Hyperquadratic power series in $\mathbb{F}_{3}\left(\left(T^{\mathbf{1}}\right)\right)$ with partial quotients of degree 1

Domingo Gómez-Pérez • Alain Lasjaunias

Received: 5 April 2012 / Accepted: 5 November 2013 / Published online: 31 December 2013
© Springer Science+Business Media New York 2013

Abstract

In this note, we describe a large family of nonquadratic continued fractions in the field $\mathbb{F}_{3}\left(\left(T^{-1}\right)\right)$ of power series over the finite field \mathbb{F}_{3}. These continued fractions are remarkable for two reasons: first, they satisfy an algebraic equation with coefficients in $\mathbb{F}_{3}[T]$ given explicitly, and, second, all the partial quotients in the expansion are polynomials of degree 1. In 1986, in a basic article in this area of research, Mills and Robbins (J. Number Theory 23:388-404, 1986) gave the first example of an element belonging to this family.

Keywords Finite fields • Fields of power series • Continued fractions
Mathematics Subject Classification (2000) 11J70 • 11J61 • 11T55

1 Introduction

We are concerned with power series in $1 / T$ over a finite field, where T is an indeterminate. If the base field is \mathbb{F}_{q}, the finite field of characteristic p with q elements, these power series belong to the field $\mathbb{F}_{q}\left(\left(T^{-1}\right)\right)$, which here will be denoted by $\mathbb{F}(q)$. Thus a nonzero element of $\mathbb{F}(q)$ is represented by

$$
\alpha=\sum_{k \leq k_{0}} u_{k} T^{k} \quad \text { where } k_{0} \in \mathbb{Z}, u_{k} \in \mathbb{F}_{q} \text { and } u_{k_{0}} \neq 0
$$

[^0]The absolute value on this field is defined by $|\alpha|=|T|^{k_{0}}$ where $|T|>1$ is a fixed real number. We also denote by $\mathbb{F}(q)^{+}$the subset of power series α such that $|\alpha|>1$. We know that each irrational element $\alpha \in \mathbb{F}(q)^{+}$can be expanded as an infinite continued fraction. This is denoted

$$
\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right] \quad \text { where } a_{i} \in \mathbb{F}_{q}[T] \text { and } \operatorname{deg}\left(a_{i}\right)>0 \text { for } i \geq 1
$$

By truncating this expansion, we obtain a rational element, called a convergent to α and denoted by x_{n} / y_{n} for $n \geq 1$. The polynomials $\left(x_{n}\right)_{n \geq 0}$ and $\left(y_{n}\right)_{n \geq 0}$, called continuants, are both defined by the same recursion formula: $K_{n}=a_{n} K_{n-1}+K_{n-2}$ for $n \geq 2$, with the initial conditions $x_{0}=1$ and $x_{1}=a_{1}$ or $y_{0}=0$ and $y_{1}=1$. The polynomials a_{i} are called the partial quotients of the expansion. For $n \geq 1$, we denote $\alpha_{n+1}=\left[a_{n+1}, a_{n+2}, \ldots\right]$, calling it the complete quotient, and we have

$$
\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \alpha_{n+1}\right]=\left(x_{n} \alpha_{n+1}+x_{n-1}\right) /\left(y_{n} \alpha_{n+1}+y_{n-1}\right) .
$$

The reader may consult [5] for a general account on continued fractions in power series fields and also [6] for a wider presentation of Diophantine approximation in function fields and more references.

In 1986, Mills and Robbins [4], by developing the pioneering work by Baum and Sweet [1], introduced a particular subset of algebraic power series. These power series are irrational elements $\alpha \in \mathbb{F}(q)$ satisfying an equation $\alpha=f\left(\alpha^{r}\right)$ where r is a power of the characteristic p of the base field and f is a linear fractional transformation with integer (polynomials in $\mathbb{F}_{q}[T]$) coefficients. The subset of such elements is denoted by $\mathbb{H}_{r}(q)$ and its elements are called hyperquadratic.

Throughout this note, the base field is \mathbb{F}_{3}, i.e., $q=3$. We are concerned with elements in $\mathbb{H}_{3}(3)$ which are not quadratic and have all partial quotients of degree 1 in their continued fraction expansion. A first example of such power series appeared in [4, pp. 401-402].

