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Abstract

In this paper, numerical methods are developed and detailed in order to be able to compute the ablation of metallic thermal

protection system. In this complex multi-physics problem, the thermal state inside a solid domain and a two-phase viscous

flow have to be computed. Since the two fluid phases are non-miscible, an extension of the five-equation model to dissipative

effects is considered. An operator splitting strategy is used to separate the different phenomena according to their own

propagation speed. An implicit time integration is performed for the acoustic+dissipative step while the transport step is

computed with an explicit scheme. The hyperbolic part of the acoustic+dissipative step is solved in a non-conservative form

using a Godunov-type scheme based on a simple Riemann solver. A classical discretization is used for the dissipative terms,

and also for the heat equation inside the solid domain. Several approaches are detailed in order to prevent the numerical

diffusion of the material interface in the transport step. Finally, since moving grids are used to capture accurately the

melting front, an ALE formulation of the numerical schemes for both fluid and solid domains is given in a multidimensional

framework. A fluid-solid coupling algorithm is then proposed to compute such a complex multi-physics problem.

Numerical simulations show the validity and the robustness of the implicit-explicit scheme used for the discretization of the

five-equation system. The last test case, namely the melting of an aluminium solid block by a lid-driven cavity filled with air,

shows that the numerical tools developed here are robust enough to compute complex configurations involving a two-phase

flow with high density ratios and a solid part.

Keywords: Two-phase flows, Compressible Navier-Stokes, Godunov-type schemes, ALE formulation, Fluid-Solid coupling,

Ablation

1. Introduction

The present work takes place in the context of the atmospheric re-entry problem. This study can concern re-entry vehicles

globally or partially made of metallic components, space debris for instance. During the re-entry phase, a solid undergoes a

heating due to the friction of atmospheric gases. Conversion of kinetic energy to thermal energy leads to a sudden increase

of the temperature of the object. This rise drives to a physical-chemical degradation of the thermal protection system, and

to a boundary recession. Sublimation (injection of gas into the atmosphere) and fusion of the metallic part (creation of a

liquid phase between the gas and the wall) are the main causes of the solid ablation during the re-entry phase. In order to

simulate this very complex problem, a zonal approach is considered, see Fig 1. In the gas flow region, far from the object or

near a wall made of carbon where the ablation process is driven by the sublimation, classical schemes can be used. Numerical

simulations of the sublimation process have already been studied in [MB14, MC13, BNM10, Mul10, Lat13]. In the region

near a metallic wall, the velocity of the gas is small and with the appearance of the liquid phase, the dynamics of the flow

is very different. The presence of the liquid layer between the solid wall and the gas flow is usually not taken into account
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in the literature. The development of new numerical tools for the simulation of the liquid ablation seems to be in progress

in [HSD+19], but the molten phase is once again not considered.

The ablation of a metallic object during its reentry phase is a very complex phenomenon. A multi-physic computation

is needed in order to handle such configurations. The thermal state inside the solid has to be determined while an accurate

computation of the two-phase flow in the fluid region is mandatory since the melting process is driven by the heat flux at the

wall. The computation of the two-phase flow resulting from the melting of the solid part is very challenging since the density

ratio between the high enthalpy gas and the almost incompressible liquid is very important. Moreover, a fine mesh close to

walls needs to be used in order to capture accurately viscous and thermal boundary layers. Implicit time integration are

also required in order to overcome stability conditions related to those meshes. From our own experience, usual numerical

schemes are not very robust to compute such two-phase flows when large time steps are considered. In the present paper,

robust numerical schemes are described in order to simulate the melting process of a metallic material and the resulting

two-phase flow. The numerical method described in this paper for the two-phase flow region is an extension of the scheme

given in [PGM17] in which viscous effects were not taken into account in the fluid domain.

The modeling and computation of multiphase flows have been widely studied for the past decades. There are two main

approaches to compute compressible flows with interfaces: sharp interface methods, and diffuse interface methods. In the first

approach, the interface between the two media, considered as a sharp discontinuity, is followed explicitly and each phase can

be computed with different models. In Lagrangian or Arbitrary Lagrangian-Eulerian methods, the mesh moves during the

computation like the interface. Large distortions and interface topological changes can hardly be taken into account. Front

capturing methods are Eulerian methods where the interface is reconstructed. In Level Set methods [OS88] the interface

is located as the zero of an implicit function. In the Volume Of Fluid method [HN81], the interface is reconstructed from

the volume fraction of each fluid. In the second approach, diffuse interface methods [BN86, MSNA02, ACK02, FBC+11,

KL10, SA99], based on an Eulerian mesh, allow numerical diffusion of the interface. The same equations are solved in the

entire domain. In addition, these models allow the creation of new interfaces and topological changes during the simulation.

Consequently, the diffusive interface approach is used in this work to handle the large deformation induced by the fusion of the

metallic part. Those methods have already been studied by many authors. The seminal work of Baer and Nunziato [BN86]

(see also [SW84]) introduces a pressure and velocity non-equilibrium model for two-phase flows. The model of Kapila et

al. [KMB+01] can be seen as the limit of instantaneous velocity and pressure relaxation, see [MG05, FL11]. In this case, a

non-conservative term proportional to the divergence of the velocity appears in the equation of the volume fraction. This term

describes the expansion/compression effects in case of a mixture. Several numerical schemes have been recently proposed

for the Kapila et al. model or its variants [MG05, SPB09, LMNS13, PS14, LMSN14]. However, as suggested by some

experiments, we assume that the liquid phase in our application will not disperse nor mix with the gas flow. Consequently,

non-miscible fluids can be considered in this study and the non-conservative term of Kapila et al. model can be neglected.

Indeed, at the continuous level, if the initial condition is made of two separated phases, then both Kapila et al. model

and the five-equation model of [MSNA02, ACK02] give the same solution. It is only at the discrete level that differences

can appear inside the small mixture zone due to the numerical diffusion. Therefore, a model based on the five-equation

model [MSNA02, ACK02] is used in this work to capture the pure interface between the two fluids. A careful treatment of

the numerical diffusion of the material interface is done in order to prevent the growth of the mixture zone between the gas

and the liquid.

Viscous and thermal boundary layers need to be accurately computed in order to correctly give the heat flux at the wall.

If the two phases are governed by Navier-Stokes equations, following Baer and Nunziato work, a seven-equation system can

be constructed. A velocity and pressure relaxation procedure can be done [BN09] in order to derive a five-equation model

with dissipative effects. This system is considered in the fluid domain.
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A two-phase flow involving an almost incompressible liquid and a compressible gas is considered here. With the diffuse

interface method, the same equations are solved in the entire domain, hence the liquid is modeled by a viscous compressible

fluid in which the Mach number is very low. Several time scales are involved in this configuration: the scale of the fast

acoustic waves, the scale of diffusive effects which both lead to an important CFL restriction on the time step for explicit

schemes, and the scale of slow material waves. Usually, implicit numerical schemes allow to use large time scales and fine

meshes to compute boundary layers. However, up to our knowledge, implicit schemes for two-phase flows simulations are

not very robust with large CFL conditions. One of the main objectives of this work is to derive a robust scheme to compute

two-phase flow with dissipative effects using large time steps.

Another difficulty is the lack of accuracy of the numerical schemes in the low Mach regime. This topic has been widely

investigated in the literature, see [GV99, GM04, MG08, DJOR16, BDJP19] and the references therein. Preconditioned

methods or specific corrections of the numerical flux have been developed in order to capture the low Mach limit [Tur87,

TMD+08, Rie11, Del10]. For single-phase flows in the low Mach regime, several implicit-explicit schemes have been proposed,

like [DJY07, HJL12, CDK12], to resolve the material wave scale only. Another approach [CGK16, CGK17] is to use a splitting

of the Euler equations between acoustic and transport systems. The acoustic system is resolved by an implicit scheme while

the transport system is resolved by an explicit scheme. A low Mach fix based on a correction of the pressure flux is developed

for the acoustic step. This approach is also used here.

Finally, since the melting front is moving during the ablation process, the numerical schemes developed for both fluid

and solid domains have to deal with moving meshes and boundaries. The governing equations are therefore integrated over a

moving control domain and an Arbitrary Lagrangian-Eulerian formulation of the numerical schemes is used. To ensure that

uniform state flows are preserved by the numerical procedures while the mesh is deforming, the Geometrical Conservation

Law must be satisfied at the discrete level.

In this paper, several numerical tools are proposed to handle those challenges: compute the thermal state inside the

(moving) solid domain, simulate a viscous two-phase flow which involves large ratios of density, pressure and temperature,

derive an implicit scheme in order to use large time steps, compute accurately boundary layers and second-order quantities

like heat flux at the boundary of the domain, deal with an almost incompressible liquid as a compressible fluid by using a

low Mach correction and prevent numerical diffusion of the liquid-gas interface. To overcome these challenges, the following

numerical tools are needed. A classical implicit diffusion scheme is used for the heat equation inside the solid domain. For

the fluid domain, an extension of the splitting strategy presented in [PGM17, CGK16, CGK17] to the five-equation system

with dissipative effects is proposed. The splitting strategy is done with a Lagrange-Projection type [GR91] algorithm. The

hyperbolic part of the acoustic+dissipative step is solved in a non-conservative form using a Godunov-type scheme based on

a simple Riemann solver [Gal03]. The Riemann solver slopes are computed using exact positivity conditions for the solution.

The same discretization as the solid is used for the dissipative terms. An implicit treatment of the acoustic+dissipative step

allows large time steps that are based on the material waves velocity. An extension of the time-implicit scheme of [PGM17]

is derived. Numerical fluxes of the hyperbolic part are first computed thanks to an autonomous and linear pressure-velocity

sub-system. The specific volume can be directly updated while an iterative process is needed to compute the new internal

energy. The transport step is then solved explicitly. Several approaches can be used in order to prevent numerical diffusion

of the material interface between the gas flow and the liquid layer. Indeed, the usual upwind scheme for the transport step

generates a large amount of numerical diffusion, and extends the mixture zone between the two phases. The anti-diffusive

scheme of Kokh and Lagoutière [KL10] and the pseudo-random choice of Glimm [BHJ+13, Col82] are used to prevent this

diffusion. The global scheme for the fluid domain is conservative. Thus, the right shock speeds are obtained. An ALE

formulation of the numerical schemes for both fluid and solid domains is given to handle the mesh deformation during the

melting process. A fluid-solid coupling algorithm is also proposed to compute the complex multi-physics problem of liquid
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ablation.

The outline of this paper is as follow. In the next section, governing equations for both solid and fluid domains are given.

Jump relations at the interface between the fluid and the solid are also detailed. In section 3, the numerical schemes used

to compute the thermal state inside and the two-phase flow in the fluid domain are presented. The Arbitrary Lagrangian

Eulerian approach needed to compute the governing equations on a moving mesh is also detailed for both solid and fluid

domains. A fluid-solid coupling algorithm is then presented in section 4. Finally, the extension of the splitting resolution

to dissipative effects is verified in section 5. A final test case involving three phases is studied, namely the melting of an

aluminium solid block by a lid-driven cavity filled with air.

Figure 1: Description of the different phenomena occurring during the re-entry of a metallic debris.

