
Borodin
Штамп



Moscow Journal
of Combinatorics
and Number Theory
2016, vol. 6, iss. 2–3,
pp. 14–37, [pp. 130–153]

On a quartic equation and two families
of hyperquadratic continued fractions
in power series fields
Khalil Ayadi (Sfax), Alain Lasjaunias (Bordeaux)

Dedicated to David P. Robbins (1942–2003)

Abstract: Casually introduced thirty years ago, a simple algebraic equation of degree 4 , with
coefficients in Fp[T ] , has a solution in the field of power series in 1/T , over the finite field Fp .
For each prime p > 3 , the continued fraction expansion of this solution is remarkable and it has
a different general pattern according to the remainder, 1 or 2 , in the division of p by 3 . We
describe two very large families of algebraic continued fractions, each containing these solutions,
according to the class of p modulo 3 . We compute the irrationality measure for these algebraic
continued fractions and, as a consequence, we obtain two different values for the solution of the
quartic equation, only depending on the class of p modulo 3 .

Keywords: Continued fractions, Finite fields, Fields of power series

AMS Subject Classification: 11J70, 11T55

Received: 11.12.2014; revised: 20.05.2016

1. Introduction

Throughout this note p is an odd prime number and Fp is the finite field with p

elements. We consider an indeterminate T and Fp((T�1 )) , here simply denoted
by F(p) , the field of power series in 1/T over the finite field Fp . A non-zero element
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of F(p) is

α =
X
i�i0

uiT
i where i 2 Z, ui 2 Fp and ui0 6= 0.

An ultrametric absolute value is defined over this field by j α j=j T ji0 where
j T j is a fixed real number greater than 1. We will also consider the subset
F(p)+ = fα 2 F(p) s.t. j α j> 1g. Note that F(p) is the completion of the
field Fp(T) for this absolute value. The fields F(p) are analogues of the field
of real numbers, consequently many questions in number theory in the context
of real numbers, such as Diophantine approximation and continued fractions, can
be transposed in the frame of formal power series which is considered here. We
are concerned with continued fractions for elements of this field F(p) which are
algebraic over the field Fp(T) .

The starting point of our work is a particular quartic equation, with coefficients
in Fp[T ] , where p is an arbitrary prime greater than 3. This algebraic equation is
the following:

(9/32)X4 � TX3 +X2 � 8/27 = 0. (E)

The origin of this equation is due to Mills and Robbins [13]. Mills and Robbins
actually considered another equation: (E1 ) X4 + X2 � TX + 1 = 0 . The very
simple form of this last equation explains why it was considered by chance, while
searching for promising algebraic continued fraction expansions. Using a computer,
Mills and Robbins observed that (E1 ) has a root in F(13) presenting a remarkable
continued fraction expansion. This continued fraction expansion could only be
partially conjectured in [13] and only later, in a complicated form, fully conjectured
in [3]. Finally, the conjecture concerning the continued fraction of the solution
of (E1 ) in F(13) was proved in [6]. In [8], it has been remarked that Mills and
Robbins equation (E1 ) could be considered for each characteristic p > 3 , by reading
X4 +X2 � TX� 1/12 = 0 . After an adequate transformation, this led to the above
equation (E) (possibly, see [8, p. 30]).

For each prime p > 3 , (E) has a unique root in F(p)+ , denoted by α(p) . This
root can be expanded as an infinite continued fraction. The continued fraction for
α(p) varies according to the value of p but, for all p, it appears to have a singu-
lar pattern. Moreover, observations by computer show that there are two different
general patterns, according to the case considered: p � 1 mod 3 or p � 2 mod 3 .
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The first case, p � 1 mod 3 (and particularly p = 13 ), has been extensively stud-
ied by the second author and this study has generated different works in the area
of continued fractions in power series fields [5–8]. To show the differences and
the similarities between both cases, we will recall several results already known for
the first case. It will appear that the continued fraction expansion for the solution
of (E) belongs to two large families of expansion, according to the remainder of p
modulo 3 . Hence, the great interest of our equation will be to give us the opportunity
to introduce and to describe these families.

In order to illustrate our subject and to provoke the curiosity of the reader, we
show, at the end of this introduction, what could be seen on a computer screen when
considering the first few hundred of partial quotients of the solution α(p) of (E) ,
for the first two values of p. Note that the partial quotients, which are quickly very
large, are only represented there by their degree in the indeterminate T. See Figure 1
and Figure 2.

If the solution of (E) has a peculiar continued fraction expansion, for each
p > 3 , this is due to the fact that this element is hyperquadratic. Let t � 0 be
an integer and r = pt , an irrational element of F(p) will be called hyperquadratic
of order t if it satisfies a non-trivial algebraic equation of the following form

uXr+1 + vXr + wX+ z = 0 where (u, v, w, z) 2 (Fp[T ])4 .

Note that a hyperquadratic element of order 0 is simply irrational quadratic. We
shall see that the solution of (E) is hyperquadratic of order 1 if p � 1 mod 3
and hyperquadratic of order 2 if p � 2 mod 3 . The reader may consult the in-
troduction of [2] for more precisions and references on hyperquadratic elements.
Hyperquadratic power series in F(p) have long been considered by mathematicians
studying Diophantine approximation in function fields of positive characteristic,
such as Mahler [10], Osgood [12], Voloch [15] and de Mathan [11]. Simultaneously,
other mathematicians, such as Baum and Sweet [1] or Mills and Robbins [13], have
observed that the continued fraction expansion of certain hyperquadratic elements
could be explicitly given. For a survey on the different contributions of these mathe-
maticians in this area, the reader is refered to [4]. For a good account on continued
fractions and Diophantine approximation in power series fields, as well as more
references, see Schmidt’s article [14].

We shall now describe briefly the continued fraction for the solution of (E) in F(p)+ .
This root is expanded as an infinite continued fraction α(p) = [a1 , a2 , . . . , an, . . .] ,
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where the partial quotients ai are non-constant polynomials in Fp[T ] . From the
equation, one can obtain the beginning of the power series expansion and we have
α(p) = (32/9)T � 1/T + . . ., which implies that a1 = (32/9)T. To describe the
sequence (an)n�1 , in both cases, we need to introduce a particular polynomial in
Fp[T ] and two sequences of polynomials related to it.

