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Abstract In this note, we describe a large family of nonquadratic continued frac-
tions in the field F3((T

−1)) of power series over the finite field F3. These continued
fractions are remarkable for two reasons: first, they satisfy an algebraic equation with
coefficients in F3[T ] given explicitly, and, second, all the partial quotients in the ex-
pansion are polynomials of degree 1. In 1986, in a basic article in this area of research,
Mills and Robbins (J. Number Theory 23:388–404, 1986) gave the first example of
an element belonging to this family.
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1 Introduction

We are concerned with power series in 1/T over a finite field, where T is an inde-
terminate. If the base field is Fq , the finite field of characteristic p with q elements,
these power series belong to the field Fq((T −1)), which here will be denoted by F(q).
Thus a nonzero element of F(q) is represented by

α =
∑

k≤k0

ukT
k where k0 ∈ Z, uk ∈ Fq and uk0 �= 0.
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The absolute value on this field is defined by |α| = |T |k0 where |T | > 1 is a fixed real
number. We also denote by F(q)+ the subset of power series α such that |α| > 1. We
know that each irrational element α ∈ F(q)+ can be expanded as an infinite continued
fraction. This is denoted

α = [a1, a2, . . . , an, . . . ] where ai ∈ Fq [T ] and deg(ai) > 0 for i ≥ 1.

By truncating this expansion, we obtain a rational element, called a convergent to
α and denoted by xn/yn for n ≥ 1. The polynomials (xn)n≥0 and (yn)n≥0, called
continuants, are both defined by the same recursion formula: Kn = anKn−1 + Kn−2
for n ≥ 2, with the initial conditions x0 = 1 and x1 = a1 or y0 = 0 and y1 = 1. The
polynomials ai are called the partial quotients of the expansion. For n ≥ 1, we denote
αn+1 = [an+1, an+2, . . . ], calling it the complete quotient, and we have

α = [a1, a2, . . . , an,αn+1] = (xnαn+1 + xn−1)/(ynαn+1 + yn−1).

The reader may consult [5] for a general account on continued fractions in power
series fields and also [6] for a wider presentation of Diophantine approximation in
function fields and more references.

In 1986, Mills and Robbins [4], by developing the pioneering work by Baum and
Sweet [1], introduced a particular subset of algebraic power series. These power se-
ries are irrational elements α ∈ F(q) satisfying an equation α = f (αr) where r is a
power of the characteristic p of the base field and f is a linear fractional transforma-
tion with integer (polynomials in Fq [T ]) coefficients. The subset of such elements is
denoted by Hr (q) and its elements are called hyperquadratic.

Throughout this note, the base field is F3, i.e., q = 3. We are concerned with
elements in H3(3) which are not quadratic and have all partial quotients of degree 1
in their continued fraction expansion. A first example of such power series appeared
in [4, pp. 401–402].

2 Results

In [2], the second named author of this note investigated the existence of elements in
H3(3) with all partial quotients of degree 1. The theorem which we present here is an
extended version of the one presented in [2]. However, the proof given here is based
on a different method. This method used to obtain other continued fraction expan-
sions of hyperquadratic power series was developed in [3]. We have the following:

Theorem 1 Let m ∈ N
∗, η = (η1, η2, . . . , ηm) ∈ (F∗

3)
m where ηm = (−1)m−1 and

k = (k1, k2, . . . , km) ∈ N
m where k1 ≥ 2 and ki+1 − ki ≥ 2 for i = 1, . . . ,m − 1. We

define the following integers:

ti,n = km

(
3n − 1

)
/2 + ki3

n for 1 ≤ i ≤ m and n ≥ 0.

We observe that we have ti,n < ti+1,n for all (i, n) and tm,n < t1,n+1. Also ti,n �=
tj,n′ + 1. Accordingly, we can define two sequences (λt )t≥1 and (μt )t≥1 in F3. For
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n ≥ 0, we have

λt =

⎧
⎪⎨

⎪⎩

1 if 1 ≤ t ≤ t1,0,

(−1)mn+i if ti,n < t ≤ ti+1,n for 1 ≤ i < m,

(−1)m(n+1) if tm,n < t ≤ t1,n+1.

Also μ1 = 1 and for n ≥ 0, 1 ≤ i ≤ m and t > 1

μt =
{

(−1)n(m+1)ηi if t = ti,n or t = ti,n + 1,

0 otherwise.

Let ω(m,η,k) ∈ F(3) be defined by the infinite continued fraction expansion

ω(m,η,k) = [a1, a2, . . . , an, . . .] where an = λnT + μn for n ≥ 1.

