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Abstract

We propose a new ES-BGK model for diatomic gases which allows for translational-rotational
and translational-vibrational energy exchanges, as given by Landau-Teller and Jeans relaxation
equations. This model is consistent with the general definition of the vibrational and rotational
collision numbers that are also commonly used in DSMC solvers. It is proved to satisfy the
H-theorem and to give the correct transport coefficients, up to the volume viscosity.
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1 Introduction

In Rarefied Gas Dynamic problems, it is often useful to replace the complicated Boltzmann
equation by simplified models, both for analytical calculations and numerical simulations. These
model equations describe intermolecular collisions by drift and diffusion in the velocity space
(Fokker-Plank models, see [2, 3, 4]) or by relaxation to a local equilibrium: this latter approach,
first proposed by Bathnagar et al. [5] and Welander [6] leads to the so called BGK equation.

The BGK equation describes the evolution of a rarefied monoatomic flow, and is designed
to satisfy several properties of the Boltzmann equation, like conservation laws, H-theorem, and
correct shear viscosity coefficient in the compressible Navier-Stokes asymptotics as obtained by
the Chapman-Enskog expansion. However, the BGK equation contains a single free parameter
(the relaxation time) which is not sufficient to independently fit the correct value of the heat
transfer coefficient, which leads to a constant Prandtl number equal to 1.

Several modifications of the BGK equation have been proposed to fix this problem, like
the Ellipsoidal-Statistical (ES-BGK) [7] and the Shakhov [8] models that are the most popular
(see [9, 10] for other models). While the ES-BGK model was already extended to polyatomic
gases in [7], this is the more recent extension of Andriés et al. [1] to polyatomic gases with
rotational energy that is mostly used in the litterature [11, 12]. In the same paper, the authors
also proved for the first time that the ES-BGK model satisfies the H-theorem. While the
Shakhov model has also been extended to polyatomic gases [13, 14], it cannot satisfy the H-
theorem, since it is a perturbative model in which the distribution function can take negative
values. Several extensions of the BGK equation have also been proposed for discrete internal
energy levels [15, 16, 17] or thermally perfect gases [18].

In [17], the approach of Andries et al. [1] was applied to extend the ES-BGK model to
diatomic gases in which a discrete vibrational energy is taken into account. This model was
designed to obtain the correct Prandtl number, as well as the correct relaxation times of internal
energies, as defined by Landau-Teller and Jeans equations. However, first simulations [19]
show some discrepancies with DSMC simulations, especially for the rotational and vibrational
temperature profiles, which suggests that energy exchanges are not taken into account in the
same way in the ES-BGK model and in the DSMC solver.

Recently, Pfeiffer [20] proposed an ES-BGK based particle simulation of diatomic rarefied
flows in which he proposed a specific treatment of internal energy exchanges. His results show
very good agreement with DSMC. However, the algorithm used in [20] is not derived from a
complete kinetic model.

In this paper, we propose an ES-BGK model which is consistent with the numerical method
of [20], and based on the theoretical framework of [17]. The main modifications with respect to
the model of [17] are the following ingredients, taken from [20]:

1. The energy relaxation time scale is proportional to the mean collision time 7¢ rather than
to the relaxation time 7, as opposed to what is done in [17]. This corresponds to the



common definition of the relaxation time of inner degrees of freedom and the associated
definition of the vibrational and rotational collision numbers [21, 22, 23].

2. The Landau-Teller and Jeans equations are used to define translational-rotational and
translational-vibrational energy exchanges, and induce a relaxation of rotational and vi-
brational temperatures to the translational temperature, as described and discussed in
detail in Haas et al. [23] for the DSMC method. Again, this is different to what is done
in [17], where the model induces a relaxation of internal temperatures to the overall tem-
perature.

Numerical tests in space homogeneous cases illustrate the excellent agreement between our new
model and DSMC simulations.

Note that this new approach can also be used even if the vibration modes are not taken into
account: we obtain an ES-BGK model for diatomic gases in rotational non-equilibrium which
is different from the ES-BGK model of Andriés et al. [1]. However, both models are proved to
be equivalent up to a correction factor of the relaxation time, or equivalently of the collision
number Z,.,;, but this correction factor can be quite large.

Moreover, our new ES-BGK model is proved to satisfy the H-theorem, with a proof that
is more involved than that for [17]. A Chapman-Enskog expansion gives the corresponding
transport coefficients, and we obtain the following strong result: the volume viscosity is shown
to be the same as that obtained in the Boltzmann equation with two fast and slow energy modes.

The outline of our paper is the following. Sections 2 and 3 are devoted to the definition of
internal energies and temperature, relaxation times, and distribution functions. Our ES-BGK
model is derived and analyzed in Section 4. The results of Chapman-Enskog expansion is given
in Section 5. A reduced model is proposed in Section 6 to reduce its computational complexity.
Finally, the properties of our model are illustrated by some numerical results in section 7.

2 Internal energies of diatomic gases

2.1 The different macroscopic internal energies at equilibrium

In this paper we consider diatomic perfect gases for which each molecule has several degrees of
freedom: translation, rotation and vibration. At the macroscopic level, a gas in thermodynam-
ical equilibrium at temperature T" has different specific energies associated to each mode. For
translational, rotational and vibrational (in case of the harmonic oscillator model) modes, the
corresponding specific energies are

3 5 RT,

etT(T) = §RT, emt(T) = §RT17 evib(T) = W7 (1)

where the specific total energy is
e(T) = e (T) + erot(T) + eyin(T). (2)

Here, § = 2 is the number of degrees of freedom of rotation, R is the gas constant per unit mass
and Tj is the characteristic vibrational temperature.

Note that polyatomic molecules could be considered here with § > 2 and a vibration energy
as given by a sum over all harmonic oscillators of the molecule [24]. However, this would change
some details in our mathematical proofs, so that an extension of our approach to polyatomic
molecules is deferred to future work.



2.2 Mathematical properties of the energy functions

For each energy mode, a temperature can be defined as follows. We denote by e; ! the function
that maps any given energy E to the corresponding temperature. That is to say the temperature
T corresponding to a given energy F is such that e,(T") = E, where a stands for tr, rot, and
vib, and is denoted by T = e_}(E). Simple computations give

M E) =SB, () = %E, evib(E) = To/log (1 + RTO) 3)

3R rot E

The total energy function, which is clearly invertible, cannot be inverted analytically, and we
simply set

_ 3446 RTy
T=eYFE h that E_—RT _— . 4
¢ (E)  such tha exp (To/T) ~ 1 W
For each energy mode, we can also define a specific heat at constant volume ¢(T') = dpgi(FT)
For translational and rotational energies, the specific heats are constant:
3 0
ijr = iR, CZOt *R (5)

while for vibrational energy, we find

WT8_en(T/T)
T2 (exp(To/T) — 1)°

cm’b(T) —

v (6)
Note that cJ® can be proved to be an increasing function of 7" which is bounded by R. This
also implies that e,; is a convex function (see appendix A).

Finally, we also define for each mode a specific entropy s, such that dsgl(i,E) = ,1 @ This

gives, up to any arbitrary constant

3 0 E I R
A(E)=2RlogE, $40(E)==RlogE, sy(E)=R(log(l+ =)+ — —
s (E) = SRI0 B, sr(E) = SRI B su(E) = R(108(1+ o) + - log(1 4+ —50)).