2. Governing equations

2.1. Solid domain: heat equation

The unsteady thermal state of the solid domain is described by the heat equation

∂t (ρsεs) +∇ · qs = 0, (1)

where ρs is the solid density and qs the heat flux. The general form of the specific internal energy εs is given by εs(Ts) =
∫ Ts

T0

cp(T
′) dT ′, where Ts is the temperature inside the solid, T0 a temperature of reference and cp is the heat capacity. Here,

cp is assumed to be constant, therefore εs = cp(Ts − T0). The thermal diffusion of the solid is supposed to be isotropic and

the heat flux is given by the Fourier’s law

qs = −κs∇Ts,

where κs is the thermal conductivity of the solid. In addition, pyrolysis effects are not considered here, so the density of the

solid is constant.

2.2. Fluid domain: five-equation system with dissipative effects

In our application, there is initially no liquid phase corresponding to molten solid in the fluid region and we assume that

the gas flow will not mix with the liquid. Consequently, non-miscible fluids can be considered and the five-equation system

of [MSNA02, ACK02] can be used in the fluid domain. Indeed, the non-conservative term of Kapila et al. model [KMB+01]

can be neglected, since at the continuous level, if the two fluid phases are not mixed at the initial time, both Kapila et al.
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and the five-equation models give the same solution. An extension of the five-equation model is used in order to take into

account the dissipative effects related to the viscosity and thermal conductivity of the fluid: this model is explained below.

The density, the internal energy, the pressure and the temperature of the two fluid phases k = 1, 2 are denoted by ρk,

εk, pk and Tk. Each fluid is equipped with an Equation Of State (EOS) given by pk = pk(ρk, εk) and εk = εk(ρk, Tk). The

sound speed ck of each phase is defined by c2k = ∂pk

∂ρk

∣

∣

∣

sk
, where sk is the entropy.

Volume fraction zk of each fluid is introduced such that the saturation relation z1 + z2 = 1 yields. In the sequel, the

volume fraction of the first fluid is denoted by z = z1. One can also introduce the mass fraction of the first fluid y = ρ1z
ρ .

The mixture density ρ and mixture internal energy ε can be defined through the volume and mass fractions, the density and

internal energy of each fluid

ρ = zρ1 + (1− z)ρ2,

ε = yε1 + (1− y)ε2.

Both phases share the same velocity u, and the same pressure p. The five-equation system with dissipative effect is given

by [BN09]


































































∂tρ + ∇ · (ρu) = 0,

∂t (ρy) + ∇ · (ρyu) = 0,

∂t (ρu) + ∇ · (ρu⊗ u) +∇p = ∇ · T,

∂t (ρE) + ∇ · (ρEu+ pu) = ∇ · (Tu)−∇ · q,

∂tz + u ·∇z = 0,

(2)

where E = ε+ |u|2
2 is the total mixture energy, T the Cauchy stress tensor and q the heat flux.

The EOS associated to each phase is assumed to be given by the stiffened gas EOS, namely

pk(ρk, εk) = (γk − 1)ρk(εk − qk)− γkπk,

εk(ρk, Tk) = qk + cv,kTk +
πk

ρk
,

where γk > 1 is the adiabatic exponent, πk ≥ 0 a reference pressure and qk an internal energy of reference. Heat capacity

at constant volume is denoted by cv,k. Using the isobaric closure relation [ACK02], namely p1(ρ1, ǫ1) = p2(ρ2, ǫ2), and

the definition of mixture internal energy ε, the pressure can be obtained as p = (γ − 1) ρ(ε − q) − γπ where the mixture

parameters γ, π and q are defined by

1

γ(z)− 1
= z

1

γ1 − 1
+ (1− z)

1

γ2 − 1
,

γ(z)π(z)

γ(z)− 1
= z

γ1π1

γ1 − 1
+ (1− z)

γ2π2

γ2 − 1
,

q(y) = yq1 + (1− y)q2.

(3)

In the general case, the mixture sound speed is given by [ACK02]

c2 =
1

ξ

2
∑

k=1

ykξkc
2
k,

where ξk is the partial derivative ∂(ρkǫk)
∂p , ξ =

∑2
k=1 zkξk and ck the sound speed of the pure fluid k. Since the speed of sound

for a stiffened gas is given by c2k = γk
p+πk

ρk
, the mixture sound speed for the mixture of two stiffened gases reads

c2 = γ
p+ π

ρ
.
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Viscous effects are taken into account by the symmetric Cauchy stress tensor T in the momentum and energy equations.

Assuming that both phases are Newtonian fluids, viscous stress tensor is given by

T = −
2

3
µ∇ · uId + 2µD,

where the mixture viscosity µ =
∑2

k=1 zkµk and D = 1
2 (∇u+∇Tu) is strain rate tensor.

The heat flux q =
∑2

k=1 zkqk in the total energy equation takes in account the effect of thermal dissipation. As for the

solid domain, the thermal diffusion of phase k is supposed to be isotropic and the heat flux is given by the Fourier’s law

qk = −κk∇Tk where κk is the thermal conductivity of phase k. However, in the case of two-phase flows where the fluids are

separated, the terms ∇Tk are not clearly defined around the material interface. Therefore, the mixture heat flux is assumed

here to be given by a Fourier’s law q = −κ∇T with a mixture thermal conductivity κ = zκ1 + (1 − z)κ2 and where T is a

mixture temperature. Note that for continuous solutions where the two phases are initially separated, the two definitions of

the mixture heat flux give the same solutions. As for the Kapila’s term [KMB+01] in the evolution equation of the volume

fraction, differences can appear inside the small mixture zone due to the numerical diffusion at the discrete level.

In this paper, initial conditions made of two separated phases are considered, thus if there is no numerical diffusion of the

interface, e.g. with the Glimm’s random choice method in the transport step, see section 3.4.2, the choice of the definition of

the heat flux will have no impact. If a mixture zone appears due to the numerical diffusion, differences in terms the global

solution are expected to remain small.

To define the mixture temperature T which appears in the definition of the heat flux q = −κ∇T , the relation of mixture

internal energy is used

ε = yε1 + (1− y)ε2. (4)

With the stiffened gas EOS considered here, the internal energy of a phase k is given by

εk(Tk, ρk) = qk + cvk
Tk +

πk

ρk
.

Introducing the mixture heat capacity cv =
∑

k ykcvk
, and the mixture temperature

T =
1

cv

2
∑

k=1

ykcvkTk, (5)

the mixture internal energy (4) reads

ε(T, ρ1, ρ2, z, y) = q(y) + cvT +
2
∑

k=1

yk
πk

ρk
, (6)

where q(y) = yq1 + (1− y)q2 is the mixture parameter defined by the isobaric closure (3).

Finally, in the study, viscosity coefficient µk, thermal conductivity κk and heat capacity cv of each phase are taken

constant. It is probably not difficult to overcome this assumption even if it is not done here.

Remark 1

Another definition of the mixture temperature based on the mixture entropy of the five-equation system can be used. However,
numerical results presented in section 5.1 show that this choice generates numerical artifacts on the discrete solution inside
the mixture zone.

2.3. Boundary conditions at the fluid-solid interface

To determine the coupling conditions, mass and energy balances are written as jump conditions at the interface between

the fluid and the solid domains. The solid domain is seen as a compressible fluid with zero velocity and stress tensor.

Therefore, two compressible fluids separated by a moving interface are considered.

From those governing equations, jump relations at the wall can be defined for the mass and energy conservation equations.
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Mass balance

Let us recall that the density of the solid domain ρs is assumed to be constant and its velocity equal to zero. We denote

by n the normal to the interface (directed to the fluid) and witf = witf ·n the normal (recession) velocity at the wall. Then

the Rankine-Hugoniot condition gives

ρf (uf −witf ) · n = −ρswitf · n, (7)

where ρf and uf are the fluid density and velocity. We denote by ṁ = ρf (uf − witf ) · n the mass flux through the solid

wall, and we can deduce

witf · n = −
ṁ

ρs
, (8)

uf · n =



1−
ρs

ρf



witf · n. (9)

When we know the mass flux ṁ, this mass balance allows us to determine the normal recession velocity at the wall witf as

well as the injection velocity of the liquid phase inside the fluid uf · n. In this work, we assume that there is no slip at the

wall and the injection of the liquid phase inside the fluid occurs according the normal at the interface, i.e. uf = ufn.

In the last numerical test case of this paper, the melting of an aluminium solid block is studied. In this case, the density

ratio between the solid part and the molten metal is equal to 1.08. Thus, the injection velocity uf (9) and the interface

velocity witf are of opposite signs. Note that in the particular case where ρs = ρf , the injection velocity is equal to zero.

There is therefore adhesion of liquid on the mobile wall.

Energy balance

Stefan condition [Ste91] is used for the energy balance. The mass flux ṁ is determined from the solid and fluid heat

fluxes at the interface between the two domains. Energy balance reads

ṁL = κf
∂Tf

∂n
− κs

∂Ts

∂n
. (10)

where L is the latent heat of melting.

Governing equations for the fluid and solid domains and the boundary conditions at the wall have been described. In the

next section, the numerical schemes for each domain are given.

3. Numerical scheme

Without loss of generality, a two-dimensional problem discretized over a structured mesh (curvilinear grid) is considered.

In order to simplify the computation of mass and energy balances, conforming mesh for the fluid and solid domains are used.

Let us denote by Ωl,m a cell of our mesh, Γl+1/2,m (resp. Γl,m+1/2) the face of the cell Ωl,m toward the first direction of the

mesh (resp. the second one) and nl+1/2,m (resp. nl,m+1/2) the unit vector normal to Γl+1/2,m (resp. Γl,m+1/2), see Fig. 2.

The area of a cell Ωl,m is denoted by
∣

∣

∣Ωl,m

∣

∣

∣. Likewise, the length of a face Γl+1/2,m is denoted by
∣

∣Γl+1/2,m

∣

∣.

For the sake of clarity, a one-index notation i = (l,m) is used most of the time for two-dimensional meshes. The area of

a cell Ωi is therefore denoted by |Ωi| while the quantities defined on the face between the cells Ωi and Ωj will be denoted by

the subscript ij.

Let ∆t > 0 be the time step. Finite-volume methods are used, in which the approximate value of φ within the cell Ωi at

time tn is denoted by φn
i .
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•

•

•

•
∣

∣Γl+1/2,m

∣

∣

∣

∣Γl,m+1/2

∣

∣

nl+1/2,m

nl,m+1/2

Ωl,m

Figure 2: Two-index notations inside a cell for a 2D structured mesh.

3.1. Discretization of the dissipative terms

A classical direct implicit scheme is used to compute the heat equation inside the solid domain. The same discretization

will be used for the dissipative terms of the two-phase flow system (2). For the sake of simplicity, the diffusion equation of a

quantity θ

∂tθ = ∇ · (λ∇θ) , (11)

is used here to describe the discretization of the dissipative terms. The parameter λ can be space-dependent. The extension

for Navier-Stokes equations is straightforward.

The construction of the numerical scheme for the diffusion equation (11) is not detailed here. It is based on a transfor-

mation between the physical curvilinear structured grid and a Cartesian reference grid. The numerical scheme reads

θn+1
i = θni +

∆t

|Ωi|

∑

j∈v(i)

(

λ

|Ω|

)

ij

(

(n |Γ|)ij (θ
n+1
j − θn+1

i ) + (t |Γ|)ij(θ
A
ij − θBij)

)

· (n |Γ|)ij , (12)

where the right-hand side is a sum of numerical fluxes across the edges between cell i and its neighbouring cells, whose

numbers are denoted by j and are stored in v(i). The different terms of the numerical flux are described later. Note that

each flux can be split into two contributions: a normal contribution involving the temperatures θi and θj of cells on both

sides of the interface and a transverse contribution where the values of the auxiliary nodes A and B appear, see figure 3.

