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1. Introduction and results

This note deals with continued fractions in fields of power series. For a general account 
on this matter, the reader can consult W. Schmidt’s article [14]. For a wider survey on 
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Diophantine approximation in the function field case and full references, the reader may 
also consult D. Thakur’s book [15, Chap. 9]. Let us recall that the pioneer work on the 
matter treated here, i.e., algebraic continued fractions in power series fields over a finite 
field, is due to L. Baum and M. Sweet [2].

Let p be a prime number, q = ps with s ≥ 1, and let Fq be the finite field with 
q elements. We let Fq[T ], Fq(T ) and F(q) respectively denote the ring of polynomials, 
the field of rational functions and the field of power series in 1/T over Fq, where T is 
a formal indeterminate. These fields are equipped with the ultrametric absolute value 
defined by its restriction to Fq(T ): |P/Q| = |T |deg(P )−deg(Q), where |T | > 1 is a fixed 
real number. We recall that each irrational (rational) element α of F(q) can be expanded 
as an infinite (finite) continued fraction. This will be denoted α = [a1, a2, . . . , an, . . .]
where the ai ∈ Fq[T ], with deg(ai) > 0 for i > 1, are the partial quotients and the tail 
αi = [ai, ai+1, . . .] ∈ F(q) is the complete quotient. We shall be concerned with infinite 
continued fractions in F(q) which are algebraic over Fq(T ).

Regarding Diophantine approximation and continued fractions, a particular subset 
of elements in F(q), algebraic over Fq(T ), must be considered. Let r = pt with t ≥ 0, 
we let H(r, q) denote the subset of irrationals α belonging to F(q) and satisfying an 
algebraic equation of the particular form Aαr+1 +Bαr +Cα+D = 0, where A, B, C and 
D belong to Fq[T ]. Note that H(1, q) is simply the set of quadratic irrational elements 
in F(q). The union of the subsets H(pt, q), for t ≥ 0, denoted by H(q), is the set of 
hyperquadratic power series. For more details and references, the reader may see the 
introduction of [4]. Even though it contains algebraic elements of arbitrary large degree, 
this subset H(q) should be regarded as an analogue, in the formal case, of the subset of 
quadratic numbers, in the real case. An old and famous theorem, due to Lagrange, gives 
a characterization of quadratic real numbers as ultimately periodic continued fractions. 
It is an open problem to know whether another characterization, as particular continued 
fractions, would be possible for hyperquadratic power series.

The origin of this work is certainly due to a famous example of a cubic power series 
over F2, having partial quotients of bounded degrees (1 or 2), introduced in [2]. In a 
second article [3], Baum and Sweet could characterize all power series in F(2) having all 
partial quotients of degree 1 and, among them, those which are algebraic. Underlining 
the singularity of this context, in [9, p. 5], a different approach could allow to rediscover 
these particular power series in F(2). Also in characteristic 2, other algebraic power series 
over a finite extension of F2, having all partial quotients of degree 1, were presented (see 
for instance [10, p. 280]). The case of even characteristic appears to be singular for 
different reasons. In this note we only consider the case of odd characteristic. Our aim 
is to show the existence of hyperquadratic continued fractions, in all F(q)’s with odd q, 
having all partial quotients of degree 1. In F(p), the first examples were given by Mills 
and Robbins [12].

Before developing the background of the work presented in this article, we first give 
an example of such algebraic continued fractions with the purpose of illustrating the 
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subject discussed here. The following result is derived from an elementary and particular 
case of the theorem which is stated at the end of this section.

Example. Let p be an odd prime number. Let ε �= 0, 1 in Fp. Let us consider the algebraic 
equation, with coefficients in Fp[T ]:

Xp+1 − TXp + εT
((
T 2 − 1

)(p−1)/2 − T p−1)X
+ ε

(
T p+1 −

(
T 2 − 1

)(p−1)/2(
T 2 + ε− 1

))
= 0.

This equation has a unique root α in F(p), with |α| ≥ |T |, which can be expanded as the 
following infinite continued fraction

α =
[
T,

(
ε(ε− 1)

)−1
T,

(
2εT,−2ε−1T

)(p−1)/2
, . . . ,

(
ε(ε− 1)

)um
T,

(
2vmT,−2v−1

m T
)(pm−1)/2

, . . .
]
,

where (a, b)k denotes the finite sequence a, b, a, . . . , b of length 2k, the pair a, b being 
repeated k times, with um = −1 if m is odd and um = 0 if m is even, while vm = ε if m
is odd and vm = (ε − 1)−1 if m is even.

To explain the existence of such continued fractions, our method is based on the 
following statement, proved by the first author [7, pp. 332–333].

Given an integer l ≥ 1, an l-tuple (a1, a2, . . . , al) ∈ (Fq[T ])l, with deg(ai) ≥ 1 for 
1 ≤ i ≤ l, and a pair (P, Q) ∈ (Fq[T ])2 with deg(Q) < deg(P ) < r, there exists a unique 
infinite continued fraction α ∈ F(q) satisfying

α = [a1, . . . , al, αl+1] and αr = Pαl+1 + Q. (∗)

Note that in the degenerated case, r = 1, consequently deg(P ) = 0 and Q = 0, we 
simply have α = εαl+1, where ε ∈ F

∗
q . This implies the (pure) periodicity of the continued 

fraction, with a period of length multiple of l. In general, the continued fraction α is 
algebraic over Fq(T ) of degree d, with 1 < d ≤ r+1. Indeed, from the continued fraction 
algorithm, we know that there is a linear fractional transformation fl, having coefficients 
in Fq[T ], built from the first l partial quotients, such that α = fl(αl+1) (see the end of 
Section 2). Consequently, by (∗) we have α = fl((αr−Q)/P ) = f(αr) where f is a linear 
fractional transformation with integer (polynomial) coefficients. Hence, α is solution of 
the following algebraic equation of degree r + 1:

ylX
r+1 − xlX

r + (Pyl−1 −Qyl)X + Qxl − Pxl−1 = 0, (∗∗)

where the polynomials xl, xl−1, yl and yl−1 are the continuants built from the l first 
partial quotients (see the end of Section 2). Thus, α is hyperquadratic. Moreover, it is 
also true that α is the unique root in F(q), satisfying |α| ≥ |T |, of Eq. (∗∗).
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In this note, we shall consider continued fractions in F(q) defined by (∗), for a par-
ticular choice of the polynomials (a1, a2, . . . , al, P, Q). Here we consider p > 2, q = ps

and r = pt as above. In the sequel a is given in F∗
q . We consider the following pair of 

polynomials in Fq[T ]:

Pa(T ) =
(
T 2 + a

)(r−1)/2 and Qa(T ) = a−1(TPa(T ) − T r
)
.

We have deg(Pa) = r − 1 > deg(Qa) = r − 2. For an integer l ≥ 1, we let E(r, l, a, q)
denote the subset of infinite continued fraction expansions α ∈ F(q) satisfying

α = [a1, . . . , al, αl+1] and αr = ε1Paαl+1 + ε2Qa,

where ai = λiT + μi, λi ∈ F
∗
q , μi ∈ Fq, for 1 ≤ i ≤ l and (ε1, ε2) ∈ (F∗

q)2 are arbitrarily 
given. Note that in the extremal case, r = 1, the pair of polynomials would be Pa = 1
and Qa = 0 and E(1, l, a, q) would be a subset of quadratic power series, corresponding 
to purely periodic continued fractions. In the sequel we assume r > 1. We observe that α
in E(r, l, a, q) is defined by the (2l + 2)-tuple (λ1, . . . , λl, μ1, . . . , μl, ε1, ε2). Consequently 
E(r, l, a, q) has ql(q − 1)l+2 elements.

Our aim is to show that, under a particular choice of the l-tuple (a1, . . . , al) ∈ (Fq[T ])l
and of the pair (ε1, ε2) ∈ (F∗

q)2, the element α defined as above will satisfy deg(an) = 1, 
for all the partial quotients an in its continued fraction expansion. These particular 
expansions are said perfect and form a subset of E(r, l, a, q), which will be denoted by 
E∗(r, l, a, q).