(7

and we define the total entropy (at constant density)

S(E1, E2, E3) = 817 (E1) + Srot(E2) + Sypin(E3). (8)

3 Distribution functions, moments, and temperatures

3.1 Distribution function

The state of any gas molecule is described by its position x, its velocity v, its rotational energy
e, and its discrete vibrational energy ¢ RTj, where ¢ is the ith vibrational energy level and Ty is
the characteristic vibrational temperature of the gas, in the case of the usual simple harmonic
oscillator model.

The distribution function of the gas is the mass density f(¢,z,v,e,47) of molecules that at
time t are located in a elementary volume dx centered in x, have the velocity v in a elementary
volume dv, have the rotational energy e centered in de and the discrete vibrational energy i RTp.
The macroscopic densities of mass p, momentum pu, and internal energy pFE are

p=Deis pu=toDuer oBD)=((Fo-uP+erinm) ) )

IE)



The dependence of £ on f is intentionally made explicit, and we denote by (¢), _, (t,x) =

e ws Jg @(t,z,v,¢,i)dedv the integral of any function ¢. The specific internal energy E(f)

can be decomposed into
E(f) = Eﬁ”(f) + Erot(f) =+ Em’b(f)v (10)

where specific energies Ey-(f), Erot(f) and Eyip(f) are respectively associated with translational
motion of particles, rotational mode and vibrational mode through:

1 .

o) = (3l =uf) Bl = eDuers pBul) = (RTof) e (1)
V,E,1

We also define the pressure tensor P(f) and the heat flux ¢(f) by

P = (w=we =t o o) =( (G- +e+irt ) w=wr) (2

I}

and we denote by O the tensor such that P(f) = p©.

3.2 Internal temperatures

For a given distribution function f, the translational, rotational, and vibrational temperatures
are defined by

Ty = e;rl (Etr(f)s Trot = e;olt(ETot(f))7 Tyip = e;i%;(Evib(f))a (13)
so that we have
3 ) RT,
Eu(f) = et (Tyr) = iRTn.7 Erot(f) = erot(Trot) = §RT7-ot, Eviv(f) = eviv(Tvin) = eXP(TO/TZib) 7T

(14)
see section 2. A number of degrees of freedom 0,(T,;) for the vibration mode can be defined

51} Tvi .
such that E,;(f) = %RTDM, which leads to

2To/Tviv
exp(TO/Tvib) -1
This number is not an integer, is temperature dependent, and tends to 2 for large Ty;p.

The overall or equilibrium temperature T¢, is the temperature corresponding to the total
internal energy, that is to say

51}(Tm’b) = (15)

Teq = ™' (E(f)), (16)
and T¢, can be obtained by numerically solving
3+56 RT;
B(f)= "2 ORT, + : (17)

2 exXp (TO/Teq) -1

3.3 Macroscopic relaxation phenomena

The common description of the relaxation of internal energies with Jeans and Landau-Teller
equations [21] as also typically used in DSMC codes (see [23, 22, 20]) is given as:

d

aerot(Trot) = m(erot(Ttr) - e'r‘ot(Trot))a (18)
d 1

5, Cvi Tvi = &> _ \Cus Tr — Cui Tvi ) 1
g cviv(Toin) ZvibTC(e b(Ter) — €vivn(Tviv)) (19)



where Z,.,; and Z,;, are the mean number of collisions necessary to have an exchange of rotational
and vibrational energy, respectively, and 7¢ is a characteristic time of collision (see section 3.4).
The equation for translational energy is

_ (erot (Ttr) — €rot (Trot)) N evib(Ttr) - evib(Tvib)

d
5, Gtr Tr -
dtet ( ‘ ) ZrotTC ZvibTC

(20)

which is deduced from the conservation of total energy. Our ES-BGK model will be designed
to satisfy these relaxation equations.

Remark 3.1. These equations are different from those used in [17]. Indeed, first, they induce a
relaxation of T}.,; and Ty to Ty, while a relaxation to the overall temperature T,, was imposed
in [17], and second the relaxation time used here is the collision time 7¢, while the ES-BGK
relaxation time 7 was used in [17] (see sections 3.4 and 4.6). The use of 7¢ and the relaxation
to translation temperature 7%, instead of equilibrium temperature T¢, corresponds to the most
frequently used definition of the Landau-Teller and Jeans equation. A detailed discussion of the
relaxation to the translation temperature instead of the equilibrium temperature can be found
in Haas et al. [23].

3.4 Some remarks on the collision time 7¢

The collision numbers Z,,; and Z,;, describe the average required number of collisions of the
gas during which it undergoes a relaxation process in the rotational and vibratory degrees
of freedom, respectively. Therefore, the characteristic time 7¢ should be chosen at the mean
collision time of the gas [20] and is generally not equal to the relaxation time of the ES-BGK
model which is chosen to represent the correct viscosity (as opposed to what is done in [1]
and [17]). The difference between the relaxation time 7 and the collision time 7¢ depends on
the molecular model used. For example, if we look at the Variable Soft Sphere model (VSS)
often used in DSMC, the collision time is given by [25]:

LVSS _ a5 —2w)(7 —2w) p _ a5 — 2w) (7 — 2w)
¢ 5a+1)(a+2) p S5(a+1)(a+2)

TPr, (21)

with a the diffusion factor of the VSS model, w the exponential factor of the temperature
dependency in the viscosity, and Pr is the Prandtl number. Here, we have used the usual

relation 7 = p/(pPr) for ES-BGK, which will be proved below. The variable hard sphere (VHS)
model can simply be achieved by setting a = 1 which gives:

-2 -2 -2 -2
s _ 52002 G201 -2) )
30 D 30
And finally we get the HS model from it when w = 0.5:
4p 4
TCI{S = g; = gTP'I". (23)

4 ES-BGK model ant its mathematical properties

4.1 Construction of the model

The evolution equation for f is the Boltzmann equation

Ohf+v-Vf=0Q(f), (24)



where Q(f) is the collision operator (see [26]). The corresponding local Maxwellian equilibrium
in velocity and energy is defined by

M(f](v,&,i) = M [ f](v) Mot [f](€) Muin[f1(7), (25)
with

_uf? AT
M [f](v) = mexp <_ |ZRTZ(I ) ; Meot[fl(e) = (R(T)G(Z)Wexp (- R;@q) )

Myl f)(8) = (1 = exp(=Tp/T.)) exp (‘TT> ’

where A(6) = 1/T(3), with T the usual gamma function.

This Maxwellian distribution can be used to define the BGK approximation [27], where
Q(f) is replaced by L(M[f] — f), where 7 is a relaxation time. This approximation has the
same conservation and entropy properties as the original Boltzmann operator, but is simpler
for deterministic numerical simulations. However, the single relaxation time cannot account for
the various time scales of the original problem. Indeed, such a model gives the same value for
rotational and vibrational relaxation times, and the same value for relaxation times of viscous
and thermal fluxes, leading to the usual incorrect Prandtl number Pr = 1.