Γij

×
i

×
j

•
B

•
A

nij

Figure 3: Notations used in the definition of the numerical flux for the dissipation equation for the edge Γij between cells i and j.

A harmonic mean between the values on both sides of the edge is used to define the term
(

λ
|Ω|

)

ij
, namely

(

λ

|Ω|

)

ij

= 2
λiλj

λi

∣

∣

∣Ωj

∣

∣

∣+ λj |Ωi|
.

In contrast to the arithmetic mean, using a harmonic mean preserves the piecewise linear fields [Cha04].

For the normal contribution, the term (n |Γ|)ij is equal to unitary normal of the edge nij times the length of the edge

|Γij |. The term (t |Γ|)ij corresponds to the transverse contribution. To define this term, a two-index notation is used, see

Fig. 4. Thus, if the cells i and j are respectively denoted by (l,m) and (l + 1,m), one has
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×
l,m

•
nl+1/2,m

nl+1,m−1/2

nl,m−1/2

nl+1,m+1/2

nl,m+1/2

(a) edge l + 1/2,m

×
l,m

nl−1/2,m

nl+1/2,mnl−1/2,m+1

nl+1/2,m+1

•

nl,m+1/2

(b) edge l,m+ 1/2

Figure 4: Contributions in order to compute metric coefficients on a given edge.

(t |Γ|)ij = (t |Γ|)l+1/2,m =
1

4

(

(n |Γ|)l,m+1/2 + (n |Γ|)l+1,m+1/2 + (n |Γ|)l,m−1/2 + (n |Γ|)l+1,m−1/2

)

.

Note that the vector t is not necessarily orthogonal to the normal n.

Finally, the values of the auxiliary nodes A and B are needed to describe completely the numerical flux (12). For the

numerical scheme used here, the values of the auxiliaries points are defined as the average of the four temperatures around

the node. Namely, for the edge Γl+1/2,m, the nodal values are given by

θAl+1/2,m =
1

4

(

θn+1
l,m + θn+1

l+1,m + θn+1
l,m+1 + θn+1

l+1,m+1

)

,

θBl+1/2,m =
1

4

(

θn+1
l,m−1 + θn+1

l+1,m−1 + θn+1
l,m + θn+1

l+1,m

)

.

For a non Cartesian structured mesh, this numerical scheme (12) gives a nine-point stencil. However, in the case of a

Cartesian mesh, the numerical scheme reduces to a five-point scheme, see figure 5. Indeed, the term (n |Γ|)ij · (t |Γ|)ij inside

the numerical flux (12) is equal to zero for a Cartesian grid. If the Cartesian mesh is also regular, i.e. |Ωi| = |Ω| = (∆x)2

for all cells, the scheme give the classical five-point diffusion scheme

θn+1
i = θni +

∆t

(∆x)2

∑

j∈v(i)

λij

(

θn+1
j − θn+1

i

)

.

Figure 5: Discretization of the dissipative terms. Nine-point stencil for a curvilinear grid (left) and five-point stencil for a Cartesian mesh (right).

Remark 2

With this scheme, second-order accuracy will be reached with this discretization of the diffusion terms for curvilinear grids
without large deformation. However, the maximum principle is not verified. Recent works [LP09, BL15, Wu17, ZSW17] on
diffusion schemes using nonlinear methods ensure the positivity of the solution.

3.2. An operator splitting strategy for the fluid domain

For the fluid domain, the idea is to separate the different phenomena according to their own propagation speed as in [GR91,

CGK16, KL10, CNPT10]. An acoustic-dissipative-transport operator splitting strategy is therefore used to approximate the

solution of the five-equation system with dissipative effects (2).
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Fine meshes along the walls need to be used in order to be able to compute dissipative terms accurately. The characteristic

times of thermal and viscous diffusion are proportional to the square of the characteristic length of the mesh, which implies

very large constraints if an explicit scheme is used. In the acoustic-transport splitting strategy [PGM17, CGK16], an implicit

scheme is used for the acoustic step while the transport step is solved explicitly. This is why we choose to put the dissipative

terms with the acoustic part of the splitting.

The first system takes into account the propagation of the acoustic waves and the effects of the dissipative terms. This

system called the acoustic+dissipative system reads



































































∂tρ + ρ∇ · u = 0,

∂t (ρy) + ρy∇ · u = 0,

∂t (ρu) + ρu∇ · u+∇p = ∇ · T,

∂t (ρE) + ρE∇ · u+∇ · (pu) = ∇ · (Tu)−∇ · q,

∂tz = 0.

(13)

An implicit scheme is proposed for this step in order to overcome CFL restrictions.

The second system is called the transport system and it takes into account the propagation of material waves through

the fluid. It is given by


































































∂tρ + u ·∇ρ = 0,

∂t (ρy) + u ·∇ (ρy) = 0,

∂t (ρu) + u ·∇ (ρu) = 0,

∂t (ρE) + u ·∇ (ρE) = 0,

∂tz + u ·∇z = 0.

(14)

The overall splitting algorithm for a time step between tn and tn+1 reads

1. Acoustic+dissipative step: From a state (ρ, ρy, ρu, ρE, z)
n
, compute the approximation of the acoustic system with

dissipative effects (13) denoted by (ρ, ρy, ρu, ρe, z)
†
.

2. Transport step: Find the fluid state (ρ, ρy, ρu, ρe, z)
n+1

by solving the transport system (14) with the initial state

(ρ, ρy, ρu, ρe, z)
†
.

This kind of algorithm has been already used in the literature with an implicit treatment of the first step for gas dy-

namic [CGK16], two-phase flow models such as Homogeneous Relaxation Model and Homogeneous Equilibrium Model [CGK17],

or the five-equation system (without dissipative effects) [PGM17]. Fully explicit schemes have also been developed for the

inviscid five-equation model by [FBC+11, KL10] and for the Kapila et al. two-phase flow model by [EDKT17].

Numerical schemes for each step are described in the next section. Note that the transport step is not modified by taking

dissipative effects into account as compared to [PGM17].

3.3. Acoustic+dissipative step

3.3.1. Explicit formulation of the acoustic step with the dissipation terms

First, the non-conservative system (13) is written differently. The second, third and fourth equations are combined with

the evolution equation of the mixture density. Then, the first equation is divided by the square of the mixture density.
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Finally, the acoustic+dissipative system reads


































































∂tϑ− ϑ∇ · u = 0,

∂ty = 0,

∂tu+ ϑ∇p = ϑ∇ · T,

∂tE + ϑ∇ · (pu) = ϑ∇ · (Tu)− ϑ∇ · q,

∂t (ϑz)− zϑ∇ · u = 0,

(15)

where ϑ = 1
ρ is the specific volume.

Although this system is written in a non-conservative form, a suitable numerical approximation can be derived. Moreover,

the global scheme for the five-equation system (13) will be conservative. A Godunov-type scheme based on an approximate

Riemann solver is used for the hyperbolic part [PGM17, Gal03]. It is a simple Riemann solver [Gal00, Gal03, Bou04] using

two intermediate states. Exact positivity conditions for the density, the internal energy and the sound speed are used to

compute the Riemann solver slopes, denoted by C̄− and C̄+.

The explicit numerical scheme formally reads

ϑ
†
i = ϑn

i +
∆t

|Ωi|
ϑn
i

∑

j∈v(i)

|Γij | ū
n
ij ,

y
†
i = yni ,

u
†
i = un

i −
∆t

|Ωi|
ϑn
i





∑

j∈v(i)

|Γij | p̄
n
ij −∇i · T

n



 ,

E
†
i = En

i −
∆t

|Ωi|
ϑn
i





∑

j∈v(i)

|Γij | p̄
n
ij ū

n
ij −∇i · (T

nun) +∇i · q
n



 ,

z
†
i = zni ,

where ∇i · • denotes the discretization of dissipative terms, see section 3.1. Note that the volume and mass fractions remain

constant during this step. Let us recall that the normal velocity and the pressure on the edge Γij are given by

ūn
ij =

C̄−
iju

n
i + C̄+

iju
n
j

C̄−
ij + C̄+

ij

· nij −
pnj − pni

C̄−
ij + C̄+

ij

,

p̄nij =
C̄+

ijp
n
i + C̄−

ijp
n
j

C̄−
ij + C̄+

ij

−
C̄−

ijC̄
+
ij

C̄−
ij + C̄+

ij

(

un
j − un

i

)

· nij ,

(16)

see [PGM17, Gal03].

Remark 3

Godunov-type schemes are not accurate in the low Mach regime. The low Mach correction of Chalons et al. [CGK16] is
used in order to capture the incompressible limit inside the liquid layer. Only the non-centered term of the pressure flux is
modified and reads

p̄nij =
C̄+

ijp
n
i + C̄−

ijp
n
j

C̄−
ij + C̄+

ij

− θij
C̄−

ijC̄
+
ij

C̄−
ij + C̄+

ij

(

un
j − un

i

)

· nij ,

where θij is equal to the local Mach number if the flow is subsonic, namely θij = min

(

|ūn
ij|

max(ci,cj)
, 1

)

.

We also remind that the mixture heat flux q is supposed to be given by a Fourier’s law q = −κ∇T where κ = zκ1+(1−z)κ2

and T is the mixture temperature

T =
1

cv

2
∑

k=1

ykcvkTk. (17)
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The stability conditions for the explicit scheme of the acoustic+dissipative step depends on three contributions. In the

one-dimensional case, they are given by

• acoustic condition

∆t

∆x
max
i∈Z

(

C̄−
i+ 1

2

+ C̄+
i− 1

2

ρni

)

≤ 1, (18)

• viscous diffusion condition
∆t

∆x2
max
i∈Z

(

µi

ρni

)

≤
1

2
, (19)

• thermal diffusion condition
∆t

∆x2
max
i∈Z

(

κi

ρni cvi

)

≤
1

2
. (20)

Those CFL conditions can be very restrictive in practice, especially when refined meshes close to walls are used to capture

viscous and thermal boundary layers. Therefore, an implicit formulation of the acoustic+dissipative step is performed.

3.3.2. Implicit treatment for the acoustic+dissipative step

For the implicit treatment of the acoustic step with dissipation terms, an extension of the algorithm denoted by IM1

in [PGM17] for the hyperbolic part of the five-equation system is used. Since the numerical flux of the hyperbolic part

depends only on pressure and velocity, the idea was to solve a simpler sub-system in order to find a prediction of those

quantities. This velocity-pressure system appears to be linear and if the Riemann solver slopes C̄− and C̄+ are equal, the

IM1 method is equivalent to the scheme derived by Chalons et al. [CGK16, CGK17]. If the dissipation terms are taken

into account, an additional assumption is made by neglecting some terms in the pressure evolution equation used for the

resolution of the velocity-pressure system. This will allow us to have an linear and autonomous system. Once this linear

system is solved, the specific volume of the mixture can be directly updated. On the contrary, because of the term related to

the heat flux, the mixture energy cannot be directly updated. To find the new energy, the heat flux is once again supposed

to be given by a Fourier’s law with mixture thermal conductivity and mixture temperature based on the definition of the

mixture internal energy. The energy equation is then solved using a Newton-Raphson method written in terms of mixture

temperature.

