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Abstract

In this paper, a splitting strategy to simulate compressible two-phase flows using the five-equation model
is presented. The main idea of the splitting is to separate the acoustic and transport phenomena. The
acoustic step is solved in a non-conservative form using a scheme based on an approximate Riemann
solver. Since the acoustic time step induced by the fast sound velocity is very restrictive, an implicit
treatment of this step is performed. For the transport step driven by the slow material waves, an explicit
scheme is used. Although non-conservative forms are used to derive numerical schemes for the two steps,
the overall scheme resulting from this splitting operator strategy is conservative. It preserves contact
discontinuities and reveals to be very robust compared to a standard unsplit scheme.
Numerical simulations of compressible two-phase flows are presented on two-dimensional structured grids.
The implicit-explicit strategy allows large time steps, which do not depend on the fast acoustic waves.

Keywords: two-phase flows, positive Riemann solver, implicit scheme.

Introduction

The present work takes place in the context of the atmospheric re-entry problem. This study can
concern re-entry vehicles globally or partially made of metallic components, space debris for instance.
During the re-entry phase, a solid undergoes a heating due to the friction of atmospheric gases. Conversion
of kinetic energy to thermal energy leads to a sudden increase of the temperature of the object. This rise
drives to a physical-chemical degradation of the thermal protective system, and to a boundary recession.
Sublimation (injection of gas into the atmosphere) and the fusion of the metallic part (creation of a liquid
phase into the gas) are the main causes of the solid ablation during the re-entry phase. A zonal approach
is considered (see Fig 1) to cope with this very complex problem. In the gas flow region, far from the
object or near a wall made of carbon where the ablation process is driven by the sublimation, classical
schemes can be used. Numerical simulations of the sublimation process have already been studied in
[MB14, MC13, BNM10, Mul10, Lat13]. In the region near a metallic wall, the velocity of the gas is small
and with the appearance of the liquid phase, the dynamics of the flow is very different. From our own
experience, usual numerical schemes are not very robust to compute such two-phase flows when large
time steps are considered. In the present paper, we focus on the multiphase flow region and we propose
a numerical method to simulate two-phase flows. The work presented here is really the first step of a
global project since viscosity effects and heat transfers are not taken into account.

The modelling and computation of multiphase flows have been widely studied for the past decades.
There are two main approaches to compute compressible flows with interfaces: sharp interface methods,
and diffuse interface methods. In the first approach, the interface between the two media, considered as
a sharp discontinuity, is followed explicitly and each phase can be computed with different models. In
Lagrangian or Arbitrary Lagrangian-Eulerian methods, the mesh moves during the computation like the
interface. Large distortions and interface topological changes can hardly be taken into account. Front
capturing methods are Eulerian methods where the interface is reconstructed. In Level Set methods
[OS88] the interface is located as the zero of an implicit function. In the Volume Of Fluid method
[HN81], the interface is reconstructed from the volume fraction of each fluid. In the second approach,
diffuse interface methods [BN86, KMB+01, ACK02, MSNA02, FBC+11, KL10, SA99], based on an
Eulerian mesh, allow numerical diffusion of the interface. The same equations are solved in the entire
domain. In addition, these models allow the creation of new interfaces and topological changes during
the simulation. In the present context, the fusion of the metallic part leads to a significant topological
change. Consequently, we choose to use a diffuse interface approach in order to simulate the two-phase
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Figure 1: Scheme of the re-entry of a metallic debris.

flow. Those methods have already been studied by many authors. The seminal work of Baer and Nunziato
[BN86] (see also [SW84]) introduces a pressure and velocity non-equilibrium model for two-phase flows.
The model of Kapila et al. [KMB+01] can be seen as the limit of instantaneous velocity and pressure
relaxation, see [MG05]. In this case, a non-conservative term proportional to the divergence of the velocity
appears in the equation of the volume fraction. This term describes the expansion/compression effects
in case of a mixture. Several numerical schemes have been recently proposed for the Kapila et al. model
or its variants [MG05, SPB09, LNS13, PS14, LMSN14]. However, as suggested by some experiments, we
assume that the liquid phase in our application will not disperse nor mix with the gas flow. Consequently,
immiscible fluids can be considered in this study and the non-conservative term of Kapila et al. model
can be neglected. Indeed, at the continuous level, if the initial condition is made of two separated phases,
then both Kapila et al. and five-equation models give the same solution. It is only at the discrete level
that differences can appear inside the small mixture zone due to the numerical diffusion. Therefore the
five-equation model [ACK02, MSNA02] is used in this work to track the pure interface between the two
fluids.

A two-phase flow involving an almost incompressible liquid and a compressible gas is considered here.
With the diffuse interface method, the same equations are solved in the entire domain, thus the liquid is
modelled by a compressible fluid in which the Mach number is very low. Two numerical difficulties appear
in this case. First, several time scales are involved in this configuration: the scale of the fast acoustic waves
which leads to an important CFL restriction on the time step for explicit schemes, and the scale of slow
material waves. Being concerned by the large time scales, the two-phase flow has to be computed with an
implicit numerical scheme. In classical aero-thermodynamic computations, implicit scheme should also
be considered in order to handle the dissipative effects and to compute efficiently stationary solutions.
Up to our knowledge, implicit schemes for two-phase flows simulations are not very robust with large
CFL conditions. Our main objective in this paper is to derive a scheme to compute two-phase flow using
large time steps. The other difficulty is the lack of accuracy of the numerical schemes in the low Mach
regime. This topic has been widely investigated in the literature, see [GV99, GM04, MG08, DJOR15] and
the references therein. Preconditioned methods or specific corrections of the numerical flux have been
developed in order to capture the lowMach limit [Tur87, TMD+08, Rie11, Del10]. For monophasic flows in
the low Mach regime, several implicit-explicit schemes have been proposed, like [DJY07, HJL12, CDK12],
to resolve the material wave scale only. Another approach [CGK16, CGK17] is to use a splitting of the
Euler equations between acoustic and transport systems. The acoustic system is resolved by an implicit
scheme while the transport system is resolved by an explicit scheme. A low Mach fix based on a correction
of the pressure flux is developed for the acoustic step.

In this paper, a numerical scheme is proposed to handle three challenges: simulate a two phase
flow which involves large ratios of density and pressure, derive an implicit scheme in order to use large
time steps and compute an almost incompressible liquid as a compressible fluid by using a low Mach
correction. To overcome these challenges, we propose an extension of the splitting strategy presented in
[CGK16, CGK17] to two-phase flows using the five-equation system [ACK02, MSNA02]. The splitting
strategy is done with a Lagrange Projection type [GR96] algorithm. The acoustic part is solved in a non-
conservative form using a Godunov-type scheme based on an extension of the Riemann solver derived in
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[Gal03]. The Riemann solver slopes are chosen in order to ensure the positivity of the solution and their
moduli are a priori different unlike [CGK16, CGK17]. An implicit treatment of this step is done since the
fast acoustic waves induce very small time steps. Several versions of this time-implicit scheme are derived
and compared. The transport step is treated explicitly. Although non-conservative forms are used to
derive numerical schemes for the acoustic and the transport parts, the scheme resulting from the splitting
procedure is conservative and preserves contact discontinuity. Thus, the right shock speeds are obtained.
The robustness and the efficiency of the implicit-explicit scheme for two-phase flows are demonstrated
with the numerical computations and the comparison with a classical unsplit scheme. The correction of
[CGK16] is used in our low Mach simulation, since it has been developed for the splitting strategy and
its implementation is very simple. This low Mach fix is similar to the one proposed by Rieper [Rie11].
It was already shown in [CGK16] that this low Mach correction works well for the acoustic-transport
splitting for monophasic flows. Finally, note that the scheme proposed in this work is first order only.
Extension to second order will be discussed in another work.

The outline of this paper is as follows. In the first section we present the governing equations of an
immiscible two-phase flow. In section 2, the operator splitting and the numerical scheme are described in
the one dimensional case, several implicit treatments of the acoustic part are then presented and compared
and we also describe the extension of the numerical scheme to two-dimensional structured grids. The
overall scheme resulting from the splitting strategy is shown to be conservative. Finally some numerical
results for one and two-dimensional two-phase flows are presented in section 3.

1. The five-equation system

We denote by ρi, εi and pi the density, the internal energy and the pressure of the fluid phases i = 1, 2.
Each fluid is equipped with an Equation Of State (EOS) of the form pi = pi(ρi, εi). The sound velocity
ci of each phase is defined by c2i = ∂pi

∂ρi

∣∣∣
si
, where si is the entropy.

We introduce the volume fraction zi of each fluid and we have the relation z1 + z2 = 1. In the sequel
we denote by z = z1 the volume fraction of the first fluid. The mixture density and mixture internal
energy can be defined through the volume fraction, the density and internal energy of each fluid:

ρ = z1ρ1 + z2ρ2, (1)
ρε = z1ρ1ε1 + z2ρ2ε2. (2)

Both phases share the same velocity u, and the same pressure p. The five-equation system with
isobaric closure derived in [ACK02, MSNA02] reads:

∂t (ρ1z1) +∇ · (ρ1z1u) = 0,
∂t (ρ2z2) +∇ · (ρ2z2u) = 0,
∂t (ρu) +∇ · (ρu⊗ u) +∇p = 0,
∂t (ρe) +∇ · ((ρe+ p) u) = 0,
∂tz + u · ∇z = 0,
p = p1 = p2,

(3)

where e = ε + u2

2 is the total energy of the mixture. Note that the evolution of the volume fraction
is governed by a non-conservative equation. This formulation preserves contact discontinuities, i.e. the
evolution of constant pressure and velocity profiles, see [ACK02, KL10].