2 Results

In [2], the second named author of this note investigated the existence of elements in $\mathbb{H}_{3}(3)$ with all partial quotients of degree 1 . The theorem which we present here is an extended version of the one presented in [2]. However, the proof given here is based on a different method. This method used to obtain other continued fraction expansions of hyperquadratic power series was developed in [3]. We have the following:

Theorem 1 Let $m \in \mathbb{N}^{*}, \boldsymbol{\eta}=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{m}\right) \in\left(\mathbb{F}_{3}^{*}\right)^{m}$ where $\eta_{m}=(-1)^{m-1}$ and $\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{m}\right) \in \mathbb{N}^{m}$ where $k_{1} \geq 2$ and $k_{i+1}-k_{i} \geq 2$ for $i=1, \ldots, m-1$. We define the following integers:

$$
t_{i, n}=k_{m}\left(3^{n}-1\right) / 2+k_{i} 3^{n} \quad \text { for } 1 \leq i \leq m \text { and } n \geq 0
$$

We observe that we have $t_{i, n}<t_{i+1, n}$ for all (i, n) and $t_{m, n}<t_{1, n+1}$. Also $t_{i, n} \neq$ $t_{j, n^{\prime}}+1$. Accordingly, we can define two sequences $\left(\lambda_{t}\right)_{t \geq 1}$ and $\left(\mu_{t}\right)_{t \geq 1}$ in \mathbb{F}_{3}. For
$n \geq 0$, we have

$$
\lambda_{t}= \begin{cases}1 & \text { if } 1 \leq t \leq t_{1,0} \\ (-1)^{m n+i} & \text { if } t_{i, n}<t \leq t_{i+1, n} \text { for } 1 \leq i<m \\ (-1)^{m(n+1)} & \text { if } t_{m, n}<t \leq t_{1, n+1}\end{cases}
$$

Also $\mu_{1}=1$ and for $n \geq 0,1 \leq i \leq m$ and $t>1$

$$
\mu_{t}= \begin{cases}(-1)^{n(m+1)} \eta_{i} & \text { if } t=t_{i, n} \text { or } t=t_{i, n}+1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $\omega(m, \boldsymbol{\eta}, \mathbf{k}) \in \mathbb{F}(3)$ be defined by the infinite continued fraction expansion

$$
\omega(m, \boldsymbol{\eta}, \mathbf{k})=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right] \quad \text { where } a_{n}=\lambda_{n} T+\mu_{n} \text { for } n \geq 1
$$

We consider the two usual sequences $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ as being the numerators and denominators of the convergents to $\omega(m, \boldsymbol{\eta}, \mathbf{k})$.

Then $\omega(m, \boldsymbol{\eta}, \mathbf{k})$ is the unique root in $\mathbb{F}(3)^{+}$of the quartic equation

$$
X=\frac{x_{l} X^{3}+(-1)^{m-1} x_{l-3}}{y_{l} X^{3}+(-1)^{m-1} y_{l-3}},
$$

where $l=1+k_{m}$.
Remark The case $m=1$ and thus $\eta=(1), \mathbf{k}=\left(k_{1}\right)$ of this theorem is proved in [2]. The case $m=2, \eta=(-1,-1)$ and $\mathbf{k}=(3,6)$ corresponds to the example introduced by Mills and Robbins [4].

The generality of this theorem is underlined by the following conjecture based on extensive computer checking.

Conjecture Let $\alpha \in \mathbb{H}_{3}(3)$ be an element which is not quadratic. Then α has all its partial quotients of degree 1, from a certain rank, if and only if there exist a linear fractional transformation f, with coefficients in $\mathbb{F}_{3}[T]$ and determinant in \mathbb{F}_{3}^{*}, a triple $(m, \boldsymbol{\eta}, \mathbf{k})$, and a pair $(\lambda, \mu) \in \mathbb{F}_{3}^{*} \times \mathbb{F}_{3}$ such that $\alpha(T)=f(\omega(m, \boldsymbol{\eta}, \mathbf{k})(\lambda T+\mu))$.