All these steps are detailed below.

Resolution of the velocity-pressure system

In order to compute the numerical fluxes of the hyperbolic part of the acoustic step, a velocity-pressure sub-system needs

to be solved. The evolution equation for the velocity reads

∂tu+ ϑ∇p = ϑ∇ · T, (21)

while the evolution equation for the pressure is given by

∂tp+ C2ϑ∇ · u =
T : D −∇ · q

ρ
∑

k yk
∂εk
∂p

∣

∣

∣

ρk

, (22)

where C = ρc is the Lagrangian sound speed. It can be shown that the second term of the right-hand side is related to the

thermal expansion of the fluid is the low Mach regime. However, in the scope of our application, temperature variations of

the (incompressible) liquid phase are small as compared to the gas one. It will be neglected here. Moreover, the first term

of the right-hand side of (22) contains non linear terms that make the numerical solving difficult. Although it can be taken

into account in a non-linear way, this term will be neglected too.
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Finally, the following velocity-pressure system is used to predict the numerical fluxes of the hyperbolic part














∂tu + ϑ∇p = ϑ∇ · T,

∂tp + C2ϑ∇ · u = 0.

(23)

This simplification is important from a practical and numerical point of view since the velocity-pressure system is still linear

and autonomous. The impact of those simplifications can be estimated by comparing the explicit and implicit treatment of

the acoustic+dissipative step: the numerical validations given in section 5 show that those assumptions are acceptable.

An implicit formulation of this system (23) is then given by

u
†
i = un

i −
∆t

|Ωi|
ϑn
i





∑

j∈v(i)

|Γij | p̄
†
ij −∇i · T

†



 ,

p
†
i = pni −

∆t

|Ωi|
ϑn
i (C

n
i )

2
∑

j∈v(i)

|Γij | ū
†
ij ,

(24)

where

ū
†
ij =

C̄−
iju

†
i + C̄+

iju
†
j

C̄−
ij + C̄+

ij

· nij −
p
†
j − p

†
i

C̄−
ij + C̄+

ij

,

p̄
†
ij =

C̄+
ijp

†
i + C̄−

ijp
†
j

C̄−
ij + C̄+

ij

−
C̄−

ijC̄
+
ij

C̄−
ij + C̄+

ij

(

u
†
j − u

†
i

)

· nij .

(25)

Like in the inviscid case, values of the Riemann solver slopes and of Lagrangian sound speed Ci are frozen at time tn.

Then (24) is a linear system that can be written as



Id +
∆t

|Ω|
M



Wup†

= Wupn

, (26)

where vector of velocity and pressure unknowns is denoted by Wup = (ui, pi)
T
i and M is a nine-diagonal block matrix on a

two-dimensional curvilinear mesh.

Specific volume update

Once the velocity-pressure sub-system is solved, numerical fluxes ū†
ij and p̄

†
ij can be derived from the equation (25). The

evolution equation for specific volume is then given by

ϑ
†
i = ϑn

i −
∆t

|Ωn
i |
ϑn
i

∑

j∈v(i)

|Γij | ū
†
ij .

The value of the new specific volume is therefore directly updated.

Energy equation resolution

At this stage of the implicit resolution of the acoustic+dissipative step, specific volume ϑ†, velocity field u† and numerical

fluxes ū
†
ij and p̄

†
ij are known. Since mass and volume fractions are not modified by the acoustic+dissipative step, only the

new total energy remains unknown. In this step, the evolution equation of the total energy reads

∂tE + ϑ∇ · (pu) = ϑ∇ · (Tu)− ϑ∇ · q. (27)

Because of the term related to the heat flux, the mixture energy cannot be directly updated. A different unknown is used

for the implicit resolution of this equation. Since the total energy of the mixture is equal to E = ε + |u|2
2 , where ε is the

internal mixture energy (4), the evolution equation of the total energy (27) can be written in terms of the internal mixture

energy, namely

∂tε+ ϑ∇ · q = ϑ∇ · (Tu)− ϑ∇ · (pu)− ∂t
|u|

2

2
. (28)
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An implicit scheme for this equation is given by

ε
†
i − εni −

∆t

|Ωi|
ϑn
i ∇i · q

† =
∆t

|Ωi|
ϑn
i



∇i ·
(

T
†u†
)

−
∑

j∈v(i)

|Γij |
(

p̄
†
ij ū

†
ij

)



−
1

2

(

∣

∣

∣u
†
i

∣

∣

∣

2

− |un
i |

2

)

. (29)

All terms of the right-hand side are already known with the resolution of the velocity-pressure system. This right-hand side

is denoted by SM
†
i in the following.

Like in the explicit scheme, the mixture heat flux is assumed to be given by a Fourier’s law q = −κ∇T , with a thermal

conductivity of the mixture defined by κ = zκ1 + (1− z)κ2 and a mixture temperature

T =
1

cv

2
∑

k=1

ykcvkTk,

where the temperature of the phase k is given by the EOS, namely Tk(p, ϑk) = ϑk
p+πk

cvk (γk−1) . The energy evolution equation

can thus be written in terms of the mixture temperature. Indeed, the implicit scheme for the evolution equation of the

energy (29) reads

ε(T †
i , ϑ

†
i , z

†
i , y

†
i )− εni −

∆t

|Ωi|
ϑn
i ∇i ·

(

κ∇T †) = SM
†
i . (30)

This implicit equation is then solved with a temperature based Newton-Raphson method. When the convergence is reached,

a new mixture internal energy can be obtained from (6) and the new total energy is given by

E
†
i = ε

†
i +

∣

∣

∣
u
†
i

∣

∣

∣

2

2
.

In conclusion, unlike the inviscid case where there was only a single inversion of a penta-diagonal linear system for the

implicit scheme [PGM17, CGK16], here a 9-block linear system needs to be solved for the velocity-pressure system and an

iterative process is necessary to find the new mixture energy if the dissipative effects are taken into account.

3.4. Transport step

First of all, since that u ·∇U = ∇ · (uU)−U∇ · u, then the transport step (14) can be expressed as

∂tφ+∇ · (uφ)− φ∇ · u = 0,

with φ ∈ {ρ, ρy, ρu, ρE, z}. An upwind Finite-Volume scheme can be used to solve the transport system like in [CGK16,

PGM17, EDKT17]. The transport step is simply approximated by

φn+1
i =



1 +
∆t

|Ωi|

∑

j∈v(i)

|Γij | uij



φ
†
i −

∆t

|Ωi|

∑

j∈v(i)

|Γij | uijφ
†
ij , (31)

where φ
†
ij is the numerical flux. If the upwind scheme is used, it reads











φ
†
ij = φ

†
i if uij > 0,

φ
†
ij = φ

†
j otherwise.

(32)

The propagation velocity uij of the transport step must be chosen equal to the opposite of the first component of the

numerical flux of the acoustic step in order to have a conservative global scheme. Namely, uij = ūn
ij if the first step is solved

explicitly or uij = ū
†
ij in the implicit case.

The stability condition of this explicit scheme based on material waves reads

max
i





∆t

|Ωi|

∑

j∈v(i)

|Γij | uij



 ≤ 1. (33)
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In this work, we are mainly concerned with two-phase flows where the two phases are not initially mixed. For such initial

conditions, volume and mass fractions are not modified by the acoustic+dissipative step. However, the upwind scheme for

transport step will naturally introduces numerical diffusion, especially on the volume fraction. This will therefore lead to a

numerical diffusion of the interface and the introduction of a mixture zone.

A second-order accurate scheme can also be derived for the the transport step with a MUSCL reconstruction [Tor97,

GR91]. The accuracy of the scheme is increased by this limitation procedure but the numerical diffusion of the volume

fraction is still present.

Several methods are described in the literature to limit numerical diffusion when solving a transport equation. We can

cite in particular reconstruction methods such as Volume of Fluid [HN81], Moment of Fluid [AS07, DS08, BHMS13] or

Simple Line Interface Calculation [NW76] and the Vofire scheme [DLL07, FK13]. In the anti-diffusive method of Després

and Lagoutiere [Lag00, DL99], the flux is chosen as close as possible to the downwind value of the numerical unknown. The

resulting scheme is equivalent to the Ultra-Bee limiter [Tor97] in the case of linear advection. This anti-diffusive approach

has been extended to the five-equation model (without dissipative effects) by Kokh and Lagoutière [KL10] using a fully

explicit Lagrange-Projection scheme. An extension to multi-phase flow has also been done by [FK14]. To completely avoid

numerical diffusion of the material interface, another approach is to use Glimm’s scheme [Gli65]. This method has been used

on two-dimensional Cartesian grid to compute compressible two-phase flows [Jun13, HJ13, BHJ+13]. For more details on

numerical methods to ensure the preservation of sharp profiles, let us refer to [DKL16].

To prevent numerical diffusion of the material interface, the anti-diffusive method of [KL10] and Glimm’s method proposed

by [BHJ+13] are used in this work.

3.4.1. Anti-diffusive scheme

Let us refer to [KL10] for an exhaustive presentation of the construction of the anti-diffusive scheme in the one-dimensional

case. A small modification of the anti-diffusive scheme is presented here in the case of slightly deformed curvilinear meshes.

Kokh and Lagoutière [KL10] use a directional splitting to compute the two-dimensional cases. This approach is possible

only for Cartesian meshes. However, in the case of liquid ablation considered here, the melting process of the solid part will

lead to a deformation of the structured grid. Consequently, a slightly different approach is used herewith the anti-diffusive

scheme on slightly deformed curvilinear meshes. The numerical scheme (31) is split into two parts. In the section, the two-

index notation (l,m) is used for the sake of clarity. Let φx1
and φx2

be the contributions of direction l and m, respectively,

to φn+1
l,m , defined by

(φx1
)n+1
l,m = φ

†
l,m + 2

∆t
∣

∣

∣Ωl,m

∣

∣

∣

φ
†
l,m

(∣

∣

∣Γl+ 1

2
,m

∣

∣

∣ ul+ 1

2
,m −

∣

∣

∣Γl− 1

2
,m

∣

∣

∣ ul− 1

2
,m

)

− 2
∆t
∣

∣

∣
Ωl,m

∣

∣

∣

(∣

∣

∣Γl+ 1

2
,m

∣

∣

∣ ul+ 1

2
,mφ

†
l+ 1

2
,m

−
∣

∣

∣Γl− 1

2
,m

∣

∣

∣ ul− 1

2
,mφ

†
l− 1

2
,m

)

,

and

(φx2
)n+1
l,m = φ

†
l,m + 2

∆t
∣

∣

∣Ωl,m

∣

∣

∣

φ
†
l,m

(∣

∣

∣Γl,m+ 1

2

∣

∣

∣ ul,m+ 1

2

−
∣

∣

∣Γl,m− 1

2

∣

∣

∣ ul,m− 1

2

)

− 2
∆t
∣

∣

∣Ωl,m

∣

∣

∣

(∣

∣

∣Γl,m+ 1

2

∣

∣

∣ ul,m+ 1

2

φ
†
l,m+ 1

2

−
∣

∣

∣Γl,m− 1

2

∣

∣

∣ ul,m− 1

2

φ
†
l,m− 1

2

)

,

so that

φn+1
i =

1

2

(

(φx1
)n+1
i + (φx2

)n+1
i

)

.
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The anti-diffusive method given by Kokh and Lagoutière is used for each mesh direction to compute the numerical fluxes

φ
†
l± 1

2
,m

and φ
†
l,m± 1

2

. For direction l, the upwind value according to the sign of ul+ 1

2
,m is chosen for ρ†1, ρ

†
2, (ρ1ε1)

† and (ρ2ε2)
†.

