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bLaboratoire de Mathématiques Appliquées, CNRS UMR 5142, Avenue de l’Université, 64013 Pau, France.
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Abstract

A nonlinear model for a vibrating Timoshenko beam in non-forced unknown rotation is derived from the virtual work
principle applied to a system of beam with mass at the end. The system represents a piano hammer shank coupled to
a hammer head. An energy-based numerical scheme is then provided, obtained by non classical approaches. A major
difficulty for time discretisation comes from the nonlinear behavior of the kinetic energy of the system. This new
numerical scheme is then coupled to a global energy-preserving numerical solution for the whole piano. The obtained
numerical simulations show that the pianistic touch clearly influences the spectrum of the piano sound of equally loud
isolated notes. These differences do not come from a possible shock excitation on the structure, nor from a changing
impact point, nor a “longitudinal rubbing motion” on the string, since neither of these features are modeled in our
study.

Keywords: flexible piano hammer shank, piano model, pianistic touch, implicit time discretization, vibrating
Timoshenko beam, energy preservation
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1. Motivation

Experimental studies [1, 2] tend to conclude that “the difference between two equally loud piano tones due to type
of touch lies in the different noise components involved in the keystroke” (from [2]). This “noise” is supposed to
come from the shock excitation of the piano structure (keybed, rim, iron plate). The authors seem to exclude any other
mechanism explaining an influence of the pianistic touch on the resulted piano sound. However, experimental obser-
vations of [3, 4, 5] suggest that the vibration of the hammer shank plays a significant role in the interaction between
the piano hammer and the string without being able to quantify its effect on the sound. Different possible mecha-
nisms have been suggested, as a change in the striking position or a rubbing motion in the elongation direction of the
string [3]. But the most frequent suggestion is that the shank vibrations contribute to the interacting hammer head -
string force, and this is the mechanism that we wish to investigate in this article. Recently, numerical experiments
have highlighted the influence of the hammer shank’s flexibility on the whole piano action [6] and on the interaction
between the hammer head and the strings [7]. To our knowledge, there is no published work which shows numerical
experiments of a flexible hammer shank coupled with a whole piano (strings, soundboard and sound radiation in the
air), therefore showing the influence of the shank flexibility on the resulting sound.

The aim of this work is to provide a complete physics based modeling and numerical solution of the interaction
between a flexible hammer shank and a hammer head, using only constitutive laws. Our goal is also to design an
energy-based numerical solution method, such that the numerical methods will ensure the preservation (or decay)
of a discrete energy approximating the mechanical energy of the continuous system. Coupling this new numerical
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method to the energy-preserving numerical solution for the other parts of the piano described in [8] (beginning with
the strings, but also a soundboard and sound radiation in the free space) will thus be easily possible in a stable and
physically relevant way. As a result, we will be able to provide several piano sounds obtained with the exact same
configuration, where only the input forces (associated to different pianistic touches) will be changed. Moreover, our
simulations do not model the shock on the structure. The impact point will be exactly the same is all simulations, and
none of them implement a “longitudinal rubbing motion” of the hammer head on the string. Differentiating physical
phenomena is a powerful feature of numerical experiments that cannot be done in a real experimental setup. Therefore
the observed differences on these sounds will be attributed to the touch only.

A rotating Timoshenko beam will represent the flexible hammer shank. The beam will be in interaction with a mass
located at its extremity representing the hammer head. The “macroscopic” motion of the beam is a rotation, the ro-
tation angle being an unknown of the problem. The “microscopic” motions of the beam are small vibrations that can
be viewed as small perturbations around the macroscopic position. The interacting forces acting between the hammer
head and the hammer shank will be considered as Lagrange multipliers of the system. The obtained system of equa-
tions will involve nonlinear terms that will arise from the rotation of the coordinates system. We will see that some of
them can be neglected, but the problem will remain challenging to solve numerically.

Figure 1: Grand piano action. (a) Photography of an isolated Renner grand piano action, from kungfubrothers.com. (b) Sketch of the different parts
of the grand piano action, from andersthorin.com. When the player hits the key, the jack pushes the hammer shank near its fixation point and forces
it into a rotating motion.