A particular and simpler case of this situation can be considered. Let us denote by 
E0(r, l, a, q) the subset of E(r, l, a, q) where ai = λiT , for 1 ≤ i ≤ l, and also E∗

0 (r, l, a, q) =
E∗(r, l, a, q) ∩ E0(r, l, a, q). Considering the algebraic equations which they satisfy, it can 
be observed that the continued fractions belonging to E0(r, l, a, q) are odd functions of 
T and therefore the partial quotients must be odd polynomials of the indeterminate T . 
Consequently, the elements of E∗

0 (r, l, a, q) have all partial quotients of the form an =
λnT , for n ≥ 1, where λn ∈ F

∗
q . It can be observed that the example introduced above 

actually belongs to E∗
0 (p, 1, −1, p), and that it is defined by the triple (λ1, ε1, ε2) =

(1, ε(ε − 1), ε).
In Mills and Robbins article [12], several examples of algebraic continued fractions 

are presented, some of them with all partial quotients of degree 1. The first examples, 
[12, pp. 400–401], belong to E∗

0 (p, 2, 4, p), for all primes p ≥ 5 (see [7, p. 332]). Also in 
[12, pp. 401–402], we have an example belonging to E∗(3, 7, 1, 3). In this last case, the 
partial quotients are not linear. Inspired by this example and using a new approach, in an 
earlier work [6], the first author could present a particular family of such hyperquadratic 
continued fractions, all in E∗(3, l, 1, 3), for all l ≥ 3. In a joint work with J.-J. Ruch [10], 
a generalization of the approach introduced in [6] was developed, for all characteristics; 
however, this led to unsolved questions.

Yet, other examples of algebraic continued fractions, with partial quotients of un-
bounded degrees, were also presented by Mills and Robbins [12]. One could observe 
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that all these continued fractions are generated as indicated above, in connection with 
a polynomial of the form (T 2 + a)k, for different values of an integer k. Following this, 
in a larger context than the one we consider here (i.e. for different values of k, see [7]
and [8]), the first author could develop a method showing the link between all these 
algebraic continued fractions. In a particular case, this method can be used to describe 
continued fractions in E∗

0 (r, l, a, q), including the previously mentioned examples [12, 
pp. 400–401]. However this method (introduced in [7] and developed in [8]) concerned 
only elements in E0(r, l, a, q). For the simplest case, p = q = r = 3, in a recent joint 
work with D. Gomez [5], a modification of this approach has allowed to obtain a large 
extension of the results presented in [6]. The aim of the present note is to give a full 
description of these particular algebraic continued fractions for all p > 2, r and q.

Before stating our result, it is pertinent, just for the sake of completeness, to recall 
what is already known in this area. Indeed, the following could be proved [8, p. 256]:

If α ∈ E0(r, l, −1, q) and if we have (C0): [λ1, λ2, . . . , λl + ε1/ε2]r = ε2, then α ∈
E∗
0 (r, l, −1, q).

This condition must be understood as a set of several conditions implying the exis-
tence of the square bracket on the left. As an illustration, for l = 1, (C0) is simply
(λ1 + ε1/ε2)r = ε2. There are q− 1 choices for ε2 and, for each one, q− 2 choices for λ1, 
since λr

1 �= 0, ε2, while ε1 is fixed by εr1 = (ε2 − λr
1)εr2. More generally, we can observe 

that there are (q − 1)l+2 elements in E0(r, l, −1, q) and a basic computation shows that, 
among them, only (q − 1)(q − 2)l satisfy condition (C0).

In this statement, note that we only consider the case a = −1. The general case is 
derived from the following argument. Let α ∈ E0(r, l, a, q) be defined by

α = [λ1T, . . . , λlT, αl+1] and αr = ε1Paαl+1 + ε2Qa.

Let v, in Fq or Fq2 , be such that v2 = −a, then define β(T ) = vα(vT ). One can show 
that β belongs to F(q) and that it is defined by

β =
[
−aλ1T, λ2T,−aλ3T, . . . , a(l)λlT, βl+1

]
and βr = ε′1P−1βl+1 + ε′2Q−1,

where ε′2 = ar−1ε2, ε′1 = ar−1a(l)ε1 and a(l) = 1 if l is even or −a if l is odd. Consequently, 
we have β ∈ E0(r, l, −1, q) and there is a one-to-one correspondence between the sets 
E0(r, l, −1, q) and E0(r, l, a, q). Accordingly, condition (C0) can easily be generalized, and 
we have:

If α ∈ E0(r, l, a, q) and (C0): [−aλ1, λ2, . . . , a(l)(λl + ε1/ε2)]r = ar−1ε2, then α ∈
E∗
0 (r, l, a, q).

The present work is organized as follows. In the next section, we introduce the basic 
results concerning continued fractions, used in this note. In Section 3, we establish an 
important property of the pair (Pa, Qa) which plays a key role in the description of our 
particular algebraic continued fractions. In Section 4, we give the proof of the theorem 
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which is stated here below. In a short and last section, we make further comments and 
we give an orientation toward further studies.

Theorem. Let p be an odd prime number, q = ps, r = pt, with integers s, t ≥ 1. Let l ≥ 1
be an integer. Let (a, ε1, ε2) ∈ (F∗

q)3 be given. Let Pa, Qa ∈ Fq[T ] be defined as above. Let 
α = [a1, a2, . . . , an, . . .] ∈ F(q) be the infinite continued fraction defined by

(a1, . . . , al) = (λ1T + μ1, . . . , λlT + μl), where (λi, μi) ∈ F
∗
q × Fq for 1 ≤ i ≤ l,

and

αr = ε1Paαl+1 + ε2Qa.

We assume that the (2l+1)-tuple (λ1, . . . , λl, μ1, . . . , μl−1, a, ε2) is such that, for 1 ≤ i ≤ l, 
we can define the pair (δi, νi) ∈ F

∗
q × Fq in the following way:

δ1 = aλr
1 + ε2, ν1 = 0, and for 1 ≤ i ≤ l − 1

(C1) δi+1 = aλr
i+1 −

δi
ar−2δ2

i + (νi − μr
i )2

and νi+1 = (νi − μr
i )

ar−2δ2
i + (νi − μr

i )2
.

We also assume that the pair (ε1, μl) is such that we have

(C2) δl = −a(ε1/ε2)r and (C3) μr
l = νl.

Then we have α ∈ E∗(r, l, a, q). Moreover the sequence of partial quotients, defined by 
an = λnT + μn for n ≥ 1, is described as follows.

For n ∈ N
∗, we set f(n) = nr + l+ 1 − r and g(n) = nr + l+ (1 − r)/2. We introduce 

the following subsets of N∗: I = {i ∈ N | 1 ≤ i ≤ l}, I∗ = {i ∈ I | νi − μr
i �= 0}, 

F = {fm(i) | m ≥ 1 and i ∈ I} and G = {gm(i) | m ≥ 1 and i ∈ I∗}. Note that the 
subsets I∗ and G may both be empty: namely if μi = 0 for 1 ≤ i ≤ l.

For n > l + 1, we define C(n) by:

C(n) = 4a−1 if n /∈ F ∪ (F + 1) ∪ (G + 1) and

C(n) = 2a−1(1 − a−1λ−r
i δi

)−rm−1

if n = fm(i) for m ≥ 1 and i ∈ I
(
n �= f(1)

)
,

C(n) = 2a−1(aλr
i δ

−1
i

)rm−1

if n = fm(i) + 1 for m ≥ 1 and i ∈ I,

C(n) = 4a−1(1 + a2−r
(
νi − μr

i

)2
δ−2
i

)−rm−1

if n = gm(i) + 1 for m ≥ 1 and i ∈ I∗.

Then the sequence (λn)n≥1 in F∗
q is defined recursively, for n ≥ l + 1, by

λl+1 = λr
1ε

−1
1 and λn = C(n)λ−1

n−1 for n > l + 1.

While the sequence (μn)n≥1 in Fq is defined, for n ≥ l + 1, as follows.



A. Lasjaunias, J.-Y. Yao / Journal of Number Theory 149 (2015) 259–284 265
If n /∈ G ∪ (G + 1), then μn = 0. If n = gm(i) for m ≥ 1 and i ∈ I∗, then

μnλ
−1
n = −μn+1λ

−1
n+1 = (−a)(r

m−1(2−r)+1)/2((νi − μr
i

)
δ−1
i

)rm−1

/2.

Remark. If l = 1, we observe that conditions (C1), (C2) and (C3) reduce to aλr
1 + ε2 =

−a(ε1/ε2)r with μ1 = 0. Consequently, the corresponding continued fraction belongs to 
E∗
0 (r, 1, a, q). As we already observed, the example introduced at the beginning of this 

section belongs to E∗
0 (p, 1, −1, p) and we have the desired condition δ1 = −1 +ε2 = ε1/ε2. 

Besides, the reader may check that the description of the continued fraction given in this 
example can be derived from the formulas stated in this theorem.

Also, in the simplest case (μ1, μ2, . . . , μl) = (0, 0, . . . , 0), i.e. α ∈ E0(r, l, a, q), (C1) 
implies inductively νi = 0 for 1 ≤ i ≤ l. Consequently, (C1) reduces to δi+1 = aλr

i+1 −
a2−rδ−1

i for 1 ≤ i ≤ l−1. One can check that conditions (C1), (C2) and (C3) then reduce 
to the sufficient condition (C0), already stated above, in order to have α ∈ E∗

0 (r, l, a, q).

