1

y

nr+l

= �y

l

y

r

n

+ y

l�r

x

r

n

(20)

Putting n = 0 in (20), we see that �

1

= �. If we de�ne �

0

= 1 we have

proved that (S

1

) holds for n � �1. Reciprocally (S

1

) implies immediately

by division that we have for n � 0

x

nr+l

y

nr+l

= f

�

x

n

y

n

�

:

Thus, by letting n go to in�nity, we obtain the desired equation � = f(�),

with � = �

1

. To complete the proof of the proposition we need to show

that the four systems (S

1

), (S

2

), (S

3

) and (S

4

) are equivalent. We �rst

prove that (S

1

) implies (S

2

). Let n � m � 0 or m = 0 and n � �1 be

integers. By (12), (15) and (16), we have

�

y

n

= y

m

y

n�m;m

+ y

m�1

x

n�m;m

x

n

= x

m

y

n�m;m

+ x

m�1

x

n�m;m

(21)

Using (21), the �rst equation of (20) can be written

�

n+1

x

nr+l

= y

r

n�m;m

(�x

l

y

r

m

+ x

l�r

x

r

m

) + x

r

n�m;m

(�x

l

y

r

m�1

+ x

l�r

x

r

m�1

)

and �nally, applying (20) again,

�

n+1

x

nr+l

= �

m+1

y

r

n�m;m

x

mr+l

+ �

m

x

r

n�m;m

x

(m�1)r+l

:

It is clear that the second equation in (S

2

) can be obtained in the same

way, hence (S

2

) holds. We next prove that (S

3

) is implied by (S

2

). Let

n � n

0

� m � 0 be integers. For brevity sake, (S

2

) will be written as

�

n+1

x

nr+l

= A

n

+ B

n

and �

n+1

y

nr+l

= C

n

+D

n

; (22)
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and similarly we can write

�

n

0

+1

x

n

0

r+l

= A

n

0

+ B

n

0

and �

n

0

+1

y

n

0

r+l

= C

n

0

+D

n

0

: (23)

We put X = �

n+1

x

nr+l

�

n

0

+1

y

n

0

r+l

��

n

0

+1

x

n

0

r+l

�

n+1

y

nr+l

. By (13) we can

write

X = �

n+1

�

n

0

+1

(�1)

n

0

r+l

x

(n�n

0

)r;n

0

r+l

: (24)

On the other hand, by (22) and (23), we also have

X = (A

n

C

n

0

�A

n

0

C

n

) + (A

n

D

n

0

�A

n

0

D

n

)

+ (B

n

C

n

0

�B

n

0

C

n

) + (B

n

D

n

0

� B

n

0

D

n

):

(25)

It is easy to check that A

n

C

n

0

� A

n

0

C

n

= B

n

D

n

0

� B

n

0

D

n

= 0. By (14),

we have

A

n

D

n

0

� A

n

0

D

n

= �

m+1

�

m

(�1)

(n

0

�m)r+1

x

mr+l

y

(m�1)r+l

x

r

n�n

0

;n

0

(26)

and

B

n

C

n

0

� B

n

0

C

n

= �

m+1

�

m

(�1)

(n

0

�m)r

x

(m�1)r+l

y

mr+l

x

r

n�n

0

;n

0

: (27)

Finally we obtain, from (25), (26), (27) and using (14),

X = �

m+1

�

m

(�1)

(n

0

�1)r+l�1

x

r

n�n

0

;n

0

x

r;(m�1)r+l

(28)

We observe that (�1)

r+1

= 1 in F

q

for all p. Hence comparing (24) to

(28) we have proved (S

3

). Now the �rst equation of (S

4

) is obtained from

(S

3

) by taking n

0

= n � 2 and m = 0. So this equation holds for n � 1.

The second equation of (S

4

) is obtained from (S

3

) by taking n

0

= n � 1

and m = 0 and hence also holds for n � 1. Thus clearly (S

3

) implies (S

4

).