Throughout this note p is a prime with p � 3 (except when we consid-
er (E) , where p > 3 ) and k an integer with 1 � k < p/2 . Then we define

Fig. 1. Sequence of the degrees of p. q. for the solution α(5) of (E) (450 p. q.)

Fig. 2. Sequence of the degrees of p. q. for the solution α(7) of (E) (430 p. q.)
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Pk(T) = (T 2 � 1)k 2 Fp[T ] . From Pk , we introduce in Fp[T ] two sequences
of polynomials (An)n�0 and (Bn)n�0 as follows. The first one is defined by

A0 = T and recursively An+1 = [Apn/Pk] for n � 0.

Here the brackets denote the integral (i. e. polynomial) part of the rational function.
While the second one is defined by

B0 = A0 = T and B1 = A1 = [T p/Pk]

and recursively

Bn+1 = BpnP
(�1)n+1

k for n � 1.

We are particularly interested in the degrees of these polynomials. We set un =

= deg(An) and vn = deg(Bn) . From the recursive definition of these polynomials,
we get u0 = v0 = 1 and also

un+1 = pun � 2k and vn+1 = pvn + 2k(�1)n+1 for n � 0.

Note that the sequence (un)n�0 is constant if 2k = p�1 , then we have An = A0 = T

for n � 0 . Otherwise, both sequences (un)n�0 and (vn)n�0 are strictly increasing.
Note that, for p = 5 and k = 2 , we get: (vn)n�0 = 1, 1, 9, 41, 209, 1041, . . .
Whereas, for p = 7 and k = 2 , we obtain (un)n�0 = 1, 3, 17, 115, 801, . . .
(See below and also Figure 1 and Figure 2.)

In the first case, p � 1 mod 3 , we set k = (p � 1)/3 and we consider the
sequence (An)n�1 , introduced above. In [8], it has been proved (with a bound on
the prime number p) that there exists a sequence (λn)n�1 in F�p and a sequence
(i(n))n�1 in N, such that

an = λnAi(n) for n � 1. (I)

Both sequences (λn)n�1 and (i(n))n�1 have been given explicitly (see [7]).
In the second case, p � 2 mod 3 , we set k = (p + 1)/3 and we consider the

sequence (Bn)n�1 introduced above. Our observation, based on computer calcula-
tions giving a finite number of partial quotients, implies the following conjecture:
there exists a sequence (λn)n�1 in F�p and a sequence (i(n))n�1 in N, such that

an = λnBi(n) for n � 1. (II)
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In the first case, the formulas giving the sequence (λn)n�1 are quite sophis-
ticated, as can be seen for instance for p = 13 in [3, 6]. Moreover, our proof
and, consequently, the method to obtain this sequence are complicated (see [5, 7]).
For these reasons, in the second case, we have not tried to describe the sequence
(λn)n�1 , even conjecturally. However, in this second case, we obtain the description
of the sequence (i(n))n�1 as a consequence of a conjecture about more general
continued fractions. The tools used to obtain a proof, in the first case, might well
be applied in the second case, but we are aware that a different approach would be
desirable. This note is complementary to [8], and hopefully it may shed new light
on this mysterious quartic equation.

We sketch here the organization of this work. To obtain the proof in the first
case, it has been necessary to consider hyperquadratic continued fractions more
general than the one of the root of (E) . It happens that the same argument is
true for the second case. In the next section we shall introduce these families,
which we will call Pk-expansions of first kind and of second kind. In section 3,
we will define and describe partially some Pk-expansions, which we call perfect.
In section 4, we show that the solution of (E) is a perfect Pk-expansion of first
kind if p � 1 mod 3 and of second kind if p � 2 mod 3 . In the last section, we
give a measure of the growth of the degrees of the partial quotients (the irrationality
measure of the continued fraction) for the perfect Pk-expansions in both cases. We
apply it to the solution of (E) and we get the irrationality measure for α(p) , equal
to 8/3 in the first case and equal to 4 in the second one.

2. Pk-expansions

Concerning continued fractions in this area, we use classical notation, as they can be
found for instance in the second section of [9]. Throughout the paper we are dealing
with finite sequences (or words), consequently we recall the following notation on
sequences in Fp[T ] . Let W = w1 , w2 , . . . , wn be such a finite sequence, then we
set jW j = n for the length of the word W. If we have two words W1 and W2 , then
W1 , W2 denotes the word obtained by concatenation. Moreover, if y 2 F�p , then we
define y �W as the following sequence

y �W = yw1 , y�1w2 , . . . , y(�1)n�1

wn.

As usual, we denote by [W] 2 Fp(T) the finite continued fraction w1+1/(w2+1/(. . .)) .
In this formula the wi , called the partial quotients, are non-constant polynomials.
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Still, we will also use the same notation if the wi are constant and the resulting quanti-
ty is in Fp . However in this last case, by writing [w1 , w2 , . . . , wn] we assume that this
quantity is well defined in Fp , i. e. wn 6= 0, [wn�1 , wn] 6= 0, . . . , [w2 , . . . , wn] 6= 0 .
We use the notation hWi for the continuant built from W. We denote by W 0 (resp.
W 00) the word obtained from W by removing the first (resp. last) letter of W. Hence,
we recall that we have [W] = hWi/hW 0i. We let W� = wn, wn�1 , . . . , w1 , be the
word W written in reverse order. We also have [W�] = hWi/hW 00i. It is also known
that [y �W] = y[W] .

If α 2 F(p) is an infinite continued fraction, α = [a1 , a2 , . . . , an, . . .] ,
we set xn = ha1 , a2 , . . . , ani and yn = ha2 , . . . , ani. In this way, we have
xn/yn = [a1 , a2 , . . . , an] , with x1 = a1 , y1 = 1 and by convention x0 = 1 ,
y0 = 0 . Recall that, if αn+1 = [an+1 , an+2 , . . .] is the tail of the expansion, we have
α = (xnαn+1 + xn�1 )/(ynαn+1 + yn�1 ) , for n � 1 .

As above p is an odd prime and k an integer with 1 � k < p/2 . Linked to the
previous polynomial mentioned above: Pk(T) = (T 2 � 1)k , we introduce a second
polynomial Qk in Fp[T ] . We define

ωk = (�1)k2k
Y

1�i�k
(1 � 1/2i) 2 F�p and Qk = ω�1

k (A1Pk � T p).

