Hyperquadratic power series in $\mathbb{F}_3((T^{-1}))$ with partial quotients of degree 1

Domingo Gómez-Pérez · Alain Lasjaunias

Received: 5 April 2012 / Accepted: 5 November 2013 / Published online: 31 December 2013 © Springer Science+Business Media New York 2013

Abstract In this note, we describe a large family of nonquadratic continued fractions in the field $\mathbb{F}_3((T^{-1}))$ of power series over the finite field \mathbb{F}_3 . These continued fractions are remarkable for two reasons: first, they satisfy an algebraic equation with coefficients in $\mathbb{F}_3[T]$ given explicitly, and, second, all the partial quotients in the expansion are polynomials of degree 1. In 1986, in a basic article in this area of research, Mills and Robbins (J. Number Theory 23:388–404, 1986) gave the first example of an element belonging to this family.

Keywords Finite fields · Fields of power series · Continued fractions

Mathematics Subject Classification (2000) 11J70 · 11J61 · 11T55

1 Introduction

We are concerned with power series in 1/T over a finite field, where *T* is an indeterminate. If the base field is \mathbb{F}_q , the finite field of characteristic *p* with *q* elements, these power series belong to the field $\mathbb{F}_q((T^{-1}))$, which here will be denoted by $\mathbb{F}(q)$. Thus a nonzero element of $\mathbb{F}(q)$ is represented by

$$\alpha = \sum_{k \le k_0} u_k T^k$$
 where $k_0 \in \mathbb{Z}, u_k \in \mathbb{F}_q$ and $u_{k_0} \ne 0$.

D. Gómez-Pérez

Universidad de Cantabria, 39005 Santander, Spain e-mail: domingo.gomez@unican.es url: http://personales.unican.es/gomezd

A. Lasjaunias (🖂) Université Bordeaux 1, C.N.R.S.-UMR 5251, 33405 Talence, France e-mail: Alain.Lasjaunias@math.u-bordeaux1.fr url: http://www.math.u-bordeaux1.fr/~lasjauni/ The absolute value on this field is defined by $|\alpha| = |T|^{k_0}$ where |T| > 1 is a fixed real number. We also denote by $\mathbb{F}(q)^+$ the subset of power series α such that $|\alpha| > 1$. We know that each irrational element $\alpha \in \mathbb{F}(q)^+$ can be expanded as an infinite continued fraction. This is denoted

$$\alpha = [a_1, a_2, \dots, a_n, \dots]$$
 where $a_i \in \mathbb{F}_q[T]$ and $\deg(a_i) > 0$ for $i \ge 1$.

By truncating this expansion, we obtain a rational element, called a convergent to α and denoted by x_n/y_n for $n \ge 1$. The polynomials $(x_n)_{n\ge 0}$ and $(y_n)_{n\ge 0}$, called continuants, are both defined by the same recursion formula: $K_n = a_n K_{n-1} + K_{n-2}$ for $n \ge 2$, with the initial conditions $x_0 = 1$ and $x_1 = a_1$ or $y_0 = 0$ and $y_1 = 1$. The polynomials a_i are called the partial quotients of the expansion. For $n \ge 1$, we denote $\alpha_{n+1} = [a_{n+1}, a_{n+2}, \dots]$, calling it the complete quotient, and we have

$$\alpha = [a_1, a_2, \dots, a_n, \alpha_{n+1}] = (x_n \alpha_{n+1} + x_{n-1})/(y_n \alpha_{n+1} + y_{n-1}).$$

The reader may consult [5] for a general account on continued fractions in power series fields and also [6] for a wider presentation of Diophantine approximation in function fields and more references.

In 1986, Mills and Robbins [4], by developing the pioneering work by Baum and Sweet [1], introduced a particular subset of algebraic power series. These power series are irrational elements $\alpha \in \mathbb{F}(q)$ satisfying an equation $\alpha = f(\alpha^r)$ where *r* is a power of the characteristic *p* of the base field and *f* is a linear fractional transformation with integer (polynomials in $\mathbb{F}_q[T]$) coefficients. The subset of such elements is denoted by $\mathbb{H}_r(q)$ and its elements are called hyperquadratic.

Throughout this note, the base field is \mathbb{F}_3 , i.e., q = 3. We are concerned with elements in $\mathbb{H}_3(3)$ which are not quadratic and have all partial quotients of degree 1 in their continued fraction expansion. A first example of such power series appeared in [4, pp. 401–402].