Additional relaxation times can be added in this model by using the ES-BGK approach
exposed in [17]: the idea is to modify the equilibrium temperature Tpq in My, Myor, and Mo,
so as to obtain the correct relaxation times. Indeed, our ES-BGK collision operator is

QUf) = = (Gl = 1), (26)
with g[f](’t}, &, Z) - gtr[f](v)grot [.ﬂ (5)gvzb[f](7')7 where

*$ex flvfuT Tw—u
Gl = e (50w @)
6.ulf1(6) = pprizae ™ o (< ) @0

. . To
Gal1(0) = (1~ exp(-To/ Tt xp (it )
vib
are distributions associated to the energies of translation, rotation and vibration of the molecules.
The relaxation tensor IT and temperatures T and T"% are defined as follows.

First, note the following integral properties

Gir [f1(v) dv = p, / vGir[fl(v) dv = pu, / (v =) ® (v —u)Gir[f](v) dv = pIT (28)
R3 R3 R3

—+oo —+oo
| aalfi@d =1 [ Gl de = ennTsh, (29)
0 0
+oo +oo
D Gualf)i) =1, D iRToGuinlf1(i) = evin(Th5)- (30)
i=0 =0
Now, Tl and T¢! are defined so that our ES-BGK model (24)—(27) satisfies (in the space
homogeneous case) the Landau-Teller and Jeans equations (18)—(19). This gives
Crot (T:C?tl) - erot(Trot) + Z (e'r'ot (Ttr) — €rot (Trot))u (31)
rotTC
evib(ﬂzﬂielf) == evib(Tm’b) + 7 (evib(Ttr) - evib(Tvib))7 (32)
vibTC



We also need a relaxation translational temperature 77¢, defined by

tr >

peur T = [ 5o = G [f)(0) do (33)

R3

which reads e, (T},%) = $Trace(II), or equivalently 77" = ZL-Trace(IT). Then, the conservation
of total energy of our model requires ((5|v — ul> + & +iRTo)G[f]), ., = pE(f), which gives the
following definition of T7¢:

.

7(67”015 (,-Ttr) — €Erot (Trot)) - 7(evib(:rtr) - evib(Tvib))~ (34)

. Trel = e, Tr o
“ ( b ) “ ( ‘ ) ZrotTC ZvibTC

Now, the relaxation tensor II is defined as follows. In the homogeneous case, our ES-BGK
model makes the heat flux relax exponentially fast to 0 with relaxation time 7. We impose that
the deviation of © to its trace value RT},.I relaxes to zero too, with relaxation time 7 Pr. This
gives

Il = RT;T +

PYP* Lo - rr,0. (35)

T

The relaxation time 7 is defined so that our ES-BGK model is consistent with the compress-
ible Navier-Stokes equations with shear viscosity u (see section 5): this gives

W

T = 7pRTtrPr' (36)

Moreover, note that a temperature power law dependence of p is generally chosen, which is
related to the intermolecular collision model of the Boltzmann equation (see [25] for instance).

Finally, note that collision numbers Z,.,; and Z,;, might be temperature dependant (models
of Parker and Millikan-White): in this case, they have to be defined at the translational tem-
perature Tj,.. In the same way, p should also be defined at T}, in (36), so that 7 depends on
T, like 7¢. However, to make notations simpler, the dependence on Ty, of Z,..¢, Zyip, T, and 7¢
is not made explicit in the remaining of this paper.

4.2 Definition of the model

Our model is not always well defined: indeed, it requires that the relaxation energies are positive,
and that the relaxation tensor II is positive definite. These constraints are analyzed in the
following two propositions, where it is shown that they depend on the translational temperature
only via values of Z,..t, Zyip, T, Tc, and cvib

vib,
Proposition 4.1 (Positiveness of relaxation energies). For positive Ty, Tror and Ty, the
relazation energies defined by (31), (32), and (34), are positive if

T T T ot T c(Ty,)

<1, <1, and & &
ZyibTe ZrotTe ¢ Zypte  clr

1. 37
ZrotTC < ( )

Proof. The positivity of e, (T7¢) and e, (175 is obtained by writing relations (31) and (32) as

rot vib
linear combinations that are clearly strictly convex under the necessary and sufficient conditions

T <land 21— < 1.

ZrotTe ZyibTe
For e, (T1¢'), we rewrite (34) as

T Crot T 1

T;;ﬂd - ,-rtr -2 (Ttr - Trot) -

7 07 (evib(Ttr) - evib(Tvib))’

ZyinTe CiF



see (14) and (5). Then we use the mean value theorem applied to the function e,;;, to get

rot vib
rel __ T Cy T Cy (Tl)
Ttr - Ttr - (Ttr - Trot) -
Z, ir Z i T ctr
rotTC €y vib1C v

(Ttr - Tvib)a (38)

where T lies between Ty, and T, and is such that ey (Th) — evip(Toin) = 2 (T1) (Tyr — Toin),
and we remind we have used cV"(T") = de,,(T)/dT.

v

Now, for the positiveness of Tt"fl, the most restrictive case is when T}, — T,,; > 0 and

Ty — Tyip > 0, that we assume now. Moreover, the positiveness of 77¢ and hence of e, (T1:!),
is obtained by writing (38) as a linear combination of Ty, Tyot, and Ty which is strictly convex
under the condition

T et T c(Ty)

< 1. 39
ZrotTC Cf;r Z'uibTC Cf;r ( )

Since c“v’ib is an increasing function (see section 2.2), and since we assumed Ty, > Ty, therefore
e (Ty) < ¢ (Ty,.), which gives the last condition of (37).

For the other cases, it can easily be proved that this condition is sufficient too: in the case
(Tyr — Trot < 0 and T3 — Ty < 0), (38) is always true, and in the cases (Ty — Trot > 0
and Ty — Ty < 0) and (Ty — Tror < 0 and Ty — Tyip > 0), (38) is true under conditions

rot vib
R S 4 (T
1 ZrotTc ClT >0 and 1 Zyipte  clr

> 0, respectively.
[

Proposition 4.2 (Positiveness of tensor II). Let Ty, Tyt and Ty be three positive tempera-
tures, and a Prandtl number % < Pr < 1. We assume (37) holds, then the tensor I defined
by (35) is positive definite under the assumption

T ot T c(Ty,) 3 2

v G ) 3 p 2y
ZotTC CZT ZyivTe Cf)r Pr 3

(40)

Proof. First, note that IT and © have the same eigenvectors, and hence relation (35) written in
this eigenvector basis reads

1

Do )\z - TT )

S)(n(0) - I,,)

where X;(II) and A;(©) are the eigenvalues of II and © for ¢ = 1, 2, 3. By (13) and (12), we
have RTy, = £(A1(0) 4+ X2(0) + A3(0)), and since the A;(©) are positive (note that (12) implies
© is positive definite), we get A;(0) < 3RT},.. Finally, the assumption Pr < 1 implies

N(I) = RTTE + (1 —

1
Ni(I) > RTE 4 (1 — P7)2RTtr- (41)
T
Consequently, a sufficient condition for II to be positive definite is that the right-hand side
of (41) is positive.
Now, we inject the expression of T/:¢! (38) into (41), and we find that the right-hand side
of (41) is positive if

3 2 T ot T c(Ty)
2 Pr— V- —— S 1, T ) — — Ty — Tyi) > 0. 42
PI'( ' 3) ¢ ZyotTe CIT ( k t> ZyinTe  CI7 ( K b) - ( )

The same analysis as for the proof of proposition 4.1 gives the final condition (40).
O

Remark 4.1. Condition (40) is clearly not optimal, since the directional temperatures A\;(0)/R
are generally close to T}, and the non zero values of T, and Ty, help in getting (42) (see [4]
for an optimal condition obtained in the monoatomic case).