We consider the two usual sequences (xn)n≥1 and (yn)n≥1 as being the numerators
and denominators of the convergents to ω(m,η,k).

Then ω(m,η,k) is the unique root in F(3)+ of the quartic equation

X = xlX
3 + (−1)m−1xl−3

ylX3 + (−1)m−1yl−3
,

where l = 1 + km.

Remark The case m = 1 and thus η = (1), k = (k1) of this theorem is proved in [2].
The case m = 2, η = (−1,−1) and k = (3,6) corresponds to the example introduced
by Mills and Robbins [4].

The generality of this theorem is underlined by the following conjecture based on
extensive computer checking.

Conjecture Let α ∈ H3(3) be an element which is not quadratic. Then α has all its
partial quotients of degree 1, from a certain rank, if and only if there exist a linear
fractional transformation f , with coefficients in F3[T ] and determinant in F

∗
3, a triple

(m,η,k), and a pair (λ,μ) ∈ F
∗
3 × F3 such that α(T ) = f (ω(m,η,k)(λT + μ)).

3 Proofs

The proof of the theorem stated above will be divided into three steps.

First step of the proof According to [3, Theorem 1, p. 332], there exists a unique
infinite continued fraction β = [a1, . . . , al, βl+1] ∈ F(3), satisfying

β3 = (−1)m
(
T 2 + 1

)
βl+1 + T + 1 and

ai = λiT + μi, for 1 ≤ i ≤ l,
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where λi , μi are the elements defined in the theorem. We know that this element
is hyperquadratic and that it is the unique root in F(3)+ of the algebraic equation
X = (xlX

3 + B)/(ylX
3 + D) where

B = (−1)m
(
T 2 + 1

)
xl−1 − (T + 1)xl and D = (−1)m

(
T 2 + 1

)
yl−1 − (T + 1)yl.

We need to transform B and D. Using the recursive formulas for the continuants, we
can write

Kl−3 = (alal−1 + 1)Kl−1 − al−1Kl. (1)

The l first partial quotients of β are given from the hypothesis of the theorem, and we
have

al−1 = (−1)m−1(T + 1) and al = (−1)m−1(−T + 1). (2)

Combining (1), applied to both sequences x and y, and (2), we get

B = (−1)m−1xl−3 and D = (−1)m−1yl−3.

Hence we see that β is the unique root in F(3)+ of the quartic equation stated in the
theorem.

Second step of the proof In this section, l ≥ 1 is a given integer. We consider all the
infinite continued fractions α ∈ F(3) defined by α = [a1, . . . , al, αl+1] where αl+1 ∈
F(3) and

ai = λiT + μi with (λi,μi) ∈ F
∗
3 × F3, for 1 ≤ i ≤ l and (3)

α3 = ε
(
T 2 + 1

)
αl+1 + ε′T + ν0 with

(
ε, ε′, ν0

) ∈ F
∗
3 × F

∗
3 × F3. (4)

See [3, Theorem 1, p. 332], for the existence and uniqueness of α ∈ F(3) defined by
the above relations. Our aim is to show that these continued fraction expansions can
be explicitly described, under particular conditions on the parameters (λi,μi)1≤i≤l

and (ε, ε′, ν0). Following the same method as in [3], we first prove:

Lemma 2 Let (λ, ε, ε′) ∈ (F∗
3)

3 and ν ∈ F3. We set U = λT 3 − ε′T + ν, and V =
ε(T 2 + 1). We set δ = λ + ε′ and assume that δ �= 0. We define ε∗ = 1 if ν = 0 and
ε∗ = −1 if ν �= 0. Then the continued fraction expansion for U/V is given by

U/V = [
ελT ,−ε(δT + ν),−ε

(
ε∗δT + ν

)]
.

Moreover, by setting U/V = [u1, u2, u3], for X ∈ F(3) we have

[U/V,X] =
[
u1, u2, u3,

X

(T 2 + 1)2
+ ε∗ε(δT + ν)

T 2 + 1

]
.

Proof Since ε2 = 1 and δ2 = 1, we can write

U = ελT V − δT + ν and V = ε(δT + ν)(δT − ν) + ε
(
1 + ν2). (5)
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Clearly, (5) implies the following continued fraction expansion:

U/V = [
ελT ,−ε(δT + ν), ε

(
1 + ν2)(−δT + ν)

]
. (6)

Finally, observing that ε(1+ν2) = ε∗ε and ε∗εν = −εν, we see that (6) is the expan-
sion stated in the lemma. The last formula is obtained from [3, Lemma 3.1 p. 336].
According to this lemma, we have

[U/V,X] = [
u1, u2, u3,X

′] where X′ = X(u2u3 + 1)−2 − u2(u2u3 + 1)−1.