Before concluding this section, we make a more general comment in order to underline 
the place taken by the family of power series described here among the hyperquadratic 
power series. All the known examples of algebraic continued fractions, in odd character-
istic, having all partial quotients of degree 1, are related to continued fractions generated 
in the way presented above. To be more precise, let us denote by E∗(q) the union of the 
sets E∗(r, l, a, q), for all l ≥ 1, all a ∈ F

∗
q and all r = pt, with t ≥ 0. Then we conjecture 

that, if α ∈ H(q) (q odd) and if all its partial quotients are of degree 1, then there is a 
linear fractional transformation f(x) = (ax + b)/(cx + d), with (a, b, c, d) ∈ Fq[T ]4 and 
ad − bc ∈ F

∗
q , and β ∈ E∗(q), such that α(T ) = f(β(λT + μ)) where (λ, μ) ∈ F

∗
q × Fq.

Also, it is a known fact that if α ∈ E∗(q) and f(x) = (ax +b)/(cx +d), with (a, b, c, d) ∈
Fq[T ]4 is a linear fractional transformation, then f(α) belongs to H(q). Moreover α and 
f(α) have the same algebraic degree, and f(α) has also bounded partial quotients. Hence 
the set E∗(q) generates a subset of elements in H(q) with bounded partial quotients. 
However, most elements in H(q) have unbounded partial quotients. The reader may see 
the introduction of [6] for more information on this matter.

Finally, thinking of a famous conjecture in number theory in the classical context of 
real numbers, we ask the following question: are there algebraic irrational power series, 
in odd characteristic, which are not hyperquadratic and which have partial quotients of 
bounded degrees?

2. Notation and basic formulas for continued fractions

Let W = w1, w2, . . . , wn be a sequence of variables over a ring A. We set |W | = n for 
the length of the word W . We define the following operators for the word W .

W ′ = w2, w3, . . . , wn or W ′ = ∅ if |W | = 1.
W ′′ = w1, w2, . . . , wn−1 or W ′′ = ∅ if |W | = 1.
W ∗ = wn, wn−1, . . . , w1.
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We consider the finite continued fraction associated to W to be

[W ] = [w1, w2, . . . , wn] = w1 + 1
w2 + 1

. . .+ 1
wn

.

This continued fraction is a quotient of multivariate polynomials, usually called continu-
ants, built upon the variables w1, w2, . . . , wn. More details about these polynomials can 
be found, for example in [13], and also in [7] (although here, trying to simplify, we adopt 
different notation). The continuant built on W will be denoted 〈W 〉. We now recall the 
definition of this sequence of multivariate polynomials.

Set 〈∅〉 = 1. If the sequence W has only one element, then we have 〈W 〉 = W . Hence, 
with the above notation, the continuants can be computed, recursively on the length
|W |, by the following formula

〈W 〉 = w1
〈
W ′〉 +

〈(
W ′)′〉 for |W | ≥ 2. (1)

Thus, with this notation, for any finite word W , the finite continued fraction [W ] satisfies

[W ] = 〈W 〉
〈W ′〉 .

It is easy to check that the polynomial 〈W 〉 is, in a certain sense, symmetric in the 
variables w1, w2, . . . , wn. Hence we have 〈W ∗〉 = 〈W 〉 and this symmetry implies the 
classical formula

[
W ∗] = 〈W 〉

〈W ′′〉 .

The continuants satisfy a number of useful identities. First we will need a generalization 
of (1). For any finite sequences A and B, of variables over A, defining A, B as the 
concatenation of sequences A and B, we have

〈A,B〉 = 〈A〉〈B〉 +
〈
A′′〉〈B′〉. (2)

Secondly, using induction on |W |, we have the following classical identity

〈W 〉
〈(
W ′)′′〉− 〈

W ′〉〈W ′′〉 = (−1)|W | for |W | ≥ 2. (3)

Now, let y be an invertible element of A, then we define y ·W as the following sequence

y ·W = yw1, y
−1w2, . . . , y

(−1)n−1
wn.

With these notations, it is easy to check that we have y[W ] = [y ·W ] and more precisely

〈y ·W 〉 = 〈W 〉 if |W | is even and 〈y ·W 〉 = y〈W 〉 if |W | is odd. (4)
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Let us come back to the notation used in the introduction. If α ∈ F(q) is irra-
tional (rational), then it can be expanded as an infinite (finite) continued fraction 
α = [a1, a2, . . . , an, . . .], where the an ∈ Fq[T ] are called the partial quotients. We have 
deg(an) > 0 for n > 1. For n ≥ 1, we set xn = 〈a1, a2, . . . , an〉 and yn = 〈a2, . . . , an〉, 
with x0 = 1 and y0 = 0. The rational xn/yn = [a1, a2, . . . , an] is called a convergent 
to α. The continued fraction expansion of an irrational element measures the quality of 
its rational approximation. The convergents of α are the best rational approximations 
and we have |α − xn/yn| = |an+1|−1|yn|−2. If the partial quotients have bounded de-
grees then the element is said to be badly approximable. Let us recall that we also have 
α = (xnαn+1 + xn−1)/(ynαn+1 + yn−1) for n ≥ 1, where αn+1 = [an+1, an+2, . . .] is the 
complete quotient.

We will also make use of the following general and basic lemma.

Lemma 0. Let W be a finite word, with |W | ≥ 2. Let a be a variable over A, then we 
have

[W ] + a = [W, b],

where b = (−1)|W |−1〈W ′〉−2a−1 − 〈(W ′)′′〉〈W ′〉−1.

Indeed, we have

[w1, w2, . . . , wn, b] = xnb + xn−1

ynb + yn−1
= xn

yn
+ (−1)n−1

yn(ynb + yn−1)
= [w1, . . . , wn] + a.

An early publication of the idea under this statement is due to M. Mendès France 
(see [11, p. 209]).

3. A finite continued fraction in FFFq(T )

We recall that p is an odd prime number, q = ps and r = pt where s and t are positive 
integers. For a ∈ F

∗
q , we consider the polynomials Pa and Qa in Fq[T ] defined by:

Pa(T ) =
(
T 2 + a

)(r−1)/2 and Qa(T ) = a−1(TPa(T ) − T r
)
. (5)

The following sequence (Fn)n≥0 of polynomials in Fp[T ] was introduced by Mills and 
Robbins [12, p. 400] (see also [7, p. 331]). This sequence is defined recursively by

F0 = 1, F1 = T and Fn = TFn−1 + Fn−2 for n ≥ 2. (6)

From (6), we clearly have the finite continued fraction expansion

Fn/Fn−1 = [T, T, . . . , T ] (n terms).
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This sequence can be regarded as the analogue in the function field case of the Fibonacci 
sequence of integers. By elementary computations (see [7, pp. 331–332]), one can check 
that the following formulas hold in Fp[T ]:

Fr−1 = P4 and Fr−2 = −2Q4.

Consequently, with (4), we can write

P4/Q4 = −2Fr−1/Fr−2 = [−2T,−T/2, . . . ,−2T,−T/2]. (7)

Now, let v ∈ Fq2 be such that v2 = a/4. From (5) we get

Pa(T ) = (a/4)(r−1)/2P4(T/v) and Qa(T ) = v(a/4)(r−3)/2Q4(T/v). (8)

Therefore, by (7) and (8), we have

Pa/Qa = (a/4v)(P4/Q4)(T/v) = v[−2T/v,−T/2v, . . . ,−2T/v,−T/2v]

and, with (4), finally

Pa/Qa = [−2T,−2T/a, . . . ,−2T,−2T/a] (r − 1 terms). (9)

Let us make a remark on the infinite continued fraction ω = [T, T, . . . , T, . . .] in F(p). 
This element is quadratic and it clearly satisfies ω2 = Tω + 1 (it is an analogue of the 
golden mean in the case of real numbers). One can prove, for all n ≥ 1, the equal-
ity ωn+1 = Fnω + Fn−1. Consequently, we obtain ωr = P4ω − 2Q4. Since we have 
ω = ωl+1, it follows that ω belongs to E∗

0 (r, l, 4, p), for all r, all p > 2 and all l ≥ 1. 
It is well known that, also in the case of power series over a finite field, quadratic 
continued fractions are characterized by an ultimately periodic sequence of partial quo-
tients. For a general element in E∗(r, l, a, q), this sequence is not so and therefore this 
element is not quadratic. However the precise algebraic degree of such an element is 
generally unknown. Concerning this matter, we can make an observation about the ex-
ample introduced at the beginning of this article. Indeed, one could check that, for the 
particular value ε = 1/2, this element α is actually quadratic and we have, for all p ≥ 3, 
α(T ) = (

√
−1/2)ω((2/

√
−1)T ). While if ε �= 1/2 the algebraic degree of the correspond-

ing element might well be p + 1.
The aim of the following proposition is to give a generalization for the continued 

fraction expansion (9) concerning the pair (Pa, Qa).