It remains to prove that (S

4

) implies (S

1

). By (12) and (16), we can write

for n � 1

x

2r;(n�2)r+l

= x

r;(n�2)r+l

y

r;(n�1)r+l

+ x

r�1;(n�2)r+l

x

r;(n�1)r+l

(29)

From (S

4

) we have for n � 1 and m � 0

(

x

2r;(n�2)r+l

= ��

�1

n�1

�

�1

n+1

a

r

n

x

r;l�r

x

r;mr+l

= ��

�1

m+2

�

�1

m+1

x

r;l�r

(30)

Combining (29) and (30) we obtain

�

n+1

y

r;(n�1)r+l

+ �

n�1

x

r�1;(n�2)r+l

= �

n

a

r

n

: (31)

Again by (12) and (16), we can also write for n � 0

x

nr+l

= x

(n�1)r+l

y

r;(n�1)r+l

+ x

(n�1)r+l�1

x

r;(n�1)r+l

: (32)
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Multiplying (32) by �

n+1

and combining with (31), we obtain

�

n+1

x

nr+l

= �

n

a

r

n

x

(n�1)r+l

+X (33)

where X = �

n+1

x

(n�1)r+l�1

x

r;(n�1)r+l

� �

n�1

x

r�1;(n�2)r+l

x

(n�1)r+l

.

The second equation of (S

4

), implies �

n+1

x

r;(n�1)r+l

= �

n�1

x

r;(n�2)r+l

.

Therefore we get

X = �

n�1

�

x

r;(n�2)r+l

x

(n�1)r+l�1

� x

r�1;(n�2)r+l

x

(n�1)r+l

�

: (34)

Using (13), we can write

x

r�1;(n�2)r+l

=

�

x

(n�1)r+l�1

y

(n�2)r+l

� y

(n�1)r+l�1

x

(n�2)r+l

�

!

and

x

r;(n�2)r+l

=

�

x

(n�1)r+l

y

(n�2)r+l

� y

(n�1)r+l

x

(n�2)r+l

�

!;

with ! = (�1)

(n�2)r+l

. From these two equalities and (34) it follows that

X is equal to

�

n�1

x

(n�2)r+l

(x

(n�1)r+l

y

(n�1)r+l�1

� y

(n�1)r+l

x

(n�1)r+l�1

)(�1)

(n�2)r+l

Finally, by (13), this becomes

X = �

n�1

x

(n�2)r+l

: (35)

Hence, by (33) and (35), we have proved for n � 1

�

n+1

x

nr+l

= �

n

a

r

n

x

(n�1)r+l

+ �

n�1

x

(n�2)r+l

: (36)

In a similar way, we could prove the same identity with y instead of x.

Now let us prove by induction that the �rst equation of (S

1

), i.e.

�

n+1

x

nr+l

= �y

r

n

x

l

+ x

r

n

x

l�r

; (37)

holds for n � �1. Clearly (37) is true for n = �1 and n = 0. Assume it is

true for k � n and n � 0. From (36) and (37), we can write

�

n+2

x

(n+2)r+l

= a

r

n+1

(�x

l

y

r

n

+ x

l�r

x

r

n

) + �x

l

y

r

n�1

+ x

l�r

x

r

n�1

:

Using the Frobenius homomorphism and the recursive de�nition of the

sequences (x

n

)

n��1

and (y

n

)

n��1

, we obtain

�

n+2

x

(n+2)r+l

= �x

l

y

r

n+1

+ x

l�r

x

r

n+1

:

Hence (37) holds for n + 1 and by induction for all n � �1. Using the

corresponding identity to (36) with y instead of x, with the same arguments

we also have for n � �1

�

n+1

y

nr+l

= �y

r

n

y

l

+ x

r

n

y

l�r

:
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This shows that (S

1

) holds for n � �1. Thus the proof of Proposition 2

is complete.

x3. The case r = 2 and some general properties.

In this section we state some consequences of Proposition 2. Clearly

the complexity of the system (S

4

) is growing with r. Beside the trivial

case r = 1 considered in the remark following Proposition 2, it is possible

to investigate throughly the case r = 2 and we do so in Proposition 3

and 4. This case illustrates the fact that in general the existence of a

sequence (a

n

)

n�1

of polynomials of degree one in F

q

[T ] solution of (S

4

)

will depend upon the choice of � and also of the �rst l partial quotients. In

Proposition 5 we obtain some general properties on the sequences of the

two coe�cients of the partial quotients by studying the system (S

4

). At

last, in Proposition 6, we give some properties of stability for at numbers.