3 Proofs

The proof of the theorem stated above will be divided into three steps.
First step of the proof According to [3, Theorem 1, p. 332], there exists a unique infinite continued fraction $\beta=\left[a_{1}, \ldots, a_{l}, \beta_{l+1}\right] \in \mathbb{F}(3)$, satisfying

$$
\begin{aligned}
\beta^{3} & =(-1)^{m}\left(T^{2}+1\right) \beta_{l+1}+T+1 \quad \text { and } \\
a_{i} & =\lambda_{i} T+\mu_{i}, \text { for } 1 \leq i \leq l
\end{aligned}
$$

where λ_{i}, μ_{i} are the elements defined in the theorem. We know that this element is hyperquadratic and that it is the unique root in $\mathbb{F}(3)^{+}$of the algebraic equation $X=\left(x_{l} X^{3}+B\right) /\left(y_{l} X^{3}+D\right)$ where
$B=(-1)^{m}\left(T^{2}+1\right) x_{l-1}-(T+1) x_{l} \quad$ and $\quad D=(-1)^{m}\left(T^{2}+1\right) y_{l-1}-(T+1) y_{l}$.
We need to transform B and D. Using the recursive formulas for the continuants, we can write

$$
\begin{equation*}
K_{l-3}=\left(a_{l} a_{l-1}+1\right) K_{l-1}-a_{l-1} K_{l} . \tag{1}
\end{equation*}
$$

The l first partial quotients of β are given from the hypothesis of the theorem, and we have

$$
\begin{equation*}
a_{l-1}=(-1)^{m-1}(T+1) \quad \text { and } \quad a_{l}=(-1)^{m-1}(-T+1) \tag{2}
\end{equation*}
$$

Combining (1), applied to both sequences x and y, and (2), we get

$$
B=(-1)^{m-1} x_{l-3} \quad \text { and } \quad D=(-1)^{m-1} y_{l-3} .
$$

Hence we see that β is the unique root in $\mathbb{F}(3)^{+}$of the quartic equation stated in the theorem.

Second step of the proof In this section, $l \geq 1$ is a given integer. We consider all the infinite continued fractions $\alpha \in \mathbb{F}(3)$ defined by $\alpha=\left[a_{1}, \ldots, a_{l}, \alpha_{l+1}\right]$ where $\alpha_{l+1} \in$ $\mathbb{F}(3)$ and

$$
\begin{align*}
& a_{i}=\lambda_{i} T+\mu_{i} \quad \text { with }\left(\lambda_{i}, \mu_{i}\right) \in \mathbb{F}_{3}^{*} \times \mathbb{F}_{3}, \text { for } 1 \leq i \leq l \quad \text { and } \tag{3}\\
& \alpha^{3}=\epsilon\left(T^{2}+1\right) \alpha_{l+1}+\epsilon^{\prime} T+v_{0} \quad \text { with }\left(\epsilon, \epsilon^{\prime}, v_{0}\right) \in \mathbb{F}_{3}^{*} \times \mathbb{F}_{3}^{*} \times \mathbb{F}_{3} . \tag{4}
\end{align*}
$$

See [3, Theorem 1, p. 332], for the existence and uniqueness of $\alpha \in \mathbb{F}$ (3) defined by the above relations. Our aim is to show that these continued fraction expansions can be explicitly described, under particular conditions on the parameters $\left(\lambda_{i}, \mu_{i}\right)_{1 \leq i \leq l}$ and $\left(\epsilon, \epsilon^{\prime}, v_{0}\right)$. Following the same method as in [3], we first prove:

Lemma $2 \operatorname{Let}\left(\lambda, \epsilon, \epsilon^{\prime}\right) \in\left(\mathbb{F}_{3}^{*}\right)^{3}$ and $v \in \mathbb{F}_{3}$. We set $U=\lambda T^{3}-\epsilon^{\prime} T+v$, and $V=$ $\epsilon\left(T^{2}+1\right)$. We set $\delta=\lambda+\epsilon^{\prime}$ and assume that $\delta \neq 0$. We define $\epsilon^{*}=1$ if $\nu=0$ and $\epsilon^{*}=-1$ if $\nu \neq 0$. Then the continued fraction expansion for U / V is given by

$$
U / V=\left[\epsilon \lambda T,-\epsilon(\delta T+\nu),-\epsilon\left(\epsilon^{*} \delta T+\nu\right)\right] .
$$