This pair (Pk, Qk) of polynomials was introduced in [5]. Note that Qk is simply,
up to a constant factor, the remainder in the Euclidean division of T p by Pk . This
second polynomial can also be defined by (see [5, p. 341])

Qk(T) =

TZ
0

(x2 � 1)k�1 dx =
X

0�i�k�1

(�1)k�1�i
 
k� 1
i

!
(2i+ 1)�1T 2i+1 .

Note that we also have Qk(1) = �ω�1
k . We recall the following stated and proved

in [5, p. 332].

Proposition 0. Let l � 1 be an integer and (a1 , a2 , . . . , al) 2 (Fp[T ])l , with
deg(ai) > 0 for 1 � i � l. Let r = pt with t > 0 and (P , Q) 2 (Fp[T ])2

with deg(Q) < deg(P) < r. Then there exists a unique infinite continued fraction
α = [a1 , a2 , . . . , al, αl+1 ] 2 F(p)+ satisfying

αr = Pαl+1 +Q. (�)
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This element α is the unique root in F(p)+ of the following algebraic equation:

ylX
r+1 � xlXr + (Pyl�1 �Qyl)X � Pxl�1 +Qxl = 0. (��)

As above, let α be defined by the l-tuple, (a1 , a2 , . . . , al) , and the equality (�) .
Then we set the following definitions.

� α is a Pk-expansion of first kind if r = p and there exists (ε1 , ε2 ) 2 (F�p)2

such that (P , Q) = (ε1Pk, ε2Qk) .
� α is a Pk-expansion of second kind if r = p2 and there exists (ε1 , ε2 ) 2 (F�p)2

such that (P , Q) = (ε1P
p�1
k , ε2Q

p
k) .

The importance of the pair (Pk, Qk) appears in the following proposition
(see [5, p. 341], and note that ωk was defined differently there than it is here).

Proposition 1. Let W1 be the finite word such that Pk/Qk = [W1 ] . Then we have

W1 = v1T , . . . , viT , . . . , v2kT ,

where the numbers vi 2 F�p are defined by v1 = 2k � 1 and recursively, for
1 � i � 2k� 1 , by

vi+1vi = (2k� 2i� 1)(2k� 2i+ 1)(i(2k� i))�1 .

Furthermore we have W1 = �ω2
k �W�

1 .

From this proposition, using a technical lemma stated below, the sequence
of partial quotients for certain Pk-expansion of first kind could be given explicitly,
as we will see in the next section. This lemma is the following (see the origin
in [5, p. 336 and p. 343] or [9, Section 2]).

Lemma 1. Let A 2 Fp[T ] , δ 2 F�p and X 2 F(p) . Then we have

A+ δQkP
�1
k +X = [A, δ�1 �W1 , X0],

where

X0 = X�1P�2
k + ω2

kδ
�1QkP

�1
k .

We shall use this lemma to establish the continued fraction for the rational
P
p�1
k /Qp

k . This continued fraction will be fundamental to study Pk-expansions
of second kind. We have the following proposition.
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Proposition 2. Let W2 be the finite word such that Pp�1
k /Qp

k = [W2 ] . Then W2 is
obtained from W1 in the following way:

W2 = v1A1 , w1 �W1 , v2A1 , w2 �W1 , . . . , v2k�1A1 , w2k�1 �W1 , v2kA1 ,

where the numbers wi 2 F�p are defined by

w�1
i = �ωk[vi, vi�1 , . . . , v1 ] for 1 � i � 2k� 1.

Proof. We have Pk/Qk = [v1T , . . . , v2kT ] . Since Pk(1) = 0 and Qk(1) 6= 0 , we
obtain [v1 , . . . , v2k] = 0 and [vi, . . . , v1 ] 2 F�p for 1 � i � 2k�1 . We set α = [W1 ]
and β = [W2 ] . Since αp = [v1T

p, αp2 ] , we have

β = (Pk/Qk)pP�1
k = αpP�1

k = [v1T
p, αp2 ]P�1

k = [v1T
pP�1

k , Pkα
p
2 ].

Since we have T p = A1Pk � ωkQk , the last equality becomes

β = v1A1 � ωkv1QkP
�1
k + P�1

k α
�p
2 .

Applying Lemma 1, with δ = �ωkv1 = w�1
1 and X = P�1

k α
�p
2 , we obtain

β = [v1A1 , w1 �W1 , X0],

where

X0 = P�1
k α

p
2 + ω2

kw1QkP
�1
k .

Since jα2j = jT j, we have jX0j > 1 . Consequently, we get

b1 , . . . , b2k+1 = v1A1 , w1 �W1 and X0 = β2k+2 .

Hence, with α
p
2 = [v2T

p, αp3 ] , this implies

β2k+2 = [v2T
pP�1

k , Pkα
p
3 ] + ω2

kw1QkP
�1
k .

Again, using T p = A1Pk � ωkQk and applying the same lemma, with δ = �ωkv2 +

+ ω2
kw1 = w�1

2 and X = P�1
k α

�p
3 , we get

β2k+2 = [v2A1 , w2 �W1 , X0],
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where

X0 = P�1
k α

p
3 + ω2

kw2QkP
�1
k .

As above, we get the desired partial quotients, from the rank 2k + 2 to the rank
4k+ 2 , and also X0 = β4k+3 . The process carries on until we get

β4k2�2k�1 = [v2k�1A1 , w2k�1 �W1 , X0],

where

β4k2 = X0 = P�1
k α

p
2k + ω2

kw2k�1QkP
�1
k = v2kT

pP�1
k + ω2

kw2k�1QkP
�1
k .

Again, using T p = A1Pk � ωkQk , this becomes

β4k2 = v2kA1 + ωkQkP
�1
k (ωkw2k�1 � v2k).

But we have

ωkw2k�1 � v2k = �[v2k�1 , . . . , v1 ]�1 � v2k = �[v2k, v2k�1 , . . . , v1 ] = 0.