We check that u2u3 = T 2 if ν = 0 and u2u3 = ν2 − T 2 if ν �= 0; therefore, we have
u2u3 + 1 = ε∗(T 2 + 1), and this implies the desired equality. �

We shall prove now another lemma. In the sequel, we define f (n) as 3n + l − 2
for n ≥ 1. We have the following:

Lemma 3 Let α = [a1, . . . , an, . . . ] be an irrational element of F(3). We assume that
for an index n ≥ 1 we have an = λnT + μn with (λn,μn) ∈ F

∗
3 × F3 and

α3
n = ε

(
T 2 + 1

)
αf (n) + znT + νn−1 where (ε, zn, νn−1) ∈ (

F
∗
3

)2 × F3.

We set νn = μn −νn−1 and ε∗
n = 1 if νn = 0 or ε∗

n = −1 if νn �= 0. We set δn = λn +zn,
and zn+1 = −ε∗

nδn. We assume that δn �= 0. Then we have

(af (n), af (n)+1, af (n)+2) = (
ελnT ,−ε(δnT + νn),−ε

(
ε∗
nδnT + νn

))

and

α3
n+1 = ε

(
T 2 + 1

)
αf (n+1) + zn+1T + νn.

Proof We can write α3
n = [a3

n,α
3
n+1] = [λnT

3 + μn,α
3
n+1]. Consequently,

α3
n = ε

(
T 2 + 1

)
αf (n) + znT + νn−1

is equivalent to

[(
λnT

3 + μn − znT − νn−1
)
/
(
ε
(
T 2 + 1

))
, ε

(
T 2 + 1

)
α3

n+1

] = αf (n). (7)

Now we apply Lemma 2 with U = λnT
3 − znT + νn and X = ε(T 2 + 1)α3

n+1. Con-
sequently, (7) can be written as

[
ελnT ,−ε(δnT + νn),−ε

(
ε∗
nδnT + νn

)
,X′] = αf (n), (8)

where

X′ = (
εα3

n+1 + εε∗
n(δnT + νn)

)
/
(
T 2 + 1

)
. (9)

Moreover, we have |α3
n+1| ≥ |T 3|, and consequently |X′| > 1. Thus (8) implies that

the three partial quotients af (n), af (n)+1 and af (n)+2 are as stated in this lemma, and
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also that we have X′ = αf (n+1). Combining this last equality with (9), and observing
that −ε∗

nνn = νn, we obtain the result. �

Applying Lemma 2, we see that, for a continued fraction defined by (3) and (4), the
partial quotients, from the rank l + 1 onward, can be given explicitly three by three,
as long as the quantity δn is not zero. This is taken up in the following proposition:

Proposition 4 Let α ∈ F(3) be an infinite continued fraction expansion defined by (3)
and (4). Then there exists N ∈ N

∗ ∪ {∞} satisfying the following conditions:

1. For 1 ≤ n < f (N), we have an = λnT + μn where (λn,μn) ∈ F
∗
3 × F3.

2. For 1 ≤ n < f (N), define νn = ∑
1≤i≤n(−1)n−iμi + (−1)nν0.

Then we have

μf (n) = 0 and μf (n)+1 = μf (n)+2 = −ενn for 1 ≤ n < N.

3. For 1 ≤ n < N , define ε∗
n = 1 if νn = 0 or ε∗

n = −1 if νn �= 0.

Let (δn)1≤n≤N be the sequence defined recursively by

δ1 = λ1 + ε′ and δn = λn − ε∗
n−1δn−1 for 2 ≤ n ≤ N.

Then, for 1 ≤ n < N , we have

λf (n) = ελn, λf (n)+1 = −εδn and λf (n)+2 = −εε∗
nδn.