Moreover, by setting $U / V=\left[u_{1}, u_{2}, u_{3}\right]$, for $X \in \mathbb{F}(3)$ we have

$$
[U / V, X]=\left[u_{1}, u_{2}, u_{3}, \frac{X}{\left(T^{2}+1\right)^{2}}+\frac{\epsilon^{*} \epsilon(\delta T+v)}{T^{2}+1}\right]
$$

Proof Since $\epsilon^{2}=1$ and $\delta^{2}=1$, we can write

$$
\begin{equation*}
U=\epsilon \lambda T V-\delta T+v \quad \text { and } \quad V=\epsilon(\delta T+v)(\delta T-v)+\epsilon\left(1+v^{2}\right) \tag{5}
\end{equation*}
$$

Clearly, (5) implies the following continued fraction expansion:

$$
\begin{equation*}
U / V=\left[\epsilon \lambda T,-\epsilon(\delta T+v), \epsilon\left(1+v^{2}\right)(-\delta T+v)\right] . \tag{6}
\end{equation*}
$$

Finally, observing that $\epsilon\left(1+\nu^{2}\right)=\epsilon^{*} \epsilon$ and $\epsilon^{*} \epsilon \nu=-\epsilon \nu$, we see that (6) is the expansion stated in the lemma. The last formula is obtained from [3, Lemma 3.1 p. 336]. According to this lemma, we have

$$
[U / V, X]=\left[u_{1}, u_{2}, u_{3}, X^{\prime}\right] \quad \text { where } X^{\prime}=X\left(u_{2} u_{3}+1\right)^{-2}-u_{2}\left(u_{2} u_{3}+1\right)^{-1}
$$

We check that $u_{2} u_{3}=T^{2}$ if $v=0$ and $u_{2} u_{3}=v^{2}-T^{2}$ if $v \neq 0$; therefore, we have $u_{2} u_{3}+1=\epsilon^{*}\left(T^{2}+1\right)$, and this implies the desired equality.

We shall prove now another lemma. In the sequel, we define $f(n)$ as $3 n+l-2$ for $n \geq 1$. We have the following:

Lemma 3 Let $\alpha=\left[a_{1}, \ldots, a_{n}, \ldots\right]$ be an irrational element of $\mathbb{F}(3)$. We assume that for an index $n \geq 1$ we have $a_{n}=\lambda_{n} T+\mu_{n}$ with $\left(\lambda_{n}, \mu_{n}\right) \in \mathbb{F}_{3}^{*} \times \mathbb{F}_{3}$ and

$$
\alpha_{n}^{3}=\epsilon\left(T^{2}+1\right) \alpha_{f(n)}+z_{n} T+v_{n-1} \quad \text { where }\left(\epsilon, z_{n}, v_{n-1}\right) \in\left(\mathbb{F}_{3}^{*}\right)^{2} \times \mathbb{F}_{3}
$$

We set $v_{n}=\mu_{n}-v_{n-1}$ and $\epsilon_{n}^{*}=1$ if $v_{n}=0$ or $\epsilon_{n}^{*}=-1$ if $v_{n} \neq 0$. We set $\delta_{n}=\lambda_{n}+z_{n}$, and $z_{n+1}=-\epsilon_{n}^{*} \delta_{n}$. We assume that $\delta_{n} \neq 0$. Then we have

$$
\left(a_{f(n)}, a_{f(n)+1}, a_{f(n)+2}\right)=\left(\epsilon \lambda_{n} T,-\epsilon\left(\delta_{n} T+v_{n}\right),-\epsilon\left(\epsilon_{n}^{*} \delta_{n} T+v_{n}\right)\right)
$$

and

$$
\alpha_{n+1}^{3}=\epsilon\left(T^{2}+1\right) \alpha_{f(n+1)}+z_{n+1} T+v_{n} .
$$

Proof We can write $\alpha_{n}^{3}=\left[a_{n}^{3}, \alpha_{n+1}^{3}\right]=\left[\lambda_{n} T^{3}+\mu_{n}, \alpha_{n+1}^{3}\right]$. Consequently,

$$
\alpha_{n}^{3}=\epsilon\left(T^{2}+1\right) \alpha_{f(n)}+z_{n} T+v_{n-1}
$$

is equivalent to

$$
\begin{equation*}
\left[\left(\lambda_{n} T^{3}+\mu_{n}-z_{n} T-v_{n-1}\right) /\left(\epsilon\left(T^{2}+1\right)\right), \epsilon\left(T^{2}+1\right) \alpha_{n+1}^{3}\right]=\alpha_{f(n)} \tag{7}
\end{equation*}
$$