The mechanical system that we consider is a small part of the grand piano action (see figure 1) and consists of two
parts:

◦ the hammer shank, in which we consider linear beam vibrations around a macroscopic position, written in
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(b) Schematic view of the shank configuration

Figure 2: Introduction of the notations.

rotating coordinates. It is subject to gravity, a “pushing” force (coming in reality from the contact with the
jack), and a force at its extremity coming from the hammer head.

◦ the hammer head, not flexible, attached to the free end of the beam (cinematic continuity). It is subject to
gravity, acts back on the hammer shank, and interacts with the strings.

Though the final goal of this work is to model the coupling of this mechanical system with piano strings, in the two
first parts of this article we will simplify the problem and suppose that the forces coming from the coupling with
strings are given data of the problem. In the third part of this article, we will provide numerical examples where the
hammer shank and head have been coupled to the strings, the soundboard and the sound radiation, by treating the
hammer head / string coupling in a mathematical weak way using Lagrange multipliers and computing the interaction
forces from a crushing felt law as in [8].

2. A model for the { shank – head } mechanical system

We consider the notations of figure 2(a). The origin O is located at coordinates (x0, y0, z0) = (0, 0, 0) in the cartesian
reference frame (ux,uy,uz) This point will be fixed, since the only macroscopic motion of the shank that we consider
is a rotation, with an angle θ.
In the following of this article, we will consider that all exterior forces are in the (ux,uy) plane, therefore the displace-
ment field will occur in this plane. Thus, we will only seek mechanical solutions in the (ux,uy) plane. We denote the
three unit vectors :

ur =

 cos θ
sin θ

0

 , uz =

 0
0
1

 , uθ =

 sin θ
− cos θ

0


The system (uθ,ur) is orthonormal, we denote by (s, τ) the coordinates of the undeformed configuration in this system
(see figure 2(b)).
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Following Timoshenko theory [9], which states that straight cross-sections remain straight during the deformation,
the displacement of the beam’s cross-section defined by {s ur + τuθ, τ ∈ (−R,R)} is chosen of the form:

r = (s − τ sinϕ) ur + (w + τ cosϕ) uθ (1)

with w the deflection of the neutral fiber of the beam and ϕ the rotational angle of the cross section. The axis of
rotation of the beam is equal to Ω = uz. The vectors ur and uθ are not constant over time (in the sequel we shall
denote ẋ the time derivative of any quantity x):

u̇r = θ̇Ω × ur = −θ̇ uθ, u̇θ = θ̇Ω × uθ = θ̇ ur

And the second order time derivatives of these vectors read:

ür = −θ̇2 ur − θ̈ uθ, üθ = −θ̈ ur − θ̇2 uθ

The wooden part of the head is assumed to be rigid, hence the center of gravity of the mass (hammer head) at the end
of the beam is parametrized by:

ξ = L ur + (w(L) − H) uθ (2)

The top of the hammer head which can be in contact with the strings is parametrized by:

ζ = L ur +
(
w(L) − H′

)
uθ

where H′ = H + d0 (see figure 2(a)).

In the sequel, we shall derive the equations of motion for the system { shank, head } using the virtual work principle.
This will yield a variational formulation of the problem. Then, an energy identity will be obtained.

In the following, we denote with the symbol
∫

the integration over [0, L] and with
∫∫∫

the integration on the 3D

domain occupied by the beam.

The virtual work principle states that,

Pacc + Pint = Pext where Pext = Pgrav + Pjack + Pcoupl,shank + Pcoupl,head + Pstring

where Pacc is the virtual work due to acceleration, Pint the virtual work due to the interior forces of the shank and
Pext the virtual work due to the exterior forces. This last item can be divided into several contributions coming from
the gravity, the jack force, the coupling between the shank and the head, and the string force. The different terms are
derived successively in Appendix A. Substituting them with their expression then yields a variational formulation
of the problem, where A is the area of the beam section, and I is the bending moment of inertia of the beam. For
instance, in the case of a circle cross-section, we have

A = πR2 and I =
πR4

4
, where R is the radius.

2.1. Variational formulation of the problem

The internal coupling force Fcoupl is an unknown of the problem which has been introduced in order to treat the
shank-head coupling in a mathematical weak way. The additional equation comes from imposing that the displacement
of the hammer head is equal to the displacement of the extremity of the shank. This equation is called “equation of
continuity shank-head”.