If we consider a stiffened gas EOS for each fluid, we have

pi = ρiεi (γi − 1)− γiπi, (4)

where γi > 1 is the adiabatic exponent and πi ≥ 0 a reference pressure. Using the isobaric closure relation
defined by: {

p1(ρ1, ε1)− p2(ρ2, ε2) = 0,
ρε = zρ1ε1 + (1− z)ρ2ε2,

the pressure can be obtained as p = (γ − 1) ρε − γπ where the mixture parameters γ and π are defined
by:

γ = 1 + 1∑2
i=1

zi
γi−1

and π = γ − 1
γ

2∑
i=1

ziγiπi
γi − 1

.
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In the general case, the mixture sound speed is given by [ACK02]:

c2 = 1
ξ

2∑
i=1

yiξic
2
i ,

where yi is the mass fraction, ξi the partial derivative ∂(ρiεi)
∂p , ξ =

∑2
i=1 ziξi and ci the sound speed of

the pure fluid i. Since the speed of sound for a stiffened gas is given by c2i = γi
p+πi
ρi

, the mixture sound
speed for the mixture of two stiffened gases reads:

c2 = γ
p+ π

ρ
. (5)

Even if, in case of a real mixture, the physical entropies of each phase are not convected, this model has
mathematical entropies. Indeed, for two stiffened gases, [PS05] gives the phase entropy for each fluid
si = p+π

ργ
i
, and the mixture entropy s = y1s1 + y2s2. It can be proved that their evolution for smooth

solutions reads:

∂tsk + u · ∇sk = 0,
∂ts+ u · ∇s = 0.

Before going any further, let us rewrite the five-equation system (3). First, note that the evolution
equation of ρ2z2 in (3) can be replaced by the evolution equation of the mixture density ρ which is
∂tρ+∇ · (ρu) = 0. One can also introduce the mass fraction of the first fluid y = ρ1z

ρ in order to rewrite
the evolution equation of ρ1z1. Then, system (3) is expanded to:

∂tρ+∇ · (ρu) = 0,
∂t (ρy) +∇ · (ρyu) = 0,
∂t (ρu) +∇ · (ρu⊗ u) +∇p = 0,
∂t (ρe) +∇ · ((ρe+ p) u) = 0,
∂tz + u · ∇z = 0.

(6)

2. Numerical scheme

2.1. One-dimensional case
For the sake of simplicity, a one-dimensional problem is considered in this section. As in [GR96,

CGK16, KL10], the idea is to separate the acoustic and the transport phenomena according to their own
propagation speed. The five-equation system (6) is expanded to:

∂tρ+ ρ∂xu+ u∂xρ = 0,
∂t (ρy) + ρy∂xu+ u∂x(ρy) = 0,
∂t (ρu) + ρu∂xu+ ∂xp+ u∂x(ρu) = 0,
∂t (ρe) + ρe∂xu+ ∂x (pu) + u∂x(ρe) = 0,
∂tz + u∂xz = 0.

(7)

This system is split into the following two systems. The first system will be called the acoustic system
and only takes into account the propagation of the acoustic waves. It is given by

∂tρ+ ρ∂xu = 0,
∂t (ρy) + ρy∂xu = 0,
∂t (ρu) + ρu∂xu+ ∂xp = 0,
∂t (ρe) + ρe∂xu+ ∂x (pu) = 0,
∂tz = 0.

(8)

This system is hyperbolic and its propagation speeds are 0 and ±c.
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The second one will be designed as the transport system. It takes into account the propagation of
the material waves through the fluid and it is given by

∂tρ+ u∂xρ = 0,
∂t (ρy) + u∂x (ρy) = 0,
∂t (ρu) + u∂x (ρu) = 0,
∂t (ρe) + u∂x (ρe) = 0,
∂tz + u∂xz = 0.

(9)

The propagation speed is here u only.
The overall algorithm for a time step between tn and tn+1 reads:

Step 1: From a state (ρ, ρy, ρu, ρe, z)n, compute the approximation of the acoustic system (8) (ρ, ρy, ρu, ρe, z)n+1−.

Step 2: Find the fluid state (ρ, ρy, ρu, ρe, z)n+1 by solving the transport system (9) with the initial state
(ρ, ρy, ρu, ρe, z)n+1−.

This kind of algorithm has been already used in [FBC+11, KL10] in an explicit version for the five-
equation system and in [CGK16, CGK17] with an implicit treatment of the first step for the gas dynamic
and homogeneous models for two-phase flows.

The schemes for each step are described in the next sections, in which the following classical notations
are used. We consider a discretization of the space variable x with cells

(
[xi−1/2, xi+1/2]

)
i∈Z. The mesh

interfaces are xi+1/2 = i∆x for i ∈ Z, where ∆x > 0 is the grid step. The centre of the cell i is
xi = xi+1/2+xi−1/2

2 . The time variable is discretized by tn = n∆t for n ∈ N, where ∆t > 0 is the time
step. We use a finite-volume method, in which φni is the approximation of

1
∆x

∫ xi+1/2

xi−1/2

φ(x, tn)dx,

for any φ(x, t).

2.2. Acoustic step
First, the non-conservative system (8) is written differently. The second, third and fourth equations

are combined with the evolution equation of the mixture density. Then, the first equation is divided by
the mixture density. Finally, the acoustic system reads:

∂tϑ− ϑ∂xu = 0,
∂ty = 0,
∂tu+ ϑ∂xp = 0,
∂te+ ϑ∂x (pu) = 0,
∂tz = 0,

(10)

where ϑ = 1
ρ is the specific volume.

Although we are not interested in this particular form by itself, it will allow us to derive a numerical
scheme for the acoustic system (8) and a conservative global scheme for the five-equation system (7).
System (10) can be written in the compact form:

∂tV + ϑ∂xG (V ) = 0, (11)

with V = t(ϑ, y, u, e, z) and G = t(−u, 0, p, pu, 0). Note that this system is very similar to the one of the
Lagrangian gas dynamics.

This system is written in a non-conservative form, which makes it delicate to derive a suitable numer-
ical approximation. The definition of the non-conservative product ϑ∂xG(V ) will not be discussed here,
and we refer to [DMLFM95] for details.

This system is strictly hyperbolic and its five real eigenvalues are (λ1, λ2, λ3, λ4, λ5) = (−aϑ, 0, 0, 0, aϑ),
where a = ρc is the Lagrangian sound “speed”. The first and the fifth characteristic fields are genuinely
non-linear while the waves associated to λ2, λ3 and λ4 are linearly degenerate.
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A classical approach to solve conservative hyperbolic system is to use a Godunov-type scheme [HLL83].
More precisely, the notion of simple Riemann solver [Gal00, Gal03, Bou04] will be used here. A simple
Riemann solver W consists of (m+ 1) constant states (Vk)m+1

k=1 separated by m discontinuities.
In [Gal02], this notion is used to construct Godunov-type scheme for non-conservative systems like (11).

The solution obtained after one time step is given by:

V n+1
i = 1

∆x

∫ xi

x
i− 1

2

W

(
x− xi− 1

2

∆t
;V ni−1, V

n
i

)
dx+

∫ x
i+ 1

2

xi

W

(
x− xi+ 1

2

∆t
;V ni , V ni+1

)
dx

 . (12)

Numerical methods for hyperbolic non-conservative systems are also given by Parés [Par06]. Here, we
present a numerical scheme for the non-conservative system (11) in the framework defined by [Gal02]. Let
us denote by W (x/t;Vl, Vr) an approximation of the Riemann problem defined by (11) at each interface
between the left state Vl and the right state Vr. This self similar function is made of four states (see
Fig. 2) separated by discontinuities propagating at the velocities −ā−ϑl and ā+ϑr such as:

W (x/t;Vl, Vr) =


Vl if x/t ≤ −ā−ϑl,
V ∗l = Vl + φ−R− if − ā−ϑl < x/t ≤ 0,
V ∗r = Vr − φ+R+ if 0 < x/t ≤ ā+ϑr,

Vr if ā+ϑr < x/t,

(13)

where

R± = t(−1, 0,±ā±, p1−α ± uαā±, 0) ,

φ± =
∆p± ā∓∆u
ā−ā+ + ā2

±
,

with p1−α = (1 − α)pl + αpr, uα = αul + (1 − α)ur, and the coefficient α is defined below. As usual,
∆p = pr − pl and ∆u = ur − ul. One can see that the velocities of intermediate states u∗l and u∗r are
equal. Note that the pressure of the intermediates states p∗l = p(ρ∗l , ε∗l ) and p∗r = p(ρ∗r , ε∗r) are different.
The choice of the positive quantities ā− and ā+, which are the Riemann solver slopes, will be examined
in Section 2.5.

t

x

x
t = ā+ϑr

x
t = −ā−ϑl

V ∗
l =


ϑ∗l
y∗l
u∗l
e∗l
z∗l

 V ∗
r =


ϑ∗r
y∗r
u∗r
e∗r
z∗r



Vl =


ϑl

yl

ul

el

zl

 Vr =


ϑr

yr

ur

er

zr



Figure 2: The Riemann solver for system (11).

The simple Riemann solver (13) induces a Godunov-type scheme, and after some calculations, it is
easy to show that the numerical scheme (12) for the acoustic system (11) reads:

V n+1−
i = V ni −

∆t
∆x

ϑni

(
Hn
i+1/2 −H

n
i−1/2

)
, (14)

where the numerical “flux” Hn
i+1/2 = H

(
V ni , V

n
i+1
)
is defined below. The canonical choice α = ā−

ā−+ā+

gives a numerical flux equal to the continuous flux evaluated at an average state. Namely, it reads:

H (Vl, Vr) = t(−ū, 0, p̄, p̄ū, 0) , (15)

with
ū = ā−ul + ā+ur −∆p

ā− + ā+
and p̄ = ā+pl + ā−pr − ā−ā+∆u

ā− + ā+
. (16)
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One can see that the velocity ū used in the flux is equal to the velocity of the intermediate state of the
Riemann solver u∗l = u∗r . However, the pressure p̄ is different from p∗l and p∗r .