4.3 Conservation properties

Proposition 4.3. The collision operator (26) of the ES-BGK model satisfies the conservation
of mass, momentum, and energy:

<(1,v,;|v—u2+e+iRTo)i(g[f]—f)> —o. (43)

I

Proof. This is a simple consequence of the definition of the relaxation variables 77 and II
(see (31-35)), and of the integral relations (27-30). O

4.4 Entropy

The use of a single rotational energy with § degrees of freedom requires to define the Boltzmann
entropy functional as

H(f) = (flog(f/e5 ™) = flue

For any macroscopic values (p, u, ©,Tyot, Tyip), we define the following set of distribution func-
tions that realizes these values, namely

X0 Tai o = {020, ((1+ [0 +e+i+|log(¢/ed1))g) < +oo,

V,€,%

<(17 v, (U - u) ® (U - ’U/), g, iRTO)¢>v,s,i = (pa pu, P97 perot(Trot)7 pevib(Tvib))}~
(44)

Now we state the H-theorem for our model.

Proposition 4.4. We assume 2 < Pr < 1 and conditions (37) and (40) are satisfied. Our
ES-BGK model (24)-(26) satisfies

o(f) + V- (o(flon(/5 ) - 1)) = (H@IA- Dlowts/E) <0 a9

V,E,% T v,e,i

under the additional condition
T L 3 (46)
ZrotTe ZoivTe 5

Moreover, the right-hand side of (45) is zero if, and only if f = M[f].

Proof. We remind elements of proof already proved in [17] that apply here too:

1. The Gaussian distribution G[f] defined by (26) is the unique minimizer of the entropy
functional H(f) on the set X, , 11 pret pret, defined according to (44).

Tot " vib

2. By convexity of H, the right-hand side of (45) is non positive under the sufficient condition

H(GLf]) < H(f). (47)

This condition is not obvious, since f is not in X, , 1y pret prei.

™ 1T wvib
3. For any macroscopic quantities (p,u, O, Tyot, Tvin), we denote by S(p,u, ©, Trot, Tuip) the
minimum value of H on X, , 0 1,,,,7,:,, and we have

3 1
S(/% u, 67 Tr0t7 Tvib) =p 1Og 1Y + Cp - %S(a (det ®)§ s Erot (TTOt)7 evib(Tvib)) (48>

where S is the entropy at constant density defined in section 2, and C' is a constant that
depends on § and R only.

10



4. By point 1, we have H(G[f]) = S(p,u, I, TrS, Trel).

5. Since f is in X, .07, 7,5, then we have S(p,u, 11, 7, Trel) < H(f).

rots - vib
6. A sufficient condition for (47) is therefore
S(p,u, ILTrL, Tiih) < S(pou,©, Tror, Toi). (49)

- rot)

7. We have

3
det 6 § Ctr (Ttr) ' (50)
detII eer (T

The proof of this inequality is slightly different from that shown in [17] and is given in
appendix B.

8. With points 3, 6, and 7, a sufficient condition for (49) is

S(etr(Ttr)); Srot (erot (Trot)); Svib(evib(Tvib))

rel rel rel <51)
< S (T1))s srot(€rot(Trar ), Swib(€viv(Tyiy )

The proof of this last inequality is the only part which is different from [17], and a bit more
involved. Our proof is divided into 5 steps.

Step 1: parametrization of S. We consider (e (T5), erot (T1S), evin(TTE) as (affine)
functions of parameters Z,,; and Z,;,, and we set

h(Orots Oviv) = S(ewr(TH), erot(Tist)s evin(Thi ), (52)

where 0,.,; = ﬁﬂc and 0,;, = ﬁ With these new parameters, we have
ewr(TH) = e (Tir) + Orot(erot(Trot) — €rot(Tir)) + Ouiv(viv(Toiv) — evin(Tir)) (53)
erot(Thet) = Oroterot(Tir) + (1 = Oror)eror(Trot), (54)
evin(Thsy) = Ouivevin(Tir) + (1 — Ouiv)evin(Tuin)- (55)
Now it it clear that for (6,.t,6,5) = (0,0), the relaxation energies reduce to the initial

energies, that is to say
(eer (T5), erot(T7at ), it (Lo )| (0ran 000)=0,0) = (€tr(Ter), €rot(Trot), evin(Tui)).-
Consequently, our entropy inequality (51) reads
h(0,0) < h(Orot, Ouip)- (56)

While the domain of definition of A is given by positiveness condition (37), here we need to
reduce it to condition (46) given in the proposition. With our new parameters, it reads

3
97‘0t + avib < 5 (57)

In fact, numerical tests suggest (56) can be false if this condition is not fulfilled.
Finally, note that h is concave, as composed of an affine function and the concave function

S.
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Step 2: relaxation temperatures as convex combinations Here we use the same
argument as used in the proof of proposition 4.1: we linearize (53)—(55) by using the mean value
theorem, and we get

rot vib rot vib
rel __ Cy Cv (Tl) Cy Cy (Tl)
Ttr - (1 - erotﬁ - 9@1‘};7)7}1« + grot ?Trot + emb TEJiba
T:oetl = erotTtr + (]- - erot)Trot: (58)
Cvib<Tl) Cvib(Tl)
Tr_el = Oyi viTr 1 — 0y o Tyiv,
vib b Cglb(TQ) tr + ( b Cga(Tg) ) b

where T} and Ty are some temperatures between Ty, and Ty, and Tgfbl and T, respectively,
defined by

Czib(Tl) _ evib(Ttr) - 6vib(Tvib)’ and Cﬁib(TQ) _ evib(Tvib) - evibl(Tgfé) . (59)
Ttr - Tvib Tvib - Tgfb

Step 3: minimization of h. In the plane (0,t,0yip), condition (57) defines a triangle T
of vertices (0,0), (0,2), (2,0). Since h is concave, its minimum on 7 is reached at one vertex

5
of 7. Therefore 5 5
h(Brot, Ovip) > min(h(0,0), h(0, 5)’ h(g,O)).
for every (0rot,0pip) in T.

Then a sufficient condition for (56) is that the minimum is reached at (0,0), that is to say

3 3
h(0,0) < h(0, 5) and h(0,0) < h(g, 0). (60)

Now, we prove the first inequality of (60). In fact, it is simpler to prove a stronger property,
namely

1(0,0) < (0, Bip) (61)

for every 0, < % We start by using that h is concave but also that it is differentiable to get

h(07 evib) 2 h(07 O) + Hvibaa h(O, 9vib)7

vib

and now a sufficient condition to get (61) is Oy, ,, (0, 0yip) > 0. But the chain rule gives

vib

e (ThEY)

X ) X 0
891,ibh(9rotv Oviv) = VS (et (TtTrel)7 €rot (T;oetl)7 evib(TJiebl)) ’ 90, eTOt(Trroeg)
vib e ‘b(TTd
v vib
(st — vt ) (€ (L) — evin(T2)
=\ el T el vib\Lwvib) — Cvib\Ltr))-
Ty T
Now for 6,.,; = 0 this reads
1 1
0a,,:, 10, 0vip) = (75 — W)(evib(Tvib) — eviv(Tir)), (62)
Ttr ’ vib

where the exponent 0 indicates that Ttrfl’o is defined by (53) with 0,.,; = 0.