Proposition 3. Let q = 2

s

with s � 1 and l � 2 be integers. Let

�

1

; �

2

; : : : ; �

l

and � be given in F

�

q

. We consider the sequence (�

i

)

i�1

in

F

�

q

de�ned recursively for n � 1 by

(

�

l+2n�1

= �

2

n

�

�1

l

�

(�1)

n+1

�

l+2n

= �

l

:

Let x

l�2

; y

l�2

; x

l

and y

l

be the polynomials built from (�

1

T; �

2

T; : : : ; �

l

T )

by (1). Let � be the irrational element in F(q) de�ned by the continued

fraction expansion � = [0; �

1

T; �

2

T; : : : ; �

n

T; : : : ]. Then � satis�es the

algebraic equation

y

l�2

�

3

+ x

l�2

�

2

+ �y

l

�+ �x

l

= 0:

Proof: Let q and l be as stated above. According to Proposition 1 with

r = 2, we know that the following equation

x =

�x

l

+ x

l�2

x

2

�y

l

+ y

l�2

x

2

(38)

has an irrational solution � in F(q) such that � = [0; �

1

T; : : : ; �

l

T; a

l+1

; : : : ].

Moreover since the �rst l partial quotients are linear, they all are linear

and hence we can put a

i

= �

i

T for i � 1. By Proposition 2 with r = 2,

we have � 2 E(q) if and only if there is a sequence (�

n

)

n�0

such that

(S

4

)

(

�

n+1

�

n�1

x

4;2n�4+l

= �a

2

n

x

2;l�2

�

n+1

�

n

x

2;2n�2+l

= �x

2;l�2

for n � 1:

It is easy to check that we have

8

>

<

>

:

x

4;2n�4+l

= a

2n�2+l

a

2n�1+l

a

2n+l

+ a

2n�2+l

+ a

2n+l

x

2;2n�2+l

= a

2n+l

x

2;l�2

= a

l

:

(39)
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Therefore (S

4

) and (39) imply

�

2n�2+l

�

2n�1+l

�

2n+l

T

3

+ (�

2n�2+l

+ �

2n+l

)T = ��

�1

n+1

�

�1

n�1

�

2

n

�

l

T

3

(40)

and

�

n+1

�

n

�

2n+l

T = ��

l

T (41)

for n � 1. From (40) we obtain �

2n�2+l

= �

2n+l

and thus �

2n+l

= �

l

for n � 1. Combining this with (41), it follows that �

n+1

�

n

= � for

n � 1. With the initial conditions, this leads to ��

�1

n+1

�

�1

n�1

= �

(�1)

n+1

.

Comparing the coe�cients of T

3

in both sides of (40) and since �

2n�2+l

=

�

2n+l

= �

l

, we obtain �

l+2n�1

= �

2

n

�

�1

l

�

(�1)

n+1

for n � 1. In conclusion

� = [0; �

1

T; : : : ; �

n

T : : : ], with the sequence (�

i

)

i�1

de�ned as in the

proposition, satis�es (38). Thus � satis�es the desired equation and the

proof is complete.

With the notations introduced above, this last proposition shows

that, in case of characteristic 2, if l � 2, B 2 E

0

(q)

l

and � 2 F

�

q

are

arbitrary then �(B; �) 2 F(2; q). In the next proposition, also in the case

of characteristic 2, we see that if B is chosen arbitrarily in E(q)

l

then in

general �(B; �) is no longer in F(2; q). In this proposition we use, whenever

this has a sense, the symbol for continued fractions [u

1

; u

2

; : : : ; u

m

] where

the u

i

are in F

q

.