2 Results

In [2], the second named author of this note investigated the existence of elements in $\mathbb{H}_3(3)$ with all partial quotients of degree 1. The theorem which we present here is an extended version of the one presented in [2]. However, the proof given here is based on a different method. This method used to obtain other continued fraction expansions of hyperquadratic power series was developed in [3]. We have the following:

Theorem 1 Let $m \in \mathbb{N}^*$, $\eta = (\eta_1, \eta_2, ..., \eta_m) \in (\mathbb{F}_3^*)^m$ where $\eta_m = (-1)^{m-1}$ and $\mathbf{k} = (k_1, k_2, ..., k_m) \in \mathbb{N}^m$ where $k_1 \ge 2$ and $k_{i+1} - k_i \ge 2$ for i = 1, ..., m - 1. We define the following integers:

$$t_{i,n} = k_m (3^n - 1)/2 + k_i 3^n$$
 for $1 \le i \le m$ and $n \ge 0$.

We observe that we have $t_{i,n} < t_{i+1,n}$ for all (i, n) and $t_{m,n} < t_{1,n+1}$. Also $t_{i,n} \neq t_{j,n'} + 1$. Accordingly, we can define two sequences $(\lambda_t)_{t\geq 1}$ and $(\mu_t)_{t\geq 1}$ in \mathbb{F}_3 . For

 $n \ge 0$, we have

$$\lambda_t = \begin{cases} 1 & \text{if } 1 \le t \le t_{1,0}, \\ (-1)^{mn+i} & \text{if } t_{i,n} < t \le t_{i+1,n} \text{ for } 1 \le i < m, \\ (-1)^{m(n+1)} & \text{if } t_{m,n} < t \le t_{1,n+1}. \end{cases}$$

Also $\mu_1 = 1$ and for $n \ge 0, 1 \le i \le m$ and t > 1

$$\mu_t = \begin{cases} (-1)^{n(m+1)} \eta_i & \text{if } t = t_{i,n} \text{ or } t = t_{i,n} + 1, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\omega(m, \eta, \mathbf{k}) \in \mathbb{F}(3)$ be defined by the infinite continued fraction expansion

 $\omega(m, \boldsymbol{\eta}, \mathbf{k}) = [a_1, a_2, \dots, a_n, \dots]$ where $a_n = \lambda_n T + \mu_n$ for $n \ge 1$.

We consider the two usual sequences $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ as being the numerators and denominators of the convergents to $\omega(m, \eta, \mathbf{k})$.

Then $\omega(m, \eta, \mathbf{k})$ is the unique root in $\mathbb{F}(3)^+$ of the quartic equation

$$X = \frac{x_l X^3 + (-1)^{m-1} x_{l-3}}{y_l X^3 + (-1)^{m-1} y_{l-3}},$$

where $l = 1 + k_m$.

Remark The case m = 1 and thus $\eta = (1)$, $\mathbf{k} = (k_1)$ of this theorem is proved in [2]. The case m = 2, $\eta = (-1, -1)$ and $\mathbf{k} = (3, 6)$ corresponds to the example introduced by Mills and Robbins [4].

The generality of this theorem is underlined by the following conjecture based on extensive computer checking.

Conjecture Let $\alpha \in \mathbb{H}_3(3)$ be an element which is not quadratic. Then α has all its partial quotients of degree 1, from a certain rank, if and only if there exist a linear fractional transformation f, with coefficients in $\mathbb{F}_3[T]$ and determinant in \mathbb{F}_3^* , a triple (m, η, \mathbf{k}) , and a pair $(\lambda, \mu) \in \mathbb{F}_3^* \times \mathbb{F}_3$ such that $\alpha(T) = f(\omega(m, \eta, \mathbf{k})(\lambda T + \mu))$.

3 Proofs

The proof of the theorem stated above will be divided into three steps.