This quantity can be proved to be non negative if we are able to show that Tgfbl — T,;nel’() =

a(Tyip — Tyr) with o > 0. Indeed, if the second bracket of (62) is positive, then Ty — Ty > 0
since e, is an increasing function, and hence 774! — T4 > 0 too, and the first bracket of (62)

12



is positive as well, which gives the sign of 9p,,, h(0, 8,:). The proof is the same in the opposite
case.

The relation T77¢ thTfl’O = a(Tyip—Tyr) is obtained with (58). With 6,..; = 0, these relations
give ' 4
GhT) _, etm)
g (Tz)

1,0
Tbel — Tg;e [ g— <1 — evib — evib ot ) (Tvib — Ttr)-
v
Our coeflicient « is clearly non negative under the condition

v

st (Ty)

0. co®(Th)
vib Cgib(TQ)

+ avib ir
Cy

IN

1. (63)
Now, this condition is analyzed with two different cases.

First case: T}, < T,;. Since Tgfbl is a convex combination of Ty, and T, we have T;, <

Trel < T,ip. Then the intermediate temperatures Ty and Ty are in intervals [Ty, Ty and
[Tre! T,ip), respectively. Now, the convexity of e, implies ¢V (Ty) > c2®(T}) (see appendix A).

Consequently, the first term of the left-hand side of (63) satisfies

cy®(Th)

L2 < Oip-
cyib(Ty) =

avib

vib
. T, .
Moreover, the second term satisfies 0, <2 ,(T D < 20, (since ¢
4 c 3

tion 2.2). Finally, the left-hand side of (63) satisfies

vib
v

is bounded by R, see sec-

Cvib T, Cvib T 5
1) +9m'b vcfr 1) < gevib

which is indeed lower than 1, since 6,;, < 3/5. Therefore (63) is satisfied.

Second case: T}, > T,;p. Now we have Ty, < 176 < T,,. This case is more delicate, since

vib
i i (Ty)
in thgbﬁrst term of (63), (T
Ovib Zgwg%; By using (59), we have

' (Th) 0,1 ( evib(Tir) — evib(Tvib))> ( Ty — Toin )

now is greater than 1. Thus we must work on the product

0vib - =
cyit(Ty) eviv(Toiv) — €vin (TS Tpir, — T8 (64)
_ Tri — Toib —1_ T — Ty
Tt'r - T’uib Tt'r - T’uib ’

where we have used (55) to simplify the energy ratio. A
Now, note that ey, (Ttr) — ewin (T;fbl) < (T, ) (T fTJfbl), since ¢V is bounded by c2®(T},.)
in [Tyip, Ttr], and hence

7, —ret > ConTer) — con(Tyf)

! o (Thr)
(1 - evib)(evib(Ttr) - evib(Tvib)) Cvib(Tl)
= - =(1—=20,;)-2— T.. —T ..
ngb (,Ttr) ( Hvzb) Cﬁlb (,Ttr) ( tr vzb)>

from (55) and (59). Consequently, we go back to (64) and we get

Cvib(TI) cvib(Tl)
e'ui’u-igl_]-_evi 1}-77
ve(my) =1 ) )
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which is now clearly lower than 1. Therefore, a sufficient condition for (63) is

cvib(Tl) Cvib(Tl)
L= (1= 0uin) s + Oviv——— < 1,
( b) Cglb(ﬂr) + b ctr

v

which is equivalent to
1
1 + Czib(Ttr) ’

tr
C‘L/

evib <

vib
Now, since the ratio % is lower than 2/3, this last inequality is satisfied if 6,4, < 1/(1 +

2/3) = 3/5, which is what we wanted to prove, and hence (63) is now proved for every cases.
This proves (61) for every 6, < % and hence the first inequality of (60) is proved.

The second inequality of (60) is proved in a similar way, but much more easily, since e,
is linear. Indeed, the ratio ¢7°!(T1)/ct°t(Ts) in the equivalent of (63) is equal to 1, and the
inequality is obviously satisfied for every 60,.,+ < 3/5.

This long analysis proves (60), and hence (56) and in turn (51). The proof of the proposition
is now almost complete: the equilibrium part is proved like in [17] and is left to the reader.

O

4.5 Discussion on the conditions for positiveness of relaxation ener-
gies, positive definiteness of II, and H-theorem

Hierarchy of conditions. Propositions 4.1, 4.2, and 4.4 hold for different conditions that
are in fact not completely independent.

For instance condition (40) for positive definiteness of II implies the third constraint of
condition (37) for the positiveness of relaxation energies: indeed, the right-hand side of (40) is
lower than 1 for Pr < 1.

Moreover, in proposition 4.4, condition (46) clearly implies the first two constraints of (37).
However, it does not always implies the third constraint of (37), since it is temperature depen-
dent.

This means that the number of conditions could be reduced in our propositions. Nevertheless,
we find that the current redundancy is clearer, since there is a clear hierarchy: for the H-theorem
to hold, we should first assume that the relaxation energies are positive, and then that II is
positive definite.

Physical validity. Now, we discuss the physical validity of these conditions. As an example,
we consider a flow of nitrogen, for which the characteristic vibrational temperature is Ty, =
3.371K, and the molecular VSS parameters are w = 0.74 and a = 1.36. With the Eucken
formula Pr = 2(5+0+4,)/(154+2(5 + &,)) and definitions (6) and (21), we can compute all the
terms of conditions (37), (40), and (46), for any arbitrary temperature, and hence we can check
for what range of temperature these conditions are satisfied. For Z,;;,, we use the Millikan-White
formula as given in [25, 28]. For Z,.t, its usual value in aerodynamics is Z,..; = 5, but we also
use its value as given by the Parker formula [25, 21]. Our observations are as follows.

For Z,,; = 5, all the conditions are satisfied up to a temperature of 40.000 K. For larger
temperatures, the constraint 7/Z,;7¢ < 1 of (37) fails, and the vibrational energy becomes
negative. This upper bound is clearly sufficient here, since the model is not designed for so large
temperatures, for which other physical phenomenon have to be taken into account (dissociation
for instance). In addition, the model of Millikan and White [28] is an empirical model which in
the original paper itself is only defined in a temperature range between 280 K < 7" < 8000 K, so
that the physical suitability at 7' = 40.000 K may be doubted. In general, the physical suitability
of the model for very high temperatures is doubtful, since Z,;, then approaches 0. However, a
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Zyip < 1 would be problematic from a purely physical point of view, since the relaxation time
would then be smaller than the collision time itself.