Now we apply Lemma 2 with $U=\lambda_{n} T^{3}-z_{n} T+v_{n}$ and $X=\epsilon\left(T^{2}+1\right) \alpha_{n+1}^{3}$. Consequently, (7) can be written as

$$
\begin{equation*}
\left[\epsilon \lambda_{n} T,-\epsilon\left(\delta_{n} T+v_{n}\right),-\epsilon\left(\epsilon_{n}^{*} \delta_{n} T+v_{n}\right), X^{\prime}\right]=\alpha_{f(n)}, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
X^{\prime}=\left(\epsilon \alpha_{n+1}^{3}+\epsilon \epsilon_{n}^{*}\left(\delta_{n} T+v_{n}\right)\right) /\left(T^{2}+1\right) \tag{9}
\end{equation*}
$$

Moreover, we have $\left|\alpha_{n+1}^{3}\right| \geq\left|T^{3}\right|$, and consequently $\left|X^{\prime}\right|>1$. Thus (8) implies that the three partial quotients $a_{f(n)}, a_{f(n)+1}$ and $a_{f(n)+2}$ are as stated in this lemma, and
also that we have $X^{\prime}=\alpha_{f(n+1)}$. Combining this last equality with (9), and observing that $-\epsilon_{n}^{*} v_{n}=v_{n}$, we obtain the result.

Applying Lemma 2, we see that, for a continued fraction defined by (3) and (4), the partial quotients, from the rank $l+1$ onward, can be given explicitly three by three, as long as the quantity δ_{n} is not zero. This is taken up in the following proposition:

Proposition 4 Let $\alpha \in \mathbb{F}(3)$ be an infinite continued fraction expansion defined by (3) and (4). Then there exists $N \in \mathbb{N}^{*} \cup\{\infty\}$ satisfying the following conditions:

1. For $1 \leq n<f(N)$, we have $a_{n}=\lambda_{n} T+\mu_{n}$ where $\left(\lambda_{n}, \mu_{n}\right) \in \mathbb{F}_{3}^{*} \times \mathbb{F}_{3}$.
2. For $1 \leq n<f(N)$, define $\nu_{n}=\sum_{1 \leq i \leq n}(-1)^{n-i} \mu_{i}+(-1)^{n} \nu_{0}$.

Then we have

$$
\mu_{f(n)}=0 \quad \text { and } \quad \mu_{f(n)+1}=\mu_{f(n)+2}=-\epsilon v_{n} \quad \text { for } 1 \leq n<N .
$$

3. For $1 \leq n<N$, define $\epsilon_{n}^{*}=1$ if $v_{n}=0$ or $\epsilon_{n}^{*}=-1$ if $v_{n} \neq 0$.

Let $\left(\delta_{n}\right)_{1 \leq n \leq N}$ be the sequence defined recursively by

$$
\delta_{1}=\lambda_{1}+\epsilon^{\prime} \quad \text { and } \quad \delta_{n}=\lambda_{n}-\epsilon_{n-1}^{*} \delta_{n-1} \quad \text { for } 2 \leq n \leq N .
$$

Then, for $1 \leq n<N$, we have

$$
\lambda_{f(n)}=\epsilon \lambda_{n}, \quad \lambda_{f(n)+1}=-\epsilon \delta_{n} \quad \text { and } \quad \lambda_{f(n)+2}=-\epsilon \epsilon_{n}^{*} \delta_{n} .
$$

Proof Starting from (4), since $f(1)=l+1$, setting $\epsilon^{\prime}=z_{1}$ and observing that all the partial quotients are of degree 1 , we can apply repeatedly Lemma 3 as long as we have $\delta_{n} \neq 0$. If δ_{n} happens to vanish, the process is stopped and we denote by N the first index such that $\delta_{N}=0$, otherwise N is ∞. The formula $v_{n}=\mu_{n}-v_{n-1}$ clearly implies the equality for v_{n}. From the formulas $\delta_{n}=\lambda_{n}+z_{n}$ and $z_{n+1}=-\epsilon_{n}^{*} \delta_{n}$ for $n \geq 1$, we obtain the recursive formulas for the sequence δ. Finally, the formulas concerning μ and λ are directly derived from the three partial quotients $a_{f(n)}, a_{f(n)+1}$ and $a_{f(n)+2}$ given in Lemma 3.