Remark 1. The Riemann solver (13) and the corresponding Godunov-type scheme (14) are natural
extensions for the non-conservative system (11) of the one obtained in [Gal03] for the conservative gas
dynamic system.

This scheme can be made implicit by taking the numerical flux at time tn+1−. Both implicit and
explicit schemes for the acoustic system (11) can be written as:

V n+1−
i = V ni −

∆t
∆x

ϑni

(
H#
i+1/2 −H

#
i−1/2

)
. (17)

In the explicit case, we have
H#
i+1/2 = Hn

i+1/2 = H
(
V ni , V

n
i+1
)
,

while in the implicit case
H#
i+1/2 = Hn+1−

i+1/2 = H
(
V n+1−
i , V n+1−

i+1
)
.

The explicit and implicit versions will be analysed in section 2.6 and 2.7.

Remark 2. We note that like in [CGK16], the non-conservative term ϑ is treated explicitly.

Finally, we obtain a numerical scheme for the Eulerian variables ρ, ρy, ρu, ρe and z of the acoustic
system (8) as follows. Since ρn+1−

i = 1
ϑn+1−
i

, the first equation of (17) gives the evolution of the density
during the acoustic step:

Liρ
n+1−
i = ρni , (18)

with Li = 1 + ∆t
∆x [[ū#]]i. Using (17), the update formulae for the Eulerian variables (ρy)n+1−

i =
ρn+1−
i yn+1−

i , (ρu)n+1−
i = ρn+1−

i un+1−
i and (ρe)n+1−

i = ρn+1−
i en+1−

i are given by:

Liρ
n+1−
i = ρni ,

Li (ρy)n+1−
i = (ρy)ni ,

Li (ρu)n+1−
i = (ρu)ni −

∆t
∆x

[[p̄#]]i,

Li (ρe)n+1−
i = (ρe)ni −

∆t
∆x

[[p̄#ū#]]i,

zn+1−
i = zni ,

(19)

with the notation [[ψ]]i = ψi+1/2 − ψi−1/2 for any quantity (ψ)i defined at the interfaces.

2.3. Transport step
The transport system (9) is an advection system of the unknown at the velocity u (the fluid velocity).

Therefore, it is simply approximated by a standard usual upwind scheme:

φn+1
i = φn+1−

i − ∆t
∆x

((
ũi+1/2

)− (
φn+1−
i+1 − φn+1−

i

)
+
(
ũi−1/2

)+ (
φn+1−
i − φn+1−

i−1
))
, (20)

where φ denotes ρ, ρy, ρu, ρe and z, with the classical notation u± = u±|u|
2 . The choice of the propagation

velocity of the transport step ũi+1/2 is defined below in order to ensure the conservation property of the
global scheme (see section 2.4).

Note that the stability condition associated with this transport step reads

∆t
∆x

max
i∈Z

(
ũ+
i−1/2 − ũ

−
i+1/2

)
< 1. (21)
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2.4. Conservation property of the overall scheme
In this section, the properties of the overall scheme defined by (17) and (20) are detailed. First, the

overall scheme is shown to be conservative if the same discrete interface velocity is used in both acoustic
and transport steps. We have the following

Proposition 1. The scheme resulting from the splitting strategy for the five-equation system is conser-
vative with respect to ρ, ρy, ρu, ρe if the velocity of the transport step is equal to the opposite of the first
component of the numerical flux H#

i+1/2 of the acoustic step, i.e. ũ = ū#. This is true regardless of the
explicit or implicit treatment of the acoustic step.

Proof. Let us rewrite the transport step (20) as a conservative component plus a non-conservative term
proportional to the discrete divergence of the velocity

φn+1
i =

(
1 + ∆t

∆x
[[ũ]]i

)
φn+1−
i − ∆t

∆x
[[ũφn+1−]]i,

where φn+1−
i+1/2 = φn+1−

i if ũi+1/2 > 0, and φn+1−
i+1 otherwise. We also denote by L̃i the quantity 1+ ∆t

∆x [[ũ]]i.
Combining this equation with the formula (19) for the acoustic step, we can see that the overall scheme
to compute the state at the time tn+1 from the state at tn reads:

ρn+1
i = L̃i

Li
ρni −

∆t
∆x

[[ũρn+1−]]i,

(ρy)n+1
i = L̃i

Li
(ρy)ni −

∆t
∆x

[[ũ(ρy)n+1−]]i,

(ρu)n+1
i = L̃i

Li
(ρu)ni −

∆t
∆x

(
[[ũ(ρu)n+1−]]i + L̃i

Li
[[p̄#]]i

)
,

(ρe)n+1
i = L̃i

Li
(ρe)ni −

∆t
∆x

(
[[ũ(ρe)n+1−]]i + L̃i

Li
[[p̄#ū#]]i

)
,

zn+1
i = zni −

∆t
∆x

[[ũzn]]i + zni
∆t
∆x

[[ũ]]i.

(22)

One can see that the overall scheme is conservative if we have L̃i = Li. This choice leads to define the
propagation velocity at an interface as the opposite of the first component of the numerical flux H#

i+1/2
of the acoustic scheme:

ũi+1/2 = ū#
i+1/2 =

ā−u
#
i + ā+u

#
i+1

ā− + ā+
−
p#
i+1 − p

#
i

ā− + ā+
. (23)

Finally, with the choice (23) for the propagation velocity, the global scheme for the full 1D system (7)
reads: 

ρn+1
i = ρni −

∆t
∆x

[[ū#ρn+1−]]i,

(ρy)n+1
i = (ρy)ni −

∆t
∆x

[[ū#(ρy)n+1−]]i,

(ρu)n+1
i = (ρu)ni −

∆t
∆x

[[ū#(ρu)n+1− + p̄#]]i,

(ρe)n+1
i = (ρe)ni −

∆t
∆x

[[ū#(ρe)n+1− + p̄#ū#]]i,

zn+1
i = zni −

∆t
∆x

[[ū#zn]]i + zni
∆t
∆x

[[ū#]]i.

(24)

where the quantities at time tn+1− are defined by (19) and # = n or n+ 1−.
The overall scheme is clearly conservative with respect to ρ, ρy, ρu, ρe regardless of the explicit or

implicit treatment of the acoustic step. Moreover, as in [KL10], it is easy to see that the scheme preserves
contact discontinuities, i.e. the evolution of constant pressure and velocity profiles.
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2.5. Choice of the Riemann solver slopes and conditions of positivity
In this section, the choice of the Riemann solver slopes is discussed. This choice is based on a criterion

of positivity of the solution. Indeed, some variables such as the density or the internal energy have to
be positive while the sound speed has to be real. In the case of a mixture of two stiffened gases, the
positivity of the internal energy can be directly deduced from the positivity of p+π. This leads to define
the notion of admissible solutions, where ϑ > 0 and p+ π > 0.

Proposition 2. For a mixture of two stiffened gases such that

(γ2 − γ1) (π2 − π1) ≥ 0, (25)

the sets of admissible solutions

AL =
{
t(ϑ, y, u, e, ϑz) |ϑ > 0 and p+ π > 0

}
AE =

{
t(ρ, ρy, ρu, ρe, z) |ρ > 0 and p+ π > 0

}
are convex.

The proof is given in Appendix A. Condition (25) is not restrictive in general, see for instance
[LMMS04, Shy04].

Under the CFL condition (21), the solution remains in the convex set of admissible solutions during
the transport step. Therefore, we only have to consider the positivity of the acoustic step. It is known
that in order to have a positive Godunov-type scheme, it is sufficient to prove that the intermediate states
are positive. Indeed, the solution after one time step is a convex combination of the intermediate states.
This might be not very clear for (ϑz), but if the equation of the volume fraction is combined with the
specific volume equation, we also have a convex combination. For the conservative gas dynamic system,
exact conditions of positivity are given in [Gal03].

Let us denote by r = ā+
ā−

the ratio between the slopes of the Riemann solver. The following result
gives exact conditions to guarantee that the intermediate states remain in the set of admissible solutions
in the explicit case.

Proposition 3. For a given r, we have the following exact positivity conditions:

ϑ∗l ≥ 0 if dl ≤ 0, or if dl > 0 and ā− ≥
− r∆u+

√
dl

2(1 + r)ϑl
,

ϑ∗r ≥ 0 if dr ≤ 0, or if dr > 0 and ā− ≥
−∆u+

√
dr

2r(1 + r)ϑr
,

(p+ π)∗l ≥ 0 if Dl ≤ 0, or if Dl > 0 and ā− ≥
r∆u(∆p+ Πl + 2r(1 + r)πl) +

√
Dl

4(1 + r)2ε̂l + 2r2(∆u)2
,

(p+ π)∗r ≥ 0 if Dr ≤ 0, or if Dr > 0 and ā− ≥
∆u(Πr − r∆p+ 2(1 + r)πr) +

√
Dr

4(1 + r)2ε̂r + 2r(∆u)2
,

(26)

where,

dl = r2(∆u)2 + 4ϑl(1 + r)∆p, dr = (∆u)2 − 4rϑr(1 + r)∆p,
Πl = 2(rpl + pr)−∆p, Πr = 2(rpl + pr) + r∆p,
ε̂l = εl − ϑlπl, ε̂r = εr − ϑrπr,
Dl = r2(∆u)2(∆p+ Πl + 2r(1 + r)πl)2 − 4∆p(Πl + 2(1 + r)πl)(2(1 + r)2ε̂l + r2(∆u)2),
Dr = (∆u)2(r∆p−Πr − 2(1 + r)πr)2 + 4∆p(Πr + 2(1 + r)πr)(2r(1 + r)2ε̂r + r(∆u)2).