For the flux of the volume fraction evolution equation z
†
l+ 1

2
,m

, the idea is to find the interval Il+ 1

2
,m which provides stability

and consistency for the volume fraction and then to choose "the most downwind" possible value. Following Kokh and

Lagoutière method, we want to make sure the flux z
†
l+ 1

2
,m

belongs to the interval
[

ml+ 1

2
,m,Ml+ 1

2
,m

]

to ensure consistency,

where

ml+ 1

2
,m = min(znl,m, znl+1,m), (34)

Ml+ 1

2
,m = max(znl,m, znl+1,m). (35)

Suppose that ul− 1

2
,m > 0 and ul+ 1

2
,m > 0. To ensure the stability of the solution, the flux zl+ 1

2
,m must belong to the interval

[

al+ 1

2
,m, Al+ 1

2
,m

]

, where

al+ 1

2
,m = znl,m +

Ml− 1

2
,m − znl,m

∣

∣

∣Γl+ 1

2
,m

∣

∣

∣ ul+ 1

2
,m





∣

∣

∣Γl− 1

2
,m

∣

∣

∣ ul− 1

2
,m −

∣

∣

∣Ωl,m

∣

∣

∣

2∆t



 , (36)

Al+ 1

2
,m = znl,m +

ml+ 1

2
,m − znl,m

∣

∣

∣Γl+ 1

2
,m

∣

∣

∣ ul+ 1

2
,m





∣

∣

∣
Γl− 1

2
,m

∣

∣

∣
ul− 1

2
,m −

∣

∣

∣Ωl,m

∣

∣

∣

2∆t



 . (37)

The other cases depending on the sign of the velocity can be calculated in a similar way. After determining the different

intervals, the flux value z
†
l+ 1

2
,m

is computed as in the one-dimensional case, see [KL10] for details.

This approach based on a decomposition of the solution according to the mesh directions is only valid for slightly

deformed Cartesian meshes. The use of a genuinely two-dimensional scheme to prevent diffusion of the material interface

would overcome this limitation.

3.4.2. Glimm’s method

The second approach to solve the transport step is not based on a Finite Volume scheme but on Glimm’s random choice

method [Gli65, Col82, HJ13].

A pseudo-random sequence ωn ∈ [0, 1[ is considered. In the one-dimensional case, the pseudo-random averaging associated

to this choice is given by

φn+1
i =























φ
†
i−1 if ωn < ∆t

∆xi
ui− 1

2

,

φ
†
i if ∆t

∆xi
ui− 1

2

≤ ωn ≤ 1 + ∆t
∆xi

ui+ 1

2

,

φ
†
i+1 if ωn > 1 + ∆t

∆xi
ui+ 1

2

.

(38)

Note that the pseudo-random number ωn does not depend on the considered cell mesh but only on the time iteration. The

(5,3) van der Corput sequence is used to compute the pseudo-random sequence [Col82, HJ13]. A schematic representation

of the pseudo-random averaging is provided in Fig. 6.

xi− 3

2

xi− 1

2

xi+ 1

2

xi+ 3

2

• • •

ω∆xi−1 ω∆xi ω∆xi+1

∆tui− 3

2

∆tui− 1

2

∆tui+ 1

2

∆tui+ 3

2

φn+1
i−1 = φ

†
i−1 φn+1

i = φ
†
i−1 φn+1

i+1 = φ
†
i+1

Figure 6: Computation of the solution for the cells i− 1, i and i+ 1 with Glimm’s pseudo-random averaging.

If this random averaging method is applied in the whole computational domain, Jung [Jun13, BHJ+13] shows that the

method introduces instabilities for strong shocks. Glimm’s method is therefore used only at the material interfaces between
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the two phases. In pure phase areas, the upwind scheme is used. In the following and for the sake of simplicity, this hybrid

method between the upwind scheme for pure zones and the random Glimm’s method for mixing zones is simply denoted by

Glimm’s method. In the two-dimensional case, a directional splitting is used. This method can therefore only be used on

Cartesian meshes in 2D configurations.

3.5. Numerical procedure with moving grids

The main goal of this paper is to develop numerical tools in order to handle complex multi-physics configurations and

especially the melting of a solid domain. The interface between the solid and the fluid domains, i.e. the melting front, is

therefore going to move over time. In this section, the discretization of the governing equations for both domains over a

moving domain is described. An Arbitrary Lagrangian Eulerian approach, equivalent to a space-time Finite Volume method,

is used here.

In this work, curvilinear grids are considered and the node displacement is done on the mesh lines. In order to simplify

the computation of mass and energy balances, conforming mesh for the fluid and solid domains are used.

3.5.1. Fluid domain

For the fluid area, the two-phase flow model with dissipative effects (2) can be written in compact form

∂tU +∇ · F +H∇z = 0, (39)

with U = (ρ, ρy, ρu, ρE, z)T , F = (ρu, ρyu, ρu ⊗ u − S, ρEu − Su + q, 0)T and the vector H = (0, 0, 0, 0,u)T . The stress

tensor S is given by S = T − pId for the sake of clarity.

The previous system (39) is integrated over a control volume ω(t) moving at the velocity denoted by w. It reads

∫

ω(t)

(∂tU +∇ · F +H∇z) dv = 0.

Noticing that the flux F can be expressed as F = uU +G0 where G0 = (0, 0,−S,−Su+ q,−uz)T , we have

∫

ω(t)

(

∂tU +U∇ · u+∇ ·G0 +H∇z + u ·∇U
)

dv = 0. (40)

When moving grids are considered, Geometric Conservation Law (GCL) has to be satisfied at the discrete level in order to

ensure the preservation of constant states while the mesh is moving [LF96]. At the continuous level, the GCL reads

d

dt
(|ω(t)|)−

∫

∂ω(t)

w · n dσ = 0, (41)

where the boundary of the control volume is denoted by ∂ω(t) and n is the unit normal pointing outward.

Following the case where the mesh is not moving, see section 3.2, an operator splitting strategy is used to approximated

the five-equation model (2) on a moving mesh while preserving the Geometric Conservation Law. To do so, the system and

the GCL are split into two parts: an acoustic+dissipative step


















∫

ω(t)

(

∂tU +U∇ · u+∇ ·G0 +H∇z
)

dv = 0,

d

dt
(|ω(t)|) = 0,

(42)

and a transport step


















∫

ω(t)

(∂tU + u ·∇U) dv = 0,

d

dt
(|ω(t)|)−

∫

∂ω(t)

w · n dσ = 0.

(43)

The acoustic+dissipative step is solved on a fixed mesh, i.e. set ω(t) = ω(tn) = ωn. The explicit scheme is described in

sections 3.1 and 3.3.1 while the implicit treatment is given in sections 3.1 and 3.3.2.
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For the transport step (43), note that it can still be expressed as
∫

ω(t)

(∂tφ+∇ · (uφ)− φ∇ · u) dv = 0, (44)

where φ can be ρ, ρy, ρu, ρE or z.

For the first term of (44), we use the Reynolds transport formula to get
∫

ω(t)

∂φ

∂t
dv =

d

dt

∫

ω(t)

φ dv −

∫

∂ω(t)

φw · n dσ. (45)

Then transport system (44) can be rewritten as

d

dt

∫

ω(t)

φ dv −

∫

∂ω(t)

φw · n dσ +

∫

ω(t)

(∇ · (uφ)− φ∇ · u) dv = 0,

where φ ∈ {ρ, ρy, ρu, ρE, z}, or also

d

dt

∫

ω(t)

φ dv +

∫

∂ω(t)

φ(u−w) · n dσ −

∫

ω(t)

φ∇ · u dv = 0.

For the cell Ωi(t), the mean value theorem gives

d

dt
(|Ωi|φi) +

∫

∂Ωi(t)

φ(u−w) · n dσ − φi

∫

∂Ωi(t)

u · n dσ = 0.

Note that the Geometric Conservation Law is satisfied with this formulation. The explicit numerical scheme used for the

transport step if the the mesh is moving at the velocity w then is given by

∣

∣Ωn+1
i

∣

∣φn+1
i = |Ωn

i |φ
†
i −∆t

∑

j∈v(i)

|Γij |φ
†
ij(uij − w̄ij) + ∆tφ

†
i

∑

j∈v(i)

|Γij | uij , (46)

where w̄ij is the material velocity of the face Γij . If the mesh is not moving, this material velocity is given by the Riemann

solver of the first step, in order to have a conservative discretization for the global scheme (see section 3.4). We keep this

choice of material speed on the face when the mesh moves. The numerical flux φ
†
ij depends on the choice of the scheme in

the transport step. In the case of the upwind scheme, the flux is given by










φ
†
ij = φ

†
i if ūij − w̄ij > 0,

φ
†
ij = φ

†
j otherwise.

In the case of the anti-diffusive scheme, the construction of the flux is analog to the one presented in section 3.4.1.

3.5.2. Solid domain

The heat equation inside the solid can also be integrate over a moving control volume ωs(t)
∫

ωs(t)

∂t(ρsεs) dv =

∫

ωs(t)

∇ · (κs∇Ts) dv.

Using once again the Reynolds transport formula and the divergence theorem, we get

d

dt

∫

ωs(t)

ρsεs dv −

∫

∂ω(t)

ρsεsw · n dσ =

∫

∂ω(t)

κs∇Ts · n dσ.

The numerical scheme is then given by

∣

∣Ωn+1
i

∣

∣ ρn+1
i εn+1

i = |Ωn
i | ρ

n
i ε

n
i +∆t

∑

j∈v(i)

|Γij | (ρε)
n
ijw̄ij −∆t∇i · q

n+1
s . (47)

An implicit scheme is still used for the diffusive part. An explicit upwind scheme is used for the term related to (slow) mesh

movement due to the ablation of the solid domain. Namely, it reads










(ρε)nij = (ρε)ni if w̄ij < 0,

(ρε)nij = (ρε)nj otherwise.
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4. Fluid-Solid coupling algorithm

After the description of the governing equations and the numerical procedure, a coupling algorithm between the fluid and

solid domains in order to simulate the melting process of a metallic material can now be defined. The following coupling

algorithm is proposed

Step 1. Fluid and solid domains are initialized everywhere. Note that the location of the fluid-solid interface is known.

Step 2. The mass flux ṁ at the interface between liquid and solid domains is computed from the energy balance (10).

Step 3. From mass balance (7) and from mass flux ṁ, the interface velocity witf (8) and the injection velocity uf (9) are

computed.

Step 4. Time steps for the fluid and solid domains are computed by taking into account the interface velocity. The overall

time step will be the minimum of the time steps for the two domains.

Step 5. The interface is moved to its new position. The meshes of the two domains are reconstructed on both sides of the

interface.

Step 6. The unsteady solution in the fluid domain is calculated from the solution of the previous coupling time step: first,

the acoustic+dissipative step is solved on the fluid mesh at time tn, see section 3.3, then transport step (46) is solved

on the new mesh as described in section 3.5.1. A Dirichlet condition to ensure the melting temperature Tw is applied

on the wall. The velocity of the fluid at the interface between the fluid and the solid is given by the injection velocity

uf (9).