Proof Starting from (4), since f (1) = l + 1, setting ε′ = z1 and observing that all
the partial quotients are of degree 1, we can apply repeatedly Lemma 3 as long as
we have δn �= 0. If δn happens to vanish, the process is stopped and we denote by
N the first index such that δN = 0, otherwise N is ∞. The formula νn = μn − νn−1
clearly implies the equality for νn. From the formulas δn = λn +zn and zn+1 = −ε∗

nδn

for n ≥ 1, we obtain the recursive formulas for the sequence δ. Finally, the formulas
concerning μ and λ are directly derived from the three partial quotients af (n), af (n)+1
and af (n)+2 given in Lemma 3. �

Last step of the proof We start from the element β ∈ F(3), introduced in the first
step of the proof, defined by its l first partial quotients, where l = km + 1, and by (4)
with (ε, ε′, ν0) = ((−1)m,1,1). According to the first step of the proof, we need to
show that β = ω(m,η,k). To do so, we apply Proposition 4 to β , and we show that
N = ∞ and that the resulting sequences (λn)n≥1 and (μn)n≥1 are those which are
described in the theorem.

From the definition of the l-tuple (μ1, . . . ,μl) and νo = 1, we obtain

νt = ηi if t = ti,0 and νt = 0 otherwise, for 1 ≤ t ≤ l. (10)

Since μf (n)+1 = μf (n)+2, we have νf (n)+2 = νf (n). Since μf (n) = 0, we also have
νf (n) = −νf (n)−1 = −νf (n−1)+2. This implies νf (n)+2 = (−1)n−1νf (1)+2. Since



Hyperquadratic power series in F3((T −1)) with partial quotients 225

νf (1)+2 = νf (1) = −νf (1)−1 = −νl = 0, we obtain

νf (n) = νf (n)+2 = 0 for 1 ≤ n < N. (11)

Moreover, from νf (n)+1 = μf (n)+1 − νf (n) and (11), we also get

νf (n)+1 = −ενn for 1 ≤ n < N. (12)

Now, it is easy to check that we have f (ti,n) + 1 = ti,n+1. Since ε = (−1)m,
(12) implies νti,n = (−1)m+1νti,n−1 if ti,n < f (N). By induction from (10), with (11)
and (12), we obtain

νti,n = (−1)(m+1)nηi and νt = 0 if t �= ti,n, for 1 ≤ t < f (N). (13)

Since we have μn = νn + νn−1, from (11) and ν0 = 1, we see that μn satisfies the
formulas given in the theorem, for 1 ≤ n < f (N). Moreover, (13) clearly implies the
following:

ε∗
t =

{
−1 if t = ti,n,

1 otherwise,
for 1 ≤ t < f (N). (14)

Now we turn to the definition of the sequence (λn)n≥1 given in the theorem, corre-
sponding to the element ω. With our notations and according to (14), we observe that
this definition can be translated into the following formulas:

λ1 = 1 and λn = ε∗
n−1λn−1 for 2 ≤ n < f (N). (15)

Consequently, to complete the proof, we need to establish that N = ∞ and that (15)
holds. The recurrence relation binding the sequences δ and λ, introduced in Proposi-
tion 4, can be written as

δn + λn = −ε∗
n−1(δn−1 + λn−1) + ε∗

n−1λn−1 − λn for 2 ≤ n ≤ N. (16)

Comparing (15) and (16), we see that δn + λn = 0, for n ≥ 1, will imply that δn

never vanishes, i.e., N = ∞, and that the sequence (λn)n≥1 is the one which is
described in the theorem. So we only need to prove that δ = −λ. Since β and ω

have the same first partial quotients, (15) holds for 2 ≤ n ≤ l. Since δ1 = λ1 + ε′ =
−1 = −λ1, combining (15) and (16), we obtain δn = −λn for 1 ≤ n ≤ l. We also
have, by Proposition 4, λl+1 = λf (1) = ελ1 = (−1)m = λl , and therefore we get
δl+1 = λl+1 − ε∗

l δl = λl+1 + λl = −λl+1. By induction, we shall now prove that
δt = −λt for t = f (n) + 1, f (n) + 2 and f (n + 1) with n ≥ 1. From (11) and (12),
we have ε∗

f (n) = ε∗
f (n)+2 = 1 and ε∗

f (n)+1 = ε∗
n . Thus we get, using Proposition 4:

δf (n)+1 = λf (n)+1 − ε∗
f (n)δf (n) = λf (n)+1 + λf (n) = −εδn + ελn = −λf (n)+1,

δf (n)+2 = λf (n)+2 − ε∗
f (n)+1δf (n)+1 = λf (n)+2 + ε∗

nλf (n)+1 = −λf (n)+2,

δf (n+1) = λf (n+1) − ε∗
f (n)+2δf (n)+2 = ελn+1 + λf (n)+2 = ε

(
λn+1 − ε∗

nδn

)

= εδn+1 = −ελn+1 = −λf (n+1).

So the proof of the theorem is complete.
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