EXAMEN - SESSION 1 - Vendredi 09/05/2014

Aucun document n'est autorisé. Les exercices sont indépendants.

EXERCICE 1. Les variables aléatoires réelles sont ici toutes définies sur le même espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$.

Définition : On dit que X est **infiniment divisible** si : pour tout entier $n \in \mathbb{N}^*$, il existe une variable aléatoire réelle Y_n et il existe n variables aléatoires $X_{1,n}, \ldots, X_{n,n}$ qui sont indépendantes, de même loi que Y_n et telles que X ait la même loi que la somme $S_n := \sum_{i=1}^n X_{j,n}$.

- 1) Montrer que X est infiniment divisible si et seulement si, pour tout $n \in \mathbb{N}^*$, sa fonction caractéristique est la puissance n-ième d'une fonction caractéristique.
- 2) Pour cette question, on rappelle (ADMIS) qu'une variable aléatoire réelle Z suit la loi normale centrée réduite ssi sa fonction caractéristique vaut : $\forall t \in \mathbb{R}$, $\varphi_Z(t) = e^{-t^2/2}$.

Etant donnée une variable aléatoire réelle Y qui suit la loi normale $\mathcal{N}(\mu, \sigma^2)$ où $\mu \in \mathbb{R}$ et $\sigma \in \mathbb{R}^+$, démontrer que l'on a : pour tout $t \in \mathbb{R}$, $\varphi_Y(t) = \exp\left(i\mu t - \frac{t^2\sigma^2}{2}\right)$.

- 3) Dans les cas suivants, justifier que la variable X considérée est infiniment divisible et identifier les lois des variables Y_n associées :
 - a) $X \sim \mathcal{N}(\mu, \sigma^2)$ où $\mu \in \mathbb{R}$ et $\sigma \in \mathbb{R}^+$.
 - **b)** $X \sim \mathcal{P}(\lambda)$ avec $\lambda > 0$.

EXERCICE 2. Considérons X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$. De plus, on suppose que :

- a) X est positive et P-presque sûrement non nulle,
- b) X est de carré intégrable.
- 1) Soit $0 \le t \le 1$. Démontrer que l'on a les deux inégalités suivantes :

$$0 \le (1-t)\mathbf{E}[X] \le \mathbf{E}[X \mathbf{1}_{X>t\mathbf{E}[X]}].$$

2) Montrer ensuite que pour tout $0 \le t \le 1$:

$$\left(\mathbf{E}[X \, \mathbf{1}_{X \geq t\mathbf{E}[X]}]\right)^2 \leq \mathbf{E}[X^2] \mathbf{P} \big(X \geq t\mathbf{E}[X]\big).$$

3) Fixons $t \in [0,1]$. Déduire de tout ce qui précède une minoration de $\mathbf{P}(X \ge t\mathbf{E}[X])$ en fonction de t et des 2 premiers moments de X (Cette inégalité est appelée Inégalité de Paley-Zygmund).

EXERCICE 3. La loi de Paréto s'applique pour les distributions tronquées. Prenons un exemple de la vie courante : en France, la borne basse du salaire horaire est forcément le SMIC, il ne peut pas en être autrement.

Soit X est une variable aléatoire réelle qui représente le salaire horaire d'un travailleur français. Celui-ci étant d'au moins une valeur constante c>0 fixée (sur une année donnée), on suppose ici que X suit la loi de Paréto de paramètres $\alpha>0$ et c>0, notée $X\sim\mathcal{P}(\alpha,c)$, et dont la densité est donnée par :

$$f_X(x) = \frac{\alpha}{c} \left(\frac{c}{x}\right)^{\alpha+1} \mathbf{1}_{x>c}.$$

Soit $n \geq 2$ un entier. On considère n salariés choisis de manière aléatoire et indépendante.

On leur associe n variables aléatoires X_1, \ldots, X_n qui sont indépendantes et de même loi de Paréto $\mathcal{P}(\alpha, c)$.

- 1) Déterminer la fonction de répartition de X_1 .
- **2) a)** On pose : $m_n = \min_{1 \le k \le n} X_k$.

Démontrer que m_n suit une loi de Paréto dont on identifiera les paramètres.

- **b)** En déduire, en fonction de α et n, la probabilité que les n employés considérés aient un salaire horaire d'au moins $\frac{3}{2}c$.
- 3) Dans cette question on suppose que $\alpha = 1$.

On s'intéresse ici au nombre N_n d'employés (parmi les n) qui ont un salaire horaire d'au moins $\frac{3}{2}c$.

- a) Exprimer la variable N_n en fonction des variables X_1, \ldots, X_n .
- **b)** Quelle est la loi de N_n ? Justifier.
- c) Déterminer, en fonction de n, la valeur de la probabilité qu'au plus 2 employés parmi les n aient un salaire horaire d'au moins $\frac{3}{2}c$.

EXERCICE 4. Soient U et V deux variables aléatoires réelles indépendantes toutes deux de loi normale centrée réduite.