Hence β4k2 = v2kA1 and the proof of the proposition is complete.
We make a last remark on the continued fraction for Pp�1

k /Qp
k . As for W1 ,

it can be seen that we also have W2 = �ω2
k � W�

2 . It follows from this equality
that the very same lemma as Lemma 1, holds in the second case when the pair
(Pk, Qk) is replaced by the pair (Pp�1

k , Qp
k) and W1 is replaced by W2 . In this way,

Pk-expansions of second kind could possibly be studied following the same path as
in the first case [5, 7]. However, as explained in the introduction, in the present
work, we will leave this way aside. Instead, by intensive use of computer calculations,
we have obtained a conjecture on Pk-expansions of second kind which is presented
in the next section. �

3. Perfect Pk-expansions

If p and k are fixed, we recall that a Pk-expansion is defined by the (l+ 2) -tuple
(a1 , a2 , . . . , al, ε1 , ε2 ) 2 (Fp[T ])l � (F�p)2 . Once such a (l+ 2) -tuple is fixed, from
the algebraic equation (��) , a computer can give the first partial quotients of the
expansion, then it appears that some expansions are more ”regular” than others. To
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be more precise, we use the following terminology. If P 2 Fp[T ] , we say that P is
of type A (resp. of type B) if there exist λ 2 F�p and n 2 N such that P = λAn (resp.
P = λBn), where the polynomials An (or Bn) belong to the sequences defined in
the introduction. Then we say that a Pk-expansion of first kind (resp. of second
kind) is perfect if every partial quotient is of type A (resp. of type B). It appears
that a particular condition on the (l+ 2) -tuple (a1 , a2 , . . . , al, ε1 , ε2 ) can be given,
in order to have a perfect Pk-expansion and a description of the corresponding
sequence of partial quotients is possible. This is what is discussed in this section,
distinguishing each of both cases.

We will use the following notation. For n � 0 , if we have the word w, w, . . . , w
of length n, then we denote it shorly by w[n] with w[0] = ∅. In the same way W [n]

denotes the word W , W , . . . , W where the finite word W is repeated n times and
W [0] = ∅. If we have a finite sequence W = w1 , w2 , . . . , wn of polynomials of type
A (or of type B), we can associate it to a finite sequence I = i1 , i2 , . . . , in of positive
integers, such that wm = λmAim (or wm = λmBim ), with λm 2 F�p for 1 � m � n.
Let I1 (resp. I2 ) denote the sequence of integers attached to the word W1 (resp.
W2 ) introduced in the previous section. Then, with this notation, we have

I1 = 0[2k] and I2 = 1, (0[2k] , 1)[2k�1] .

Our aim is to describe the infinite sequence of integers associated to the infinite
sequence of partial quotients for a perfect Pk-expansion. In each case, the se-
quences I1 or I2 are the stones from which this sequence is built.

A) Perfect Pk -expansions of first kind

Let us consider a Pk-expansion of first kind. We have the following statement.

Theorem A. Let p be an odd prime and (k, l) as above. Let α 2 F(p) be a Pk-ex-
pansion of first kind, depending as above on the (l+ 2) -tuple (a1 , a2 , . . . , al, ε1 , ε2 ) 2
2 (Fp[T ])l� (F�p)2 . We assume that this (l+ 2) -tuple satisfies the following hypothesis
H(1) : We have (a1 , . . . , al) = (λ1T , . . . , λlT) , where λi 2 F�p for 1 � i � l, together
with the following condition

[λl, λl�1 , . . . , λ1 + ω�1
k ε2 ] = 2kε1 /ε2 .
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Then there exists a sequence (λn)n�1 in F�p and a sequence (i(n))n�1 in N, such that

an = λnAi(n) for n � 1. (1)

Moreover, the sequence (i(n))n�1 , with the above notation, is described as follows. Let
(Vn)n�0 be the sequence of finite words of integers defined recursively by

V0 = 0 and Vn = n, V [2k]
0 , V [2k]

1 , . . . , V [2k]
n�1 , for n � 1. (2)

Then the sequence (i(n))n�1 in N is given by the infinite word:

V
[l]

0 , V [l]
1 , V [l]

2 , . . . , V [l]
n , . . . (3)

Note, as indicated above, that the existence of the square bracket in H(1) implies
a restricted choice of the (l+ 2) -tuple. Indeed one can check that there are exactly
(p� 1)(p� 2)l such (l+ 2) -tuples in (F�p)l+2 . The results stated in Theorem A have
been proved in previous works (see [5, 7, 8]). Here, we have choosen the first l
partial quotients proportional to A0 , but it was remarked in [8] that a more general
situation could have been considered. Moreover, the extremal case k = (p � 1)/2
is interesting, since then Ai = A0 . It conduces to perfect expansions having all
partial quotients proportional to T. In a joint work with J.-Y. Yao [9], the second
author, following a similar method, could obtain Pk-expansions of first kind having
all partial quotients of degree 1, starting from l partial quotients of degree 1, not
necessarily proportional to T. In a more general setting, particularly if the base field
is not prime, the hypothesis H(1) is only a sufficient condition to have (1) . In this
larger context [7, p. 256], both sequences (λn)n�1 and (i(n))n�1 have been described.
However, we do not give here indications on the sequence (λn)n�1 which is obtained
by sophisticated recursive formulas from the initial l-tuple (λ1 , λ2 , . . . , λl) and the
pair (ε1 , ε2 ) .

B) Perfect Pk -expansions of second kind

Let us consider a Pk-expansion of second kind. We shall present here a conjec-
ture in order to have all the partial quotients of type B. First, we make a comment on
the origin of this conjecture. We started from the solution of (E) for p = 5, 11 or 17
and we obtained with a computer several thousands of partial quotients. This was not
enough to guess the general pattern of this sequence of partial quotients. Inspired
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by the first case, we expected these particular expansions to belong to a much larger
family. For small values of p, we knew that these expansions were generated in
the way described above, i. e. were Pk-expansions of second kind (see [8, p. 33]).
By observing the first l partial quotients and the pair (ε1 , ε2 ) in these three cases, we
could guess the right form of the (l+ 2) -tuple (a1 , . . . , al, ε1 , ε2 ) in order to have
a perfect expansion. It was only then, by considering a general (l + 2) -tuple and
letting the parameters p, k and l vary, that we could find the hypothesis H(2) and
the description of the pattern for these continued fractions, given in the following
conjecture.