First step of the proof According to [3, Theorem 1, p. 332], there exists a unique infinite continued fraction $\beta = [a_1, ..., a_l, \beta_{l+1}] \in \mathbb{F}(3)$, satisfying

$$\beta^{3} = (-1)^{m} (T^{2} + 1) \beta_{l+1} + T + 1$$
 and
 $a_{i} = \lambda_{i} T + \mu_{i}, \text{ for } 1 \le i \le l,$

where λ_i , μ_i are the elements defined in the theorem. We know that this element is hyperquadratic and that it is the unique root in $\mathbb{F}(3)^+$ of the algebraic equation $X = (x_l X^3 + B)/(y_l X^3 + D)$ where

$$B = (-1)^m (T^2 + 1) x_{l-1} - (T+1) x_l \text{ and } D = (-1)^m (T^2 + 1) y_{l-1} - (T+1) y_l.$$

We need to transform B and D. Using the recursive formulas for the continuants, we can write

$$K_{l-3} = (a_l a_{l-1} + 1) K_{l-1} - a_{l-1} K_l.$$
⁽¹⁾

The *l* first partial quotients of β are given from the hypothesis of the theorem, and we have

$$a_{l-1} = (-1)^{m-1}(T+1)$$
 and $a_l = (-1)^{m-1}(-T+1).$ (2)

Combining (1), applied to both sequences x and y, and (2), we get

$$B = (-1)^{m-1} x_{l-3}$$
 and $D = (-1)^{m-1} y_{l-3}$.

Hence we see that β is the unique root in $\mathbb{F}(3)^+$ of the quartic equation stated in the theorem.

Second step of the proof In this section, $l \ge 1$ is a given integer. We consider all the infinite continued fractions $\alpha \in \mathbb{F}(3)$ defined by $\alpha = [a_1, \ldots, a_l, \alpha_{l+1}]$ where $\alpha_{l+1} \in \mathbb{F}(3)$ and

$$a_i = \lambda_i T + \mu_i \quad \text{with } (\lambda_i, \mu_i) \in \mathbb{F}_3^* \times \mathbb{F}_3, \text{ for } 1 \le i \le l \quad \text{and}$$
(3)

$$\alpha^{3} = \epsilon \left(T^{2} + 1 \right) \alpha_{l+1} + \epsilon' T + \nu_{0} \quad \text{with} \left(\epsilon, \epsilon', \nu_{0} \right) \in \mathbb{F}_{3}^{*} \times \mathbb{F}_{3}^{*} \times \mathbb{F}_{3}.$$
(4)

See [3, Theorem 1, p. 332], for the existence and uniqueness of $\alpha \in \mathbb{F}(3)$ defined by the above relations. Our aim is to show that these continued fraction expansions can be explicitly described, under particular conditions on the parameters $(\lambda_i, \mu_i)_{1 \le i \le l}$ and $(\epsilon, \epsilon', \nu_0)$. Following the same method as in [3], we first prove:

Lemma 2 Let $(\lambda, \epsilon, \epsilon') \in (\mathbb{F}_3^*)^3$ and $\nu \in \mathbb{F}_3$. We set $U = \lambda T^3 - \epsilon' T + \nu$, and $V = \epsilon(T^2 + 1)$. We set $\delta = \lambda + \epsilon'$ and assume that $\delta \neq 0$. We define $\epsilon^* = 1$ if $\nu = 0$ and $\epsilon^* = -1$ if $\nu \neq 0$. Then the continued fraction expansion for U/V is given by

$$U/V = \left[\epsilon \lambda T, -\epsilon(\delta T + \nu), -\epsilon\left(\epsilon^* \delta T + \nu\right)\right].$$

Moreover, by setting $U/V = [u_1, u_2, u_3]$ *, for* $X \in \mathbb{F}(3)$ *we have*

$$[U/V, X] = \left[u_1, u_2, u_3, \frac{X}{(T^2 + 1)^2} + \frac{\epsilon^* \epsilon (\delta T + \nu)}{T^2 + 1}\right]$$

Proof Since $\epsilon^2 = 1$ and $\delta^2 = 1$, we can write

$$U = \epsilon \lambda T V - \delta T + \nu \quad \text{and} \quad V = \epsilon (\delta T + \nu) (\delta T - \nu) + \epsilon (1 + \nu^2).$$
(5)

Clearly, (5) implies the following continued fraction expansion:

$$U/V = \left[\epsilon \lambda T, -\epsilon (\delta T + \nu), \epsilon \left(1 + \nu^2\right)(-\delta T + \nu)\right].$$
(6)

Finally, observing that $\epsilon(1 + \nu^2) = \epsilon^* \epsilon$ and $\epsilon^* \epsilon \nu = -\epsilon \nu$, we see that (6) is the expansion stated in the lemma. The last formula is obtained from [3, Lemma 3.1 p. 336]. According to this lemma, we have

$$[U/V, X] = [u_1, u_2, u_3, X']$$
 where $X' = X(u_2u_3 + 1)^{-2} - u_2(u_2u_3 + 1)^{-1}$.