The variational formulation directly yields from replacing the virtual works by their expression. In order to prepare for
the numerical resolution, it is moreover necessary to specify the variational spaces of the solutions. Let us introduce

V0 = {w ∈ H1([0, L]), such that w(0) = 0}.
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One major hypothesis for writing the displacement field of the shank as equation (1) was that all exterior forces were
in the (ux, uy) plane. Using this hypothesis, it is straightforward to show that the solution lives in the same plane. In
the following, we will only consider a 2D motion (meaning that ξ and Fcoupl ∈ R2), but for convenience we will still
call ux, uy, ur and uθ their projection on the 2D plane :

ux =

[
1
0

]
, uy =

[
0
1

]
, ur =

[
cos θ
sin θ

]
, uθ =

[
sin θ
− cos θ

]
.

The reader can acquire a first intuition of the fact that an additional constraint on w is needed in order to grant the
uniqueness of solutions, by realizing that several couples (θ,w) can describe a given beam position. For instance,
(θ = 45◦,w = 0) describes the same situation as (θ = 0,w(s) = −s), as an infinity of other couples. But, there is
a unique couple which satisfies that the mean value of w is zero. Of course this criterion for the choice of a unique
couple is coherent with the physical assumption for using Timoshenko theory of “small deformations”. An analytical
study of this criterion is beyond the scope of this article and shall be addressed in an other context. We chose to
impose that the mean value of w is zero via a Lagrange multiplier technique. The Lagrange multiplier is called λ.



We seek (w, ϕ, θ, λ,Fcoupl,ξ) ∈ V0 × H1 × R × R × R2 × R2

such that for all (w?, ϕ?) ∈ H1 × H1, we have
Shank equations / equation on (w, ϕ): (3a)∫ L

0
ρA

∂2w
∂t2 w? +

∫ L

0
AGκ

(
∂w
∂s
− ϕ

)
∂w?

∂s
+ λ

∫ L

0
w? −

∫
ρA

(
w θ̇2 + θ̈ s + g cos θ

)
w?

−
(
Fcoupl · uθ

)
w?(L) = −F jack

∫ L

0
δjack(s) w?(s) ds

∫ L

0
ρI
∂2ϕ

∂t2 ϕ
? −

∫ L

0
AGκ

(
∂w
∂s
− ϕ

)
ϕ? +

∫ L

0
EI

∂ϕ

∂s
∂ϕ?

∂s
− ρIθ̈

∫ L

0
ϕ? = 0

Zero average of w / equation on λ: (3b)∫ L

0
w = 0

Equation on θ: (3c)

θ̈

∫ L

0
ρA (w2 + s2) + 2θ̇

[∫ L

0
ρA wẇ

]
−

∫ L

0
ρA s ẅ +

∫ L

0
ρA g (s cos θ + w sin θ)

+

∫ L

0
ρI

(
θ̈ − ϕ̈

)
= Fjack

∫ L

0
sδjack + (w(L) − H)

(
Fcoupl · ur

)
− L

(
Fcoupl · uθ

)
Head equation / equation on ξ: (3d)

mH ξ̈ = −mH g uy − Fcoupl − Fstring uy

Equation of continuity shank - head / equation on Fcoupl: (3e)

ξ = L ur + (w(L) − H) uθ
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2.2. Energy identity

Taking as test functions (w?, ϕ?) the time derivative of the unknowns (w, ϕ) in (3a), multiplying equation (3c) with
θ̇ and multiplying equation (3d) with ξ̇ enables us to show the following energy identity:

dE
dt

= Fjack

(
θ̇

∫
sδjack(s) ds −

∫
ẇ(s)δjack(s) ds

)
− Fstring ξ̇ · uy

where the energy reads:

E(t) =
1
2

∫ L

0
ρAw2(θ̇)2 +

1
2

∫ L

0
ρA(ẇ− s θ̇)2 +

1
2

∫ L

0
ρI(θ̇− ϕ̇)2 +

mH

2

∣∣∣ξ̇∣∣∣2 +
1
2

∫ L

0
AGκ

(
∂w
∂s
− ϕ

)2

+
1
2

∫ L

0
EI

(
∂ϕ

∂s

)2

+

∫ L

0
ρA g (s sin θ − w cos θ) + L2 ρ

A g
2

+ mH g (ξ · uy) + Cg

Especially, this energy is preserved if exterior forces Fjack and Fstring are equal to zero.

