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Abstract

The continued fraction expansion for a quartic power series over the finite field F13 was conjectured
first in [W. Mills, D. Robbins, Continued fractions for certain algebraic power series, J. Number Theory
23 (1986) 388–404] and later in a more precise way in [W. Buck, D. Robbins, The continued fraction of
an algebraic power series satisfying a quartic equation, J. Number Theory 50 (1995) 335–344]. Here this
conjecture is proved by describing the continued fraction expansion for a large family of algebraic power
series over a finite field.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this note we discuss continued fractions in the function fields case. For a general presenta-
tion of this subject, the reader may consult [S]. The examples which are considered here belong
to a particular class of algebraic power series called hyperquadratic. More references concerning
this class of elements as well as comments on the particular quartic equation considered first by
Mills and Robbins and then by Buck and Robbins can be found in [BL]. In this note we con-
sider power series over a prime field Fp where p is an odd prime. We consider an indeterminate
T , the ring of polynomials Fp[T ] and the field of rational functions Fp(T ). If |T | is a fixed
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real number greater than one, we consider the ultrametric absolute value defined on Fp(T ) by
|P/Q| = |T |deg(P )−deg(Q). The completion of this field is the field of power series in 1/T over
Fp , which will here be denoted by F(p). If α ∈ F(p) and α �= 0, we have

α =
∑
k�k0

ukT
k, where k0 ∈ Z, uk ∈ Fp, uk0 �= 0 and |α| = |T |k0 .

We introduce the following subset of F(p):

F(p)+ = {
α ∈ F(p) with |α| � |T |}.

We also know that each irrational element α of F(p) can be expanded as an infinite continued
fraction. This will be denoted by α = [a1, . . . , an, . . .], where the ai ∈ Fp[T ] are the partial quo-
tients. As usual the tail of the expansion, [an, an+1, . . .], called the complete quotient, is denoted
by αn (α1 = α). Finally the numerator and the denominator of the convergent [a1, a2, . . . , an] are
denoted by xn and yn. These polynomials, called continuants, are both defined by the same re-
cursive relation: Kn = anKn−1 +Kn−2 for n � 2, with the initials conditions x0 = 1 and x1 = a1
for the numerator, while the initial conditions are y0 = 0 and y1 = 1 for the denominator.

2. Results

The main result, Theorem 1 below, is based upon the study developed in [L], Section 4. We
recall the notations which were introduced there and which we have slightly modified here. For
integers k � 1 and 1 � i � 2k we introduce the rational numbers

ui,k =
∏

1�j<i/2

(2j)(2k − 2j)/
∏

1�j<(i+1)/2

(2j − 1)(2k − 2j + 1)

and also

θk = (−1)k
∏

1�j�k

(1 − 1/2j).

Given the integer k, we fix a prime number p with p � 2k + 1. Thus it is clear that the rational
numbers ui,k and θk can be reduced modulo p. Therefore in this note these numbers will also be
considered as elements of F∗

p . We introduce the following pair of polynomials:

Pk(T ) = (
T 2 − 1

)k and Qk(T ) =
T∫

0

(
x2 − 1

)k−1
dx.

Again these polynomials can either be considered as elements of Q[T ] or, by reduction mod-
ulo p, as elements of Fp[T ]. Note that the existence of Qk(T ) is ensured by the condition
p � 2k+1. We recall that the origin of the numbers ui,k is to be found in the following continued
fraction expansion,

Pk(T )/Qk(T ) = [
(2k − 1)T , . . . , (2k − 2i + 1)u

(−1)i
T , . . . , (−2k + 1)u2k,kT

]
,
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which holds in Q(T ) as well as in Fp(T ) by reduction modulo p. Note also the link between θk

and Qk which is given by the formula: 2kθkQk(1) = −1.
For an integer l � 1 and an integer n � 1, we define f (n) = (2k + 1)n+ l − 2k. We define the

sequence (i(n))n�1 in the following way:

i(n) = 1 if n /∈ f
(
N∗) and i

(
f (n)

) = i(n) + 1.

Finally we introduce the sequence (Ai)i�1 of polynomials in Fp[T ] defined recursively by

A1 = T and Ai+1 = [
A

p
i /Pk

]
for i � 1

(here the square brackets denote the integer part, i.e., the polynomial part). We have the following
result.

Theorem 1. Let p be an odd prime number. Let k � 1 be an integer with 2k < p. Let l � 1 be
an integer. Let (λ1, λ2, . . . , λl) be a l-tuple in (F∗

p)l . Let (ε1, ε2) ∈ (F∗
p)2. Let α be the infinite

continued fraction α = [a1, . . . , al, αl+1] ∈ F(p) defined by

ai(T ) = λiT for 1 � i � l and αp = ε1Pkαl+1 + ε2Qk.