We check that $u_2u_3 = T^2$ if v = 0 and $u_2u_3 = v^2 - T^2$ if $v \neq 0$; therefore, we have $u_2u_3 + 1 = \epsilon^*(T^2 + 1)$, and this implies the desired equality.

We shall prove now another lemma. In the sequel, we define f(n) as 3n + l - 2 for $n \ge 1$. We have the following:

Lemma 3 Let $\alpha = [a_1, ..., a_n, ...]$ be an irrational element of $\mathbb{F}(3)$. We assume that for an index $n \ge 1$ we have $a_n = \lambda_n T + \mu_n$ with $(\lambda_n, \mu_n) \in \mathbb{F}_3^* \times \mathbb{F}_3$ and

$$\alpha_n^3 = \epsilon \left(T^2 + 1\right) \alpha_{f(n)} + z_n T + \nu_{n-1} \quad where \ (\epsilon, z_n, \nu_{n-1}) \in \left(\mathbb{F}_3^*\right)^2 \times \mathbb{F}_3.$$

We set $v_n = \mu_n - v_{n-1}$ and $\epsilon_n^* = 1$ if $v_n = 0$ or $\epsilon_n^* = -1$ if $v_n \neq 0$. We set $\delta_n = \lambda_n + z_n$, and $z_{n+1} = -\epsilon_n^* \delta_n$. We assume that $\delta_n \neq 0$. Then we have

$$(a_{f(n)}, a_{f(n)+1}, a_{f(n)+2}) = \left(\epsilon\lambda_n T, -\epsilon(\delta_n T + \nu_n), -\epsilon\left(\epsilon_n^*\delta_n T + \nu_n\right)\right)$$

and

$$\alpha_{n+1}^3 = \epsilon (T^2 + 1) \alpha_{f(n+1)} + z_{n+1}T + v_n$$

Proof We can write $\alpha_n^3 = [a_n^3, \alpha_{n+1}^3] = [\lambda_n T^3 + \mu_n, \alpha_{n+1}^3]$. Consequently,

$$\alpha_n^3 = \epsilon \left(T^2 + 1 \right) \alpha_{f(n)} + z_n T + \nu_{n-1}$$

is equivalent to

$$\left[\left(\lambda_n T^3 + \mu_n - z_n T - \nu_{n-1} \right) / \left(\epsilon \left(T^2 + 1 \right) \right), \epsilon \left(T^2 + 1 \right) \alpha_{n+1}^3 \right] = \alpha_{f(n)}.$$
(7)

Now we apply Lemma 2 with $U = \lambda_n T^3 - z_n T + \nu_n$ and $X = \epsilon (T^2 + 1)\alpha_{n+1}^3$. Consequently, (7) can be written as

$$\left[\epsilon\lambda_n T, -\epsilon(\delta_n T + \nu_n), -\epsilon(\epsilon_n^*\delta_n T + \nu_n), X'\right] = \alpha_{f(n)},\tag{8}$$

where

$$X' = \left(\epsilon \alpha_{n+1}^3 + \epsilon \epsilon_n^* (\delta_n T + \nu_n)\right) / \left(T^2 + 1\right).$$
(9)

Moreover, we have $|\alpha_{n+1}^3| \ge |T^3|$, and consequently |X'| > 1. Thus (8) implies that the three partial quotients $a_{f(n)}$, $a_{f(n)+1}$ and $a_{f(n)+2}$ are as stated in this lemma, and

also that we have $X' = \alpha_{f(n+1)}$. Combining this last equality with (9), and observing that $-\epsilon_n^* \nu_n = \nu_n$, we obtain the result.

Applying Lemma 2, we see that, for a continued fraction defined by (3) and (4), the partial quotients, from the rank l + 1 onward, can be given explicitly three by three, as long as the quantity δ_n is not zero. This is taken up in the following proposition:

Proposition 4 Let $\alpha \in \mathbb{F}(3)$ be an infinite continued fraction expansion defined by (3) and (4). Then there exists $N \in \mathbb{N}^* \cup \{\infty\}$ satisfying the following conditions:

1. For $1 \le n < f(N)$, we have $a_n = \lambda_n T + \mu_n$ where $(\lambda_n, \mu_n) \in \mathbb{F}_3^* \times \mathbb{F}_3$.