Proposition 1. Let r, q, a, Pa and Qa be defined as above. We set k = (r − 1)/2. Let 
x ∈ Fq, we set ω = 1 + a2−rx2. Then Pa and Qa + x are coprime polynomials in Fq[T ]
if and only if ω �= 0. We assume that ω �= 0. We define 2k polynomials in Fq[T ]:
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vi = −2T and vk+1+i = −ω(−1)i+1
2T for 1 ≤ i ≤ k − 1,

vk = −2T − (−a)1−kx and vk+1(x) = ω−1(−2T + (−a)1−kx
)
.

We set W (a, x) = v1, v2/a, v3, v4/a, . . . , v2k−1, v2k/a. Then we have the following equal-
ities in Fq(T ):

Pa(Qa + x)−1 =
[
W (a, x)

]
,

〈
W (a, x)

〉
= ω(k)a−kPa,〈

W ′(a, x)
〉

= ω(k)a−k(Qa + x)

and also

〈
W ′′(a, x)

〉
= ω(k)ω(−1)k+1

a1−k(Qa − x),

where ω(k) = 1 if k is even and ω(k) = ω−1 if k is odd.

Proof. We denote by v ∈ Fq2 a square root of −a, so that ±v are the only roots of Pa. 
Hence we see that Pa and Qa+x are coprime if and only if (Qa(v) +x)(Qa(−v) +x) �= 0. 
From (5), we obtain Qa(±v) = ∓a−1vr. Therefore, this becomes x2 − a−2v2r �= 0. 
Observing that v2r = −ar, we obtain the desired condition.

First, since ω = 1 if x = 0, we observe that W (a, 0) = −2T, −2T/a, −2T, . . . , −2T/a. 
Hence, with our notations, equality (9) can be written as

Pa

Qa
= 〈W (a, 0)〉

〈W ′(a, 0)〉 .

Since the numerators of both fractions above have the same degree, r− 1 in T , it follows 
that there exists u ∈ F

∗
q such that

〈
W (a, 0)

〉
= uPa and

〈
W ′(a, 0)

〉
= uQa. (10)

For a continuant built from polynomials in T , the leading coefficient is obtained as 
the leading coefficient of the product of its terms. Consequently, the leading coefficient 
of 〈W (a, 0)〉 is (−2)r−1a−k = a−k while Pa is unitary. This implies u = a−k. Now we 
observe that k can be even or odd. If p = 4m +1 then k is always even, while if p = 4m +3
then k has the same parity as t if r = pt.

We set W (a, 0) = a1, a2, . . . , ar−1 and W (a, x) = b1, b2, . . . , br−1. We will use the 
notation a(i) = 1 if i is odd and a(i) = a−1 if i is even. Hence we have ai = −2a(i)T and 
bi = a(i)vi for 1 ≤ i ≤ 2k. To shorten the writing, we denote 〈ai, . . . , aj〉 by Ai,j and 
similarly 〈bi, . . . , bj〉 by Bi,j . According to these notations we have 〈W (a, 0)〉 = A1,2k
and 〈W (a, x)〉 = B1,2k. From the definition of both sequences W (a, x) and W (a, 0), we 
have bi = ai and bk+1+i = ω(−1)i+1

ak+1+i for 1 ≤ i ≤ k − 1. Consequently, we get

B1,k−1 = A1,k−1 and B2,k−1 = A2,k−1. (11)
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But also, by (4), according to the parity of k,

Bk+2,2k = ωω(k)Ak+2,2k and Bk+3,2k = ω(k)Ak+3,2k. (12)

Applying (2), by (11) and (12), we can write

B1,2k = B1,kBk+1,2k + B1,k−1Bk+2,2k = B1,kBk+1,2k + ωω(k)A1,k−1Ak+2,2k (13)

B2,2k = B2,kBk+1,2k + B2,k−1Bk+2,2k = B2,kBk+1,2k + ωω(k)A2,k−1Ak+2,2k. (14)

For notational convenience define xk = (−a)1−kx. From the definition of vk and vk+1, 
we have

bk = ak − a(k)xk and bk+1 = ω−1(ak+1 + a(k + 1)xk

)
. (15)

By (2), we have B1,k = B1,k−1bk + B1,k−2. Again by (2), (11) and (15), this becomes

B1,k = A1,k−1bk + A1,k−2 = A1,k − a(k)xkA1,k−1. (16)

In the same way, by (2), (11) and (15), we get

B2,k = A2,k−1bk + A2,k−2 = A2,k − a(k)xkA2,k−1. (17)

By (2), (12) and (15), since Bk+1,2k = Bk+2,2kbk+1 + Bk+3,2k, we also get

Bk+1,2k = ω(k)Ak+2,2k
(
ak+1 + a(k + 1)xk

)
+ ω(k)Ak+3,2k

and this becomes

Bk+1,2k = ω(k)
(
Ak+1,2k + a(k + 1)xkAk+2,2k

)
. (18)

By (4), according to the parity of k, we also obtain

Ak+1,2k = a(k + 1)A1,k and Ak+2,2k = a(k)A1,k−1. (19)

From (19), we have a(k)A1,k−1Ak+1,2k − a(k + 1)A1,kAk+2,2k = 0. We also have
a(k)a(k + 1)x2

k = a−1a2−2kx2 = a2−rx2. Consequently, by multiplication, from (16)
and (18), we get

B1,kBk+1,2k = ω(k)
(
A1,kAk+1,2k − a2−rx2A1,k−1Ak+2,2k

)
. (20)

In the same way, by multiplication, from (17) and (18), we get

B2,kBk+1,2k = ω(k)
(
A2,kAk+1,2k − a2−rx2A2,k−1Ak+2,2k + X

)
, (21)

where, according to (19), using (3) and a(k)a(k + 1) = a−1, we have
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X = a(k)a(k + 1)xk(A1,k−1A2,k −A2,k−1A1,k) = a−1xk(−1)k−1 = a−kx. (22)

Combining (13) and (20), using (2) and since ω = 1 + a2−rx2, we get

B1,2k = ω(k)
(
A1,kAk+1,2k +

(
ω − a2−rx2)A1,k−1Ak+2,2k

)
= ω(k)A1,2k.

By (10), recalling that u = a−k, this becomes
〈
W (a, x)

〉
= B1,2k = ω(k)A1,2k = ω(k)

〈
W (a, 0)

〉
= ω(k)a−kPa.

In the same way, combining (14), (21) and (22), we obtain

B2,2k = ω(k)
(
A2,kAk+1,2k +

(
ω − a2−rx2)A2,k−1Ak+1,2k + a−kx

)
= ω(k)

(
A2,2k + a−kx

)
.

By (10), with u = a−k, this becomes
〈
W ′(a, x)

〉
= B2,2k = ω(k)

(
A2,2k + a−kx

)
= ω(k)

(〈
W ′(a, 0)

〉
+ a−kx

)
= ω(k)a−k(Qa + x).

Consequently, we get

[
W (a, x)

]
= 〈W (a, x)〉

〈W ′(a, x)〉 = ω(k)a−kPa

ω(k)a−k(Qa + x) = Pa(Qa + x)−1.

Moreover, from the definition of the sequence W (a, x), we observe the “pseudo-
symmetry” between W (a, x) and W (a, −x), i.e. W (a, x) = aω(−1)k+1 ·W ∗(a, −x). Finally, 
using this equality, by (4) and since |W ′(a, −x)| = 2k − 1 is odd, we obtain
〈
W ′′(a, x)

〉
=

〈
W ′′ ∗(a, x)

〉
=

〈
aω(−1)k+1 ·W ′(a,−x)

〉
= ω(k)ω(−1)k+1

a1−k(Qa − x).

So the proof of Proposition 1 is complete. �
4. Proof of the theorem

Throughout this section, the integers p, q and r, as well as a ∈ F
∗
q and Pa, Qa in 

Fq[T ], are defined as above. Moreover, as above, we set k = (r − 1)/2. We need the 
following lemma, which is a straightforward consequence of Lemma 0 from Section 2 and 
of Proposition 1 from Section 3.