Proof. By using the relations V ∗l = Vl + φ−R− and V ∗r = Vr − φ+R+, (see (13)), the positivity of ϑ
and p+ π translates into quadratic inequalities in ā− that lead to the conditions of the proposition. The
details of the calculations are given in Appendix B.

The above proposition gives, for a fixed r, the maximal value of the slope ā− denoted by C̄−(r) which
guarantees the positivity of the intermediate states. In practice, we can choose r0 = 1 or r0 = ρrcr

ρlcl
and

we take
ā− = kmax

(
C̄−(r0), ρlcl

)
, (27)

where k ≥ 1 is a constant. In general, we take k = 1.01. Then, the other Riemann solver slope is equal
to ā+ = r0ā−. With the choice r0 = ρrcr

ρlcl
, we directly get:

ā+ = kmax
(
r0C̄−(r0), ρrcr

)
. (28)
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2.6. Stability of the explicit acoustic step
The explicit update formulae for the Eulerian variables are directly given by (19) with the flux at time

tn. In this case, interface velocity and pressure (see (16)) are directly computed using the fluid state at
time tn:

ūni+1/2 =
ā−u

n
i + ā+u

n
i+1

ā− + ā+
−
pni+1 − pni
ā− + ā+

,

p̄ni+1/2 =
ā+p

n
i + ā−p

n
i+1

ā− + ā+
− ā−ā+

ā− + ā+

(
uni+1 − uni

)
.

(29)

The acoustic step is stable under the classical Courant-Friedrichs-Lewy stability condition, given by:

∆t
∆x

max
i∈Z

(
ā−i+1/2 + ā+

i−1/2

ρni

)
≤ 1. (30)

In the numerical results, we show that the choice of r0 = ρrcr
ρlcl

is a suitable choice in order to reduce
this CFL constraint.

2.7. Different versions of the implicit acoustic step
When the fluid velocity is low and the acoustic inside the fluid is not the main phenomena, the CFL

condition (30) of the acoustic part can be very restrictive. To overcome this difficulty, the idea is to use an
implicit scheme to compute the acoustic step in order to have large time steps which are not constrained
by the sound speed inside the fluid. Here, we propose several methods to derive an implicit scheme for
the acoustic system.

The first version of this implicit scheme is given by (17) with # = n+1− (we find it more convenient
than the equivalent formulation (19)). This leads to find the state V n+1− which is the zero of the
non-linear system

V − V n + ∆t
∆x

ϑn[[H]] = 0. (31)

Since the mass and volume fraction are not modified in the acoustic step, we will focus on the evolution
of the specific volume, the velocity and the energy in this section. Let us denote by V ϑue = t(ϑi, ui, ei)i
the vector of unknowns and [[H]]ϑue = t

(
−(ūi+1/2 − ūi−1/2), p̄i+1/2 − p̄i−1/2, p̄i+1/2ūi+1/2 − p̄i−1/2ūi−1/2

)
i

the jumps of the numerical flux.
To solve this non-linear system (31), the first idea is to use a Newton-Raphson method with the

classical unknowns V ϑue. Nevertheless, since the numerical flux depends on the velocity and the pressure,
it seems natural to consider the velocity and the pressure as unknowns. The choice for the third unknown
is not obvious. Indeed, the specific volume, the entropy or the temperature can be used. We denote by
X this third unknown. This leads to consider another set of unknowns W = t(ui, pi, Xi)i to solve the
non-linear system (31), which becomes F (W ) = 0. We also note that the non-conservative product can
be written as ϑn[[H]]ϑue = MW , where the tridiagonal matrix M is given by:

M =


. . 0
. . .

Ai Bi Ci

. . .
0 . .

 (32)

with

Ai = ϑni


(

ā−
ā−+ā+

)
i− 1

2

1
(ā−+ā+)

i− 1
2

0(
−ā−ā+
ā−+ā+

)
i− 1

2

(
−ā+
ā−+ā+

)
i− 1

2

0

A3,1
i A3,2

i 0

 ,

Bi = ϑni


(

ā+
ā−+ā+

)
i− 1

2

+
(
−ā−
ā−+ā+

)
i+ 1

2

(
−1

ā−+ā+

)
i− 1

2

+
(
−1

ā−+ā+

)
i+ 1

2

0(
ā−ā+
ā−+ā+

)
i− 1

2

+
(
ā−ā+
ā−+ā+

)
i+ 1

2

(
−ā−
ā−+ā+

)
i− 1

2

+
(

ā+
ā−+ā+

)
i+ 1

2

0

B3,1
i B3,2

i 0

 ,
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and

Ci = ϑni


(
−ā+
ā−+ā+

)
i+ 1

2

1
(ā−+ā+)

i+ 1
2

0(
−ā−ā+
ā−+ā+

)
i+ 1

2

(
ā−

ā−+ā+

)
i+ 1

2

0

C3,1
i C3,2

i 0

 .
The coefficients of the third line of each block are given in Appendix C.

To find the root of the non linear system (31) we use the Newton-Raphson method defined by:

∂F

∂W

(
W k+1 −W k

)
= −F (W k), (33)

where
∂F

∂W
= ∂V

∂W
+ ∆t

∆x

(
M + ∂M

∂W
W

)
. (34)

In the sequel, we denote by IMN this first implicit scheme for the acoustic step. However, the resolution
of the Newton-Raphson method can be expensive in term of CPU time. It can be more efficient to use an
approximation of the matrix ∂F

∂W (34). In the following, we propose two different approximations. The
first one is based on the following idea.

Since the numerical flux depends only on the velocity and the pressure, the idea is to solve a simpler
subsystem in order to find a prediction of those quantities. Then, the numerical flux will be computed.
This prediction is based on the following observation. For smooth solutions, i.e. without shock, we have
∂ts = 0 and the evolution equation of the specific volume can be replaced by an equation on the pressure.
In this case, we have the following velocity-pressure system:{

∂tp+ a2ϑ∂xu = 0
∂tu+ ϑ∂xp = 0

(35)

Since ∂ts = 0 we have s = s(x), the Lagrangian sound speed a = a(p, x) and the specific volume
ϑ = ϑ(p, x) depend only on (p, x). Thus, the pressure and the velocity can be computed with the (p, u)
system (35). Therefore, the idea is to solve the first and second equations of (31) with the Newton-
Raphson method to have a prediction of the numerical flux, while the third equation will be directly
solved in a non-linear form.

In order to do so, Newton’s method (33) is also used, and we consider the entropy as the third
unknown X of W . Let us reorder the vector of unknown W by separating the entropy from the velocity
and the pressure. We denote by Wup = t(ui, pi)i and by W s = t(si)i. We also introduce V ϑu = t(ϑi, ui)i
and the matrix Mϑu

up is defined by ϑn[[Hϑu]] = Mϑu
upW

up. Using these notations, one can express the
Newton-Raphson method (33) for the first and second lines of the non-linear system (F1, F2) = 0 as:[

∂V ϑu

∂Wup
+

∆t
∆x

(
Mϑu

up + ∂Mϑu
up

∂WupW
up

)
∂V ϑu

∂W s

](
Wupk+1 −Wupk

W sk+1 −W sk

)
= −F1,2

(
W k
)

First, let us make an approximation by fixing the value of the Riemann solver slopes at time tn. With
this assumption, the matrix Mϑu

up does not depend on W . If we consider that the entropy variations are
small, the term W sk+1 −W sk can be neglected. In this case, Newton’s method for the velocity-pressure
subsystem reads: (

∂V ϑu

∂Wup
+ ∆t

∆x
Mϑu

up

)(
Wupk+1

−Wupk
)

= −F1,2
(
W k
)
.

Or equivalently,(
Id + ∆t

∆x
M̃
)(

Wupk+1
−Wupk

)
= −∂W

upk

∂V ϑu

(
V ϑu

k

− V ϑu
n
)
− ∆t

∆x
M̃Wupk

where ∂Wup

∂V ϑu
is a matrix defined by:

∂Wup

∂V ϑu i
=
[

0 1
−a2

i 0

]
.
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Note that the matrix ∂Wup

∂V ϑu
depends only on the sound speed. The matrix M̃ has the same structure as

the matrix M, see (32), but with

Ãi = ϑni


(
−ā−ā+
ā−+ā+

)
i− 1

2

(
−ā+
ā−+ā+

)
i− 1

2

a2
i

(
−ā−
ā−+ā+

)
i− 1

2

−a2
i

(ā−+ā+)
i− 1

2

 ,

B̃i = ϑni


(
ā−ā+
ā−+ā+

)
i− 1

2

+
(
ā−ā+
ā−+ā+

)
i+ 1

2

(
−ā−
ā−+ā+

)
i− 1

2

+
(

ā+
ā−+ā+

)
i+ 1

2

a2
i

((
−ā+
ā−+ā+

)
i− 1

2

+
(

ā−
ā−+ā+

)
i+ 1

2

)
a2
i

(ā−+ā+)
i− 1

2

+ a2
i

(ā−+ā+)
i+ 1

2

 ,
and

C̃i = ϑni


(
−ā−ā+
ā−+ā+

)
i+ 1

2

(
ā−

ā−+ā+

)
i+ 1

2

a2
i

(
ā+

ā−+ā+

)
i+ 1

2

−a2
i

(ā−+ā+)
i+ 1

2

 ,
where we remind that the values of the Riemann solver slopes are frozen at time tn. Since we are looking
for a prediction of the numerical flux, the Lagrangian sound speed ai is also frozen at time tn, and we
only consider the first iteration of the Newton-Raphson method. Namely, we have:(

Id + ∆t
∆x

M̃
)
Wupn+1−

= Wupn (36)

Solving this linear system, we find a new velocity and pressure. With this pressure prediction, the
numerical flux Hn+1− of the acoustic step can be computed by using (15). Then, the values of ϑn+1−

and en+1− can be updated by using the formulae (17). As well as in the explicit scheme, the volume and
mass fractions are not modified by the implicit scheme for the acoustic step. Once all the conservative
variables are computed at the end of the step, the real pressure is determined by using the equation
of state. This second approach to derive an implicit scheme for the acoustic step, denoted by IM1, is
summarized in the following algorithm:

Algorithm 1 Implicit scheme for the acoustic step: IM1

• compute the Riemann solver slopes,

• solve the linear system (36),

• compute the numerical flux Hn+1− with the new velocity and pressure,

• update the specific volume and the energy with (17),

• compute the real pressure with the equation of state.