Conjecture B. Let p be an odd prime and (k, l) as above. Let α 2 F(p)
be a Pk-expansion of second kind, depending as above on the (l + 2) -tuple
(a1 , a2 , . . . , al, ε1 , ε2 ) 2 (Fp[T ])l� (F�p)2 . We assume that this (l+ 2) -tuple satisfies
the following hypothesis H(2) : Let m � 1 and m integers n1 , n2 . . . , nm be such
that

1 < n1 < n2 < . . . < nm with ni+1 � ni � 3 for 1 � i < m.

We set l = nm and we consider a l-tuple (λ1 , λ2 , . . . , λl) 2 (F�p)l such that

[λ1 , . . . , λn1�1 ] 6= 0 and [λni+1 , . . . , λni+1�1 ] = 0 for 1 � i < m.

Then we assume that, for 1 � n � l and i = 1 . . . m, we have

n 6= ni ) an = λnB0 and n = ni ) an = λnB1

and also

ε2 = �ωk[λ1 , . . . , λn1�1 ].

(Observe that the m-tuple (λn1 , λn2 . . . , λnm ) 2 (F�p)m as well as ε1 2 F�p are chosen
arbitrarily, while the existence of the square brackets in Fp implies restrictions on
the choice of the remaining λi .)
Then there exists a sequence (λn)n�1 in F�p and a sequence (i(n))n�1 in N, such
that

an = λnBi(n) for n � 1. (4)

Moreover, the sequence (i(n))n�1 is described as follows. We define

l1 = n1 � 1 and li+1 = ni+1 � ni � 1 for 1 � i < m.
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Let V0 be the sequence of integers attached to the first l partial quotients. According
to the description made above, we can write

V0 = 0[l1 ] , 1, 0[l2 ] , 1, . . . , 1, 0[lm] , 1. (5)

We introduce the following sequence (Jn)n�1 of words, defined recursively by J1 =

= 0[2k] , 1 and

Jn+1 = (2n, 2n� 1, J[2k�1]
n )[2k�1] , 2n, 2n+ 1 for n � 1. (6)

Next, for 1 � i � m and n � 1 , we define

Vn,i = (2n, 2n� 1, J[2k�1]
n )[li�1] , 2n, 2n+ 1. (7)

Then the sequence (i(n))n�1 in N is given by the infinite word:

V0 , V1 , V2 , . . . , Vn, . . . where Vn = Vn,1 , Vn,2 , . . . , Vn,m for n � 1. (8)

Theorem A and Conjecture B, on perfect Pk-expansions, give each partial quo-
tient up to a multiplicative constant in F�p . Note that this gives the degree of each
partial quotient. The growth of this sequence of degrees plays an important role
in Diophantine approximation. We will see in the last section that Conjecture B
is conforted by considerations of Diophantine approximation. Finally, let us repeat
that we have not tried to describe, even conjecturally, the sequence of constants
in (4), which depends on the (l+ 1) -tuple (λ1 , . . . , λl, ε1 ) .
In the sequel a perfect Pk-expansion is supposed to satisfy H(1) (first kind, The-
orem A) or H(2) (second kind, Conjecture B). In the following section, we will
show that the solution α(p) of (E) belongs to one of these families, according to
the remainder of p modulo 3.

4. Link between Pk-expansions and the solution of (E)

In this section p > 3 is a prime. For i = 1 or i = 2 , we define

k = (p+ (�1)i)/3 if p � i mod 3.

Note that we have k < p/2 and k is even. Hence we set k = 2j. We consider
the finite words W1 and W2 defined in Section 2. We have jW1j = 2k and also
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jW2j = 2k+ (2k� 1)jW1j = 4k2 . Hence, we can write

W1 = v1T , v2T , . . . , v2kT and W2 = b1 , b2 , . . . , b4k2 .

We introduce the following words:

cW1 = vj+1T , vj+2T , . . . , v2kT with cW2 = bk2+1 , bk2+2 , . . . , b4k2 .

We define ε(p) 2 F�p as follows:

ε(p) = 32/(9vj+1 ) if p � 1 mod 3 (9)

and

ε(p) = 32/(9w(�1)j

j v3j+1 ) if p � 2 mod 3. (10)

Then we define Λ(p) 2 (Fp[T ])l in the following way:

Λ(p) = ε(p) �cW1 if p � 1 mod 3 (11)

and

Λ(p) = ε(p) �cW2 if p � 2 mod 3. (12)

Hence l = jΛ(p)j and we have l = 3j = (p � 1)/2 , if p � 1 mod 3 , and
l = 3k2 = (p+ 1)2 /3 , if p � 2 mod 3 . We define ε2 (p) 2 F�p as follows:

ε2 (p) = �ε(p)ωk[vj+1 , vj+2 , . . . , v2k�1 , 3v2k/5] if p � 1 mod 3 (13)

and

ε2 (p) = �ε(p)ωkw
(�1)j

j [v3j+1 , v3j+2 , . . . , v2k] if p � 2 mod 3. (14)

Finally, we define ε1 (p) 2 F�p , for p � 1 or 2 mod 3 , as follows:

ε1 (p) = �ε2 (p)ω�2
k ε(p)(�1)l+1

. (15)

We have the following theorem.
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Theorem C. Let p > 3 be a prime number. Let α(p) be the root of (E) in F(p) .
If p � 1 mod 3 (resp. p � 2 mod 3 ) then k = (p � 1)/3 (resp. k = (p + 1)/3 ).
Let β(p) 2 F(p) be the Pk-expansion, of first kind if p � 1 mod 3 and of second
kind if p � 2 mod 3 , defined by the (l + 2) -tuple (Λ(p), ε1 (p), ε2 (p)) described
above. If p � 1 mod 3 (resp. p � 2 mod 3 ), then the hypothesis, on β(p) , H(1)
of Theorem A (resp. H(2) of Conjecture B) is satisfied.

With a limitation on the size of p, we have α(p) = β(p) and consequently:
If p � 1 mod 3 , then the partial quotients of α(p) are of type A and the distribution

of these partial quotients is the one described in Theorem A.
If p � 2 mod 3 , then, conjecturally, the partial quotients of α(p) are of type B

and the distribution of these partial quotients is the one described in Conjecture B.

