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Rain drops

I Assumptions:

I large number of drops falling on a unit sea surface;
I radius � any macroscopic length scales (eg. surface wave

length)

I a rain drop is a spherical volume of fluid described by:
I its position x ∈ R3;
I its velocity v ∈ R3 (mean velocity of the molecules inside the

drop);
I its radius r ∈ ]0,+∞[.

I density and mass:
I all drops have a constant density ρd ;
I mass of one drop: m(r) = ρd

4
3πr3.



Rain drop distribution

I distribution function: f (t, x , v , r)

number density of drops at time t in the phase space
R3 × R3×]0,+∞[

I f (t, x , v , r)dxdvdr is the number of drops that at time t are
at position x ± dx with velocity v ± dv and with a radius
r ± dr

I average quantities:

n(t, x , r) =

∫
R3

f (t, x , v , r) dv ,

number of drops of radius r at time t and position x , per unit
volume and per radius increment.
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Force exerted by the drops on the free surface
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Force exerted by the drops on the free surface
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Force exerted by the drops on the free surface

I the momentum of an impacting droplet (in the reference frame
of the surface) is m(r)(v − u)

I momentum of all the droplets impacting dS during dt:

M =

(∫
(v−u)·n<0

∫
]0,+∞[

m(r)(v − u)f (t, x , v , r)(−(v − u)·n) drdv

)
dSdt.

I assumption: the force exerted by the drops ejected from the
surface is neglected

I resulting force (Newton):

F = −
(∫

(v−u)·n<0

∫
]0,+∞[

m(r)(v − u)⊗ (v − u)f (t, x , v , r) drdv

)
ndS .
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Stress

I the force can be written: F = σdndS

I where σd is the stress tensor due to the drops:

σd = −
∫
(v−u)·n<0

∫
]0,+∞[

m(r)(v−u)⊗(v−u)f (t, x , v , r) drdv .



Accounting for the rain in a free-surface Navier-Stokes model

I Navier-Stokes: for t > 0, z ≥ η(t, x⊥)

∇·u = 0,
ρ∂tu + ρ(u·∇)u = ∇·σ + ρg ,

where u(t, x⊥, z) = (u⊥,w);

I kinematic boundary condition: at z = η(t, x⊥)

w (t, x⊥, z) = ∂tη + u⊥·∇⊥η,

I dynamic boundary condition: at z = η(t, x⊥)

σn = σan + Γκn + σdn.



Euler equations
I neglect viscosity and surface tension

I Euler: for t > 0, z ≥ η(t, x⊥)

∇·u = 0,
ρ∂tu + ρ(u·∇)u +∇p = ρg ,

I kinematic boundary condition: at z = η(t, x⊥)

w (t, x⊥, z) = ∂tη + u⊥·∇⊥η,

I dynamic boundary condition: at z = η(t, x⊥)

p = pa + pd ,

where

pd =

∫
(v−u)·n<0

∫
]0,+∞[

m(r)|(v − u)·n|2f (t, x , v , r) drdv .
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Linear deep water surface gravity waves without rain

I velocity potential: u = ∇Φ

I surface wave mode: η = aei (kx−ωt)

I assumption 1: ak is small
I continuity equation and linearized kinematic BC give:

Φ = −i aω
k ekzei (kx−ωt)

I dispersion relation: linearized momentum equation and
dynamics BC p = pa gives

ω =
√

kg

I real frequency: no attenuation, no amplification
I our goal:

I extend this analysis with rain induced pressure
I show that the frequency is complex



Linear deep water surface gravity waves with falling rain

I velocity potential: u = ∇Φ

I surface wave mode: η = aei (kx−ωt)

I assumption 1: ak is small
I linear theory gives: Φ = −i aω

k ekzei (kx−ωt)

I dispersion relation: we need the dynamic condition

p = pa + pd ,

with the rain induced pressure

pd =

∫
(v−u)·n<0

∫
]0,+∞[

m(r)|(v − u)·n|2f (t, x , v , r) drdv .



Linearized rain induced pressure

I assumption 2: homogeneous in space and monokinetic rain
drop distribution

f (t, x , v , r) = n(r)δv−vd (r)

I use this to compute the rain induced pressure :

pd =

∫
(v−u)·n<0

∫
]0,+∞[

m(r)|(v − u)·n|2f (t, x , v , r) drdv .