Remark 3. Solving the linear system (36) is consistent with the velocity-pressure system (35) for smooth
solutions.

Finally, a third version of the implicit scheme can be obtained if one iterates over the algorithm 1. In
this case, when the convergence is reached, the Lagrangian sound speed and the Riemann solver slopes
are at time tn+1−. Nonetheless, the prediction of the pressure obtained at convergence is not equal to
the pressure computed with the equation of state. Hence, the solution of this third algorithm, denoted
by IM2, is not equivalent to the solution of the non-linear system.

Remark 4. When the Riemann solver slopes are equal, we recover with the implicit scheme IM1 the
scheme derived in [CGK16] with a Suliciu-type relaxation method.

Remark 5. When an implicit scheme is used in the acoustic step, the CFL condition (21) for the transport
step becomes implicit. In this case, one has to check a posteriori if the condition (21) is satisfied with
the new velocity ūi+1/2. If not, a smaller time step is used and the acoustic step is computed once again.
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Figure 3: Parameters of a cell in two dimensions.

2.8. Extension to two dimensions
Without loss of generality, a two dimensional problem discretized over a structured mesh is considered.

Let us denote by Ωl,m a cell of our mesh, Γl+1/2,m (resp. Γl,m+1/2) the face of the cell Ωl,m toward the
first direction of the mesh (resp. the second one) and nl+1/2,m (resp. nl,m+1/2) the unit vector normal
to Γl+1/2,m (resp. Γl,m+1/2), see Fig. 3.

System (3) is again split into two parts. The first part is the acoustic step:

∂tρ+ ρ∇ · u = 0,
∂t (ρy) + ρy∇ · u = 0,
∂t (ρu) + ρu∇ · u +∇p = 0,
∂t (ρe) + ρe∇ · u +∇ · (pu) = 0,
∂tz = 0.

(37)

Like in the one-dimensional case, the following form is used to derive a numerical scheme for the acoustic
step. 

∂tϑ− ϑ∇ · u = 0,
∂ty = 0,
∂tu + ϑ∇p = 0,
∂te+ ϑ∇ · (pu) = 0,
∂tz = 0.

(38)

The second system is the transport step:

∂tρ+ u · ∇ρ = 0,
∂t (ρy) + u · ∇ (ρy) = 0,
∂t (ρu) + u · ∇ (ρu) = 0,
∂t (ρe) + u · ∇ (ρe) = 0,
∂tz + u · ∇z = 0.

(39)

Let us introduce the following notations. The volume of a cell Ωl,m is denoted by |Ωl,m|. Likewise,
the length of a face Γl+1/2,m is denoted by

∣∣Γl+1/2,m
∣∣. We denote by Fl,m the set of indices f of the faces

of a cell Ωl,m. Namely, in this two-dimensional structured framework,

Fl,m = {(l + 1/2,m), (l − 1/2,m), (l,m+ 1/2), (l,m− 1/2)} .

Acoustic step:
Like in the one-dimensional case, the numerical scheme for the acoustic step reads:

V n+1−
l,m = V nl,m −

∆t
ρnl,m |Ωl,m|

∑
f∈Fl,m

|Γf |H#
f (40)
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where V = t(ϑ, y,u, e, z) and Hf = t(−ūf , 0, p̄fnf , p̄f ūf , 0). The pressure and normal velocity on a face
Γl+1/2,m are given by:

ūl+1/2,m =
ā−,l+1/2,mul,m + ā+,l+1/2,mul+1,m

ā−,l+1/2,m + ā+,l+1/2,m
· nl+1/2,m −

pl+1,m − pl,m
ā−,l+1/2,m + ā+,l+1/2,m

,

p̄l+1/2,m =
ā+,l+1/2,mpl,m + ā−,l+1/2,mpl+1,m

ā−,l+1/2,m + ā+,l+1/2,m
−

ā−,l+1/2,mā+,l+1/2,m

ā−,l+1/2,m + ā+,l+1/2,m
(ul+1,m − ul,m) · nl+1/2,m.

where the slopes are computed using (27) and (28) at each cell interface. The non-linear system induced
by the implicit scheme for the acoustic step can be solved like in the one-dimensional case, (see section 2.7).

Transport step:
We use an upwind finite volume scheme to solve the transport system like in the one-dimensional case.
For φ ∈ {ρ, ρ1z, ρu, ρe, z}, the transport step reads:

φn+1
l,m = φn+1−

l,m − ∆t
|Ωl,m|

[(
ūl+1/2,m

)− ∣∣Γl+1/2,m
∣∣ (φn+1−

l+1,m − φ
n+1−
l,m

)
+(

ūl−1/2,m
)+ ∣∣Γl−1/2,m

∣∣ (φn+1−
l,m − φn+1−

l−1,m

)
+(

ūl,m+1/2
)− ∣∣Γl,m+1/2

∣∣ (φn+1−
l,m+1 − φ

n+1−
l,m

)
+(

ūl,m−1/2
)+ ∣∣Γl,m−1/2

∣∣ (φn+1−
l,m − φn+1−

l,m−1

)
] .

(41)

Overall scheme:
Like in the one-dimensional case, the acoustic velocity is used in the transport step. This choice also en-
sures that the overall scheme is conservative in 2d. Indeed, the global scheme resulting from the splitting
strategy reads: 

ρn+1
l,m = ρnl,m −

∆t
|Ωl,m|

∑
f∈Fl,m

|Γf | ū#
f ρ

n+1−
f ,

(ρy)n+1
l,m = (ρy)nl,m −

∆t
|Ωl,m|

∑
f∈Fl,m

|Γf | ū#
f (ρy)n+1−

f ,

(ρu)n+1
l,m = (ρu)nl,m −

∆t
|Ωl,m|

∑
f∈Fl,m

|Γf |
(
ū#
f (ρu)n+1−

f + p̄#
f nf

)
,

(ρe)n+1
l,m = (ρe)nl,m −

∆t
|Ωl,m|

∑
f∈Fl,m

|Γf |
(
ū#
f (ρe)n+1−

f + p̄#
f ū

#
f

)
,

zn+1
l,m = znl,m −

∆t
|Ωl,m|

∑
f∈Fl,m

|Γf | ū#
f z

n
f + znl,m

∆t
|Ωl,m|

∑
f∈Fl,m

|Γf | ū#
f .

(42)

The scheme is clearly conservative for the densities, the momentum and the total energy equations.

3. Numerical results

In this section we present numerical results for one and two-dimensional cases by using the splitting
strategy presented before. In the sequel we denote by EXEX the explicit scheme for both acoustic
and transport parts with the same Riemann solver slopes ā− = ā+, while IMEX is the implicit-explicit
splitting scheme. We denote by EXEX(r6=1) the explicit-explicit scheme where the slopes of the Riemann
solver are different. In this case, the ratio between the slopes of the Riemann solver is equal to r0 = ρrcr

ρlcl
.

The results obtained with the schemes proposed in this paper are compared with the ones obtained by
using a classical Roe-type scheme [ACK02]. The explicit (unsplit) Roe-type scheme is denoted by EX in
the sequel. Its implicit formulation is denoted by IM.

3.1. Comparison of implicit schemes for the acoustic step
We compare the different implicit schemes presented in section 2.7 by using classical shock tube tests.

These test cases are characterized by a [0, 1]m domain filled by two perfect gases. Initially, the interface
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Case ρl (kg.m−3) ul (m.s−1) pl (Pa) γl ρr (kg.m−3) ur (m.s−1) pr (Pa) γr Tend (s)
1 1 0 1 1.4 0.125 0 0.1 1.6 0.1
2 1 0 105 1.4 0.125 0 0.1 1.6 3.10−4

3 12.5 0 105 1.4 0.125 0 0.1 1.6 1.10−3

Table 1: Comparison of implicit schemes for the acoustic step: Initial data

between the two fluids is located at 0.5m. The initial conditions are defined in table 1. In the first test
case, the pressure and density ratios between the two gases are small. In the second test, the pressure
ratio is equal to 106. Finally, the third case yields a density ratio of 100 and a pressure ratio of 106.

The time step is only driven by the stability condition of the transport step (21) with CFL number
0.5. In the results presented below, the third unknown X of the implicit scheme IMN is the entropy.

The first shock tube test case is computed on a 300 cells mesh. One can see in Fig. 4 that all the
time-implicit schemes for the acoustic step give the same result relatively close to the exact solution for
this first test case. Indeed, the shock velocity is well computed and the pressure remains constant through
the contact discontinuity.
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Figure 4: Comparison of implicit schemes for the acoustic step: first case.