Proof. For p > 3 , let A 2 Fp[T ][X] be the polynomial defined by A(X) =

= (9/32)X4 � TX3 + X2 � 8/27 . We set (r, P , Q) = (p, Pk, Qk) if p � 1 mod 3 ,
and otherwise (r, P , Q) = (p2 , Pp�1

k , Qp
k) . From the l-tuple Λ(p) = (a1 , a2 , . . . , al) ,

we build the four continuants xl, yl, xl�1 and yl�1 in Fp[T ] . We introduce two
polynomials U and V in Fp[T ]

U = ε1 (p)Pyl�1 � ε2 (p)Qyl and V = ε2 (p)Qxl � ε1 (p)Pxl�1 ,

and also H in Fp[T ][X] , depending on (Λ(p), ε1 (p), ε2 (p), P , Q) , such that

H(Λ(p), ε1 (p), ε2 (p), P , Q; X) = ylX
r+1 � xlXr + UX+ V .

Hence, α(p) is the unique root in F(p)+ of A while, according to Proposition 0
stated in Section 2, β(p) is the unique root in F(p)+ of H. Consequently, we will
obtain α(p) = β(p) if we can prove that the polynomial A divides the polynomial H
in the ring Fp[T ][X] . This division is established by straightforward computations
with the help of a computer. It follows that, in both cases, the result holds with
a bound on the prime number p, even though there is no reason to doubt that the
same is true for all primes p. To complete the proof of the theorem, it is enough
to check that the (l + 2) -tuple (Λ(p), ε1 (p), ε2 (p)) satisfies H(1) (resp. H(2) ) if
p � 1 mod 3 (resp. if p � 2 mod 3 ).
Let us consider the first case: p � 1 mod 3 . According to the form of cW1 , from
(11) , we get

ai = λiT = ε(p)(�1)i+1

vj+iT for 1 � i � l. (16)
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Thus, to have H(1) satisfied, we need have

[λl, λl�1 , . . . , λ1 + ω�1
k ε2 (p)] = 2kε1 (p)/ε2 (p).

This formula can be inversed and it is equivalent to

[λ1 , λ2 , . . . , λl � 2kε1 (p)/ε2 (p)] = �ω�1
k ε2 (p). (17)

Using (15) and (16) , recalling that [ε �W] = ε[W] , for ε in F�p , (17) becomes

ε(p)[vj+1 , vj+2 , . . . , v2k�1 , v2k + 2kω�2
k ] = �ω�1

k ε2 (p). (18)

From Proposition 1, we have v1 = 2k � 1 = �ω2
kv2k . Since k = �1/3 in F�p , we

can write

v2k + 2kω�2
k = �v2k/(2k� 1) = 3v2k/5. (19)

Combining (18) and (19) , we see that (17) , and therefore H(1) , are satisfied if

ε2 (p) = �ε(p)ωk[vj+1 , vj+2 , . . . , v2k�1 , 3v2k/5].

which is the value that we assumed, in (13) , for ε2 (p) .
Let us now consider the second case: p � 2 mod 3 . We first check that Λ(p) has the
form required in H(2) . For 1 � m � 2k, we set um = 2(m�1)k+m. Proposition 2,
giving the form of W2 = b1 , . . . , bi, . . . , b4k2 , implies

bi = λB1 (resp. λB0 ) if i = um (resp. i 6= um), (20)

where λ 2 F�p . Moreover i = um implies λ = vm . We observe that we have
uj < k2 + 1 < uj+1 . Consequently, the definition of cW2 implies

cW2 = W3 , vj+1B1 , wj+1 �W1 , vj+2B1 , . . . , v2k�1B1 , w2k�1 �W1 , v2kB1 , (21)

where W3 is formed by the last j letters of wj �W1 . Hence, we have

W3 = w
(�1)j

j v3j+1T , w(�1)j+1

j v3j+2T , . . . , w�1
j v2kT . (22)

Since Λ(p) = ε(p) � cW2 , with the notation introduced in Conjecture B, setting
ni = j + ui for 1 < i � 3j, from (20) , (21) and (22) , we observe that m = 3j
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and Λ(p) has the form required in H(2) . Also ni = i(2k+ 1) � 3j for 1 < i � 3j,
l1 = jW3j = j and li = 2k for 1 < i � 3j. Moreover, from (21) and (22) , the
following equalities hold

[λ1T , . . . , λn1�1T ] = [ε(p) �W3 ] = ε(p)[W3 ] (23)

and, for 1 � i < m,

[λni+1T , . . . , λni+1�1T ] = [ε(p)�1 � (wj+i �W1 )] = ε(p)�1wj+i[W1 ]. (24)

Since [W1 ]T=1 = (Pk/Qk)T=1 = 0 , for 1 � i < m, we observe that (24) implies the
required condition

[λni+1 , . . . , λni+1�1 ] = ε(p)�1wj+i[W1 ]T=1 = 0.

Moreover, by (22) and (23) , we have

[λ1 , . . . , λn1�1 ] = ε(p)[W3 ]T=1 = ε(p)w(�1)j

j [v3j+1 , . . . , v2k]. (25)

Finally H(2) is fully satisfied if we have

ε2 (p) = �ωk[λ1 , . . . , λn1�1 ]. (26)

According to the value given to ε2 (p) in (14) , we see that (25) implies (26) . So the
proof of the theorem is complete. �

5. Irrationality measure

Mahler [10], by an adaptation of an old and famous theorem on algebraic real
numbers, due to Liouville, could prove the following theorem.
Let α 2 F(p) be algebraic of degree n > 1 over Fp(T) . Then there exists a positive
real constant C such that

jα� P/Qj � CjQj�n for all P/Q 2 Fp(T).

The irrationality measure of an irrational power series α is defined by

ν(α) = � lim sup
jQj!1

log(jα� P/Qj)/ log(jQj).
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by Roth’s theorem, the irrationality measure of an irrational algebraic real number
is 2. For power series over a finite field there is no analogue of Roth’s theorem.
However, according to Mahler’s theorem, we have ν(α) 2 [2, n] if α is algebraic
of degree n > 1 over Fp(T) .

The irrationality measure is directly related to the growth of the sequence of the
degrees of the partial quotients an in the continued fraction expansion of α. Indeed
we have (see [4, p. 214])

ν(α) = 2 + ν0 (α) = 2 + lim sup
n

(deg(an+1 )/
X

1�i�n
deg(ai)). (27)

This formula allows to compute ν(α) if the continued fraction is explicitly known.
Note that if α is a Pk-expansion then we have ν(α) 2 [2, r + 1] and moreover
if α(p) is the solution of (E) we have ν(α(p)) 2 [2, 4] . We shall compute the
irrationality measure for perfect Pk-expansions and for the solution of (E) in F(p) .
We have the following.