Lemma 1. Let b0 ∈ Fq[T ] and y ∈ F
∗
q . For a ∈ F

∗
q and x ∈ Fq, assuming that ω =

1 +a2−rx2 �= 0, as above we denote by W (a, x) the sequence of the r−1 partial quotients 
of the rational function Pa(Qa + x)−1. Then, for X ∈ F(q), we have the formal identity:

[
b0, y ·W (a, x)

]
+ X =

[
b0, y ·W (a, x), Y

]
,
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where

Y = ω(−1)k+1(
ωar−1P−2

a X−1 − ya(Qa − x)P−1
a

)
.

Proof. According to Lemma 0 in Section 2, we can write

[
b0, y ·W (a, x)

]
+ X =

[
b0, y ·W (a, x), Y

]
,

where Y is linked to X as follows

Y = (−1)r−1〈y ·W (a, x)
〉−2

X−1 −
〈(
y ·W (a, x)

)′′〉〈
y ·W (a, x)

〉−1
. (23)

We recall that 〈y · W (a, x)〉 = 〈W (a, x)〉, since the sequence of terms is of even 
length r − 1. In the same way, since r − 2 is odd, we also have 〈(y · W (a, x))′′〉 =
y〈W ′′(a, x)〉. Applying Proposition 1, we have 〈W (a, x)〉 = ω(k)a−kPa and 〈W ′′(a, x)〉 =
ω(k)ω(−1)k+1

a1−k(Qa − x). Consequently, (23) becomes

Y = ω(k)−2a2kP−2
a X−1 − yaω(−1)k+1

(Qa − x)P−1
a . (24)

Since ω(k)−2 = ω1+(−1)k+1 and 2k = r−1, (24) implies the conclusion of this lemma. �
The proof of the theorem relies on the following proposition.

Proposition 2. Let p, q and r be as above. Let α = [a1, a2, . . . , an, . . .] be an irrational 
element of F(q). For an integer n ≥ 1, we set f(n) = (n − 1)r + l + 1. For an index 
n ≥ 1, we assume that an = λnT + μn, where (λn, μn) ∈ F

∗
q × Fq and that αn and αf(n)

are linked by the following equality

αr
n = ε1,nPaαf(n) + ε2,nQa + νn,

where (ε1,n, ε2,n, νn) ∈ (F∗
q)2 × Fq. We set δn = aλr

n + ε2,n.
First we assume that δn �= 0. We set πn = (νn − μr

n)δ−1
n and ωn = 1 + a2−rπ2

n. We 
assume that ωn �= 0. The word W (a, πn) is defined in Proposition 1. Then we have

af(n) = ε−1
1,nλ

r
nT and af(n)+1, . . . , af(n)+r−1 =

(
−ε1,nδ

−1
n

)
·W (a, πn).

Moreover we have αr
n+1 = ε1,n+1Paαf(n+1) + ε2,n+1Qa + νn+1, where

ε1,n+1 = a1−rε−1
1,nω

(−1)k−1
n

ε2,n+1 = −a2−r(ωnδn)−1

νn+1 = a2−r
(
νn − μr

n

)
ω−1
n δ−2

n .

Finally, if δn = 0 then we have af(n) = ε−1
1,nλ

r
nT , but deg(af(n)+1) > 1.
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Proof. By hypothesis, we have αn = [λnT + μn, αn+1] and also

αr
n = ε1,nPaαf(n) + ε2,nQa + νn. (25)

Therefore, combining the first equality with (25), and since αr
n = [arn, αr

n+1], we can 
write

[
λr
nT

r + μr
n − ε2,nQa − νn, α

r
n+1

]
= ε1,nPaαf(n). (26)

Recalling that Pa and Qa satisfy the equality T r = TPa − aQa, we obtain, with our 
notation,

λr
nT

r − ε2,nQa = λr
nTPa − δnQa. (27)

Combining (26) and (27), we get
[
λr
nTPa − δnQa + μr

n − νn
ε1,nPa

, ε1,nPaα
r
n+1

]
= αf(n). (28)

Assuming that δn �= 0, with our notation, since πn = (νn − μr
n)δ−1

n , (28) can be written 
as

ε−1
1,nλ

r
nT − ε−1

1,nδnP
−1
a (Qa + πn) + ε−1

1,nP
−1
a α−r

n+1 = αf(n). (29)

Applying Proposition 1, we have Pa(Qa + πn)−1 = [W (a, πn)]. We set y = −ε1,nδ
−1
n . 

Then we have

−ε1,nδ
−1
n Pa(Qa + πn)−1 = y

[
W (a, πn)

]
=

[
y ·W (a, πn)

]
.

Consequently, if we set b0 = ε−1
1,nλ

r
nT and X = ε−1

1,nP
−1
a α−r

n+1, (29) becomes

b0 + 1
[y ·W (a, πn)] + X = αf(n), (30)

which is [b0, y ·W (a, πn)] +X = αf(n). Since ωn = 1 +a2−rπ2
n �= 0, we can apply Lemma 1

above. We get

[
ε−1
1,nλ

r
nT,

(
−ε1,nδ

−1
n

)
·W (a, πn), Y

]
= αf(n). (31)

This lemma gives

Y = ω(−1)k+1

n ε1,nP
−1
a

(
ωna

r−1αr
n+1 + aδ−1

n (Qa − πn)
)
. (32)

We have |Y | = |P−1
a αr

n+1| > 1, consequently (31) implies
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af(n) = ε−1
1,nλ

r
nT and af(n)+1, . . . , af(n)+r−1 =

(
−ε1,nδ

−1
n

)
·W (a, πn).

But also Y = αf(n)+r = αf(n+1). Hence, by (32), we get

ω(−1)k
n ε−1

1,nPaαf(n+1) = ωna
r−1αr

n+1 + aδ−1
n (Qa − πn) (33)

and (33) becomes

αr
n+1 = a1−rε−1

1,nω
(−1)k−1
n Paαf(n+1) − a2−rδ−1

n ω−1
n Qa + a2−rπnδ

−1
n ω−1

n . (34)

From (34), we obtain the desired formulas for ε1,n+1, ε2,n+1 and νn+1.
Finally if δn = 0, from (28), we get

αf(n) = ε−1
1,nλ

r
nT +

(μr
n − νn)αr

n+1 + 1
ε1,nPaαr

n+1
= ε−1

1,nλ
r
nT + Z.

We have |Z| < |T |−1, consequently we get af(n) = ε−1
1,nλ

r
nT and deg(af(n)+1) =

deg(Z−1) > 1.
So the proof of Proposition 2 is complete. �

Proof of the theorem. We start from α ∈ E(r, l, a, q), satisfying

αr = ε1Paαl+1 + ε2Qa. (I1)

Recalling that a1 = λ1T + μ1, we set

(DL1) δ1 = aλr
1 + ε2 and (N1) ν1 = 0. (36)

In the sequel from the triple (δn, νn, μn) in F3
q, if δn �= 0, as above, we define πn =

(νn − μr
n)δ−1

n and ωn = 1 + a2−rπ2
n. By (C1), or by (C2) and (C3) if l = 1, we have 

δ1 �= 0 and ar−2δ2
1 + (ν1 − μr

1)2 �= 0. Therefore we have δ1ω1 �= 0 and we can apply 
Proposition 2. Hence, with f(1) = l + 1, we get r partial quotients, from al+1 to al+r, 
all of degree 1. The following equality holds

αr
2 = ε1,2Paαf(2) + ε2,2Qa + ν2, (I2)

where ε1,2, ε2,2 and ν2 are as stated in Proposition 2. Observe that a2 = λ2T + μ2 if 
l > 1, but also if l = 1. Indeed, if l = 1, then a2 = af(1) = ε−1

1 λr
1T . Consequently, we can 

consider δ2 and we have

(DL2) δ2 = aλr
2 − a2−r(ω1δ1)−1 and (N2) ν2 = a2−r

(
ν1 − μr

1
)
ω−1

1 δ−2
1 .