Then α is the unique root in F(p)+ of the algebraic equation

ylx
p+1 − xlx

p + (ε1Pkyl−1 − ε2Qkyl)x − ε1Pkxl−1 + ε2Qkxl = 0. (E)

Set formally δi = [2kθkλi, . . . ,2kθkλ1, ε
−1
2 ] for 1 � i � l. We assume that

δi ∈ F∗
p for 1 � i � l − 1 (H1)

and

δl = ε1(θku2k,kε2)
−1. (H2)

Then we have

an = λnAi(n), where λn ∈ F∗
p for n � 1. (I )

Let (δn)n�1 be the sequence defined from the l-tuple (δ1, . . . , δl) by the recurrence relations

δf (n) = ε
(−1)n

1 θkδn for n � 1 (D0)

and (Di), for 1 � i � 2k,

δf (n)+i = ε
(−1)n+i

1 2kθki(ui,kδn)
(−1)i for n � 1.

Then the sequence (λn)n�1 is defined from the l-tuple (λ1, . . . , λl) by the recurrence relation

λf (n) = ε
(−1)n

λn for n � 1 (L0)
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and (Li), for 1 � i � 2k,

λf (n)+i = −ε
(−1)n+i

1 (2k − 2i + 1)(ui,kδn)
(−1)i for n � 1.

Remark. It is interesting to observe that, in the extremal case p = 2k+1, the sequence of polyno-
mials Ai is constant and we have Ai(T ) = T for i � 1. Consequently when the conditions (H1)

and (H2) are satisfied all the partial quotients of the expansion are linear. A first example was
given in [MR], p. 400, and such continued fractions have been studied in a different approach in
[LR1] and [LR2]. There we started from the algebraic equation (E) but we imposed a special
form to this equation, this was apparently artificial and constrained us to take l � p.

Now we can turn to the conjecture made by Buck, Mills and Robbins [MR, p. 404],
[BR, p. 342].

Theorem 2. Let α be the unique root in F(13) of the algebraic equation

x4 + x2 − T x + 1 = 0.

Let (Ai)i�1 be the sequence of polynomials in F13[T ] defined recursively by

A1 = T and Ai+1 = [
A13

i /(T 2 − 1)4] for i � 1.

Let U and V be the following vectors:

U = (u1, . . . , u8) = (7,10,5,12,9,11,1,5) ∈ (F13)
8

and

V = (v0, . . . , v8) = (11,10,1,11,12,5,1,12,6) ∈ (F13)
9.

Let u ∈ F169 with u2 = 8. Then we have the continued fraction expansion

α = [0, a1, . . . , an, . . .]

with

an = u(−1)n+1
λnAv9(8n−2)+1(uT ) for n � 1, where λn ∈ F∗

13

(here v9(m) denotes the largest power of 9 dividing m).
If (δn)n�1 is the sequence in F∗

13 defined by the recurrence relations

δ9n−2+i = viδ
(−1)i

n for 0 � i � 8 and n � 1

with the initial conditions (δ1, . . . , δ6) = (11,12,5,1,12,6), then the sequence (λn)n�1 is de-
fined by the recurrence relation

λ9n−2 = −λn for n � 1
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with the initial conditions (λ1, . . . , λ6) = (5,12,9,11,1,5) and by

λ9n−2+i = uiδ
(−1)i

n for 1 � i � 8 and n � 1.

3. Proofs

Proof of Theorem 1. The existence of the continued fraction α ∈ F(p)+ satisfying the given
definition and the fact that it is the only root of equation (E) follows from Theorem 1 [L]. Now
we use Proposition 4.6 of [L]. Hence we know that there exists N ∈ N∗ ∪ {∞} depending on
(λ1, . . . , λl) and (ε1, ε2) such that

an = λnAi(n) with λn ∈ F∗
p for 1 � n � f (N). (I )

The sequence (λn)1�n�f (N) is defined in the following way:

λf (n) = ε
(−1)n

1 λn for 1 � n � N (L0)

and (Li), for 1 � i � 2k,

λf (n)+i = −ε
(−1)n+i

1 (2k − 2i + 1)(ui,kδn)
(−1)i for 1 � n � N − 1,

where the sequence (δn)1�n�N is defined recursively by

δn = 2kθ
i(n)
k λn + (δn−1u2k,k)

−1 for 1 � n � N (DL)

with the initial condition δ0 = (u2k,kε2)
−1. Note that the frame of Proposition 4.6 is more gen-

eral than here. Indeed here the base field is supposed to be prime, it follows that the Frobenius
isomorphism is the identity on Fp and this implies a simplification in (L0) and (DL). Moreover
the formulas given here are adapted to our new notations. Both sequences (λn) and (δn) are de-
pending on each other and the process of their definition can be carried on as long as δn �= 0. If
this process terminates then N ∈ N∗, we have δN = 0 and the continued fraction expansion is de-
scribed by (I ) but only up to a certain rank f (N). This is what happens if the l-tuple (λ1, . . . , λl)

is taken arbitrarily. We need to prove that under conditions (H1) and (H2) we have N = ∞ and
also that the sequence (δn) satisfies the formulas (D0) to (D2k) stated in this theorem. First we
observe that (H1) simply says that N > l. Indeed for 1 � n � l we have i(n) = 1 and (DL) be-
comes δn = [2kθkλn, . . . ,2kθkλ1, ε

−1
2 ]. We will prove that δn �= 0 for n � l + 1 by showing that

the equalities (Di) for 0 � i � 2k hold for n � 1. We introduce the following equalities