Proposition 4. Let q = 2

s

with s � 1 and l � 2 be integers. Let B =

(a

1

; : : : ; a

l

) 2 E(q)

l

and � 2 F

�

q

be given. For 1 � i � l we set a

i

= �

i

T+�

i

with �

i

2 F

�

q

and �

i

2 F

q

. For 1 � i � l � 1 we set �

i

= �

l

�

�1

l

�

i

+ �

i

.

We de�ne a subset I � f1; : : : ; l� 1g such that

I = fi : [�

i

][�

i�1

; �

i

] : : : [�

1

; : : : ; �

i

] 6= 0g:

For i 2 I we set !

i

= [0; �

2

1

; : : : ; �

2

i

] 2 F

�

q

. Finally we de�ne the subset of

F

�

q

, G(B) = f!

i

: i 2 Ig. Then we have

1) �(�;B) 2 F(l; 2; q) if and only if � =2 G(B).

2) If l < q then for all B there exists � 2 F

�

q

such that �(�;B) 2 F(l; 2; q):

3) If l � q then there exists B such that for all � 2 F

�

q

we have �(�;B) =2

F(l; 2; q).

Proof: By Proposition 2, with q = 2

s

and l � r = 2, we know that

�(�;B) 2 F(l; 2; q) if and only if there is a sequence (�

n

)

n�0

such that (S

4

)

holds for n � 1. We have �(�;B) = [0; a

1

; : : : ; a

l

; a

l+1

; : : : ]. Extending the

notations of this proposition, we put a

i

= �

i

T +�

i

and �

i

= �

l

�

�1

l

�

i

+�

i

,

for i � 1. By (S

4

) and (39) as in the previous proposition, an elementary

calculation shows that �(�;B) 2 F(l; 2; q) if and only if there is a sequence
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(�

n

)

n�0

such that we have for n � 1

8

>

>

>

>

<

>

>

>

>

:

�

l+2n�1

= �

�1

�

2

n

�

2

n

�

�1

l

�

l+2n

= ��

�1

n+1

�

�1

n

�

l

�

l+n

= �

l+n

�

�1

l

�

l

�

n+1

= �

n

�

2

n

+ �

n�1

(42)

The third equation shows that �

n

= 0, for n � l. Hence, the last equation

implies �

n+1

= �

n�1

, for n � l. Consequently (42) will have a unique

solution (a

i

)

i�1

if and only if B and � are such that �

i

6= 0 for 2 � i � l.

So we only have to study the last equation of (42), for 1 � n � l� 1. This

equation can be written as

�

n+1

= �

2

n

+

1

�

n

with �

n

=

�

n

�

n�1

:

This can be written formally, using the usual symbol for continued fraction,

as

�

n

= [�

2

n�1

; �

2

n�2

; : : : ; �

2

1

; �] for 2 � n � l:

It is clear that �

i

6= 0 for 2 � i � l is equivalent to �

i

6= 0 for 2 � i � l.

If i 2 I then !

i

exists in F

�

q

and we have �

i+1

6= 0 if and only if � 6= w

i

:

Therefore (42) has a solution if and only if � =2 G(B), which ends the proof

of the �rst part of the proposition.

Moreover since jG(B)j � l � 1, if l < q then we have jG(B)j < jF

�

q

j.

Therefore we can always �nd � 2 F

�

q

and � =2 G(B) and this proves the

second part.

At last assume that l � q and thus jF

�

q

j � l � 1. In that case it is

possible to choose B and particularly the q�1 �rst �

i

such that the !

i

for

1 � i � q� 1 take all the values in F

�

q

. So � =2 G(B) is impossible and the

proof is complete.

Now we return to the general case. So we have q = p

s

, r = p

t

where p is an arbitrary prime number and s � 1, t � 0 are integers. For

the next proposition we introduce the following notations. If � 2 E(q) we

put � = [0; a

1

; a

2

; : : : ] where a

i

= �

i

T + �

i

with �

i

2 F

�

q

and �

i

2 F

q

for

i � 1. We put 

i

= �

i

�

�1

i

for i � 1. Moreover, to simplify the writing, we

set for j � 1 and i � 1

�

i;j

=

j+i�1

Y

k=j

�

k

and �

i;j

=

j+i�1

X

k=j



k

with �

0;j

= 1 and �

0;j

= 0. Now we can state the following proposition.