If l = 1, we might have δ2 = 0 and this would imply α /∈ E∗(r, l, a, q). However, if l = 1
we will see here below that δ2 = a1−r(δ1ε−1

1 )r �= 0. If l > 1, again by (C1), or by (C2)
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and (C3) if l = 2, we have δ2 �= 0 and ω2 = 1 + a2−rπ2
2 �= 0. Consequently, Proposition 2

can be applied again. This process can be carried on as long as we have an = λnT + μn

and δnωn �= 0. As long as this process carries on, δn and ωn are defined by means of the 
following recursive formulas:

δn = aλr
n − a2−r(ωn−1δn−1)−1 (DLn)

and for ωn, since ωn = 1 + a2−r(νn − μr
n)2δ−2

n , via

νn = a2−r
(
νn−1 − μr

n−1
)
ω−1
n−1δ

−2
n−1 = a2−rπn−1(ωn−1δn−1)−1. (Nn)

At each stage, we have

αr
n = ε1,nPaαf(n) + ε2,nQa + νn, (In)

where ε2,n = δn − aλr
n. While ε1,n is defined recursively by ε1,1 = ε1 and

ε1,n = a1−rε−1
1,n−1ω

(−1)k−1
n−1 . (En)

Moreover, also by Proposition 2, we have am = λmT +μm, for f(n) ≤ m〈f(n +1). Let us 
describe these partial quotients. We recall the notation a(i) = 1 if i is odd and a(i) = a−1

if i is even. Combining Proposition 1 and Proposition 2, the following equalities hold:

λf(n) = ε−1
1,nλ

r
n (Ln,0)

λf(n)+i = 2a(i)
(
δnε

−1
1,n

)(−1)i for 1 ≤ i ≤ k (Ln,i)
and

λf(n)+i = 2a(i)
(
δnε

−1
1,n

)(−1)i
ω(−1)k−i

n for k + 1 ≤ i ≤ r − 1. (Ln,i)

And also

μf(n)+i = 0 for 0 ≤ i ≤ r − 1 and i �= k, k + 1. (Mn,i)

μf(n)+k = (−a)1−kλf(n)+kπn/2. (Mn,k)

μf(n)+k+1 = −μf(n)+kλf(n)+k+1λ
−1
f(n)+k. (Mn,k+1)

From the equalities (Ln,i), by multiplication, we easily get the following equalities for 
1 ≤ i ≤ r − 2

λf(n)+kλf(n)+k+1 = 4a−1ω−1
n (Xn,k)

and for i �= k

λf(n)+iλf(n)+i+1 = 4a−1. (Xn,i)
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Our aim is to show that the quantities δn and ωn can be defined, through the recursive 
formulas (DLn) and (Nn), up to infinity. That is to say that we have δnωn �= 0 at 
each stage. The first hypothesis of the theorem, namely (C1), implies that we can define 
recursively, by the above formulas (DLi) and (Ni), δi and ωi in F∗

q , for i = 1, . . . , l − 1. 
Conditions (C2) and (C3), will turn out to be important to keep the process going on. 
Now, by (C2) and (C3), we observe that we also have δl �= 0 and ωl = 1. Consequently, 
the hypotheses (C1), (C2) and (C3) imply that Proposition 2 can be applied repeatedly 
at least l times. It follows that we have am = λmT + μm, for 1 ≤ m < f(l + 1). In 
order to have all the partial quotients of degree 1, up to infinity, we shall prove that 
δmωm �= 0 for all m ≥ l + 1 = f(1). For m ≥ f(1), we can write m = f(n) + i where 
n ≥ 1 and 0 ≤ i ≤ r − 1. Therefore we want to prove that ωf(n)+iδf(n)+i �= 0 for n ≥ 1
and for 0 ≤ i ≤ r − 1. To prove this, we shall show by induction that, for n ≥ 1 and for 
0 ≤ i ≤ r − 1, the following equalities hold:

δf(n) = a1−r
(
ε−1
1,nδn

)r and (Dn,0)

δf(n)+i = (a/2)λr
f(n)+i for 1 ≤ i ≤ r − 1, (Dn,i)

together with

ωf(n)+k = ωr
n and (On,k)

ωf(n)+i = 1 for 0 ≤ i ≤ r − 1 and i �= k. (On,i)

Note that if δjωj �= 0 for j < m = f(n) + i, and (Dn,i) and (On,i) hold, then we have 
δmωm �= 0.

The proof of the equalities (Dn,i) and (On,i) will follow by induction from (DLn), 
(En), (Nn), (Ln,i), (Mn,i) and (Xn,i).

First, we prove that (D1,0) and (O1,0) hold. Using (C2), (C3), (DL1) and (L1,0), we 
have ωl = 1, δl = −aεr1ε

−r
2 , δ1 = aλr

1 + ε2 and λl+1 = ε−1
1 λr

1. Hence, from (DLl+1), we 
get

δf(1) = δl+1 = aλr
l+1 − a2−r(ωlδl)−1 = aλr2

1 ε−r
1 + a1−rεr2ε

−r
1 = a1−r

(
δ1ε

−1
1

)r
.

Besides, since ωl = 1, we have πl = 0. Consequently, by (Nl+1), we get νl+1 = 0. By 
(M1,0), we have μl+1 = 0. It follows that πl+1 = 0 and ωf(1) = ωl+1 = 1.

Let n ≥ 1 and 0 ≤ i ≤ r − 1. First, we shall prove that for 0 ≤ i ≤ r − 2, (Dn,i) and 
(On,i) imply (Dn,i+1) and (On,i+1). Secondly, we shall prove that (Dn,r−1) and (On,r−1)
imply (Dn+1,0) and (On+1,0). The proof is divided into five cases, each comprising two 
parts.

• Case 1: i = 0. By (Dn,0), we have δf(n) = a−r+1(ε−1
1,nδn)r. Furthermore, by (Ln,1), 

we have λf(n)+1 = 2(δnε−1
1,n)−1. Therefore, with ωf(n) = 1, from (DLf(n)+1), we get:
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δf(n)+1 = aλr
f(n)+1 − a2−r(ωf(n)δf(n))−1

= aλr
f(n)+1 − a2−rar−1(δnε−1

1,n
)−r

= aλr
f(n)+1 − (a/2)λr

f(n)+1 = (a/2)λr
f(n)+1.

Hence (Dn,1) holds.
By (On,0), we have ωf(n) = 1 and, consequently, πf(n) = 0. By (Nf(n)+1), we obtain 

νf(n)+1 = 0. If k > 1, (Mn,1) implies μf(n)+1 = 0. Therefore, νf(n)+1 = μr
f(n)+1 and 

ωf(n)+1 = 1. Thus (On,1) holds. If k = 1 (i.e. r = 3), the second part of Case 3 below 
must be applied.

• Case 2: i �= 0, k−1, k, r−1. By (Dn,i), we have δf(n)+i = (a/2)λr
f(n)+i and, by (On,i), 

ωf(n)+i = 1. Furthermore, by (Xn,i), we have λf(n)+i = 4a−1λ−1
f(n)+i+1. Therefore, from 

(DLf(n)+i+1), we get:

δf(n)+i+1 = aλr
f(n)+i+1 − a2−r(ωf(n)+iδf(n)+i)−1

= aλr
f(n)+i+1 − a2−r

(
2a−1λ−r

f(n)+i

)
= aλr

f(n)+i+1 − 2a1−r
(
ar/4

)
λr
f(n)+i+1 = (a/2)λr

f(n)+i+1.

Hence (Dn,i+1) holds.
By (On,i), we have ωf(n)+i = 1 and consequently πf(n)+i = 0. By (Nf(n)+i+1), we 

obtain νf(n)+i+1 = 0. Since i + 1 �= k, k + 1, (Mn,i+1) implies μf(n)+i+1 = 0. Therefore 
νf(n)+i+1 = μr

f(n)+i+1 and ωf(n)+i+1 = 1. Thus (On,i+1) hold.
• Case 3: i = k−1. If k > 1, by the same arguments as in the first part of the previous 

case, since i �= k, we see that (Dn,i) and (On,i) imply (Dn,i+1). Hence (Dn,k) holds. If 
k = 1 (i.e. r = 3), the first part of Case 1 must be applied.

By (Dn,k), we have δf(n)+k = (a/2)λr
f(n)+k. By (On,k−1), we have ωf(n)+k−1 = 1 and 

πf(n)+k−1 = 0. Hence, from (Nf(n)+k), we obtain νf(n)+k = 0. Therefore, using (Mn,k), 
we get:

ωf(n)+k = 1 + a2−r
(
νf(n)+k − μr

f(n)+k

)2
δ−2
f(n)+k

= 1 + a2−r4a−2(μf(n)+kλ
−1
f(n)+k

)2r
= 1 + 4a−r

(
(−a)1−kπn/2

)2r
= 1 + a2r−r2

π2r
n =

(
1 + a2−rπ2

n

)r = ωr
n.

Hence (On,k) holds.
• Case 4: i = k. By (Dn,k), we have δf(n)+k = (a/2)λr

f(n)+k and, by (On,k), 
ωf(n)+k = ωr

n. Furthermore, by (Xn,k), we have ωnλf(n)+k = 4a−1λ−1
f(n)+k+1. There-

fore, from (DLf(n)+k+1), we get:
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δf(n)+k+1 = aλr
f(n)+k+1 − a2−r(ωf(n)+kδf(n)+k)−1

= aλr
f(n)+k+1 − a2−r

(
2a−1ω−r

n λ−r
f(n)+k

)
= aλr

f(n)+k+1 − 2a1−r
(
ar/4

)
λr
f(n)+k+1 = (a/2)λr

f(n)+k+1.