Notice that it is obtained by using the time derivative of (3e). Indeed, it allowed us to simplify the terms involving
Fcoupl, which are nothing but internal forces to the global mechanical system.

Most terms of this energy are trivially positive. Only the last terms, associated to gravity, need a detailed explanation:


∫ L

0
ρA g s sin(θ) + L2ρAg/2 ≥ 0 (4a)∫ L

0
ρA g w cos(θ) = 0 thanks to (3b) (4b)

The last term of the energy, mH gξ · uy + Cg, is not necessarily positive, but it would be with Cg = −
√

H2 + L2 if
the shank was not flexible (which is the macroscopic motion of the beam). Since the beam vibrations are supposed to
be small, we expect that there exists a constant Cg close to its “macroscopic” equivalent that makes the contribution
positive. This qualitative argument should be shown in a further analytic study which is beyond the scope of this
article.

3. An energy-based numerical scheme for solving the { shank – head } system

We are guided by the desire to preserve a discrete energy, which will provide a priori estimates on the discrete
solution. The energetic approach is a powerful way to later introduce couplings with other mechanical systems, in a
stable and preserving way, which is our final goal in the context of the piano, beginning with the strings.

We rely on the variational form given by the set of equations (3) and perform a conformal Galerkin method in space
with high order finite elements1. Let us denoteVh,0 ⊂ V0 andVh ⊂ H1 the approximate spaces given as

[0, L] =
⋃

k

[sk, sk+1]

Vh =
{
u ∈ H1([0, L]) such that u|[sk ,sk+1] ∈ Pr

}
Vh,0 =

{
u ∈ V0 such that u|[sk ,sk+1] ∈ Pr

}
1for Timoshenko systems, it is known that locking phenomena can appear (see [12]), but using high order Finite Element Method diminishes

this effect (see [17]).
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where Pr is the space of polynomials of degree lower or equal to r.

Time discretisation is the main issue since it is absolutely not trivial to ensure numerical stability in such a nonlinear
and coupled context, especially in view of the coupling with the rest of the instrument. Most of the terms are treated
in a classical implicit way with “θ-schemes”, the preserving class of Newmark schemes (see chapter XX of [10]). The
weighting coefficient is chosen equal to 1/4 in order to avoid any stability condition while maximizing the accuracy.
A non classical scheme is proposed in order to discretize the inertial term. These choices lead to a stable scheme, and
the over cost of implicit schemes is anyhow expected in such a nonlinear context.

We denote

{X}n1/4 =
Xn+1 + 2Xn + Xn−1

4
(5)

which is a centered weighted approximation of X(tn). In the same way, we denote

{cos θ}n1/4 :=
cos θn+1 + 2 cos θn + cos θn−1

4
(6)

which is a centered weighted approximation of cos θ(tn) where the average is done outside the cosine function. We
also introduce the functions

δ cos(a, b) =


cos a − cos b

a − b
if a , b

− sin(a) if a = b
and δ sin(a, b) =


sin a − sin b

a − b
if a , b

cos(a) if a = b
(7)

and finally, the oriented vectors

un
r =

[
cos θn

sin θn

]
, un

θ =

[
sin θn

− cos θn

]

In the sequel, numerical integration is done with quadrature techniques (see [13]) and denoted
∮

.

3.1. Non classical treatment of the inertial term

A non-classical discretisation is done for the three contributions coming from the first term of the energy:

1
2

∫ L

0
ρA w2(θ̇)2 (8)

which yields the three following terms in the equations:
−

∫ L

0
ρA w θ̇2 w? for the shank’s flexural equation,

θ̈

∫ L

0
ρA w2 + 2θ̇

∫ L

0
ρA wẇ for the equation on θ.