Theorem D. Let p be an odd prime. Let α 2 F(p) be a perfect Pk-expansion. If α
is of first kind then we have

ν(α) = 2 + (p� 2k� 1)/l.

According to Conjecture B, if α is of second kind then we have

ν(α) = 2 + (p� 1)(p� 2k+ 1) max(1/ν1 , p/ν2 ),

where ν1 = m(p� 2k� 1) + l and ν2 = ν1 + l1 (p2 � 1) � 2k(p� 1) .
Let p > 3 be a prime and α(p) be the root in F(p) of (E) . According to Theorem C,
with a limitation on the size of the prime p, we have

ν(α(p)) = 8/3 if p � 1 mod 3

and, conjecturally,

ν(α(p)) = 4 if p � 2 mod 3.

Proof. We need the following notation. LetW be a finite sequence W = w1 , w2 , . . . , wn
of polynomials of type A (or of type B), associated as above to the finite sequence
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I = i1 , i2 , . . . , in of positive integers, such that wm = λmAim (or wm = λmBim ),
where λm 2 F�p for 1 � m � n. We let D(W) be the sum

P
1�i�n

deg(wi) and,

by extension, we define D(I) = D(W) .
We start with the first kind. Here, for n � 1 , we have an = λnAi(n) and
consequently deg(an) = ui(n) . From the recurrent definition of An , we have
un = (pn(p � 2k � 1) + 2k)/(p � 1) for n � 0 . To compute the limit in (27) ,
we need to observe the first occurence of un in the sequence of the degrees of the
partial quotients, then compute the sum of all the degrees appearing before this term
in this sequence. According to the description of (i(n))n�1 given by (2) and (3) in
Theorem A, we see that n appears for the first time at the begining of Vn . Hence,
by (27) , we have

ν0 (α) = lim
n

(un/D(V [l]
0 , V [l]

1 , V [l]
2 , . . . , V [l]

n�1 )). (28)

Let us compute D(Vn) . We have D(V0 ) = u0 = 1 and also by (2)

D(Vn) = D(n, V [2k]
0 , V [2k]

1 , . . . , V [2k]
n�1 ) = un + 2k

X
1�i�n�1

D(Vi). (29)

By induction, from (29) , it is elementary to verify that D(Vn) = pn holds, for
n � 0 . Consequently (28) implies

ν0 (α) = lim
n

(un/l
X

1�i�n�1

pi) = lim
n

(pn(p� 2k� 1) + 2k)/(l(pn � 1)).

Finally, we obtain

ν0 (α) = (p� 2k� 1)/l. (30)

Note that ν0 (α) = 0 if 2k = p � 1 . In this case, we have an = λnT, for n � 1 .
However the sequence (λn)n�1 is generally not ultimately periodic and therefore α
is not quadratic.
We consider now the second kind. Here, for n � 1 , we have an = λnBi(n) and
consequently deg(an) = vi(n) . We have vn = (pn(p � 2k + 1) + 2k(�1)n)/(p + 1)
for n � 0 , again from the recurrent definition of Bn . The description of the
sequence (i(n))n�1 is given by the formulas (5) � (8) in Conjecture B. We observe
that 2n appears for the first time at the beginning of Vn , whereas 2n + 1 apears
for the first time at the end of Vn,1 . As above, to use (27) , we need to compute
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the sum of the degrees before these occurences. We set Vn,1 = Wn,1 , 2n + 1 and
we have D(Wn,1 ) = D(Vn,1 ) � v2n+1 . We set rn = D(V0 , V1 , . . . , Vn�1 ) . We have
D(V0 , V1 , . . . , Vn�1 , Wn,1 ) = rn +D(Vn,1 ) � v2n+1 . Then we define

sn = v2n/rn and tn = v2n+1 /(rn +D(Vn,1 ) � v2n+1 ). (31)

Hence, by (27) , we have

ν0 (α) = max(lim
n
sn, lim

n
tn). (32)

We need to compute D(Vn,i) and D(Vn) . First, let us compute D(Jn) . We have
D(J1 ) = D(0[2k] , 1) = 2kv0 + v1 = 2k+ p� 2k = p. For n � 1 , by (6) , we get

D(Jn+1 ) = (2k� 1)(v2n + v2n�1 + (2k� 1)D(Jn)) + v2n + v2n+1 . (33)

For n � 1 , we observe that vn + vn�1 = pn�1 (p � 2k + 1) . Hence (33) can be
written as

D(Jn+1 ) = (2k� 1)(p2n�1 (p� 2k+ 1) + (2k� 1)D(Jn)) + p2n(p� 2k+ 1).

By induction, it is elementary to check that this formula implies

D(Jn) = p2n�1 for n � 1. (34)

Now we use (7) to compute D(Vn,i) for n � 1 and 1 � i � m. We have

D(Vn,i) = (li � 1)(v2n + v2n�1 + (2k� 1)D(Jn)) + v2n + v2n+1 .

By (34) and the formula for vn + vn�1 , this last formula gives

D(Vn,i) = (li � 1)p2n + p2n(p� 2k+ 1) = p2n(p� 2k+ li). (35)

Therefore, by (8) and (35) , by sommation, with
mP
i=1

li = l�m, we get

D(Vn) = p2n
X

1�i�m
(p� 2k+ li) = p2n(m(p� 2k� 1) + l). (36)
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We set ν1 = m(p�2k�1)+ l. By (5) , D(V0 ) =
mP
i=1

li+m(p�2k) and consequently

we have D(V0 ) = ν1 . Again by sommation, (36) implies

rn =
X

0�i�n�1

D(Vi) = ν1 (p2n � 1)/(p2 � 1). (37)

Thus we have sn = v2n/rn = (p � 1)(p2n(p � 2k + 1) + 2k)/(ν1 (p2n � 1)) , which
implies

lim
n
sn = (p� 1)(p� 2k+ 1)/ν1 . (38)

We have 1/tn = (1/sn)(v2n/v2n+1 ) +D(Vn,1 )/v2n+1 � 1 . From (35) , we get

lim
n

(D(Vn,1 )/v2n+1 ) = (p� 2k+ l1 )(p+ 1)/(p(p� 2k+ 1)). (39)

From (38) , since lim
n

(v2n/v2n+1 ) = 1/p, we also get

lim
n

((1/sn)(v2n/v2n+1 )) = ν1 /(p(p� 1)(p� 2k+ 1)). (40)

Combining (39) and (40) , we obtain

lim
n

(1/tn) = (ν1 + (p� 2k+ l1 )(p2 � 1))/(p(p� 1)(p� 2k+ 1)) � 1.