Hence (Dn,k+1) holds.
By (On,k−1), we have πf(n)+k−1 = 0 and νf(n)+k = 0. By (Xn,k), we have ωnλf(n)+k =

4a−1λ−1
f(n)+k+1. By (Dn,k), we have δf(n)+k = (a/2)λr

f(n)+k. Using (Mn,k+1), from 
(Nf(n)+k+1), we get:

νf(n)+k+1 = a2−r
(
νf(n)+k − μr

f(n)+k

)
ω−1
f(n)+kδ

−2
f(n)+k

= −a2−rμr
f(n)+kω

−r
n

(
(a/2)λr

f(n)+k

)−2

= −4a−rμr
f(n)+k(ωnλf(n)+k)−rλ−r

f(n)+k

= −4a−rμr
f(n)+k

(
4a−1λ−1

f(n)+k+1
)−r

λ−r
f(n)+k

= −
(
μf(n)+kλf(n)+k+1λ

−1
f(n)+k

)r = μr
f(n)+k+1.

Consequently, πf(n)+k+1 = 0 and ωf(n)+k+1 = 1. Hence (On,k+1) holds.
• Case 5: i = r−1. Recall that f(n +1) = f(n) +r. By (Dn,r−1) and (On,r−1), we have 

δf(n+1)−1 = δf(n)+r−1 = (a/2)λr
f(n)+r−1 and ωf(n+1)−1 = ωf(n)+r−1 = 1. By (Ln,r−1), 

we have λf(n)+r−1 = 2a−1δnε
−1
1,nω

(−1)k
n and also, by (Ln+1,0), λf(n+1) = λr

n+1ε
−1
1,n+1. 

By (En+1), we also have ε−1
1,nω

(−1)k
n = ar−1ε1,n+1ωn. Moreover, by (DLn+1), we have 

(ωnδn)−1 = ar−2(aλr
n+1 − δn+1). Therefore, from (DLf(n+1)), we get:

δf(n+1) = aλr
f(n+1) − a2−r(ωf(n+1)−1δf(n+1)−1)−1

= aλr
f(n+1) − a2−r

(
2a−1λ−r

f(n)+r−1
)

= aλr
f(n+1) − 2a1−r

(
2a−1δnε

−1
1,nω

(−1)k
n

)−r

= aλr
f(n+1) − a

(
ar−1ε1,n+1ωnδn

)−r

= aλr2

n+1ε
−r
1,n+1 − a−r2+r+1ε−r

1,n+1
(
ar−2(aλr

n+1 − δn+1
))r

= ε−r
1,n+1

(
aλr2

n+1 − a1−r
(
arλr2

n+1 − δrn+1
))

= a1−r
(
ε−1
1,n+1δn+1

)r
.

Consequently (Dn+1,0) holds.
By (On,r−1), we have πf(n)+r−1 = 0. Thus, from (Nf(n+1)), we get νf(n+1) = 0. By 

(Mn+1,0), we have μf(n+1) = 0. Therefore, πf(n+1) = 0 and ωf(n+1) = 1. Consequently, 
(On+1,0) holds.

Thus we have proved that δmωm �= 0, for m ≥ 1 and this implies that α ∈ E∗(r, l, a, q).
Now we turn to the description of the sequence of partial quotients an = λnT + μn. 

The first l values of both sequences (λn)n≥1 and (μn)n≥1 are given, as well as δi, νi and 
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ωi for 1 ≤ i ≤ l. We recall that, for n ≥ 1, we have g(n) = nr + l − k = f(n) + k. 
According to (On,k), we have ωg(n) = ωr

n. According to (On,i) for i �= k, if m > l and 
m �= g(n), we have ωm = 1. For i ∈ I, we have ωi = 1 if and only if i /∈ I∗. Consequently, 
by iteration, we obtain

ωn = 1 if n /∈ G ∪ I∗ and ωn = ωrm

i if n = gm(i) for m ≥ 1 and i ∈ I∗. (35)

We start by the description of the sequence (μn)n≥l+1. For n ≥ l + 1, if n /∈ G, we have 
ωn = 1 and therefore πn = 0. This implies, according to (Mn,i) for 0 ≤ i ≤ r − 1, that 
μn = 0 if n /∈ G ∪ (G + 1). Let i ∈ I∗ and m ≥ 1, since νn+1 = a2−rπn(ωnδn)−1 and 
πgm(i)−1 = 0, we get νgm(i) = 0, and we have

πgm(i) = −μr
gm(i)δ

−1
gm(i) for m ≥ 1 and i ∈ I∗. (36)

We set n′ = gm−1(i), then gm(i) = f(n′) + k. Applying (Mn′,k) and (Dn′,k), we have

(
μgm(i)λ

−1
gm(i)

)r = (−a)(1−k)rπr
n′/2 and δ−1

gm(i) = 2a−1λ−r
gm(i). (37)

From (36) and (37), we get

πgm(i) = −2a−1(μgm(i)λ
−1
gm(i)

)r = (−a)(1−k)r−1πr
n′ . (38)

We set A = (−a)(1−k)r−1. Then (38) becomes πgm(i) = Aπr
gm−1(i). By iteration, we get

πgm(i) = Aumπrm

i for m ≥ 1 and i ∈ I∗, where um =
(
rm − 1

)
/(r − 1). (39)

Hence, if n = gm(i) for i ∈ I∗ and m ≥ 1, by (Mn′,k) and (39), we have

μnλ
−1
n = (−a)1−kπgm−1(i)/2 = (−a)1−kAum−1πrm−1

i /2

= (−a)vm
((
νi − μr

i

)
δ−1
i

)rm−1

/2, (40)

where vm = (1 − k) + ((1 − k)r − 1)um−1. It is elementary to check that vm =
(rm−1(2 − r) + 1)/2. Recalling that, by (Mn′,k+1), we also have μnλ

−1
n = −μn+1λ

−1
n+1, 

with (40) we have completed the description of the sequence (μn)n≥1.
Finally we turn to the description of the sequence (λn)n≥l+1. We recall that, according 

to (L1,0), we have λl+1 = ε−1
1 λr

1. Hence, this description will follow from computing 
C(n) = λn−1λn for n > l+1. If n = gm(i) +1 for i ∈ I∗ and m ≥ 1, then n −1 = f(n′) +k, 
where n′ = gm−1(i). Consequently, applying (Xn′,k) and (35), we have

λnλn−1 = λf(n′)+k+1λf(n′)+k = 4a−1ω−1
n′ = 4a−1ω−rm−1

i

= 4a−1(1 + a2−r
(
νi − μr

i

)2
δ−2
i

)−rm−1

. (41)
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According to (Ln,0) and (Dn,0), we have λf(n) = ε−1
1,nλ

r
n and δf(n) = a1−r(ε−1

1,nδn)r. 
Hence, we obtain directly

δ−1
f(n)λ

r
f(n) = ar−1(δ−1

n λr
n

)r
. (42)

For i ∈ I and m ≥ 1, from (42), we get δ−1
fm(i)λ

r
fm(i) = ar−1(δ−1

fm−1(i)λ
r
fm−1(i))

r. Conse-
quently, by iteration, we get

δ−1
n λr

n = ar
m−1(δ−1

i λr
i

)rm if n = fm(i) for m ≥ 1 and i ∈ I. (43)

We set n′ = fm−1(i). By (Ln′,0) and (Ln′,1), since λf(n′)+1 = 2(ε−1
1,n′δn′)−1, from (43), 

we obtain

λf(n′)+1λf(n′) = 2δ−1
n′ λ

r
n′ = 2ar

m−1−1(δ−1
i λr

i

)rm−1

. (44)

Hence, by (44), we have

λnλn−1 = 2a−1(aλr
i δ

−1
i

)rm−1

if n = fm(i) + 1 for m ≥ 1 and i ∈ I. (45)

We set n = fm(i) for m ≥ 1 and i ∈ I, with n �= f(1). We have n = f(n′) with n′ > 1. 
Consequently, by (Dn′−1,r−1), we get

δn−1 = δf(n′)−1 = δf(n′−1)+r−1 = (a/2)λf(n′−1)+r−1 = (a/2)λr
n−1. (46)

As n > l + 1, then n − 1 ≥ l + 1 and n − 1 /∈ G. Therefore, by (35), we have ωn−1 = 1. 
Consequently, by (Ln,0) and by (En), since ωn−1 = 1, we have

λr
n = ε1,nλf(n) = a1−rε−1

1,n−1λf(n). (47)

Combining (46) and (47), we obtain

(aλn−1λn)r = ar
(
2a−1δn−1

)
a1−rε−1

1,n−1λf(n) = 2δn−1ε
−1
1,n−1λf(n). (48)