For Z,.,: as given by Parker formula, note that Z,;, and Z,,; behave very differently, since
Zrot increases with the temperature, while Z,;, decreases very fast, and is infinitely large for
small temperatures. Then we observe that all the conditions are satisfied for temperatures
between 60 and 42.000 K. Again, the upper bound is clearly sufficient. The lower bound is due
to the constraint 7/Z,,7¢ < 1 of (37): for lower temperatures, this constraint is not satisfied,
and the rotational energy becomes negative (the other conditions fail for small temperatures a bit
smaller, between 20 and 32, which is less restrictive). Here the same problem arises as already
described for the vibration, since Z,,; goes towards 0 for decreasing temperatures. Again,
Zrot < 1 is difficult from a purely physical point of view. The model is therefore not suitable
for such low temperatures. There is another problem: the characteristic rotational temperature
of Ng is Ty ot = 2.88 K. For hydrogen Hs, for example, this is already Ty o+ = 87.6 K. At such
low temperatures, one can no longer necessarily assume that the rotational degree of freedom is
fully excited, which means that the number of degrees of freedom of the rotation and thus ¢/t
also become temperature-dependent for very low temperatures, comparable with the vibration
in the considered temperature range. In the model proposed here, however, this effect was not
taken into account, as these temperatures are lower than the smallest temperatures generally
met in aerodynamics. Therefore, this effect is typically also neglected in DSMC codes and
the rotational temperature is assumed to be continuous. In general, very little information
can be found in the literature about the relaxation time of rotation at very low temperatures.
However, in Riabov [29] one can find a discussion about the discrepancy between the classical
consideration of Parker’s model and the technique of Lebed and Riabov [30] for the relaxation
times of rotation for 7' < 100 K. It becomes clear that the Parker model can no longer be used
for these low temperatures.

4.6 Comparison with the ES-BGK model of Andriés et al. [1]

If the vibration modes are neglected, our model reduces to the following translation-rotation

ES-BGK model: .

where now f does not depend on i, while the Gaussian is G[f] = Gi.[f]Grot|f], with IT and T77¢/
are still defined by (35) and (31), and T}¢ is now defined by

Gtr(TtCﬁel) = €E¢r (,Ttr) - = (erot(Ttr) — €rot (Trot))7 (66)

ZrotTC
while 77¢ is not used anymore. The macroscopic quantities are defined as in (9)—(12) without
the series in 4. Here, the model is not restricted to diatomic gases anymore, and § can take any
integer values greater than or equal to 2.

For such polyatomic gases, the first ES-BGK model was proposed by Andriés et al [1], and
is often used in the literature (see for instance [12]). This model reads as above with relaxation

tensor
II = (1 — 0)((1 — I/)RTWI + V@) + HRTeq7 (67)

and the relaxation rotational temperature is

Trel _ O0Teq + (1 — 0)Tror, (68)

rot
where the equilibrium temperature is
3Ttr + 6Trot
Tog=—F7"—"
3+0
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Note that in [1], Trot is denoted by Tjps, Tret by Trel, and II by 7. Moreover, the variable

rot rot?
I = €%/2 is used instead of &, which does not change our analyzis and conclusions below. Finally,

the parameters 6 and v are defined by

1 1
, and (1-0py=——-1. (70)
Zrot

0= Pr

First, we show that our model can be written under the same form as the Andries et al.
model, with modified coefficients.

Proposition 4.5. The relazation tensor 11 and rotational temperature of model (65)-(66) can
be written under form (67) and (68) with modified coefficients 0 and v defined by

and (lfé)ﬂzi—l

3+6 T
— 0
Pr

3Tc

0 =

This proposition is readily proved with a direct calculation in which T3, is written as a
function of T, and T}, by using (69). This is left to the reader.

It is interesting to compare coefficients 6 and 6 of both models. For instance, for a diatomic
gas (6 = 2) with a ratio 7/7¢c ~ 1.7 in case of the HS collision model (see section 3.4 with the
value Pr ~ 0.74 for a diatomic gas without vibration modes), we find 0 is approximately 36.
This shows that these two models have very different coefficients.

Another way to compare these models is to look at energy relaxations. The following propo-
sition compares relaxation times for both models.

Proposition 4.6. For both ES-BGK models, in the space homogeneous case, the rotational
temperature relaxes according to
d

1
—Trot = — (T4 — Thot). 71
Tt = — (T = Tra) ()

where the relaxation time is

Trot = ZrotTC for our model (65)—(66), and
Trot = ZrotT(3+6)/3 for Andriés et al. model.

This proposition is proved by a direct integration of the homogeneous kinetic equation times
e, and then by using the definition of 77¢. This result shows that both models give different
exchange rates of energy between rotational and translational modes. This can be seen more
clearly with the previous example of a diatomic gas, since we find Tyot| Andries = 3Trot, Which
means that the rotational energy of Andries et al. model relaxes three times as fast as with our
model. If the correct relaxation rate is 7,.o¢ (as it is used in some DSMC codes, see [22, 20, 23, 21]),

then the energy exchange rate as given by Andries et al. model is much too large.

5 Hydrodynamic asymptotics

To obtain the conservation laws, we multiply (24) by the vector 1, v, and %|v|2 + e+ iRTp and
we integrate to get:
Oep+ V- (pu) =0,

di(pu) + V- (pu@u)+ V- P(f) =0, (72)
HE+V - (Eu)+ V- (P(flu) +V-q(f) =0,
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where € = ((3|v]* + € + iRT) f)v,ci = 3plul®> + pE(f) is the total energy density, while the
pressure tensor P(f) and the heat flux ¢(f) have been defined by (12). If we have some charac-
teristic values of length, time, velocity, density, and temperature, our ES-BGK model (24)—(26)
can be non-dimensionalized. This equation reads

1
Knt

Wf+v-Vf= G-, (73)

where Kn is the Knudsen number which is the ratio between the mean free path and a macro-
scopic length scale. For simplicity, we use the same notations for the non-dimensional and
dimensional variables. Note that we assume here that the three relaxation times have the same
asymptotic order of magnitude with respect to Kn (even if their values can be very different).

The Chapman-Enskog analysis consists in approximating the pressure tensor and the heat
flux at zero and first order with respect to the Knudsen number, leading to compressible Euler
equations and compressible Navier-Stokes equations, respectively.

5.1 Euler asymptotics
We get the following proposition, that can be proved as in [17].

Proposition 5.1. The moments of f, solution of the ES-BGK model (24), satisfy the com-
pressible Euler equations up to O(Kn):

Op+ V- (pu) =0,
O(pu) + V- (pu @ u) + Vp = O(Kn), (74)
0,6 + Y - ((€ + p)u) = O(Kn),

where p = pRT,, is the pressure at equilibrium. The non-conservative form of these equations

is
Otp+u-Vp+pV-u=0,

1
Ou+ (u-V)u+ ;Vp = O(Kn), (75)
8t/Ilaq +u- VTeq + ('7 - 1)Teqv U= O(Kn),

where ¥ = ¢p(Teq)/cv(Teq) 1s the ratio of specific heats, with cp(Teq) = cv(Teq)+ R and c,(Teq) =

% =" + ot + cU(T.,) is the specific heat at constant volume.