Proposition 5. Let � 2 F

�

q

and � 2 F(�; l; r; q). Let (�

n

)

n�0

be the

sequence of elements in F

�

q

corresponding to � by Proposition 2. Then we

have :
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1) �

n

= �

nr;l�r+2

(�

n;1

)

�r

for n � 1:

2) (�

r�1;(n�2)r+l+2

)

2

�

(n�2)r+l+1

�

(n�1)r+l+1

= (�

n

�

n�1

)

r

for n � 2:

3) if r � 2, �

r;nr+l+1

= �

r;(n�1)r+l+2

= 0 and 

nr+l+1

= 

l+1

for n � 0.

Proof: Let us consider x

i;k

, for k � 0 and i � 1, as a polynomial in T .

With the above notations, we easily see by induction that

x

i;k

= �

i�1;k+2

T

i�1

+ �

i�1;k+2

�

i�1;k+2

T

i�2

+ : : : (43)

From (S

4

), combining the two equations, we have for n � 1

�

n+1

�

n�1

x

2r;(n�2)r+l

= a

r

n

�

n+1

�

n

x

r;(n�1)r+l

By comparing the coe�cients of highest degree in T on both sides of this

equation, we obtain directly with (43)

�

n�1

�

2r�1;(n�2)r+l+2

= �

r

n

�

n

�

r�1;(n�1)r+l+2

for n � 1:

This becomes

�

n

�

n�1

=

�

r;(n�2)r+l+2

�

r

n

for n � 1: (44)

Since �

n

=

Q

n

k=1

�

k

=�

k�1

, we obtain the �rst point of this proposition.

From (S

4

), combining the two equations, we have for n � 2

�

n

�

n�2

x

2r;(n�3)r+l

= a

r

n�1

�

n�1

�

n�2

x

r;(n�3)r+l

By comparing the coe�cients of highest degree in T on both sides of this

equation and using (43) again, we get

�

n

�

2r�1;(n�3)r+l+2

= �

r

n�1

�

n�1

�

r�1;(n�3)r+l+2

and this becomes

�

n

�

n�1

=

�

r

n�1

�

r;(n�2)r+l+1

for n � 2: (45)

Finally, comparing (44) and (45), we obtain for n � 2 the second point of

the proposition.

For the last point we will use (S

3

). By comparing the coe�cients

of highest degree in T in both sides of (S

3

), we get the following equality

X = �

n+1

�

n

0

+1

�

(n�n

0

)r�1;n

0

r+l+2

= �

m+1

�

m

�

r

n�n

0

�1;n

0

+2

�

r�1;(m�1)r+l+2

:

Now comparing the coe�cients of degree in T just below the highest, using

(43) and assuming that r � 2, we obtain

X�

(n�n

0

)r�1;n

0

r+l+2

= X�

r�1;(m�1)r+l+2

:
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Thus we have �

(n�n

0

)r�1;n

0

r+l+2

= �

r�1;(m�1)r+l+2

for n � n

0

� m � 0

or n � n

0

� �1 and m = 0. Taking now n

0

= n� 1, we get

�

r�1;(n�1)r+l+2

= �

r�1;l�r+2

for n � 0: (46)

While taking n

0

= n� 2, implies

�

2r�1;(n�2)r+l+2

= �

r�1;l�r+2

for n � 1: (47)

By (46) and (47) we obtain �

2r�1;(n�2)r+l+2

= �

r�1;(n�2)r+l+2

for n � 1.

Hence we have �

r;(n�2)r+l+2

= 0 for n � 1 or equivalently

�

r;(n�1)r+l+2

= 0 for n � 0: (48)

Therefore, for n � 0, we can write

�

r�1;(n�1)r+l+2

+ 

nr+l+1

= �

r�1;l�r+2

+ 

l+1

and , by (46), this implies



nr+l+1

= 

l+1

for n � 0: (49)

Finally, from (48) and (49), it follows that

�

r;nr+l+1

= 0 for n � 0:

So the proof of this proposition is complete.