Step 7. The unsteady solution of the heat equation (1) inside the solid domain is computed from the solution at the previous

coupling time step as described in section 3.5.2. A Dirichlet boundary condition at the melting temperature Tw is also

imposed at the solid fluid interface.

Step 8. The solution of the current coupling time step is determined: the position of the wall and fields for both fluid and

solid domains are known. Go to the next coupling time step by starting at Step 2 of the algorithm.

In the case of multiphase ablation studied here, one can note that the computation of the fluid domain, Step 6, and the

solid one, Step 7, can be solved at the same time in the algorithm proposed above.

5. Numerical validation

The main objective of this section is to validate the numerical scheme previously described to take into account the

diffusion terms in the two-phase flows model. First of all, the choice of the mixture temperature based on the internal energy

form is discussed. In order to do so, a two-phase flow shock tube test case is used. A classical single-phase Couette-type flow

test case is next considered as a validation of the discretization of the dissipation terms. The impact of the neglected terms

in the pressure evolution equation (22) for the implicit formulation is also discussed with this test case. The discretization

of the dissipation terms for a mixture of two fluids and the implicit formulation of the equation on energy is then validated

using a two-phase Couette-type flow. For the last test case, the melting of an aluminium solid block by a lid-driven cavity

filled with air is considered. The three material phases are involved in this test case. The liquid phase is not initially present

inside the fluid domain, but the ablation of the solid part creates a molten layer between the gas and the wall. The ALE

formulation of the numerical schemes presented before is needed since the interface between the fluid and the solid domain

is explicit tracked and therefore the whole mesh is moving.

In the sequel, the fully explicit-scheme for the five-equation system with dissipative effects inside the fluid domain is

denoted by EXEX, while the implicit-explicit splitting scheme is denoted by IMEX.
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5.1. Two-phase flow shock-tube test: mixture temperature choice

To illustrate the choice of the mixture temperature, a classical one-dimensional shock tube problem between water and

air is considered [PGM17]. The stiffened gas equation of state is used for the liquid while the air is modeled by a perfect

gas law. At the initial time, the interface between the two fluids at rest is at x = 0.7 m. Let us recall that the initial

characteristics of water and air are given by











(ρ, p, u, γ, π) =
(

1000 kg.m−3, 109 Pa, 0 m.s−1, 4.4, 6× 108 Pa
)

for 0m ≤ x < 0.7m,

(ρ, p, u, γ, π) =
(

50 kg.m−3, 105 Pa, 0 m.s−1, 1.4, 0 Pa
)

for 0.7m ≤ x ≤ 1m.

In order to compute the temperature, the heat capacity at constant volume cv of each phase needs to be known. For the liquid

phase, cv = 4180 J.kg−1.K−1 and the heat capacity for the gas phase is equal to cv = 1000 J.kg−1.K−1. A 1000 cells mesh

is used for the computation and constant state boundary conditions are applied on each side on the computational domain.

The second-order explicit scheme is used here, and the time step is given by the two stability conditions (18) and (33) with

a CFL number equals to 0.2.

In this first test case, dissipative terms are not taken into account. The temperature is only a post-processed quantity.

The choice of the definition of the mixture temperature will therefore not influence the computation of the other physical

variables. Starting from the definition of the internal mixture energy, a mixture temperature can be derived

Tε(p, ϑ, z, y) =
1

cv(y)

2
∑

k=1

ykcvk
Tk. (48)

This mixture temperature based on the internal energy is a convex combination of the temperature of each phase Tk(p, ϑk) =

ϑk
p+πk

cvk (γk−1) . However, it is also possible to define a mixture temperature by considering the mixture entropy for two stiffened

gases

s = cv(y) ln
(

(p+ π(z))ϑγ(z)
)

.

Indeed, following Gibbs equation Tds = dε+pdϑ+fdz+gdy, we can find that the temperature is equal to T =
(

∂s
∂ε

∣

∣

ϑ,z,y

)−1

.

The temperature Ts related to the entropy is thus given by

Ts(p, ϑ, z, y) = ϑ
p+ π(z)

cv(y)(γ(z)− 1)
. (49)

Note that, if the two reference pressures π1 and π2 are equal, the two temperature definitions coincide. This is no longer

true if the reference pressures are different as in the case of an air-water mixture.

The two mixture temperatures defined by (48) and (49) computed with the second-order EXEX scheme are plotted in

Fig. 7. One can see that the two temperature definitions give the same result very close to the exact solution in pure fluids

areas. However, a temperature peak appears in the mixture zone with the entropy related temperature. Moreover, this

overestimation of the temperature does not disappear if the mesh is refined as it is shown in Fig. 8, where a mesh ten times

finer has been used. Therefore, the mixture temperature computed with formula (48) derived from the form of the internal

mixture energy will only be considered in the following.

5.2. Single phase Couette flow

For the sake of readability, the 2D space variable will be denoted by x = (x, y)T and the velocity vector by u = (u, v)T

in the next sections 5.2 and 5.3.

In this test case, a laminar flow between two horizontal infinite plates is considered. The two surfaces are separated by

a distance ye − yw. The top plate is moving with a constant velocity denoted by ue, whereas the bottom one is motionless.

In addition, the upper plate is heated to the temperature Te and the lower surface to temperature Tw with Te > Tw. The

test-case geometry is described in Fig. 9.
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Figure 7: Two-phase flow shock-tube test with a 1000 cells mesh: comparison between the internal energy-based and the entropy-based tempera-
tures.
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Figure 8: Two-phase flow shock-tube test with a 10 000 cells mesh: comparison between the internal energy-based and the entropy-based
temperatures on a mesh ten times finer.

yw
u = 0 and T = Tw

Gas

ye
u = (ue, 0)

T and T = Te

Figure 9: Single phase Couette flow: geometry description and boundary conditions.

The exact resolution of this problem is detailed in Appendix A.1. The velocity profile is given by

u(y) = ue
y − yw

ye − yw
, (50)

whereas the temperature profile is given by

T (y) = Tw +

(

Te − Tw +
µu2

e

2κ

(

1−
y − yw

ye − yw

))

y − yw

ye − yw
, (51)

where µ and κ are the viscosity and thermal conductivity of the fluid. They are assumed to be constant here. Previous

formulation can be simplified with the introduction of the dimensionless length ỹ = y−yw

ye−yw
and the dimensionless temperature

T̃ = T−Tw

∆T where ∆T = Te − Tw. Temperature profile can be rewritten as

T̃ (ỹ) =

(

1 +
1

2
PrEc (1− ỹ)

)

ỹ.
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with the dimensionless number of Prandtl Pr =
µcp
κ and Eckert Ec =

u2

e

cp∆T . One can notice that for configurations such as

PrEc >2, the maximum temperature is reached within the domain.

For this test case, the plate located in yw = 0 m is heated to the temperature Tw = 280 K. For the upper plate located

in ye = 0.2 m, the following boundary conditions are used: Te = 330 K and ue = 10 m.s−1. The fluid between the two

plates is assimilated to a perfect gas with γ = 1.4 and a Prandtl number equal to 0.72. The gas is initialized at atmospheric

pressure and with an initial density equals to ρini = 1 kg.m−3. The viscosity of the fluid is set to µ = 1 Pa.s. By imposing

PrEc = 5, the other properties of the gas can be obtained, namely κ = 0.4 W.m−1.K−1, cp = 0.288 J.kg−1.K−1 and

cv = 0.206 J.kg−1.K−1.

The Courant number used for this test case is equal to 0.8. A 25 cells mesh have been used in the y-direction. To find the

steady solution of the problem, an unsteady process is used and the solution will be obtained at the end of the convergence in

time. To characterize this steady state, the residual r is computed by comparing the L2-norm of the difference of the vectors

of the conservative unknowns at the pseudo-times n + 1 and n. This difference is divided by the norm of the conservative

vector at the initial time t0. Thus, the residual is given by

r =
‖Un+1 −Un‖L

2

‖U0‖L2
,

where U = (ρ, ρy, ρu, ρE, z)
T
. The steady solution is assumed to be reached when the residual is below a convergence

criterion. For this simulation, the convergence criterion is set to 10−10.

In figure 10, the temperature and velocity profiles obtained with the fully explicit and implicit-explicit formulations of

the numerical scheme have been plotted. One can see that the two curves coincide and are very close to the theoretical

solution. This simple test case allows us to validate the discretization of the viscous terms in a single phase flow. The

excellent agreement between the EXEX and IMEX schemes shows that the contribution of the heat flow term in pressure

evolution equation (22) is small.
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Figure 10: Single phase Couette flow: velocity and temperature profiles obtained with EXEX and IMEX schemes on a 25 cells mesh.

Table 1 gives L2-norm of the relative error between the numerical temperature obtained with IMEX scheme and the

exact solution (51). From this table, one can verify that the discretization of the dissipative terms is second-order accurate.

Cells number Relative error Convergence order
10 9.57× 10−4 2.00
25 1.53× 10−4 2.00
50 3.83× 10−5 2.00
100 9.57× 10−6

Table 1: Single phase Couette flow: relative error in L2-norm and convergence order for the temperature profile obtained with the IMEX scheme.
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Remark 4

With the numerical scheme based on a splitting strategy described previously, it is possible to show that, at convergence,
the steady solution of the overall scheme still depends on the time step. However, the impact of this dependence have not
been noticed in our numerical tests.

5.3. Two-phase Couette flow

As in the previous test case, a physical domain delimited by two infinite horizontal plates separated by a distance ye−yw

is considered. The upper wall moves at constant speed ue while the lower wall is fixed. In addition, the upper wall is heated

to the temperature Te and the lower wall to the temperature Tw with Te > Tw. For this test case, a two-phase flow between

the two surfaces is considered. The position of the interface between the two fluids is located in y = y0. During the transient

phase, the material interface will move. The geometry of the test case is described in Fig 11.

yw
u = 0 and T = Tw

Fluid 1

y0

Fluid 2

ye
u = (ue, 0)

T and T = Te

Figure 11: Two-phase Couette flow: geometry description and boundary conditions.

The analytical study of this problem is detailed in Appendix A. Velocity, temperature and pressure profiles can be

expressed as a function of the position of the interface y0 between the two fluids. Indeed, by denoting L1 = y0 − yw and

L2 = ye − y0, the velocity profile is given by

u(y) =























u0

y − yw

L1
yw < y < y0,

u0 + (ue − u0)
y − y0

L2
y0 < y < ye,

(52)

where u0 is the velocity at the material interface

u0 =

µ2

L2

ue

µ1

L1

+ µ2

L2

.

The temperature profile is parabolic in each zone. It is given by

T (y) =



































−
µ1u

2
0

2κ1





y − yw

L1





2

+



T0 − Tw +
µ1u

2
0

2κ1





y − yw

L1
+ Tw yw < y < y0,

−
µ2 (ue − u0)

2

2κ2





y − y0

L2





2

+



Te − T0 +
µ2 (ue − u0)

2

2κ2





y − y0

L2
+ T0 y0 < y < ye,

(53)

where T0 is the temperature at the interface between the two phases

T0 =
1

κ1

L1

+ κ2

L2

(

κ1

L1
Tw +

κ2

L2
Te +

µ1u
2
0

2L1
+

µ2 (ue − u0)
2

2L2

)

.