5.2 Compressible Navier-Stokes asymptotics
Our main result is the following.

Proposition 5.2. The moments of f, solution of the ES-BGK model (24), satisfy the com-
pressible Navier-Stokes equations up to O(Kn?):

dip+ V- (pu) = O(Kn®),
Oi(pu) + V- (pu@u) + Vp =V -0 + O(Kn?),
HE+V - (E+pu=—-V-q+ V- (ou)+ O(Kn?),

where, in dimensional form, the viscous stress tensor and the heat flur are given by

2
o:u(Vu+(Vu)T—3V-uI)+CV-uI, q=—krVT,
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and the viscosity, heat transfer and volume viscosity coefficients are

pcp(Teq) e czib(Teq)
= P = =pR ro Vi )
gL R pr 0 CTPRLT "eo(Teq)? T Y eo(Teg)?

With Trot = ZrotTe and Tyip = ZyinTe, While Zyot, Zyin, Tc, and T are defined at Tq.

For the proof of proposition 5.2, most of the calculations are very similar to that given
in [17]. The only difference is the first order expansion of the temperatures and of the tensor II
required to compute the Chapman-Enskog expansion. The corresponding procedure and results
are given in appendix C.
Remark 5.1. The volume viscosity ( is the same as that found by Bruno and Giovangigli
in [31] for a one temperature Navier-Stokes asymptotics derived from a Boltzmann equation for
a diatomic gas with two internal modes. Indeed, in [31], when we assume that the vibrational
and rotational modes are independent and that 7,;;, and 7,,; are of the same order as 7¢, then
equation (A2) of [31] with rap = vib, sl = rot, K™ = (0, and 7,4 and T,,; as given by
relation before (70) of [31] (with equilibrium temperatures), we find exactly .

Our second result is the Chapman-Enskog distribution for our model.

Proposition 5.3. The first order expansion of f is

V(RT.q) 4B

f = M{f] = TEnM(f] (A(V, JK)

(V,J,K): Vu) + O(Kn?),

with

v—u g € K:@,

VRT.,’ RT.,’ Teq

2 5 6o(T,
A=Ay + Apor + Avip = (|V|5>V+(J2)V+<K(q))va

V =

2 2 2
B = Btr + Brot + Bvib;

BtT(V):Pr(V®V—<<V22—2) <§—2)+1>I>,

TC

BVl = = (22l - 1) - S0 (731

Boy(V,K) = — <TTCZM-,,(7 —1)— zPr> (K - ‘S(QT’J)) .

This result can be obtained exactly as in [17].

6 Reduced ES-BGK model

For numerical simulations with a deterministic solver, our ES-BGK model may be too expensive,
since it depends on many variables: time ¢ € R, position € R3, velocity v € R3, rotational
energy ¢ € R™ and discrete levels of the vibrational energy i € N. For aerodynamic problems,
it is generally sufficient to compute the macroscopic velocity and temperatures fields: a reduced
distribution technique [32] (by integration w.r.t rotational and vibrational energy) permits to
drastically reduce the computational cost, without any approximation (as long as boundary
conditions are compatible with this reduction, like usual equilibrium inflow boundary conditions
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and Maxwell reflection at a solid wall, for instance) . We define the three marginal distributions:

F(t,z,0)\  too 1
G(t,z,v) | = Z/ e | ft,z,v,¢e,i)de.
R

H(t,z,v) i=0 iRT)
The macroscopic quantities defined by (9)—(12) now depend on F, G and H through:
p=(F),, pu=(@F),,

PEn($) = (GIPF) | pEf) = (G pEunlf) = (D),

v

PO =((v—u)® (v—u)F),, q:<(;|v—u|2F+G+H)(U—u)> ,

v

where (.), denotes integrals with respect to v only. The reduced ES-BGK is obtained by multi-
plying our kinetic model (24)-(26) by the vector (1,¢,iRTy)? and by summing and integrating
w.r.t to ¢ and €, respectively: it is written

OF +v-VF = %(Q[F] ~-F). (77)

with F = (F,G, H) and G[F] = (Gir[f], erot (T} )Ger [ f], €vin (T35 ) Ger [ ])-
By using the same argument as in [17] and the result of proposition 4.4, we can prove the
following H-theorem for this reduced model. The proof is left to the reader.

Proposition 6.1. The functional H(F) = (h(F)),, where

v

5 F RT,F H H
hE) =F[(1+2)1 1 1
(F) K * 2> Og<G2ia> Tloe (RTOF—i—H)} T RE, 8 (RT0F+H> (78)

is an entropy for the reduced ES-BGK system (77) and we have

OH(F) + V - (oh(F)), = <th(F) - (%Q[F] - F)> <0, (79)

v

under conditions of propositions 4.1, 4.2, and 4.4. The equilibrium is reached (the right-hand
side of (79) is zero) if, and only if,

F= (Mtr [f]v Erot (Teq)Mtr [f]a evib(Teq)Mtr [f])»

where My, [f] is the Mazwellian for translation modes (see section 4.1).

7 Numerical results

To test the ES-BGK model presented here, we will choose a Monte Carlo approach. For this
purpose, relaxation processes to the equilibrium state in an adiabatic box will be investigated
and compared with analytical solutions and results of the DSMC method. In the homogeneous
test cases, the equation to be solved simplifies to

0.f = (@lr] - ). (30)

In the Monte Carlo method, the distribution function is represented by a linear combination
of N delta functions in phase space with a numerical weighting w. The points in the phase space
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are often interpreted as particles, where w corresponds to the number of real particles that a
simulation particle represents. For the Monte Carlo method, (80) is integrated analytically for
a time step At = ¢"T1 —¢" [33]:

F = (1 - oxp (—At/7)GUM) + oxp (—At/r) [ (81)

The idea is that each of the N particles relaxes with probability (1 — exp (—At/7)), i.e. a
new state is sampled from the distribution function G[f™]. Different ways to efficiently sample
velocities from the ES-BGK distribution are described in [33]. The new rotational energy is
sampled using an exponential distribution depending on T7¢. The new vibrational quantum
state is sampled using a standard Acceptance-Rejection method as described in [25] depending
on Tlffbl Since energy and momentum are only preserved in the mean here, we choose a large
number of particles N and small time steps At/7 < 0.1. This reduces the statistical noise and
ensures stability.

7.1 Comparison with analytical Results

To compare the model with an analytical solution, the translational-rotational and translational-
vibrational relaxation are first considered separately, i.e. Z,;, = 0o and Z,.,; = 0o respectively.
If one also assumes an isothermal relaxation (7%,.(t) = Ty (t = 00)), i.e. the thermal velocities do
not relax, the characteristic time 7¢ is constant (since it depends on the translation temperature)
and it is possible to define an analytical solution of the Landau-Teller equation

Ei(t=00)—-Ei(t) /7.
Ei(t:oo)—Ei(tZO)_e ” =

with ¢ being the rotational or vibrational part.

The simulations are done with nitrogen N with a characteristic vibrational temperature
of Té\b = 3395K using a VHS collision model. This means an exponential ansatz is used for
the viscosity depending on the VHS parameters Ty 25 = 273K, dy#? = 4.17-107"°m and
wygs = 0.74 as described in [20]. Thus, the analytical value for 7¢ can be calculated with the
fixed translational temperature as described in Sec. 3.4.