I assumption 3: (vd (r)− u)·n < 0 for every r (add impact of
non-impacting slow drops)

pd =

∫
]0,+∞[

m(r)n(r)|(vd (r)− u)·n|2 dr .



Linearized rain induced pressure

I assumption 4: neglect (ak)2, a2kω and ak(aω)2 terms ⇒

pd = p(0)
d + p(1)

d ,

where

p(0)
d =

∫
]0,+∞[

m(r)n(r)wd (r)2 dr ,

p(1)
d = (Ik + Jω)i aei (kx−ωt).

where I and J are constants depending on moments of the
drop distribution.

I = −2
∫
]0,+∞[

m(r)n(r)ud(r)wd(r) dr , J = 2
∫
]0,+∞[

m(r)n(r)wd(r) dr .



Dispersion relation

I we find complex frequencies: ω = ωR + iωI

I real part:

ωR = ±

√√√√√1
2

√(kg − k2J2

4ρ2

)2

+
k4I 2

ρ2 + kg − k2J2

4ρ2

.
I imaginary part:

ωI =
kJ
2ρ

+sign(I )

√√√√√1
2

√(kg − k2J2

4ρ2

)2

+
k4I 2

ρ2 − kg +
k2J2

4ρ2

,
attenuation if ωI < 0, amplification if ωI > 0.
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Rain size and velocity distributions
I Marshall-Palmer size distribution: n(r) = N e−344.34|R|−0.21r ,

where R is the rain rate (in m s−1)

I vertical fall velocity (Best, 1950): wd (r) = −Υw (1− e−αw r ),
where Υw = 9.32 m s−1 is the maximum fall velocity

I rain drop horizontal velocity (Mueller, Veron 2009)

ud (r) = Υu(1− e−αur ),
where Υu = 0.85U10 (85% of the 10-m wind speed)
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Validity of assumptions

I inviscid irrotational flows: λ > O(1)m

I Smoothness of the free surface and the validity of the kinetic
approach: largest drops (r ≈ 3mm) generate impact craters of
radii R ≈ 30mm ⇒ the surface is smooth if λ > 100R ≈ 3m

I wave slope and velocity: (ak)2, a2kω and ak(aω)2 are
negligeable if λ < 250m (and surface velocity aω < 1m s−1)

I “impact” of non-impacting drops: the error made on the true
pressure is at most 10−4%.

summary: analysis valid for O(1− 3) m < λ < O(250) m



Results

I ωR ≈
√

kg

I ωI as a function of the wave number k , for various
wind-speeds:
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Transition from dissipation to amplification

I transition at ko = gJ2/I 2

I ko as a function of U10:
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Example

I U10 = 0 m s−1 (no wind)

I rain rate of |R| = 50 mm h−1

I the amplitude of a wave of λ = 5m is damped
I at 94% after 1 hour (at 12% in wave energy density)
I at 88% after 2 hours (22%)
I at 73% after 5 hours (46%)



Comparison with Le Méhauté and Khangaonkar

I Le Méhauté and Khangaonkar, 1990:

ωI =
ρdR
2ρ

(
2k − 2Udk2

ωR

)
.

I our approach, with homogeneous and monokinetic rain
distribution, can be viewed as an extension

I retains the dependence of the rain-induced momentum flux on
the velocity and size of the drops

I possibly much more general f

I possible inclusion of drop specific parameters such as
temperature



Comparison with experimental data

I experiments all use short waves generated in laboratory

I fall outside the wavenumber validity range of our theory

I example 1: Peirson et al. 2013 λ ≈ 0.5m and |R| = 141 mm h−1

attenuates 5 times faster as our theory predicts

I example 2: laboratory observations show weak dependence of
the wave attenuation rate on the rain rate, at least at high
rain rates. This result is also in contrast with our theory.



Comparison with experimental data

I example 3: attenuation as a function of k (no wind) predicted
by our theory (black thick line), a theory taking into account
subsurface turbulence (dash line), and experiments
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Perpectives

I experiments up to large k?

I Navier-Stokes simulations with rain stress

I include mass and heat transfer, difference in density (salinity)
between rain drops and sea water

I for short laboratory scales: account for subsurface turbulence
and wave-turbulence interaction
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