When the pressure ratio is large, namely for the second test case, the implicit scheme IMN based on
the Newton Raphson method fails before the final time is reached. Nonetheless, the other approaches
IM1 and IM2 show a good agreement with the exact solution, see Fig. 5. The computation has been done
on 500 cells. The results of a mesh convergence for the IM1 scheme are given in Fig. 7(a). With a 1000
cells mesh, the right value of the density plateau is computed with the implicit scheme.
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Figure 5: Comparison of implicit schemes for the acoustic step: second case.

A 1000 cells mesh is used for the third test case. When large ratios of pressure and density are
involved, the iterative approach for the implicit schemes IMN and IM2 does not work. In this case,
only the IM1 implicit scheme gives a numerical solution, see Fig. 6. We note that the scheme, which is
conservative, does not give a correct shock speed for this mesh. However, with a refined mesh, the results
are more accurate, see Fig. 7(b). We would like to emphasize that this is a very challenging test case
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which involves large ratios of density and pressure. In addition, the numerical scheme proposed here is a
first order scheme. Note that the implicit unsplit scheme stops after some time for this test case.
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Figure 6: Comparison of implicit schemes for the acoustic step: third case.

Since we are interested in computations involving large density and pressure ratios, we use the most
robust approach and the simplest one, namely the implicit scheme denoted by IM1.
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Figure 7: Comparison of implicit schemes for the acoustic step: mesh convergence for the density profiles.

3.2. Shock tube test
We consider here a classical one-dimensional shock tube problem between water and air. The stiffened

gas equation of state is used for the liquid while the air is modelled by a perfect gas. At the initial time,
the interface between the two fluids at rest is at x = 0.7m. Initial characteristics of water and air are{

(ρ, p, u, γ, π) =
(
1000 kg.m−3, 109 Pa, 0 m.s−1, 4.4, 6× 108 Pa

)
for 0m ≤ x < 0.7m,

(ρ, p, u, γ, π) =
(
50 kg.m−3, 105 Pa, 0 m.s−1, 1.4, 0 Pa

)
for 0.7m ≤ x ≤ 1m.

We note that the hypothesis (25) of the proposition 2 is satisfied. This ensures that the admissible domain
is convex and that the scheme is positive.

The computational domain is discretised over a 1000 cells mesh and boundary conditions are constant
states on both sides. For the implicit-explicit scheme, the time step is driven by the condition (21) with
a Courant number of 0.9. For the EXEX scheme, the time step is determined by the conditions (30) and
(21), also with a CFL number of 0.9. Fig. 8 shows results of our simulation and the exact solution of the
Riemann problem after t = 240 µs.
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Figure 8: Shock tube test between two stiffened gases: exact solution and numerical results for the splitting strategy. The
pressure profile is plotted in log-scale.

One can see that the gradient of pressure between the two fluids creates a shock wave that propagates
inside the gas. There is also an expansion wave starting from the contact discontinuity and moving
through the liquid. There is a good agreement between the numerical and the exact solutions despite the
numerical diffusion of our first order solver. The density profile shows that the contact discontinuity and
the shock wave are distinct.

We use a classical Roe-type numerical scheme as a comparison. A stability condition of 0.9 is also
used for the explicit version, while the times steps of IM Roe scheme are in the same order of magnitude
than the one of the implicit-explicit scheme. There is a good agreement between the explicit versions EX
and EXEX and the implicit versions.

Mesh convergence. Convergence rate of the splitting strategy scheme is obtained by computing the rel-
ative error between the numerical and the exact solutions with L1 norm for several space steps. For
φ ∈ {ρ, u, z, p}, the relative error is given by EL1(φ) = ‖φ− φexact‖L1 / ‖φexact‖L1 , where φexact is the
exact solution after t = 240 µs. Fig. 9 gives the relative error in log-log scale as a function of the space
step for the quantities ρ, u, z and p. Convergence rates, gathered in Table 2, are simply obtained by a
linear regression.

One can see that the convergence rates for the explicit scheme and the implicit-explicit scheme are
quite similar. Results for the explicit scheme show a good agreement with classical results for shock tube
test, see [KL10, FBC+11].
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Figure 9: Relative error for the shock tube test. (Log-log scale)

Variable Convergence rate, EXEX Convergence rate, IMEX
Density ρ 0.603 0.657
Velocity u 0.883 0.795
Volume fraction z 0.494 0.507
Pressure p 0.810 0.747

Table 2: Shock tube test: convergence rate for density, velocity, volume fraction and pressure in L1 norm.

3.3. One-dimensional convection of a droplet
In our third test case, the convection of a liquid droplet inside a one dimensional domain filled with a

gas is considered as in [CFA01]. The physical domain Ω = [0, 1]m is plotted in Fig. 10. Initially, the liquid
is set between x > 0.4m and x < 0.6m with a density ρl = 1000 kg.m−3 and a velocity u = 100 m.s−1.
The gas has no initial velocity and its density is ρg = 1 kg.m−3. Both fluids are at the atmospheric
pressure p = 105 Pa. The equation of state used for the liquid is the stiffened gas model with γ = 4.4
and π = 6 × 108 Pa, while the gas is modelled by a perfect gas EOS where γ = 1.4. Once again, the
hypothesis of prop. 2 is fulfilled.

Constant boundary conditions are applied on both sides and 1000 cells are used for the computation.
The CFL number for this test case is 0.5, and all the results are plotted after 7.5 × 10−4 seconds in
figure 11.
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Figure 10: Convection of a droplet in one dimension: geometry.
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Figure 11: Convection of a droplet: Pressure, velocity, density and volume fraction profiles at t = 7.5× 10−4 s.

During the simulation, the liquid travels to the right of the domain which leads to the compression of
the gas in the right side and dilatation in the other side. Our results show good agreements with [CFA01]
for density and velocity profiles and the interface position.

The profile of pressure inside the liquid is different for the explicit and semi-implicit scheme. With
the implicit treatment of the acoustic waves, we recover the linear pressure profile of the incompressible
solution inside the droplet. In the explicit case, we get the same results when the Riemann solver slopes
are equal or not.

The number of time steps and the CPU time for explicit and implicit computations are given in
table 3. With the implicit-explicit scheme, the number of iterations is divided by 145 as compared to the
EXEX scheme and the CPU time is divided by 24. The explicit scheme with different slopes is only five
times slower than the implicit one but does not give the incompressible pressure inside the liquid. As
already mentioned above, the pressure profile is the same as the one obtained with equal slopes.

EXEX EXEX(r6=1) IMEX
Number of time steps 43 568 4875 300
CPU time (s) 60.07 11.70 2.49

Table 3: Convection of a droplet: Number of time steps and CPU time for different schemes.
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3.4. Two-dimensional liquid-gas interaction
Now, we consider the two dimensional case of the interaction between a bubble of gas and a shock in a

liquid studied in [SA99, KL10]. The computational domain Ω = [0, 2]m × [0, 1]m is described in Fig. 12.
The gas is contained in a bubble of radius 0.4m located at the position (0.5m, 0.5m). The shock area is
delimited by x < 0.04m. Initial conditions are provided in Table 4.

liquid

gas

liquid (shock)

Figure 12: Two-dimensional liquid-gas interaction: geometry of the test case.

Density (kg.m−3) Pressure (Pa) Velocity (m.s−1) γ π (Pa)
Liquid (shock) 1030.9 3× 109 (300, 0) 4.4 6.8× 108

Liquid 1000. 105 (0, 0) 4.4 6.8× 108

Gas 1. 105 (0, 0) 1.4 0

Table 4: Two-dimensional liquid-gas interaction: initial data.

We use a 600× 300 space grid for our numerical computation. Wall boundary conditions are imposed
on the upper and lower sides, and inflow/outflow boundary conditions on the other sides. For the explicit
scheme, the time step is driven by the stability condition of the acoustic step (30) and the transport
step (21) with a Courant number of 0.5. For the IMEX scheme, the time step is determined by the
condition (21), also with a CFL number of 1/2.

The mixture density and the volume fraction of the liquid are plotted at several times in figures 13
and 14.

(a) 0 s (b) 125 µs (c) 375 µs (d) 500 µs (e) 600 µs

Figure 13: Two-dimensional liquid-gas interaction: volume fraction field at several time, EXEX scheme.

(a) 0 s (b) 125 µs (c) 375 µs (d) 500 µs (e) 600 µs

Figure 14: Two-dimensional liquid-gas interaction: volume fraction field at several time, IMEX scheme.

(a) 0 s (b) 125 µs (c) 375 µs (d) 500 µs (e) 600 µs

Figure 15: Two-dimensional liquid-gas interaction: volume fraction field at several time, EX scheme.
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The volume fraction field is similar to the results presented in [SA99] or [KL10]. We also compare
this test case with the direct formulation. The explicit Roe-type scheme is not robust enough for this
stiff problem: the code stops after some time. Instead, we use a Godunov-type scheme based on a simple
Riemann solver with 2 intermediate states [Lat13]. The results of the unsplit explicit version are given
in Fig. 15. There is an excellent agreement between the explicit and semi-implicit version of the scheme
presented in the paper and the direct explicit formulation. The implicit version of the unsplit scheme
fails because of the stiffness of the problem. This shows the robustness of the IMEX scheme despite the
large density and pressure ratios of the initial conditions.

The numerical Schlieren images are presented in Figs. 16, 17 and 18. They are computed as in
[QK96]. The propagation waves are very similar between the explicit scheme and the implicit-explicit
scheme. When we compare the direct scheme with the splitting formulation, we can see that the splitting
strategy is a bit more diffusive than the direct approach.

(a) 125 µs (b) 375 µs (c) 500 µs (d) 600 µs

Figure 16: Two-dimensional liquid-gas interaction: Schlieren images, EXEX scheme.

(a) 125 µs (b) 375 µs (c) 500 µs (d) 600 µs

Figure 17: Two-dimensional liquid-gas interaction: Schlieren images, IMEX scheme.