2. For $1 \le n < f(N)$, define $v_n = \sum_{1 \le i \le n} (-1)^{n-i} \mu_i + (-1)^n v_0$.

Then we have

$$\mu_{f(n)} = 0$$
 and $\mu_{f(n)+1} = \mu_{f(n)+2} = -\epsilon v_n$ for $1 \le n < N$.

3. For $1 \le n < N$, define $\epsilon_n^* = 1$ if $\nu_n = 0$ or $\epsilon_n^* = -1$ if $\nu_n \neq 0$.

Let $(\delta_n)_{1 \le n \le N}$ be the sequence defined recursively by

$$\delta_1 = \lambda_1 + \epsilon'$$
 and $\delta_n = \lambda_n - \epsilon_{n-1}^* \delta_{n-1}$ for $2 \le n \le N$.

Then, for $1 \le n < N$, we have

$$\lambda_{f(n)} = \epsilon \lambda_n, \quad \lambda_{f(n)+1} = -\epsilon \delta_n \quad and \quad \lambda_{f(n)+2} = -\epsilon \epsilon_n^* \delta_n$$

Proof Starting from (4), since f(1) = l + 1, setting $\epsilon' = z_1$ and observing that all the partial quotients are of degree 1, we can apply repeatedly Lemma 3 as long as we have $\delta_n \neq 0$. If δ_n happens to vanish, the process is stopped and we denote by N the first index such that $\delta_N = 0$, otherwise N is ∞ . The formula $v_n = \mu_n - v_{n-1}$ clearly implies the equality for v_n . From the formulas $\delta_n = \lambda_n + z_n$ and $z_{n+1} = -\epsilon_n^* \delta_n$ for $n \ge 1$, we obtain the recursive formulas for the sequence δ . Finally, the formulas concerning μ and λ are directly derived from the three partial quotients $a_{f(n)}, a_{f(n)+1}$ and $a_{f(n)+2}$ given in Lemma 3.

Last step of the proof We start from the element $\beta \in \mathbb{F}(3)$, introduced in the first step of the proof, defined by its *l* first partial quotients, where $l = k_m + 1$, and by (4) with $(\epsilon, \epsilon', \nu_0) = ((-1)^m, 1, 1)$. According to the first step of the proof, we need to show that $\beta = \omega(m, \eta, \mathbf{k})$. To do so, we apply Proposition 4 to β , and we show that $N = \infty$ and that the resulting sequences $(\lambda_n)_{n\geq 1}$ and $(\mu_n)_{n\geq 1}$ are those which are described in the theorem.

From the definition of the *l*-tuple (μ_1, \ldots, μ_l) and $\nu_o = 1$, we obtain

$$v_t = \eta_i$$
 if $t = t_{i,0}$ and $v_t = 0$ otherwise, for $1 \le t \le l$. (10)

Since $\mu_{f(n)+1} = \mu_{f(n)+2}$, we have $\nu_{f(n)+2} = \nu_{f(n)}$. Since $\mu_{f(n)} = 0$, we also have $\nu_{f(n)} = -\nu_{f(n)-1} = -\nu_{f(n-1)+2}$. This implies $\nu_{f(n)+2} = (-1)^{n-1}\nu_{f(1)+2}$. Since

 $v_{f(1)+2} = v_{f(1)} = -v_{f(1)-1} = -v_l = 0$, we obtain

$$v_{f(n)} = v_{f(n)+2} = 0 \quad \text{for } 1 \le n < N.$$
 (11)

Moreover, from $v_{f(n)+1} = \mu_{f(n)+1} - v_{f(n)}$ and (11), we also get

$$\nu_{f(n)+1} = -\epsilon \nu_n \quad \text{for } 1 \le n < N. \tag{12}$$

Now, it is easy to check that we have $f(t_{i,n}) + 1 = t_{i,n+1}$. Since $\epsilon = (-1)^m$, (12) implies $v_{t_{i,n}} = (-1)^{m+1} v_{t_{i,n-1}}$ if $t_{i,n} < f(N)$. By induction from (10), with (11) and (12), we obtain

$$v_{t_{i,n}} = (-1)^{(m+1)n} \eta_i$$
 and $v_t = 0$ if $t \neq t_{i,n}$, for $1 \le t < f(N)$. (13)