Remark. We recall here another property of the sequence (�

n

)

n�0

which

has been proved in [LR]. With the above notations, if �

i

= 0 for i � 1 then

�

2n

= 1 and �

2n+1

= � for n � 0 (as in Proposition 3 above). Further, by

taking the value at zero in the polynomials in T of both equations of (S

4

),

we observe that the sequence (�

i

)

i�1

satis�es the same system (S

4

) as the

sequence of the partial quotients (a

i

)

i�1

does.

We state a last proposition.

Proposition 6. Let � 2 F

�

q

and � 2 F(�; l; r; q). Then we have :

1) If � 2 F

�

q

and � 2 F

q

then �

0

(T ) = �(�T + �) 2 F(�; l; r; q).

2) If � 2 F

�

q

then �

0

= �� 2 F(�

0

; l; r; q) with

�

�

0

= ��

r

if r is even

�

0

= ��

(�1)

l+1

+r

if r is odd

3) There exists �(k) 2 F

�

q

such that � 2 F(�(k); l

k

; r

k

; q) for every integer

k � 1, with l

k

= (1 + r + � � �+ r

k�1

)l.
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4) There exists �(k) 2 F

�

q

such that �

k

2 F(�(k); l

k

; r; q) for every integer

k � 0, with l

k

= l + k(r � 1).

Proof: The �rst point of this proposition is obvious. Indeed if �(T ) =

[0; a

1

(T ); a

2

(T ); : : : ] then �

0

(T ) = [0; a

1

(�T + �); a

2

(�T + �); : : : ]. Con-

sequently the four polynomials x

0

l

; y

0

l

; x

0

l�r

and y

0

l�r

, corresponding to �

0

are obtained from x

l

; y

l

; x

l�r

and y

l�r

changing T into �T + �. Thus if

� satis�es E(�;B) then �

0

satis�es E(�;B

0

) where B

0

is obtained from B

changing T into �T + �. Observe that � 2 E(q) if and only if �

0

2 E(q).

If � = [0; a

1

; a

2

; : : : ] and � 2 F

�

q

it is clear that �

0

= �� =

[0; �

�1

a

1

; �a

2

; �

�1

a

3

; �a

4

; : : : ]. Again denoting by x

0

l

; y

0

l

; x

0

l�r

and y

0

l�r

the

four polynomials corresponding to �

0

, it is easy to check that we have for

n � 1

�

x

0

n

= x

n

y

0

n

= �

�1

y

n

if n is odd

x

0

n

= �x

n

y

0

n

= y

n

if n is even

(50)

Observe that � 2 E(q) if and only if �

0

2 E(q). We suppose now that

� satis�es E(�;B). We will have to consider four cases according to the

di�erent parities of r and l. Assume �rst that r is odd and l is even. Then

, by (50), we obtain

�

0

= �� = �

�

�x

l

+ x

l�r

�

r

�y

l

+ y

l�r

�

r

�

=

��

r�1

x

0

l

+ x

0

l�r

(�

0

)

r

��

r�1

y

0

l

+ y

0

l�r

(�

0

)

r

:

This proves that �

0

belongs to F(�

0

; l; r; q) with �

0

= ��

r�1

. The proof in

the three cases left is obtained in the same way and so we omit it.

Let us prove the third point of the proposition. We use induction

on k. Since � 2 F(�; l; r; q), the result is true for k = 1 with �(1) = �. We

write

� =

�x

l

+ x

l�r

�

r

�y

l

+ y

l�r

�

r

= f

�;l

(�

r

):

Assume that there is �(k) 2 F

�

q

such that we have

� = f

�(k);l

k

(�

r

k

) with l

k

= (1 + r + � � �+ r

k�1

)l:

Then we can write

� = f

�;l

��

f

�(k);l

k

(�

r

k

)