(a) 125 µs (b) 375 µs (c) 500 µs (d) 600 µs

Figure 18: Two-dimensional liquid-gas interaction: Schlieren images, EX scheme.

EXEX EXEX(r6=1) IMEX
Number of time steps 705 251 16 490 1 589
CPU time (s) 7 756.57 348.11 229.38

Table 5: Two-dimensional liquid-gas interaction: number of time steps and CPU time.

For this simulation, our scheme has been implemented in a parallel code. The measure of CPU time
and number of iterations for a computation on 8 processors are given in Tab. 5. We can see that the
implicit scheme is 34 times faster than the explicit one with the same slopes for the Riemann solver,
since the implicit time step does not depend on the (fast) acoustic waves. When the slopes are different,
the constraint on the acoustic time step is smaller. In this case, the explicit scheme is only 1.5 times as
expensive as the implicit scheme in terms of computational time.

3.5. Low Mach test case
Our last test case is a two-phase flow in low Mach conditions. In this regime, Godunov-type schemes

are not accurate and a low Mach correction is needed. Here, we use the low Mach correction based on a
modification of the pressure flux presented in [CGK16], see Appendix D for details. The idea with this
test case is to compute a stationary solution and to use a low Mach correction with our scheme.
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This last test case is an extension of the monophasic test studied in [Del10]. We consider a channel
with a bump defined by

y(x) =

{
0.1 (1− cos ((x− 1)π)) if x ∈ [1, 3]m,
0 otherwise.

The computational domain is included in Ω = [0, 4]m × [0, 1]m. A mixture of two perfect gases where
γ1 = 1.4 and γ2 = 1.6 is considered. Note that the five-equation model is not justified in this case which
involves a mixture of two fluids. Kapila et al. model will be better for this test case. Nevertheless,
the challenges here are to recover the quasi incompressible solution with a low Mach correction and to
compute faster a stationary solution with the implicit-explicit scheme. The fluid at the infinity is defined
by the pressure p∞ = 105 Pa, the densities ρ∞ = ρ1,∞ = ρ2,∞ = 14.8 kg.m−3 and the velocity (u∞, 0)
such that the Mach number Ma= u∞√

γ p∞ρ∞
is equal to 10−2. Considering the values of the state at infinity

we have the relation u∞ = 1 m.s−1.
On the entrance of the channel, x = 0m, a subsonic inflow boundary condition is enforced. Velocity

and mixture density are taken at infinity values (u∞, ρ∞). Pressure is computed with the characteristic
equation. The boundary condition on x = 4m is defined by p = p∞, while velocity is given by the other
characteristic equation. Other boundary conditions for the upper and lower side of the domain are wall
boundary conditions. The initial state is given by (ρ, u, p) = (ρ∞, u∞, p∞).

Like in [Del10], computations are done on a 40 by 10 structured grid. A criteria based on the relative
error of the conservative variables is used in order to get the stationary solution. All the results presented
in this section are computed with the implicit-explicit scheme.

Without the low Mach correction, the incompressible solution is not captured by the numerical sim-
ulation as shown in Fig. 19. Note that the normalized pressure is defined as p−p∞

p∞
. In Fig. 20, one can

see that the numerical simulation converges to a steady state but Fig. 19 shows that this steady state is
not the correct solution.

The low Mach correction presented in [CGK16] can be immediately applied to our diphasic scheme.
With this correction, one can see in Fig. 21 that the isovalues of the Mach number and the normalized
pressure are close to the incompressible solution. Indeed, fluctuations of the pressure are of order Ma−2

and quasi symmetrical.

(a) Isovalues of Mach number (b) Isovalues of normalized pressure

Figure 19: Isovalues of Mach number and normalized pressure, without low Mach correction, Ma=10−2.
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Figure 20: Convergence of the residuals, without low Mach correction, Ma=10−2.
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(a) Isovalues of Mach number (b) Isovalues of normalized pressure

Figure 21: Isovalues of Mach number and normalized pressure, low Mach correction, Ma=10−2.

Figure 22 indicates that the more refined the mesh is, the more symmetrical the results are. Without
the low Mach correction, the numerical scheme is not able to recover the incompressible solution even on
refined meshes.

Figure 22: Isovalues of Mach number, low Mach correction, Ma=10−2, meshes 80× 20 and 160× 40

In this low Mach situation, the time step condition based on the acoustic waves is very restrictive.
Here the implicit strategy for the acoustic part is 35 times cheaper in term of CPU time than the explicit
simulation, see Tab. 6. The EXEX(r 6=1) scheme gives the same results than the EXEX scheme since
the ratio of the Lagrangian sound speed between two cells is small or in the same order of magnitude.

EXEX IMEX
Number of time steps 222 476 574
CPU time (s) 85.67 2.39

Table 6: Number of time steps and CPU time

A comparison with the direct Roe-type scheme is also performed. We use the implicit version of the
unsplit scheme with different Low Mach preconditioning. Namely, the low Mach corrections of Rieper
[Rie11], Dellacherie [Del10], Thornber et al. [TMD+08] are compared. The CFL number of the direct
approach is 500. There is a good agreement between the isovalues of the normalized pressure, see Fig. 23.
However, in terms of number of time steps, the direct formulations are more expensive to find the steady
state (more than 1600 iterations) than the implicit-explicit scheme presented in the paper. We do not
compare the computational time since the two solvers are not implemented in the same code. Note that
an iterative process is used for the classical implicit scheme, whereas the IMEX scheme is computed with
only one matrix inversion.

(a) Correction of Rieper (Rie11) (b) Correction of Dellacherie (Del10) (c) Correction of Thornber et al.
(TMD+08)

Figure 23: Isovalues of normalized pressure with different low Mach corrections, unsplit formulation, Ma=10−2.

4. Conclusion

In this work, an extension of the operator splitting strategy [CGK16, CGK17] to two-phase flows
using the five-equation model [ACK02, MSNA02] has been presented. This strategy separates acoustic
and transport phenomena. The acoustic step is solved in a non-conservative form using a Godunov-
type scheme based on a simple Riemann solver. The Riemann solver slopes are computed using exact
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positivity conditions for the solution. The implicit treatment of the acoustic step allows large time steps
that are based on the material waves velocity. The overall scheme resulting from the splitting strategy
is shown to be conservative thanks to a proper tuning of the advection velocity. The robustness of the
scheme is illustrated by the numerical simulations involving large ratios of density and pressure and
the comparison with a classical unsplit scheme. Several versions of the implicit scheme for the splitting
strategy are derived and compared. The simplest version is the most robust and only one matrix inversion
is needed to compute a time step. The semi-implicit scheme has been shown to be more efficient in terms
of CPU time compared to the explicit splitting scheme. When large density ratios are involved, the
explicit scheme can be made more efficient with a suitable choice for the ratio between the Riemann
solver slopes that greatly reduces the CFL constraint.

In the future, higher order methods will be considered. An extension to Navier-Stokes equations is
already in progress to handle viscosity effects and heat transfers.

Appendix A. Proof of Proposition 2

The aim of this appendix is to prove the convexity of the set of admissible solutions AL for a mixture
of two stiffened gases such that (γ2 − γ1) (π2 − π1) ≥ 0. The proof for AE is similar.

Proof. Let Va = t(ϑ, y, u, e, ϑz)a and Vb = t(ϑ, y, u, e, ϑz)b be two admissible solutions. We show that for
all positive α and β such that α+ β = 1, the convex combination αVa + βVb is also in AL.

In the sequel, we denote by V = αVa+βVb the convex combination. The subscript .a (resp. .b), refers
to the admissible solution Va (resp. Vb).

Positivity of ϑ
By definition of V , we have

ϑ = αϑa + βϑb.

Since Va and Vb are admissible solutions, ϑa and ϑb are positive. Hence, the specific volume ϑ is positive.

Positivity of p+ π

For a mixture of stiffened gases, the pressure is given by

p = (γ − 1)ρε− γπ.

Since the mixture coefficient γ is greater than one, the condition p+ π ≥ 0 is equivalent to

ρε ≥ π. (A.1)

Let ξi = 1
γi−1 and ωi = γiπi

γi−1 for each phase i = 1, 2. We denote by ξ = 1
γ−1 =

∑2
i=1 ziξi and

ω = γπ
γ−1 =

∑2
i=1 ziωi the mixture parameters. With these notations, we have π = ω

1+ξ .
Before going any further, let us note that

ϑ(V )ω(V ) =
2∑
i=1

ϑ(V )zi(V )ωi,

= α

2∑
i=1

ϑ(Va)zi(Va)ωi + β

2∑
i=1

ϑ(Vb)zi(Vb)ωi,

= αϑaω (Va) + βϑbω (Vb) .

The same relation holds for ϑξ:

ϑ(V )ξ(V ) = αϑaξ (Va) + βϑbξ (Vb) .

Now, we want to prove the following inequality:

αεa + βεb ≥ ϑπ.

Since Va and Vb are admissible solutions, we have εa,b ≥ ϑa,bπa,b. Thus, if

α
ϑaωa
1 + ξa

+ β
ϑbωb
1 + ξb

≥ ϑω

1 + ξ
, (A.2)
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then p+ π ≥ 0. After some manipulations, (A.2) reduces to

αβϑaϑb
(αϑa(1 + ξa) + βϑb(1 + ξb))

(ξb − ξa)
(

ωa
1 + ξa

− ωb
1 + ξb

)
≥ 0. (A.3)

Since the first term of (A.3) is already positive, let us rewrite the last terms.

• First, we have
ξa,b = za,bξ1 + (1− za,b)ξ2.

Hence the term ξb − ξa becomes

ξb − ξa = (zb − za)(ξ1 − ξ2)

= zb − za
(γ1 − 1)(γ2 − 1)

(γ2 − γ1).