Since we have $\mu_n = \nu_n + \nu_{n-1}$, from (11) and $\nu_0 = 1$, we see that μ_n satisfies the formulas given in the theorem, for $1 \le n < f(N)$. Moreover, (13) clearly implies the following:

$$\epsilon_t^* = \begin{cases} -1 & \text{if } t = t_{i,n}, \\ 1 & \text{otherwise,} \end{cases} \quad \text{for } 1 \le t < f(N). \tag{14}$$

Now we turn to the definition of the sequence $(\lambda_n)_{n\geq 1}$ given in the theorem, corresponding to the element ω . With our notations and according to (14), we observe that this definition can be translated into the following formulas:

$$\lambda_1 = 1$$
 and $\lambda_n = \epsilon_{n-1}^* \lambda_{n-1}$ for $2 \le n < f(N)$. (15)

Consequently, to complete the proof, we need to establish that $N = \infty$ and that (15) holds. The recurrence relation binding the sequences δ and λ , introduced in Proposition 4, can be written as

$$\delta_n + \lambda_n = -\epsilon_{n-1}^* (\delta_{n-1} + \lambda_{n-1}) + \epsilon_{n-1}^* \lambda_{n-1} - \lambda_n \quad \text{for } 2 \le n \le N.$$
(16)

Comparing (15) and (16), we see that $\delta_n + \lambda_n = 0$, for $n \ge 1$, will imply that δ_n never vanishes, i.e., $N = \infty$, and that the sequence $(\lambda_n)_{n\ge 1}$ is the one which is described in the theorem. So we only need to prove that $\delta = -\lambda$. Since β and ω have the same first partial quotients, (15) holds for $2 \le n \le l$. Since $\delta_1 = \lambda_1 + \epsilon' = -1 = -\lambda_1$, combining (15) and (16), we obtain $\delta_n = -\lambda_n$ for $1 \le n \le l$. We also have, by Proposition 4, $\lambda_{l+1} = \lambda_{f(1)} = \epsilon \lambda_1 = (-1)^m = \lambda_l$, and therefore we get $\delta_{l+1} = \lambda_{l+1} - \epsilon_l^* \delta_l = \lambda_{l+1} + \lambda_l = -\lambda_{l+1}$. By induction, we shall now prove that $\delta_t = -\lambda_t$ for t = f(n) + 1, f(n) + 2 and f(n + 1) with $n \ge 1$. From (11) and (12), we have $\epsilon_{f(n)}^* = \epsilon_{f(n)+2}^* = 1$ and $\epsilon_{f(n)+1}^* = \epsilon_n^*$. Thus we get, using Proposition 4:

$$\begin{split} \delta_{f(n)+1} &= \lambda_{f(n)+1} - \epsilon_{f(n)}^* \delta_{f(n)} = \lambda_{f(n)+1} + \lambda_{f(n)} = -\epsilon \delta_n + \epsilon \lambda_n = -\lambda_{f(n)+1}, \\ \delta_{f(n)+2} &= \lambda_{f(n)+2} - \epsilon_{f(n)+1}^* \delta_{f(n)+1} = \lambda_{f(n)+2} + \epsilon_n^* \lambda_{f(n)+1} = -\lambda_{f(n)+2}, \\ \delta_{f(n+1)} &= \lambda_{f(n+1)} - \epsilon_{f(n)+2}^* \delta_{f(n)+2} = \epsilon \lambda_{n+1} + \lambda_{f(n)+2} = \epsilon \left(\lambda_{n+1} - \epsilon_n^* \delta_n\right) \\ &= \epsilon \delta_{n+1} = -\epsilon \lambda_{n+1} = -\lambda_{f(n+1)}. \end{split}$$

So the proof of the theorem is complete.

References

- Baum, L., Sweet, M.: Continued fractions of algebraic power series in characteristic 2. Ann. Math. 103, 593–610 (1976)
- 2. Lasjaunias, A.: Quartic power series in $\mathbb{F}_3((T^{-1}))$ with bounded partial quotients. Acta Arith. **95.1**, 49–59 (2000)
- 3. Lasjaunias, A.: Continued fractions for hyperquadratic power series over a finite field. Finite Fields Appl. 14, 329–350 (2008)
- Mills, W., Robbins, D.: Continued fractions for certain algebraic power series. J. Number Theory 23, 388–404 (1986)
- 5. Schmidt, W.: On continued fractions and Diophantine approximation in power series fields. Acta Arith. **95.2**, 139–166 (2000)
- 6. Thakur, D.: Function Field Arithmetic. World Scientific, Singapore (2004)