Last step of the proof We start from the element $\beta \in \mathbb{F}(3)$, introduced in the first step of the proof, defined by its l first partial quotients, where $l=k_{m}+1$, and by (4) with $\left(\epsilon, \epsilon^{\prime}, v_{0}\right)=\left((-1)^{m}, 1,1\right)$. According to the first step of the proof, we need to show that $\beta=\omega(m, \boldsymbol{\eta}, \mathbf{k})$. To do so, we apply Proposition 4 to β, and we show that $N=\infty$ and that the resulting sequences $\left(\lambda_{n}\right)_{n \geq 1}$ and $\left(\mu_{n}\right)_{n \geq 1}$ are those which are described in the theorem.

From the definition of the l-tuple $\left(\mu_{1}, \ldots, \mu_{l}\right)$ and $v_{o}=1$, we obtain

$$
\begin{equation*}
v_{t}=\eta_{i} \quad \text { if } t=t_{i, 0} \quad \text { and } \quad v_{t}=0 \quad \text { otherwise, for } 1 \leq t \leq l . \tag{10}
\end{equation*}
$$

Since $\mu_{f(n)+1}=\mu_{f(n)+2}$, we have $v_{f(n)+2}=v_{f(n)}$. Since $\mu_{f(n)}=0$, we also have $v_{f(n)}=-v_{f(n)-1}=-v_{f(n-1)+2}$. This implies $v_{f(n)+2}=(-1)^{n-1} v_{f(1)+2}$. Since
$v_{f(1)+2}=v_{f(1)}=-v_{f(1)-1}=-v_{l}=0$, we obtain

$$
\begin{equation*}
v_{f(n)}=v_{f(n)+2}=0 \quad \text { for } 1 \leq n<N \tag{11}
\end{equation*}
$$

Moreover, from $v_{f(n)+1}=\mu_{f(n)+1}-v_{f(n)}$ and (11), we also get

$$
\begin{equation*}
v_{f(n)+1}=-\epsilon v_{n} \quad \text { for } 1 \leq n<N . \tag{12}
\end{equation*}
$$

Now, it is easy to check that we have $f\left(t_{i, n}\right)+1=t_{i, n+1}$. Since $\epsilon=(-1)^{m}$, (12) implies $v_{t_{i, n}}=(-1)^{m+1} v_{t_{i, n-1}}$ if $t_{i, n}<f(N)$. By induction from (10), with (11) and (12), we obtain

$$
\begin{equation*}
v_{t_{i, n}}=(-1)^{(m+1) n} \eta_{i} \quad \text { and } \quad v_{t}=0 \quad \text { if } t \neq t_{i, n}, \text { for } 1 \leq t<f(N) . \tag{13}
\end{equation*}
$$

Since we have $\mu_{n}=v_{n}+v_{n-1}$, from (11) and $v_{0}=1$, we see that μ_{n} satisfies the formulas given in the theorem, for $1 \leq n<f(N)$. Moreover, (13) clearly implies the following:

$$
\epsilon_{t}^{*}=\left\{\begin{array}{ll}
-1 & \text { if } t=t_{i, n}, \tag{14}\\
1 & \text { otherwise, }
\end{array} \quad \text { for } 1 \leq t<f(N)\right.
$$

Now we turn to the definition of the sequence $\left(\lambda_{n}\right)_{n \geq 1}$ given in the theorem, corresponding to the element ω. With our notations and according to (14), we observe that this definition can be translated into the following formulas:

$$
\begin{equation*}
\lambda_{1}=1 \quad \text { and } \quad \lambda_{n}=\epsilon_{n-1}^{*} \lambda_{n-1} \quad \text { for } 2 \leq n<f(N) . \tag{15}
\end{equation*}
$$

Consequently, to complete the proof, we need to establish that $N=\infty$ and that (15) holds. The recurrence relation binding the sequences δ and λ, introduced in Proposition 4 , can be written as

$$
\begin{equation*}
\delta_{n}+\lambda_{n}=-\epsilon_{n-1}^{*}\left(\delta_{n-1}+\lambda_{n-1}\right)+\epsilon_{n-1}^{*} \lambda_{n-1}-\lambda_{n} \quad \text { for } 2 \leq n \leq N . \tag{16}
\end{equation*}
$$