The particle density in the simulations was chosen to be n = 2- 10?2 m—2 which corresponds
to about 4 million particles in our simulation. The translational temperature is fixed to T}, =
Teq = 16000K, the initial temperatures of the rotational and vibrational states are T, =
Ty = 8000 K. The collision numbers are chosen to Z,,; = 5 and Z,;;, = 10. The results for the
normalized energy difference (left hand side of (82)) are depicted in Fig. 1 showing a very good

agreement for the rotational as well as vibrational relaxation.

7.2 Comparison with DSMC Results

In this test case, a simultaneous relaxation of the translational, rotational and vibrational tem-
perature is demonstrated and compared with DSMC. Furthermore, the difference is shown when
it is assumed that there is only one relaxation time, i.e. 7¢ = 7. For this simulation the same
parameters have been used as before with the exception of T;,. = 16000K, T,;; = 8000K,
Trot = 12000K, Z,,; = 5 and Z,;;, = 50. The DSMC simulation was carried out with the
identical VHS parameters. In addition, the prohibiting double relaxation method was used to
reproduce the Landau-Teller equation as described in various studies [34, 35]. The results are
depicted in Fig. 2 and excellent agreement is found between DSMC and the proposed ES-BGK
model. Furthermore, it is easy to see that the model with only one relaxation time does not
produce the correct Landau-Teller relaxation curves when the same Z,.,; and Z,;;, are used: this
clearly proves the improvement of our new model.
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Figure 1: Comparison of ES-BGK simulation results with analytical Landau-Teller solution.
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well as ES-BGK with only one relaxation time 7¢ = 7.
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8 Conclusion

In this paper, we have proposed an ES-BGK model for diatomic gases that accounts for
translational-rotational and translational-vibrational energy exchanges. It is consistent with the
general definition of the vibrational and rotational collision numbers that are also commonly
used in DSMC solvers to reproduce the Landau-Teller and Jean equations.

Our model is based on a correction of a previous model [17] and is induced by the numerical
method of [20]. We have proved this model satisfies the H-theorem and fits the correct transport
coefficients. Even the volume viscosity is consistent with that obtained for a Boltzmann equation
with two internal energy modes in [31].

In the purely translational-rotational case, our model also gives a correction of the standard
ES-BGK model of Andriés et al. [1] with a correction factor of the collision number that can be
as large as 3.

A reduced version of our model has been derived to eliminate the dependency to the internal
energy variables: the reduced model should make it possible numerical simulations of diatomic
gas flows with a computational cost of same order of magnitude as for a monoatomic gas.

This model will be extended to polyatomic molecules with more than two atoms in a forth-
coming work.

A Convexity of the vibrational energy

Differentiation of (6) with respect to T' gives

d i 2RTE T To
ﬁcv (T) - T36T0/T(€TO/T — ]_)2 ﬁCOth(ﬁ> A

which is positive, from the known inequality coth(z) > 1/x for every positive x. This proves
that cgib is an increasing function, and hence that e,;, is convex. Passing to the limit 7' = 0
in (6) shows that ¢’ is bounded by R.

We come to the proof of the assertion made in first case of step 3 for the proof of proposi-
tion 4.4. We have Ty, < Ty < Ty, and Tgfé < Ty < Tyip, while Tl’;flf is between Ty, and Ty,
and we want to prove that c2?®(Ty) > ¥ (Ty). This is a simple consequence of the convexity of
€vib, as it is shown below.

It is well known that for for every convex function ¢, the ratio (¢(y) — ¢(z))/(y — x) is
increasing in x for every fixed y. This result applied to ¢ = eyip, y = Tyip and x = T3, then
x=Trel gives

(eviv(Toiv) — €wit(Tog))/ (Twis — Toit) > (eviv(Toiv) — €viv(Tir))/ (Tuis — Tir)-

Then we remind that 77 and 7% are defined by (59): the previous inequality is then exactly
e (Tz) > c(Th).

B Inequality for det(©)/det(1I)

This proof is very close to that given in [1]. First, note that (50) is equivalent to

) < det(—r). (83)

det
Ugr,) < et g

Then as remarked in the proof of proposition 4.1, we can work in the same basis in which © and
IT are diagonal tensors, and we denote by u; the three positive eigenvalues of ©/RT},., whose

22



sum is 3. Then by using definition (35) of II, (83) reads

3 3
[T < I10+ et 1) (34)

Pr—1 T4,
Pr Tyl

that each terms in the product of the right-hand side of (84) is positive. Therefore, we can apply
the log function to this inequality to get

where we set o = We remind that II is positive definite under assumption (40), s

3 3
Zlogm < Zlog(l +alp; — 1)) (85)

This is the inequality we prove now.

As usual, the idea is to use convexity properties. However, since « is negative for Pr between
2/3 and 1, the right-hand side of (85) is rewritten by using (1 + p2 + p3)/3 = 1. Indeed, we
get

S log(1+ alu — 1)) = zlogg(m ¥ g i) + s — 3 (1 + iz + 4s))

(86)
1
= Zlog (1= @) (i, + priz) + 3 (1+ 20) ),
where i1 and is are the indices that follow 4 in the circular permutation of {1,2,3}. Now we

assume « > —1/2 (see below), so that the argument of the log function above is a convex
combination of the u;. Since log is concave, the Jensen inequality gives

]
W =

Zlog (1= @), + ps) + 51+ 2000m) = 3 51— @) log(ps) + logu)) + (1 +20) ogm)

@
Il
_

I
NE

log y1; = det .
10gu e(RTtr)

<.
Il

(87)

This proves (85).

It remains to prove « > —1/2: this is actually a consequence of assumption (40) that
garantees that I is positive definite (see the proof of proposition 4.2: the positivity of « is
equivalent to that of the right-hand side of (41), which is given by (42), and hence by (40)).

C Elements of proof for the Chapman-Enskog expansion

Integration of (73) multiplied by %|v|2, e, and iRTj, respectively, gives macroscopic evolu-
tion equations of ey (Tyr), €rot(Trot), and eyip(Tyip). Linearization of these equations by using
Orea(Ty) = ¢ (Ta)0i T, give first order expansions of ey (T5), €,ot(TrS), and eyip(T7E). The
definition of the relaxation energies (31)—(34) and other successive linearizations lead to the
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following first order expansions:

rot 1)ib(T ) T
1t = 1 (1 Korets 1 (2 (1) 2T 7Y 6) o
' ! (7 ) ' Cv(jéq) Cv(zgq) TC ( )

vib T rot
it =Ty (1 ety 1) (2o (S0 1) 4 2 S 4 D) 0 ) 000,

Cy (Teq) Cy (Teq) Tc
c¥(Ty,) crot T co(Teq)
et =T, (1-K D Zyp2 g v ] V- O(Kn?).
A q< n7e (7Y )( Ve (Do) + tCU(Teq)+TC< o )) u ) + O(Kn?)

These relations give the first order expansion of the relaxation tensor

RT Pr—1
IM=-"%1
Pr + Pr ©
co(Te ) 1 7 Cmb(Te ) &
Kn7R(y —1)T. L 1) = = Zo L+ Zyor— ~ul
+KnTR(y - 1) q(( cir ) Pr -+ ( b co(Teq) + tcv(Teq) V-u
+ O(Kn?).

The other calculations are standard and can be found in [17].
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