(9)

A first idea would be to use centered weighted approximations for w and centered quotients for the time derivatives
of θ and w, but this does not lead to a conservative numerical scheme. A second idea would be to use variational
time integrators methods as described in [14], but these methods do not preserve the discrete energy if the time step is
constant. It is however a good starting point to find energy preserving schemes. Let us call Lh the discrete density of
lagrangian associated to the continuous Lagrangian (8):

Lh(qn, qn+1) =
1
2

(
θn+1 − θn

∆t

)2 (
wn+1 + wn

2

)2

, where qn = (wn, θn) (10)
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Then the variational integration technique yields the following scheme:

1
2

(
θn+1 − θn

∆t

)2 (
wn+1 + wn

2

)
+

1
2

(
θn − θn−1

∆t

)2 (
wn + wn−1

2

)
← w θ̇2 (11a)

1
∆t

(
wn+1 + wn

2

)2 (
θn+1 − θn

∆t

)
−

1
∆t

(
wn + wn−1

2

)2 (
θn − θn−1

∆t

)
← θ̈w2 + 2θ̇wẇ (11b)

This method does not preserve exactly the discrete Lagrangian
∮ L

0
ρALh, but we use the second line of this scheme as

a starting point and change the first line in order to guarantee an energy preservation. Finally, the three contributions
will be discretized as follows:

−

∮ L

0
ρA

wn+1 + 2wn + wn−1

4

(
θn+1 − θn

∆t

) (
θn − θn−1

∆t

)
w? ← −

∫ L

0
ρA w θ̇2 w? (12a)

∮ L

0

ρA
∆t

θn+1 − θn

∆t

(
wn+1 + wn

2

)2

−
θn − θn−1

∆t

(
wn + wn−1

2

)2 ← θ̈

∫ L

0
ρA w2 + 2θ̇

∫ L

0
ρA wẇ (12b)

The consistency of system (12) with the inertial terms of the equation is not straightforward and is shown in Ap-
pendix B. Since this scheme is not classical, we provide the calculations that lead to the discrete energy.

We take w? =
wn+1 − wn−1

2∆t
in (12a) and multiply (12b) by

θn+1 − θn−1

2∆t
, and we add the contributions. We get, after

denoting wn+ 1
2 =

wn+1 + wn

2
and θ̇n+ 1

2 =
θn+1 − θn

∆t
,

0 =

∮ L

0
−
ρA
2∆t

θ̇n+ 1
2 θ̇n− 1

2

[(
wn+ 1

2

)2
−

(
wn− 1

2

)2]
+

∮ L

0

ρA
2∆t

[(
wn+ 1

2

)2 (
θ̇n+ 1

2

)2
+

(
wn+ 1

2

)2
θ̇n+ 1

2 θ̇n− 1
2

−
(
wn− 1

2

)2 (
θ̇n− 1

2

)2
−

(
wn− 1

2

)2
θ̇n+ 1

2 θ̇n− 1
2

]
The two terms coming from (12a) both cancel with terms coming from (12b), and we get :

E
n+ 1

2
NL − E

n− 1
2

NL

∆t
= 0, where En+ 1

2
NL =

∮ L

0

ρA
2

(
θn+1 − θn

∆t

)2 (
wn+1 + wn

2

)2
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3.2. Numerical scheme

The numerical scheme that we propose, based on our innovative treatment of the inertial terms, is the following:

We seek (wn+1, ϕn+1, θn+1, λ,Fcoupl,ξ
n+1) ∈ Vh,0 ×Vh × R × R2 × R2

such that for all (w?, ϕ?) ∈ Vh,0 ×Vh, we have
Shank equations: (13a)∮ L

0
ρA

wn+1 − 2wn + wn−1

∆t2 w? +

∮ L

0
AGκ

{
∂w
∂s
− ϕ

}n

1/4

∂w?

∂s
+ λ

∮ L

0
w?

−

∮
ρA

[
wn+1 + 2wn + wn−1

4

(
θn+1 − θn

∆t

) (
θn − θn−1

∆t

)
+
θn+1 − 2θn + θn−1

∆t2 s + g {cos θ}n1/4

]
w?

−
(
Fcoupl · un

θ

)
w?(L) = −Fjack

∮ L

0
δjack(s)w?(s) ds

∮ L

0
ρI
ϕn+1 − 2ϕn + ϕn−1

∆t2 ϕ? −

∮ L

0
AGκ

{
∂w
∂s
− ϕ

}n

1/4
ϕ? +

∮ L

0
EI

{
∂ϕ

∂s

}n

1/4

∂ϕ?