• The last term of (A.3) can be rewritten as

ωa
1 + ξa

− ωb
1 + ξb

= ωa − ωb + ξbωa − ξaωb
(1 + ξa)(1 + ξb)

,

where
ωa − ωb = (zb − za)(ω2 − ω1),

ξbωa − ξaωb = (zb − za)(ξ1ω2 − ξ2ω1).

Therefore,

ωa
1 + ξa

− ωb
1 + ξb

= zb − za
(1 + ξa)(1 + ξb)

(ω2(1 + ξ1)− ω1(1 + ξ2))

= (zb − za)(1 + ξ1)(1 + ξ2)
(1 + ξa)(1 + ξb)

(π2 − π1).

Finally, (A.3) is expressed as

αβϑaϑb
(αϑa(1 + ξa) + βϑb(1 + ξb))

(zb − za)2(1 + ξ1)(1 + ξ2)
(γ1 − 1)(γ2 − 1)(1 + ξa)(1 + ξb)︸ ︷︷ ︸
≥0

(γ2 − γ1)(π2 − π1) ≥ 0.

This proves that p+ π is positive under the assumption (γ2 − γ1)(π2 − π1) ≥ 0.
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Appendix B. Proof of positivity conditions

This appendix gives the details of the calculations to find the positivity conditions of proposition 3.

Proof. By using the relation V ∗l = Vl + φ−R−, we get

ϑ∗l = ϑl −
∆p− rā−∆u
ā2
−(1 + r)

,

y∗l = yl,

u∗l = ul −
∆p− rā−∆u
ā−(1 + r)

,

e∗l = el +
∆p− rā−∆u
ā2
−(1 + r)

(p1−α − uαā−),

z∗l = zl.

(B.1)

where r = ā+
ā−

and α = ā−
ā−+ā+

.

Positivity of the specific volume
The first relation leads directly to the second order equation

(1 + r)ā2
−ϑ
∗
l = (1 + r)ϑlā2

− + r∆uā− −∆p. (B.2)

Since the slopes and the specific volume ϑl are positive, if the discriminant dl of the second order equation
is positive, the specific volume of the intermediate state ϑ∗l will be positive without any condition on the

slope ā−. If the discriminant is negative, ϑ∗l will be positive if ā− ≥
− r∆u+

√
dl

2(1 + r)ϑl
.

Positivity of the internal energy
By using the relations on the velocity and the total energy of the intermediate state, we get

ā2
−ε
∗
l = ā2

−εl +
(rā−∆u−∆p)(rā−∆u−Πl)

2(1 + r)2
, (B.3)

or equivalently

2(1 + r)2ā2
−ε
∗
l =

(
2 (1 + r)2 εl + r2 (∆u)2

)
ā2
− − (r∆u (∆p+ Πl)) ā− + ∆pΠl. (B.4)

With the same considerations, exact positivity conditions for the internal energy can be derived.

Positivity of p+ π

For mixture of two stiffened gases, the mixture equation of state reads

p = (γ − 1)ρε− γπ. (B.5)

Therefore
(p+ π)ϑ = (γ − 1)(ε− πϑ) = (γ − 1)ε̂. (B.6)

In order to prove the positivity of p + π, one can look for the positivity conditions of ε̂ = ε − πϑ. Since
z∗l = zl, the mixture parameters of the intermediate state γ∗l and π∗l are equal to γl and πl. Using the
relations (B.2) and (B.3), we get

ā2
−ε̂
∗
l = ā2

−ε̂l +
(ā−∆u−∆p)(ā−∆u−Πl)

2(1 + r)2
− (ā−∆u−∆p)πl

1 + r
. (B.7)

This leads to exact positivity condition of the proposition 3.
The positivity conditions for the right intermediate state are obtained by using the relation

V ∗r = Vr − φ+R+.
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Appendix C. Coefficients of the matrix M

In this appendix, the coefficients of the matrix M (see section 2.7) are given.

Let us denote by ∆ =
ā+ − ā−

(ā− + ā+)2
, and Π =

ā+ā−

(ā− + ā+)2
. The coefficients of the third line of Ai, Bi,

and Ci read:

A3,1
i = (−ā−Π)i− 1

2
ui−1 −Πi− 1

2
pi−1 − (ā−ā+∆)i− 1

2

ui
2

+ (ā−∆)i− 1
2

pi
2
,

A3,2
i = (−Π)i− 1

2
ui−1 −

(
Π
ā−

)
i− 1

2

pi−1 − (ā+∆)i− 1
2

ui
2

+ ∆i− 1
2

pi
2
,

B3,1
i =− (ā−ā+∆)i− 1

2

ui−1

2
− (ā+∆)i− 1

2

pi−1

2
+
(
(ā+Π)i− 1

2
+ (ā−Π)i+ 1

2

)
ui +

(
−Πi− 1

2
+ Πi+ 1

2

)
pi

+ (ā−ā+∆)i+ 1
2

ui+1

2
− (ā−∆)i+ 1

2

pi+1

2
,

B3,2
i = (ā−∆)i− 1

2

ui−1

2
+ ∆i− 1

2

pi−1

2
+
(
−Πi− 1

2
+ Πi+ 1

2

)
ui +

((
Π
ā+

)
i− 1

2

+
(

Π
ā−

)
i+ 1

2

)
pi

+ (ā+∆)i+ 1
2

ui+1

2
−∆i+ 1

2

pi+1

2
,

C3,1
i = (ā−ā+∆)i+ 1

2

ui
2

+ (ā+∆)i+ 1
2

pi
2
− (ā+Π)i+ 1

2
ui+1 + Πi+ 1

2
pi+1,

C3,2
i = (−ā−∆)i+ 1

2

ui
2
−∆i+ 1

2

pi
2

+ Πi+ 1
2
ui+1 −

(
Π
ā+

)
i+ 1

2

pi+1.

Appendix D. Presentation of the low Mach correction of [CGK16]

The low Mach correction proposed by [CGK16] results in a modification of the Riemann solver of the
acoustic step (13). Namely, the Riemann solver for the low Mach correction reads:

W θ (x/t;Vl, Vr) =


Vl if x/t ≤ −ā−ϑl,
V ∗,θl = Vl + φ−R− + LM− if − ā−ϑl < x/t ≤ 0,
V ∗,θr = Vr − φ+R+ − LM+ if 0 < x/t ≤ ā+ϑr,

Vr if ā+ϑr < x/t,

(D.1)

where

R± = t(−1, 0,±ā±, p1−α ± uαā±, 0) , LM± =
ā∓(θ − 1)∆u
ā− + ā+

t(0, 0, 1, ū, 0) ,

φ± =
∆p± ā∓∆u
ā−ā+ + ā2

±
.

The notations are the same as in section 2.2. The coefficient α is also equal to ā−
ā−+ā+

. The coefficient θ is

the parameter of the low Mach correction. In practice, this parameter is equal to θ = min
(

|ū|
max(cl,cr) , 1

)
.

The modified simple Riemann solver (D.1) also induces a Godunov-type scheme. Following the same
lines than in section 2.2, the numerical scheme (12) for the acoustic system (11) reads:

V n+1−
i = V ni −

∆t
∆x

ϑni

(
Hn,θ
i+1/2 −H

n,θ
i−1/2

)
, (D.2)

where the numerical “flux” Hn,θ
i+1/2 = Hθ

(
V ni , V

n
i+1
)
reads:

Hθ (Vl, Vr) = t
(
−ū, 0, p̄θ, p̄θū, 0

)
,

with
ū = ā−ul + ā+ur −∆p

ā− + ā+
and p̄θ = ā+pl + ā−pr − ā−ā+θ∆u

ā− + ā+
.

The low Mach correction finally leads to a simple flux modification. Indeed, only the non-centred
terms of the pressure flux is modified.
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Remark 6. The low Mach number fix proposed by Rieper [Rie11] for Roe’s approximate Riemann solver
follows the same idea. The jump of the velocity is also multiplied by the local Mach number.

The good behaviour of the scheme in the low Mach regime is studied by Chalons et al. in [CGK16] with
an analysis based on the truncation error of the scheme. The result is given in the following proposition:

Proposition 4 ([CGK16]). In the low Mach regime, the rescaled discretization (D.2) of the acoustic
step is consistent with

∂t̃ϑ̃− ϑ̃∂x̃ũ = O(∆t̃) +O(M∆x̃),

∂t̃ũ+ ϑ̃

M2 ∂x̃p̃ = O(∆t̃) +O

(
θ∆x̃
M

)
,

∂t̃ẽ+ ϑ̃∂x̃ (p̃ũ) = O(∆t̃) +O(M∆x̃) +O(Mθ∆x̃).

The rescaled discretization of the transport step is consistent with

∂t̃φ̃+ ũ∂x̃φ̃ = O(∆t̃) +O(∆x̃) +O(M∆x̃)

and the equivalent equation verified by the rescaled scheme reads
∂t̃ρ̃+ ∂x̃ (ρ̃ũ) = O(∆t̃) +O(∆x̃) +O(M∆x̃),

∂t̃ (ρ̃ũ) + ∂x̃
(
ρ̃ũ2)+ 1

M2 ∂x̃p̃ = O(∆t̃) +O(∆x̃) +O

(
θ∆x̃
M

)
,

∂t̃ (ρ̃e) + ∂x̃ ((ρ̃ẽ+ p̃) ũ) = O(∆t̃) +O(∆x̃) +O(M∆x̃) +O(Mθ∆x̃).

As a consequence, provided that we impose the asymptotic behaviour θi+1/2 = O(M), the truncation
error is uniform with respect to the Mach number M .

Remark 7. The positivity conditions for the intermediates states (see section 2.5) can be naturally
generalized to the low Mach case.
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