Finally, this implies

lim
n
tn = p(p� 1)(p� 2k+ 1)/ν2 , (41)

where

ν2 = ν1 + (p� 2k+ l1 )(p2 � 1)� p(p� 1)(p� 2k+ 1) = ν1 + l1 (p2 � 1)� 2k(p� 1).

Combining (32) , (38) and (41) , we obtain

ν0 (α) = (p� 1)(p� 2k+ 1) max(1/ν1 , p/ν2 ). (42)

A simple calculation shows that p� 2k+ 1 � ν1 and p(p� 2k+ 1) � ν2 . Moreover
we have ν1 = ν2 /p = p� 2k+ 1 if and only if m = 1 and l = 2 . Consequently, we
obtain ν0 (α) = p� 1 if m = 1 and l = 2 and ν0 (α) < p� 1 otherwise. Note that
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ν0 (α) is far from the admitted upper bound p2 � 1 .
This extremal case, corresponding to m = 1 and l = 2 , is noteworthy. In this case,
we have l1 = 1 , V0 = 0, 1 and Vn = Vn,1 = 2n, 2n+ 1 , this shows that the infinite
word describing the sequence (i(n))n�1 is simply N. We have ε2 = �ωkλ1 , and
the continued fraction is defined by the triple (λ1 , λ2 , ε1 ) in (F�p)3 . There exists
a sequence (λn)n�1 in F�p such that an = λnBn�1 , for n � 1 . Amazingly enough, we
observed that this sequence is simply defined by λ2n+1 = ε�n1 λ1 and λ2n+2 = εn1λ2 ,
for n � 0 .
We turn now to the solution of (E) . Applying Theorem C, with a limitation on p,
we know that α(p) is a perfect Pk-expansion in both cases.
First case: p � 1 mod 3 . Here α(p) is a perfect Pk-expansion of first kind, where
k = (p�1)/3 and l = (p�1)/2 . Applying (30) , we get ν(α(p)) = 2+ν0 (α(p)) = 8/3.
Second case p � 2 mod 3 . Here α(p) is a perfect Pk-expansion of second kind, where
k = (p+ 1)/3 , l = (p+ 1)2 /3 , m = (p+ 1)/2 and l1 = k/2 . A direct computation
shows that (p � 1)(p � 2k + 1) = 2ν1 /3 , whereas p(p � 1)(p � 2k + 1) = 2ν2 .
Consequently, applying (42) , we have ν(α(p)) = 2 + ν0 (α(p)) = 4 . So the proof is
complete. �

Note that, according to Mahler’s theorem, α(p) being algebraic of degree 4, we have
ν(α(p)) 2 [2, 4] in both cases as expected. Moreover, in the second case, ν(α(p))
has the maximal possible theoretical value.

Acknowledgment

We warmly thank Bill Allombert for his advice in programming and for his help in
inserting the figures in this note.

Bibliography

1. L. Baum, M. Sweet, Continued fraction of algebraic power series in characteristic 2, Annals
of Mathematics 103 (1976), 593–610.

2. A. Bluher, A. Lasjaunias, Hyperquadratic power series of degree four, Acta Arithmetica,
124 (2006), 257–268.

3. W. Buck, D. Robbins, The continued fraction of an algebraic power series satisfying a
quartic equation, Journal of Number Theory, 50 (1995), 335–344.

4. A. Lasjaunias, A survey of Diophantine approximation in fields of power series, Monatshefte
für Mathematik, 130 (2000), 211–229.



153] On two families of hyperquadratic continued fractions 37

5. A. Lasjaunias, Continued fractions for hyperquadratic power series over a finite field, Finite
Fields and their Applications, 14 (2008), 329–350.

6. A. Lasjaunias, On Robbins example of a continued fraction for a quartic power series over
F13 , Journal of Number Theory, 128 (2008), 1109–1115.

7. A. Lasjaunias, Algebraic continued fractions in Fq((T�1 )) and recurrent sequences in Fq ,
Acta Arithmetica, 133 (2008), 251–265.

8. A. Lasjaunias, On the continued fraction of the unique root in F(p) of the equation
x4 + x2 � Tx� 1/12 = 0 and other related hyperquadratic expansions, Finite Fields and
their Applications, 18 (2012), 26–34.

9. A. Lasjaunias, J.-Y. Yao, Hyperquadratic continued fractions in odd characteristic with
partial quotients of degree one, Journal of Number Theory , 149 (2015), 259–284.

10. K. Mahler, On a Theorem of Liouville in fields of positive characteristic, Canadian Journal
of Mathematics, 1 (1949), 397–400.

11. B. de Mathan, Approximation exponents for algebraic functions, Acta Arithmetica, 60
(1992), 359–370.

12. C. Osgood, Effective bounds on the “diophantine approximation” of algebraic functions
over fields of arbitrary characteristic and applications to differential equations, Indagationes
Mathematicae, 37 (1975), 105–119.

13. W. Mills, D. Robbins, Continued fractions for certain algebraic power series, Journal
of Number Theory, 23 (1986), 388–404.

14. W. Schmidt, On continued fractions and Diophantine approximation in power series fields,
Acta Arithmetica, 95 (2000), 139–166.

15. J.-F. Voloch, Diophantine approximation in positive characteristic, Periodica Mathematica
Hungarica, 19 (1988), 217–225.

K h a l i l A y a d i

Département de Mathématiques
Faculté des Sciences de Sfax
Sfax 3018, Tunisie
ayedikhalil@yahoo.fr

A l a i n L a s j a u n i a s

Institut de Mathématiques de Bordeaux
CNRS-UMR 5251
Université de Bordeaux
Talence 33405, France
Alain.Lasjaunias@math.u-bordeaux.fr