Comparing (15) and (16), we see that $\delta_{n}+\lambda_{n}=0$, for $n \geq 1$, will imply that δ_{n} never vanishes, i.e., $N=\infty$, and that the sequence $\left(\lambda_{n}\right)_{n \geq 1}$ is the one which is described in the theorem. So we only need to prove that $\delta=-\lambda$. Since β and ω have the same first partial quotients, (15) holds for $2 \leq n \leq l$. Since $\delta_{1}=\lambda_{1}+\epsilon^{\prime}=$ $-1=-\lambda_{1}$, combining (15) and (16), we obtain $\delta_{n}=-\lambda_{n}$ for $1 \leq n \leq l$. We also have, by Proposition 4, $\lambda_{l+1}=\lambda_{f(1)}=\epsilon \lambda_{1}=(-1)^{m}=\lambda_{l}$, and therefore we get $\delta_{l+1}=\lambda_{l+1}-\epsilon_{l}^{*} \delta_{l}=\lambda_{l+1}+\lambda_{l}=-\lambda_{l+1}$. By induction, we shall now prove that $\delta_{t}=-\lambda_{t}$ for $t=f(n)+1, f(n)+2$ and $f(n+1)$ with $n \geq 1$. From (11) and (12), we have $\epsilon_{f(n)}^{*}=\epsilon_{f(n)+2}^{*}=1$ and $\epsilon_{f(n)+1}^{*}=\epsilon_{n}^{*}$. Thus we get, using Proposition 4:

$$
\begin{aligned}
\delta_{f(n)+1} & =\lambda_{f(n)+1}-\epsilon_{f(n)}^{*} \delta_{f(n)}=\lambda_{f(n)+1}+\lambda_{f(n)}=-\epsilon \delta_{n}+\epsilon \lambda_{n}=-\lambda_{f(n)+1}, \\
\delta_{f(n)+2} & =\lambda_{f(n)+2}-\epsilon_{f(n)+1}^{*} \delta_{f(n)+1}=\lambda_{f(n)+2}+\epsilon_{n}^{*} \lambda_{f(n)+1}=-\lambda_{f(n)+2}, \\
\delta_{f(n+1)} & =\lambda_{f(n+1)}-\epsilon_{f(n)+2}^{*} \delta_{f(n)+2}=\epsilon \lambda_{n+1}+\lambda_{f(n)+2}=\epsilon\left(\lambda_{n+1}-\epsilon_{n}^{*} \delta_{n}\right) \\
& =\epsilon \delta_{n+1}=-\epsilon \lambda_{n+1}=-\lambda_{f(n+1)} .
\end{aligned}
$$

So the proof of the theorem is complete.

References

1. Baum, L., Sweet, M.: Continued fractions of algebraic power series in characteristic 2. Ann. Math. 103, 593-610 (1976)
2. Lasjaunias, A.: Quartic power series in $\mathbb{F}_{3}\left(\left(T^{-1}\right)\right)$ with bounded partial quotients. Acta Arith. 95.1, 49-59 (2000)
3. Lasjaunias, A.: Continued fractions for hyperquadratic power series over a finite field. Finite Fields Appl. 14, 329-350 (2008)
4. Mills, W., Robbins, D.: Continued fractions for certain algebraic power series. J. Number Theory 23, 388-404 (1986)
5. Schmidt, W.: On continued fractions and Diophantine approximation in power series fields. Acta Arith. 95.2, 139-166 (2000)
6. Thakur, D.: Function Field Arithmetic. World Scientific, Singapore (2004)

[^0]: D. Gómez-Pérez

 Universidad de Cantabria, 39005 Santander, Spain
 e-mail: domingo.gomez@unican.es
 url: http://personales.unican.es/gomezd
 A. Lasjaunias (\boxtimes)

 Université Bordeaux 1, C.N.R.S.-UMR 5251, 33405 Talence, France
 e-mail: Alain.Lasjaunias@ math.u-bordeaux 1.fr
 url: http://www.math.u-bordeaux1.fr/~1asjauni/