�

r

�

Using the Frobenius homomorphism, a simple calculation leads to

� =

A+B�

r

k+1

C +D�

r

k+1

(51)

where

(

A = �(k)

r

(�x

l

y

r

l

k

+ x

l�r

x

r

l

k

); B = �x

l

y

r

l

k

�r

k

+ x

l�r

x

r

l

k

�r

k

C = �(k)

r

(�y

l

y

r

l

k

+ y

l�r

x

r

l

k

); D = �y

l

y

r

l

k

�r

k

+ y

l�r

x

r

l

k

�r

k

:
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Now we know, by Proposition 2, that there is a sequence (�

n

)

n�0

of ele-

ments in F

�

q

, with �

0

= 1 and �

1

= �, such that we have

(S

1

)

�

�

n+1

x

nr+l

= �y

r

n

x

l

+ x

r

n

x

l�r

�

n+1

y

nr+l

= �y

r

n

y

l

+ x

r

n

y

l�r

for n � �1;

Replacing n by l

k

or l

k

� r

k

in both equations of (S

1

), we obtain directly

(

A = �(k)

r

�

l

k

+1

x

rl

k

+l

; B = �

l

k

�r

k

+1

x

rl

k

+l�r

k+1

C = �(k)

r

�

l

k

+1

y

rl

k

+l

; D = �

l

k

�r

k

+1

y

rl

k

+l�r

k+1
:

(52)

Since rl

k

+ l = l

k+1

, putting �(k + 1) = �(k)

r

�

l

k

+1

�

�1

l

k

�r

k

+1

, we see that

(51) and (52) imply � 2 F(�(k + 1); l

k+1

; r

k+1

; q). Thus the proof of this

point is complete.

Let us prove the last point. Since � = [0; a

1

; a

2

; : : : ] 2 F(�; l; r; q),

we know that there is a sequence (�

n

)

n�0

of elements in F

�

q

, with �

0

= 1

and �

1

= �, such that we have

(S

4

)

�

�

n+1

�

n�1

x

2r;(n�2)r+l

= a

r

n

�x

r;l�r

�

n+1

�

n

x

r;(n�1)r+l

= �x

r;l�r

for n � 1:

It is easy to check that this is equivalent to

�

�

n�1

x

2r;(n�2)r+l

= �

n

a

r

n

x

r;(n�1)r+l

�

n+1

x

r;(n�1)r+l

= �

n�1

x

r;(n�2)r+l

for n � 1:

(53)

Given k � 0, wet set ~a

n

= a

n+k

for n � 1 and ~�

n

= �

n+k

�

�1

k

for n � 0.

Further for i � 1 and j � 0 we set ~x

i;j

= x

i;j+k

. Now we write (53)

replacing n by n+ k. With these notations and with l

k

= l+ k(r� 1), we

have

�

~�

n�1

~x

2r;(n�2)r+l

k

= ~�

n

~a

r

n

~x

r;(n�1)r+l

k

~�

n+1

~x

r;(n�1)r+l

k

= ~�

n�1

~x

r;(n�2)r+l

k

for n � 1:

(54)

We observe that ~�

0

= 1 and that ~x

i;j

is obtained from the sequence

(~a

n

)

n�1

as x

i;j

is obtained from the sequence (a

n

)

n�1

. By (54), we

see that the sequences (~a

n

)

n�1

and (~�

n

)

n�1

satisfy (S

4

). Consequently

�

k

= [0; ~a

1

; ~a

2

; : : : ] is an element of F(�(k); l

k

; r; q) with �(k) = �

k+1

�

�1

k

.

So the proof of Proposition 6 is complete.

Before concluding we make a last observation. Since at numbers

are algebraic over F

q

(T ), the question of their exact degree is open. If

� 2 F(r; q) then clearly we have 2 � [F

q

(�; T ) : F

q

(T )] � r+1. Although

we could not prove it, it is reasonable to believe that, except in the trivial

case r = 1, we have [F

q

(�; T ) : F

q

(T )] = 2 if and only if there exist

�

1

; �

2

2 F

�

q

and �

3

2 F

q

such that �(T ) = �

1

e(�

2

T + �

3

). In connection

with this remark, it is easy to check that if � 2 F(l; r; q) \ F(l

0

; r; q) for

l 6= l

0

then �

r

is quadratic over F

q

(T ) and thus � also.
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