The pressure is constant in the entire domain and its value is given by

P =
Mini −

π1I1
(γ1−1)cv1

− π2I2
(γ2−1)cv2

I1
(γ1−1)cv1

+ I2
(γ2−1)cv2

, (54)
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where Mini is the initial mass, I1 =

∫ y0

yw

dy

T (y)
and I2 =

∫ ye

y0

dy

T (y)
are the integrals of the inverse of the temperature in both

zones.

Finally, velocity (52) and temperature (53) profiles and the value of the pressure P (54) are given as functions of the

position of the fluid interface y0. To find the location of the material interface, the mass conservation applied to the first

fluid can be used. It reads

(P (y0) + π1)I1(y0) = M1
ini(γ1 − 1)cv1

,

where M1
ini is the initial mass of the fluid phase 1. This non-linear equation can be solved in order to find the location of the

interface y0 between the two phases. In this work, a simpler approach is used to find the interface position y0. In order to

validate this test case, a reference computation is done (see below) and the location of the material interface in the steady

state computed numerically is used. The temperature and velocity profiles can then be obtained. The value of the theoretical

pressure is computed from the relation (54) and compared with the value of the pressure obtained by the numerical scheme.

For this two-phase flow simulation, the lower surface located in yw = 0 m is supposed to be heated to the temperature

Tw = 310 K. For the upper plate located in ye = 0.2 m, the following boundary condition are applied: Te = 330 K and

ue = 10 m.s−1. Fluid 1, located in the lower part of the domain, is supposed to be a liquid modeled by stiffened gas equation

of state, while fluid 2 is a perfect gas. Parameters for both fluid phases are given in the table 2.

fluid 1 fluid 2
viscosity µ 10 1
thermal conductivity κ 10 1.376
heat capacity cv 3.229 0.708
adiabatic exponent γ 3 1.4
reference pressure π 105 0

Table 2: Two-phase Couette flow: parameters for each phase.

First, the material interface is originally located in the middle of the domain, i.e. y0,ini = 0.1 m. Initial densities are

equal to ρ1,ini = 25 kg.m−3 for the liquid and ρ2,ini = 1.7085 kg.m−3 for the gas. The initial mass in the domain is therefore

given by

Mini = ρ1,ini(y0,ini − yw) + ρ2,ini(ye − y0,ini) = 2.67085 kg.

The pressure value, velocity and temperature profiles have been expressed as functions of the interface position y0 between

the two fluids. A reference value for the location of the interface needs to be find. In order to do this, the Glimm’s method,

which does not create a mixture zone, is used in the transport step of the splitting scheme. Let us recall that this method is

actually an hybrid method with the use of the upwind scheme in pure fluid zones and the Glimm’s random choice method at

the interface (see section 3.4.2). A very fine mesh with 4000 cells is used and the numerical position of the material interface

in found to be located in y0 = 0.050194 m in the steady state. From this reference value, the theoretical temperature, velocity

and pressure profiles can be derived.

As for the single-phase version of the Couette-type flow, the steady solution is computed with a convergence criterion

equal to 10−10.

First of all, explicit and implicit formulations of the acoustic step with the dissipative terms are compared. Velocity and

temperature profiles obtained by the EXEX and IMEX schemes are plotted in Fig. 12. In the transport step, the upwind

scheme has been used. The impact on the solution of the transport scheme choice will be highlighted in the following.

The solutions computed with the implicit and explicit formulations are very close, which enables the validation the implicit

discretization proposed for the acoustic step. The comparison of the iterations needed to converge to the steady state shows

the benefit of the IMEX scheme. Indeed, the implicit formulation of the first step of the scheme requires only 236 iterations
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while 2 108 056 iterations are necessary with the fully explicit scheme. In the following, IMEX scheme will only be used and

the impact of the transport scheme on the solution will be discussed.
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Figure 12: Two-phase Couette flow: velocity and temperature profiles for EXEX and IMEX schemes.

Velocity, temperature, volume fraction (of fluid 1) and pressure profiles for the IMEX scheme have been plotted in Fig. 13.

First and second-order schemes and Glimm’s method have been used for the transport step. The results obtained with the

anti-diffusive scheme [KL10] for the transport step are not shown here since they were identical to those of Glimm’s method.

One can see that with Glimm’s method, the reference solution is perfectly obtained with only a 100 cells mesh. If the upwind

scheme is used in the transport step, Fig. 13 shows that the numerical diffusion of the interface has an impact on the velocity

and temperature profiles. A second-order extension of the upwind transport scheme prevents the numerical diffusion of

the material interface and there is a better agreement with the unmixed reference solution. The relative error between the

numerical pressure computed with the scheme and the pressure reference computed with equation (54) allows a quantitative

comparison of the different schemes, see Tab. 3. This comparison shows that the anti-diffusive scheme and Glimm’s method

are in excellent agreement with the reference solution with only a 100 cells mesh.

Scheme Relative error (%)
IMEX first-order (Upwind) 7.33
IMEX second-order (Upwind) 4.91
IMEX (anti-diffusive) 0.122
IMEX (GLIMM) 0.160

Table 3: Two-phase Couette flow: relative error on the pressure value for the different schemes.

The fact that the continuous steady solution does not depend on the initial location of the interface between the two

fluids is not obvious. Another test case, with an initial condition such as the position of the material interface is close to

the steady value, i.e. y0,ini = 0.05, is therefore designed. To ensure the same initial mass inside the computational domain,

the initial densities are given by ρ1,ini = 50 kg.m−3 and ρ2,ini = 1.1390 kg.m−3. One can see in Fig. 14 that the same

steady solution is obtained. In addition, with this choice for the initial condition, the interface between the two fluids hardly

changes during the transient phase of the simulation. Hence, this initial configuration reduces the duration of the transient

phase and thus the numerical diffusion of the interface by the scheme. The choice of the numerical method for the transport

step has much less impact on the steady solution: all the profiles in Fig. 14 are very close. This highlights the fact that the

numerical steady solution obtained with the upwind scheme depends on the initial position of the material interface.

Finally, the discretization of the dissipative terms in the two-phase flow model has been validated with different test

cases. The contribution of neglected terms in predicting the pressure for implicit formulation of the acoustic+dissipative

step of the scheme seems to be small. For two-phase flows, the choice of the numerical scheme used in the transport stage
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Figure 13: Two-phase Couette flow: velocity, temperature, volume fraction (of fluid 1) and pressure profiles for the IMEX scheme with first and
second-order upwind schemes and Glimm’s method for transport step.
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Figure 14: Two-phase Couette flow: velocity and temperature profiles for the IMEX scheme with first and second-order upwind schemes and
Glimm’s method for transport step. Initial value of the interface position is close to the steady solution.

plays an important role in the solution. The numerical diffusion generated by the upwind scheme in the transport step is

not negligible and has an impact on temperature and velocity profiles. A finer mesh or a second-order scheme can prevent

this numerical diffusion and produces a better approximation, closer to the unmixed solution. Numerical schemes limiting

the numerical diffusion of the interface between the two fluids in the transport step such as the anti-diffusion scheme [KL10]

or Glimm’s method [Jun13] will therefore be used in such configurations.
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5.4. Numerical simulation of the melting of an aluminium block by an air-filled lid-driven cavity

For the last test case, melting of an aluminium solid block by a lid-driven cavity filled with air is considered. Since the

upper wall of the lid-driven cavity is heated, the gas phase induces a significant amount of heat flux by convection to the

solid wall. This heat flux leads to the melting of the aluminium solid part and the injection of a liquid phase inside the flow.

In this liquid ablation test case, the initial domain is a rectangle of [0, 10] mm×[−10, 10] mm separated by the fluid-solid

interface at x2 = 0. The fluid region is located in the upper part of the domain, i.e. x2 > 0, while the solid block corresponds

to the sub-domain characterized by x2 < 0. Side walls of the cavity are considered to be adiabatic. The upper part of the

cavity moves from left to right with a lid velocity equal to ue = 1 m.s−1. In order to increase the ablation process, the upper

wall is heated to a temperature of 8000 K.

The initial solid temperature is set equal to the aluminium melting temperature, namely T = 933 K. To determine the

physical data of solid and liquid aluminium, Develay’s tables [Dev] which give the numerical values of unalloyed aluminium

are used. The density of the solid aluminium near its melting point is ρs = 2550 kg.m−3. A thermal conductivity κs =

208 W.m−1.K−1 and a heat capacity equal to cp,s = 1240 J.kg−1.K−1 are used in the simulation.

The fluid region is initialized with an air flow assumed to be a perfect gas with γ = 1.4 at the atmospheric pressure

p = 105 Pa and with an initial density equal to ρg = 0.296 kg.m−3. Air viscosity is taken equal to µg = 1.8× 10−5 Pa.s, its

thermal conductivity is κg = 2×10−2 W.m−1.K−1 and its heat capacity at constant volume is equal to cv,g = 905 J.kg−1.K−1.

For liquid aluminium resulting from the melting of the solid part, the thermal conductivity is set to κ = 90 W.m−1.K−1 [Dev].

Its viscosity is given by µ = 1.235 × 10−3 Pa.s, while the heat capacity is cv,l = 970 J.kg−1.K−1. Its density, for a temper-

ature close to the melting point and atmospheric pressure p0, is equal to ρl = 2368 kg.m−3. The enthalpy of fusion for the

aluminium is equal to h0 = 3.97× 105 J.kg−1[Dev]. The liquid phase is modeled by a stiffened-gas equation of state written

as

p(ρ, ε) = Γρ(ε− q)− (Γ + 1)π, (55)

ε(ρ, T ) = q + cvT +
π

ρ
, (56)

where Grüneisen coefficient Γ = γ− 1 = 2.14 and the pressure reference is π = 1.651× 1010 Pa. [Lat13]. The internal energy

of reference is q = h0 −
p0

ρ0

.

A 300×300 cells mesh has been used for the numerical simulation. In order to have a reasonable CPU time, 100 processors

are used in parallel so that each processor computes a sub-domain of 30× 30 cells. With such a mesh, and since solid, liquid

and gas phases are present, fully explicit scheme is much too expensive. Indeed, the explicit time step, limited by the diffusion

terms, is approximately equal to ∆tEXEX ∼ 2× 10−11 s. With the implicit-explicit scheme, the time step constraint related

to the material velocity is about ∆tIMEX ∼ 10−6 s. There is thus a 50 000 ratio between the semi-implicit scheme IMEX

and the fully explicit scheme EXEX. The low Mach correction [CGK16] based on a modification of the pressure flux in the

acoustic step is used in this numerical simulation to take into account the incompressible nature of the liquid phase. To

prevent the numerical diffusion of the interface between the gas phase and the liquid resulting from the melting process, we

use the anti-diffusive scheme on the volume fraction [KL10] described in section 3.4.1 for the transport step of the scheme.

The evolution of liquid volume fraction, temperature, and velocity fields as well as mesh deformation for the fluid

computational domain at different times are plotted in Figs. 15 and 16.

The air is heated by the top wall and then driven to the right. A recirculation is created in the center of the domain

which will allow the gas flow to bring a significant amount of heat flux to the solid part below. The solid is melted by this

energy transfer. The liquid phase, represented by the red color on the left column in Figs. 15 and 16, is then injected into

the gas flow. The numerical diffusion of the interface between the two fluid phases (liquid and gas) is limited thanks to the

anti-diffusion scheme on the volume fraction in the transport step. One can notice that the interface between the liquid
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phase and the gas phase in the two-phase flow remains quite horizontal.