- 1) Le but de cette question est de calculer la valeur de $\mathbf{E}[\max(U,V)]$.
 - a) Démontrer que l'on a l'égalité suivante : $\mathbf{E}[\max(U, V)] = 2\mathbf{E}[U \mathbf{1}_{U>V}]$.
 - **b)** Puis démontrer que l'on a : $\mathbf{E}[\max(U, V)] = \frac{1}{\sqrt{\pi}}$.
- 2) On considère maintenant W une variable aléatoire réelle indépendante du vecteur $(U,V)^T$ et qui suit la loi normale centrée réduite. Soit $(X,Y)^T$ un vecteur gaussien tel que X et Y sont centrées, réduites, et de covariance $0 \le \rho \le 1$.
 - a) On définit les variables X' et Y' par :

$$\left\{ \begin{array}{l} X' = U\sqrt{1-\rho} + W\sqrt{\rho} \\ \\ Y' = V\sqrt{1-\rho} + W\sqrt{\rho}. \end{array} \right.$$

Montrer que le vecteur $(X^\prime,Y^\prime)^T$ a même loi que $(X,Y)^T$

b) Déduire de tout ce qui précède que l'on a : $\mathbf{E}[\max(X,Y)] = \sqrt{\frac{1-\rho}{\pi}}$.

EXERCICE 5. 1) Dans cette question, on se place sur l'espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P}) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$ où $\mathcal{B}([0, 1])$ désigne la tribu borélienne sur l'intervalle [0, 1] et λ la mesure de Lebesgue sur [0, 1].

Pour tout entier $n \geq 1$, on considère la variable aléatoire réelle discrète Z_n définie sur $(\Omega, \mathcal{F}, \mathbf{P})$ par :

$$Z_n(\omega) = n$$
 si $0 \le \omega < \frac{1}{4n}$, $Z_n(\omega) = -n$ si $\frac{1}{4n} \le \omega < \frac{1}{2n}$ et $Z_n(\omega) = \frac{1}{\sqrt{2n}}$ si $\frac{1}{2n} \le \omega \le 1$.

- a) Montrer que la suite $(Z_n)_{n\geq 1}$ converge presque sûrement vers 0. Puis étudier la convergence en probabilité, la convergence en loi, la convergence dans L¹ et la convergence dans L² de (Z_n) .
 - **b)** Pour tout $n \ge 1$, calculer $\mathbf{P}[\{Z_n = n\} \cap \{Z_{n+1} = n+1\}]$. Les variables Z_n sont-elles indépendantes?
- **2)** Dans ce qui suit, on se place sur un espace probabilisé quelconque $(\Omega, \mathcal{F}, \mathbf{P})$. Soit $(\alpha_n)_{n>1}$ une suite de réels de l'intervalle]0, 1/2[.

Pour tout entier $n \geq 1$, on considère une variable aléatoire réelle X_n sur $(\Omega, \mathcal{F}, \mathbf{P})$ telle que :

$$P[X_n = n] = P[X_n = -n] = \alpha_n$$
 et $P[X_n = 1/\sqrt{2n}] = 1 - 2\alpha_n$.

- a) On note F_n la fonction de répartition de X_n . Calculer F_n pour tout entier $n \ge 1$. Tracer le graphe de F_n .
- b) Calculer la fonction de répartition, notée F, de la variable constante égale à 0.
- c) On suppose que la suite (α_n) converge vers 0. Montrer que pour tout réel $t \neq 0$, la suite $(F_n(t))$ converge vers F(t). Que peut-on en conclure sur la suite (X_n) ?
- 3) Déterminer une condition nécessaire et suffisante sur la suite (α_n) pour que (X_n) converge dans L² vers 0.
- 4) a) Soit $0 < \varepsilon < 1$. Calculer $\mathbf{P}[|X_n| \ge \varepsilon]$ pour tout entier $n \ge 1$.
 - b) Déterminer une condition nécessaire et suffisante sur la suite (α_n) pour que (X_n) converge en probabilité vers 0.
- c) En utilisant un résultat du cours que l'on nommera, déterminer une condition suffisante (C) sur la suite (α_n) pour que la suite (X_n) converge presque sûrement vers 0.
 - d) i) Montrer que la condition (C) n'est par contre en général pas nécessaire. Indication: on pourra utiliser le 1).
 - ii) Qu'en est-il dans le cas où les variables X_n sont de plus indépendantes? Expliquer.

EXERCICE 6. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires définies sur le même espace probabilisé $(\Omega, \mathcal{F}, \mathbf{P})$. De plus, on les suppose indépendantes, de même loi et de carré intégrable. Pour $n \geq 2$, on définit :

$$Y_n = \binom{n}{2}^{-1} \sum_{1 \le i < j \le n} X_i X_j.$$

- a) Démontrer que la suite $\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)_{n\geq1}$ converge presque sûrement lorsque n tend vers $+\infty$ et donner sa limite.
- b) Que peut-on en déduire sur la convergence presque sûre de $\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)^{2}$? Justifier.
- c) En développant $\left(\sum_{i=1}^{n} X_i\right)^2$ et en utilisant notamment les questions précédentes, prouver que la suite $(Y_n)_{n\geq 2}$ converge presque sûrement vers $\mathbf{E}[X_1]^2$.