δf (n)−1 = ε
(−1)n−1

1 θ−1
k δn−1 for n � 1. (H2)n

We observe that (H2)1 is simply (H2) and thus it is assumed to be true. Now we shall prove that
for n � 1 we have the following implications:

(H2)n �⇒ (D0)n, (1)

(Di)n �⇒ (Di+1)n for 0 � i � 2k − 1, (2)

(D2k)n �⇒ (H2)n+1. (3)
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This will prove by induction on n that, for 0 � i � 2k, (Di) hold for n � 1. To establish these
implications we use the following equalities which are immediately derived from the definitions:

4k2θ2
k u2k,k = 1 (4)

and

u1,k = 1, ui+1,k = ui,k

(
i(2k − i)

)(−1)i
for 1 � i � 2k − 1. (5)

To prove (1) we start from (DL) at the rank f (n). Since i(f (n)) = i(n) + 1, we have

δf (n) = 2kθ
i(n)+1
k λf (n) + (u2k,kδf (n)−1)

−1

and, by (L0) and (DL) at the rank n, this becomes

δf (n) = (
δn − (δn−1u2k,k)

−1)ε(−1)n

1 θk + (u2k,kδf (n)−1)
−1.

Now using (H2)n we obtain immediately δf (n) = δnε
(−1)n

1 θk which is (D0)n. To prove (2) we
start from (DL) at the rank f (n) + i + 1 for 0 � i � 2k − 1. Since i(f (n) + i + 1) = 1, we have

δf (n)+i+1 = 2kθkλf (n)+i+1 + (u2k,kδf (n)+i )
−1.

Applying (Li+1) and (Di)n and using (4) and (5), we obtain without difficulties (Di+1)n. Finally
the last implication (3) is obtained very simply with (4)

δf (n+1)−1 = δf (n)+2k = ε
(−1)n

1 4k2θku2k,kδn = ε
(−1)n

1 θ−1
k δn.

So the proof is complete. �
Remark. It is clear that condition (H1) is necessary to have N = ∞, but condition (H2) may
not be so. Indeed this condition implies a simple form for the sequence (δn)n�1 showing that it
never vanishes. We say that the expansion is perfect if (I ) holds for n � 1 (i.e., N = ∞). So the
expansion could perhaps be perfect without δn having the form given in the theorem. Indeed it is
interesting to notice that more complex forms for this sequence have been pointed out when the
base field is not prime and in the particular case p = 2k + 1 (see [LR2], p. 562).

Now we turn to the second theorem.

Proof of Theorem 2. Let us consider the infinite continued fraction β = [b1, . . . , b6, β7] ∈ F(13)

defined by

(b1, . . . , b6) = (5T ,12T ,9T ,11T ,T ,5T ) and β13 = −P4β7 − 4Q4.

This element β is the only solution in F(13)+ of the algebraic equation (E)

(
T 5 + 3T 3 + 11T

)
x14 + (

8T 6 + 12T 4 + 3T 2 + 1
)
x13 + (

5T 2 + 1
)
x + 7T = 0.
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It is easy to check that conditions (H1) and (H2) of Theorem 1 are satisfied. Here k = 4,
θ4 = 2 and u8,4 = 3. Moreover l = 6 and (ε1, ε2) = (−1,−4). We have the resulting 6-tuple
(δ1, . . . , δ6) = (11,12,5,1,12,6). Thus the expansion for β is perfect and, according to Theo-
rem 1, we have

bn = λnAi(n), where λn ∈ F∗
13 for n � 1.

Here we have f (n) = 9n− 2. It is elementary to check that the sequence v9(8n− 2)+ 1 satisfies
the same relations as i(n), and therefore here we have i(n) = v9(8n − 2) + 1 for n � 1. By
adapting the formulas given in Theorem 1 for the sequences (λn)n�1 and (δn)n�1, we obtain
immediately those which are stated in this theorem. Now we turn to the quartic equation which
can be written as x = 1/T + (x2 + x4)/T . Hence by iteration, we see that it has a root α in
F(13) with |α| = |T |−1. We put γ (T ) = u−1α−1(u−1T ). Then it follows that γ is solution of
the algebraic equation B(x) = x4 − 5T x3 + 5x2 − 1 = 0 and γ ∈ F(13)+. In order to have
the continued fraction expansion for α as described in the theorem , we only need to prove
that 1/α(T ) = uβ(uT ) or equivalently that γ = β . Thus it remains to prove that γ satisfies
equation (E). This will be shown if the polynomial A on the left side of equation (E) is divisible
by the polynomial B . A straightforward calculation shows that A = BC with

C = (
T 5 + 3T 3 + 11T

)
x10 + (

T 4 + 6T 2 + 1
)
x9 + (

2T 3 + 2T
)
x8

+ (
5T 4 + 6T 2 + 8

)
x7 + (

10T 3 + 2T
)
x6 + 12T 2x5 + (

12T 3 + 5T
)
x4

+ (
10T 2 + 8

)
x3 + 4T x2 + (

8T 2 + 12
)
x + 6T .

So the proof is complete. �
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