The implicit-explicit scheme taking into account the diffusion terms described before seems to be robust enough to

compute such configurations involving a two-phase flow with high density ratios between the two phases and a solid part.

The implicit treatment of the acoustic+dissipative step and of the numerical scheme used in the solid domain allows larger

time step, which are not limited by the dissipative effects. The ALE formulation of the governing equations is also needed

since the mesh deformation is following the melting front. Finally, thanks to the parallelization of the code, refined meshes

can be used while limiting the impact on the computation time.

6. Conclusion

In order to be able to compute the ablation of metallic thermal protection systems, robust and accurate numerical methods

are developed and detailed in this work. In this complex multi-physics problem, the thermal state inside a solid domain

needs to be determined and a two-phase viscous flow with a high enthalpy gas and an almost incompressible liquid layer

have to be computed. An accurate computation of the melting front is also needed. The governing equations for the two

domains and the jumps relations at the interface are described. Since the gas flow and the liquid layer are non-miscible in

our application, an extension of five-equation model to dissipative effects is considered. An operator splitting strategy is used

to separate the different phenomena according to their own propagation speed in the fluid region. This strategy separates

acoustic and dissipative phenomena from the transport one. The hyperbolic part of the acoustic+dissipative step is solved

in a non-conservative form using a Godunov-type scheme based on a simple Riemann solver. The Riemann solver slopes are

computed using exact positivity conditions for the solution. A classical discretization is used for the dissipative terms, and

also for the heat equation inside the solid domain. Since boundary layers have to be accurately computed in order to have a

good approximation of the heat flux at the wall, fine meshes are used near the fluid-solid interface. In addition, the acoustic

inside the almost incompressible liquid layer is not the main phenomena. Explicit stability conditions are therefore very

restrictive for this acoustic+dissipative step. An implicit treatment of the acoustic+dissipative step allows large time steps

that are based on the material waves velocity. The numerical fluxes of the hyperbolic part are first computed thanks to an

autonomous and linear pressure-velocity sub-system. The specific volume can be directly updated while an iterative process

is needed to compute the new internal energy. The transport step is then computed explicitly. Several approaches can be used

in order to prevent the numerical diffusion of the material interface between the gas flow and the liquid. The global scheme

resulting from the splitting strategy for the five-equation system is conservative. Finally, since moving grids are used to

capture accurately the melting front, an ALE formulation of the numerical schemes for both fluid and solid domains is given

in a multidimensional framework. A fluid-solid coupling algorithm is then proposed to compute such complex multi-physics

problems. Numerical simulations show the validity and the robustness of the IMEX scheme used for the discretization of

the five-equation system. The anti-diffusive scheme or Glimm’s method needs to be used in the transport step in order to

prevent the numerical diffusion of the material interface and to accurately compute the heat flux at the wall. The last test

case, namely the melting of an aluminium solid block by a lid-driven cavity filled with air, shows that the numerical tools

developed here seem to be robust enough to compute complex configurations involving a two-phase flow with high density

ratios and a solid part.

In the future, genuinely two-dimensional schemes to prevent the numerical diffusion of the interface between the gas

and the liquid will be considered. This will allow large mesh deformation while limiting the numerical mixture zone. More

complex and realistic configurations can be considered with an extension of the splitting strategy to the axisymmetric case.

Finally, the treatment of differential ablation of a composite material with a part made of carbon that will sublimate and a

metallic part that will melt remains to be studied.
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(a) t = 0 s

(b) t = 0.053 s

(c) t = 0.15 s

(d) t = 0.25 s

Figure 15: Numerical simulation of the melting of an aluminium block by an air-filled lid-driven cavity: evolution of the liquid volume fraction
(left), temperature (middle), velocity field and mesh (right) for the fluid computational domain at different times.
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(e) t = 0.347 s

(f) t = 0.445 s

(g) t = 0.5 s

Figure 16: Numerical simulation of the melting of an aluminium block by an air-filled lid-driven cavity: evolution of the liquid volume fraction
(left), temperature (middle), velocity field and mesh (right) for the fluid computational domain at different times (continued).
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Appendix A. Exact solutions of single and two-phase Couette-type flows

In this appendix, exact solutions for plane single and two-phase Couette-type flows are given.

Appendix A.1. Single phase Couette flow

A laminar flow between two horizontal infinite plates is considered. The two surfaces are separated by a distance ye − yw

The top plate is moving with a constant velocity denoted by ue, whereas the bottom one is motionless. In addition, the

upper plate is heated to the temperature Te and the lower surface to temperature Tw with Te > Tw. The test-case geometry

is described in Fig. 9.

Single phase compressible Navier-Stokes equations reads































∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu⊗ u) +∇p = ∇ · T,

∂t (ρE) + ∇ · (ρEu+ pu) = ∇ · (Tu)−∇ · q.

(A.1)

We are looking for a steady solution of this problem. Therefore, all time derivatives of the previous system (A.1) are equal to

0. Since the upper and lower plates are assumed to be infinite, x-derivatives are also equal to 0. Mass conservation equation

and boundary conditions reveal that that velocity field is given by u = (u(y), 0)T . The pressure is hence constant inside the

entire domain. In this case, the stress tensor reduces to T =





0 τxy

τxy 0



 , where τxy = µ∂yu. The momentum equation

is given by
∂

∂y

(

µ
∂u

∂y

)

= 0.

In this single phase flow, the viscosity is assumed to be constant in the whole domain. Thus, using boundary conditions

u(yw) = 0 and u(ye) = ue, velocity profile reduces to a linear profile

u(y) = ue
y − yw

ye − yw
.

The energy equation is given by

∂

∂y

(

κ
∂T

∂y

)

+ µ

(

∂u

∂y

)2

= 0.

Since the thermal conductivity is assumed to be uniform in the fluid, the temperature profile is parabolic. With boundary

conditions T (yw) = Tw and T (ye) = Te, temperature profile is given by

T (y) = Tw +

(

Te − Tw +
µu2

e

2κ

(

1−
y − yw

ye − yw

))

y − yw

ye − yw
.

Global mass conservation can be used in order to find the pressure value p(y) = P . Since we have

∫ ye

yw

ρ(y)dy = Mini,

where Mini is the initial mass, then if the fluid equation of state is a stiffened gas, i.e. P = (γ − 1)ρcvT − π, the pressure

value can be deduced

P = (γ − 1)cv

(∫ ye

yw

dy

T (y)

)−1

Mini.

Appendix A.2. Two-phase Couette flow

Like in the single-phase case, a physical domain delimited by two infinite horizontal plates separated by a distance ye−yw

is considered. The upper wall moves at constant speed ue while the lower wall does not move. In addition, the upper wall is

heated to the temperature Te and the lower wall to the temperature Tw with Te > Tw. For this test case, a two-phase flow
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between the two surfaces is considered. The position of the interface between the two fluids is located in y = y0. During the

transient phase, the interface between the two fluids will move. The geometry of the test case is described in Fig 11.

We are still looking for a steady solution of this problem and the two plates are assumed to be infinite, therefore all

partial derivatives with respect to time and x of the five-equation system (2) are equal to 0. Once again, the pressure field

is constant p(y) = P in the entire domain, and velocity field is given by u = (u(y), 0)T . The five-equation system with

dissipative terms reduces to

∂y (µ∂yu) = 0, (A.2a)

µ (∂yu)
2
+ ∂y(κ∂yT ) = 0, (A.2b)

with boundary conditions

u(y = yw) = uw and u(y = ye) = ue,

T (y = yw) = Tw and T (y = ye) = Te.

Continuity conditions between the two fluids at the interface located in y = y0 require continuity of velocity, shear stress

τxy, temperature and heat flux.

Velocity equation (A.2a) can be integrated in order to find the velocity profile

u(y) =























u0

y − yw

L1
yw < y < y0,

u0 + (ue − u0)
y − y0

L2
y0 < y < ye,

(A.3)

where L1 = y0 − yw, L2 = ye − y0 and u0 is the velocity at the interface between the two phases. The value of the velocity

u0 is given by shear stress continuity τxy = µ∂yu at the interface between the two phases

u0 =

µ2

L2

ue

µ1

L1

+ µ2

L2

.

Once the velocity profile is found, temperature equation (A.2b) reduces to

∂y(κ∂yT ) =



































−µ1





u0

L1





2

yw < y < y0,

−µ2





ue − u0

L2





2

y0 < y < ye.

If again we assume viscosities µ1 and µ2 to be constant, then the temperature profile is parabolic in each zone. Using

boundary conditions, we find

T (y) =



































−
µ1u

2
0

2κ1





y − yw

L1





2

+



T0 − Tw +
µ1u

2
0

2κ1





y − yw

L1
+ Tw yw < y < y0,

−
µ2 (ue − u0)

2

2κ2





y − y0

L2





2

+



Te − T0 +
µ2 (ue − u0)

2

2κ2





y − y0

L2
+ T0 y0 < y < ye,

(A.4)

where T0 is the temperature at the interface between the two phases. This temperature can be obtained thanks to the heat

flux continuity at y = y0

T0 =
1

κ1

L1

+ κ2

L2

(

κ1

L1
Tw +

κ2

L2
Te +

µ1u
2
0

2L1
+

µ2 (ue − u0)
2

2L2

)

.
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The location y0 of the interface between the two fluids and the pressure at the steady state are still unknown. To do this,

global mass conservation can be used
∫ ye

yw

ρ(y)dy = Mini,

where Mini is the initial mass. In case where both fluids are stiffened gases, mass conservation reads

P + π1

(γ1 − 1)cv1

∫ y0

yw

dy

T (y)
+

P + π2

(γ2 − 1)cv2

∫ ye

y0

dy

T (y)
= Mini.

Temperature profile have been shown to be of the form of T (y) = ay2 + by + c in each zone. Those terms can be integrated

to get

I =

∫ y2

y1

dy

ay2 + by + c
=

1

a(r1 − r2)
ln

(

(y2 − r1)(y1 − r2)

(y1 − r1)(y2 − r2)

)

.

with ∆ = b2 − 4ac > 0 and r1 < y1 < y2 < r2 where r1 = min
(

−b±
√
∆

2a

)

and r2 = max
(

−b±
√
∆

2a

)

.

The pressure can be determined from the interface position y0. Let us denote by I1 =

∫ y0

yw

dy

T (y)
and I2 =

∫ ye

y0

dy

T (y)
integral

of the inverse of the temperature in the two regions. One finally gets

P =
Mini −

π1I1
(γ1−1)cv1

− π2I2
(γ2−1)cv2

I1
(γ1−1)cv1

+ I2
(γ2−1)cv2

. (A.5)

In the case of a two-phase Couette flow, velocity (A.3) and temperature (A.4) profiles and the value of the pressure P (A.5)

are given as functions of the position of the fluid interface y0. However, another equation is needed to be able to fully

determine the steady state. Global energy conservation equation cannot be used since temperatures are enforced on the

walls of the domain. Nonetheless, since there is no mass transfer between the two fluid phase, the mass of each fluid phase

is also constant. The mass conservation for the first fluid phase reads

∫ y0

yw

ρ(y)dy = M1
ini,

where M1
ini is the initial mass of the first fluid phase. Once again, with a stiffened gas, one can find

(P (y0) + π1)I1(y0) = M1
ini(γ1 − 1)cv1 .

The position of the material interface y0 can be determined by solving this non-linear equation. The steady solution of this

two-phase Couette flow is then completely defined.
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