Also, by (Ln−1,r−1), since ωn−1 = 1, we have

λf(n)−1 = λf(n−1)+r−1 = 2a−1δn−1ε
−1
1,n−1. (49)

Combining (48) and (49), we obtain

(aλn−1λn)r = aλf(n)−1λf(n). (50)

Hence, by iteration from (50), we get

aλfm(i)−1λfm(i) = (aλf(i)−1λf(i))r
m−1

for m ≥ 1 and i �= 1 ∈ I (51)



A. Lasjaunias, J.-Y. Yao / Journal of Number Theory 149 (2015) 259–284 281
and also

aλfm(1)−1λfm(1) = (aλf2(1)−1λf2(1))r
m−2

for m ≥ 2. (52)

Now, let n ≥ 2, as above we have

λf(n) = ε−1
1,nλ

r
n and λf(n)−1 = 2a−1δn−1ε

−1
1,n−1ω

(−1)k
n−1 . (53)

By (En), we have

ω
(−1)k
n−1 = ar−1ωn−1ε1,n−1ε1,n. (54)

From (53) and (54), we obtain

λf(n)−1λf(n) = 2ar−2δn−1ωn−1λ
r
n. (55)

Recalling that, by (DLn), we have a2−r(δn−1ωn−1)−1 = aλr
n − δn, we obtain

λf(n)−1λf(n) = 2λr
n

(
aλr

n − δn
)−1 = 2a−1(1 − a−1λ−r

n δn
)−1

. (56)

Combining (51) and (56), we get

λfm(i)−1λfm(i) = 2a−1(1 − a−1λ−r
i δi

)−rm−1

for m ≥ 1 and i �= 1 ∈ I. (57)

Besides, according to (56), we have

aλf2(1)−1λf2(1) = 2
(
1 − a−1λ−r

f(1)δf(1)
)−1

. (58)

From (42), we get

a−1λ−r
f(1)δf(1) =

(
a−1λ−r

1 δ1
)r
. (59)

Hence, by (58) and (59), we have

aλf2(1)−1λf2(1) = 2
(
1 − a−1λ−r

1 δ1
)−r

. (60)

Combining (52) and (60), we get

λfm(1)−1λfm(1) = 2a−1(1 − a−1λ−r
1 δ1

)−rm−1

for m ≥ 2. (61)

In summary, according to (41), (45), (57) and (61), we have obtained the values stated 
in the theorem for C(n) if n ∈ F ∪ (F + 1) ∪ (G + 1). Let us turn to the last case 
n /∈ F ∪ (F + 1) ∪ (G + 1). We have n > l + 1, consequently there exist n1 ≥ 1 and 
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i = 0, . . . , r − 1 such that n − 1 = f(n1) + i and n − 1 /∈ (F − 1) ∪ F ∪G. There will be 
four cases according to the value of i.

• Case 1: i �= 0, k, r − 1. According to (Xn1,i), we have

λn−1λn = λf(n1)+iλf(n1)+i+1 = 4a−1. (62)

• Case 2: i = k. Here we have n −1 = g(n1) and, since n −1 /∈ G, we have n1 /∈ G ∪I∗. 
Therefore, by (35), we have ωn1 = 1. Consequently, according to (Xn1,k), we have

λn−1λn = λf(n1)+kλf(n1)+k+1 = 4a−1ω−1
n1

= 4a−1. (63)

For the last two cases, i = 0 or i = r − 1, we need the following. If n /∈ F ∪ I then there 
are three integers m ≥ 0, n2 ≥ 1 and j = 1, . . . , r − 1 such that n = fm(f(n2) + j). Set 
n3 = f(n2) + j. By (42) and by iteration, since n = fm(n3), we can write

δ−1
n λr

n = ar
m−1(δ−1

n3
λr
n3

)rm
. (64)

By (Dn2,j), with j �= 0, we get δ−1
n3

λr
n3

= 2a−1. Consequently, by (64), the previous 
argument implies:

n /∈ F ∪ I ⇒ δ−1
n λr

n = 2a−1. (65)

• Case 3: i = 0. Here we have n − 1 = f(n1). Hence, according to (44), we have

λn−1λn = λf(n1)λf(n1)+1 = 2δ−1
n1

λr
n1
. (66)

Since n − 1 /∈ F and n − 1 = f(n1), we have n1 /∈ F ∪ I. Therefore, by (65), we have 
δ−1
n1

λr
n1

= 2a−1. Consequently, (66) becomes λn−1λn = 4a−1.
• Case 4: i = r − 1. Here we have n = f(n1) + r = f(n1 + 1). According to (56), we 

have

λn−1λn = λf(n1+1)−1λf(n1+1) = 2a−1(1 − a−1λ−r
n1+1δn1+1

)−1
. (67)

Since n /∈ F and n = f(n1 + 1), we have n1 + 1 /∈ F ∪ I. Therefore, by (65) we have 
λ−r
n1+1δn1+1 = a/2. Hence, from (67), we get

λn−1λn = 2a−1(1 − a−1λ−r
n1+1δn1+1

)−1 = 2a−1(1 − a−1a/2
)−1 = 4a−1. (68)

In summary, according to (62), (63), (66) and (68), if n /∈ F ∪ (F +1) ∪ (G +1), we have 
obtained C(n) = 4a−1. Hence the description of the sequence (λn)n≥1 is over.

So the proof of the theorem is complete. �
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5. Last comments

We want to come back to the statement of the theorem presented in this note. Starting 
from α ∈ E(r, l, a, q), we have proved that the three conditions (C1), (C2) and (C3) are 
sufficient to have α ∈ E∗(r, l, a, q). However, condition (C1) is particular and clearly 
necessary. Indeed, by repeated application of Proposition 2, it allows to have the first 
(up to the rank l+r(l−1)) partial quotients of degree 1. While conditions (C2) and (C3)
are useful to keep this repetition of Proposition 2 up to infinity and to obtain a sequence 
of partial quotients having a relatively simple pattern. Then it is natural to ask whether 
conditions (C2) and (C3) are also necessary to have α ∈ E∗(r, l, a, q). We know that 
the subset E(r, l, a, q) is finite, consequently all the elements can be tested by computer. 
We have done so for r = q = p and for small values of p and l. We have observed 
that, for α ∈ E(p, l, a, p), if (C1), (C2) or (C3) is not satisfied then α /∈ E∗(p, l, a, p). 
Consequently we conjecture that this set of conditions is not only sufficient but also 
necessary when the finite base field is prime. However, this is not generally so if the 
base field is not prime. Indeed, it was a surprise to discover in E0(r, l, a, q), with q > p, 
certain continued fractions belonging to E∗

0 (r, l, a, q) but for which the condition (C2) of 
the theorem stated here is not satisfied. This phenomenon has been explained in [8] and 
an example in E∗

0 (3, 1, 2, 27) has been given there [8, p. 258]. Note that for this type of 
examples the sequence of partial quotients has a much more complex pattern than the 
ones presented in this note.

With the conditions of our theorem, let us give a short and global description of 
the structure of this sequence of partial quotients. We can write this infinite continued 
fraction expansion α = [a1, a2, . . . , an, . . .] in the following way:

α = [W∞] = [W0,W1, . . . ,Wm, . . .],

where, for m ≥ 0, we define the finite word

Wm = afm(1), afm(1)+1, . . . , afm+1(1)−1.

Note that we have W0 = a1, . . . , al, which plays the role of the “basis” of the expansion. 
We also have W1 = al+1, . . . , alr+l and so on. We can check that |Wm| = lrm for m ≥ 0. 
Define, for n ≥ 1, the following word of length r:

W f (an) = af(n), af(n)+1, . . . , af(n)+r−1.

Then with this notation, we see that Wm+1 is built upon Wm, by concatenation, in the 
following way

Wm+1 = W f (afm(1)),W f (afm(1)+1), . . . ,W f (afm+1(1)−1).
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We see that the pattern of these sequences is somehow very regular. Let us come back to 
the original examples, due to Mills and Robbins [12, p. 400]. They belong to E∗

0 (p, 2, 4, p)
for all p > 3 and they are defined by (λ1, λ2, ε1, ε2) = (λ1, −λ1(1 +2λ1)−1, 1, 2), with λ1 ∈
F∗
p and λ1 �= −1/2. Here, we have G = ∅, ωn = 1 and μn = 0 for n ≥ 1. The conditions 

of the theorem are satisfied and the description of the sequence (λn)n≥1 follows. In 
1988, shortly after the publication of these examples, J.-P. Allouche [1] could show the 
regularity of this sequence (λn)n≥1, by proving that it is p-automatic. It should probably 
be possible to extend this type of result to all the sequences presented in this note.
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