∂s

−ρI
θn+1 − 2θn + θn−1

∆t2

∮ L

0
ϕ? = 0

Zero average of w: (13b)∫ L

0
{w}n1/4 = 0

Equation on θ: (13c)

θn+1 − 2θn + θn−1

∆t2

∮ L

0
ρA s2 +

∮ L

0

ρA
∆t

θn+1 − θn

∆t

(
wn+1 + wn

2

)2

−
θn − θn−1

∆t

(
wn + wn−1

2

)2
+

∮ L

0
ρA g

[
s δ sin(θn+1, θn−1) − {w}n1/4 δ cos(θn+1, θn−1)

]
−

∮ L

0
ρA s

wn+1 − 2wn + wn−1

∆t2 +

∮ L

0
ρI

[
θn+1 − 2θn + θn−1

∆t2 −
ϕn+1 − 2ϕn + ϕn−1

∆t2

]
= Fjack

∮ L

0
sδjack +

(
{w}n1/4 (L) − H

) (
Fcoupl · un

r

)
− L

(
Fcoupl · un

θ

)
Head equation: (13d)

mH
ξn+1

− 2ξn + ξn−1

∆t2 = −mH g uy − Fcoupl − Fstring uy

Equation of continuity shank - head: (13e)

ξn+1
− ξn−1

2∆t
=
θn+1 − θn−1

2∆t

[
{w}n1/4 (L) − H

]
un

r +

[
wn+1 − wn−1

2∆t
(L) − L

θn+1 − θn−1

2∆t

]
un
θ

Notice that the equations of continuity are consistent with the time derivative of conditions (3e). This will enable
us to show a discrete energy preservation.

3.3. Discrete energy

A discrete energy identity can be obtained by following the classical steps:
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◦ taking in (13a) as test functions : w? =
wn+1 − wn−1

2∆t
, ϕ? =

ϕn+1 − ϕn−1

2∆t
,

◦ multiplying (13c) by
θn+1 − θn−1

2∆t
,

◦ multiplying (13d) by
ξn+1

− ξn−1

2∆t
.

Notice that by definition,

δ sin(θn+1, θn−1)
(
θn+1 − θn−1

)
= cos(θn+1) − cos(θn−1) and δ cos(θn+1, θn−1)

(
θn+1 − θn−1

)
= sin(θn+1) − sin(θn−1).

The interior coupling terms will vanish thanks to equation (13e).

Without any source term (Fjack = Fstring = 0), the following discrete energy is preserved from one time step to the
following:

En+ 1
2 = E

n+ 1
2

kin + E
n+ 1

2
pot , where (14)

E
n+ 1

2
kin =

1
2

∮ L

0
ρA

(
θn+1 − θn

∆t

)2 (
wn+1 + wn

2

)2

+
1
2

∮ L

0
ρA

[
wn+1 − wn

2∆t
− s

θn+1 − θn

2∆t

]2

+
1
2

∮ L

0
ρI

[
θn+1 − θn

∆t
−
ϕn+1 − ϕn

∆t

]2

+
mH

2

∣∣∣∣∣∣ξn+1
− ξn

∆t

∣∣∣∣∣∣
2

(15)

E
n+ 1

2
pot =

1
2

∮ L

0
AGκ

[
∂

∂s

(
wn+1 + wn

2

)
−
ϕn+1 + ϕn

2

]2

+
1
2

∮ L

0
EI

[
∂

∂s

(
ϕn+1 + ϕn

2

)]2

+

∮ L

0
ρA g s

sin θn+1 + sin θn

2
+ L2ρAg/2 −

∮ L

0
ρA g

wn+1 + wn

2
cos θn+1 + cos θn

2
+ mH g

ξn+1 + ξn

2
· uy + Cg (16)

Using classical tools (see [15]), the positivity of this quantity would grant the unconditional stability of the numerical
scheme. As in the continuous case, we have:

∮ L

0
ρA g s

sin θn+1 + sin θn

2
+ L2ρAg/2 ≥ 0∮ L

0
ρA g

wn+1 + wn

2
cos θn+1 + cos θn

2
= 0 thanks to (13b), and assuming that

∮ L

0
w0 =

∮ L

0
w1 = 0.

The only terms which are not necessarily positive is mH g
ξn+1 + ξn

2
· uy + Cg, as in the continuous case. The same

qualitative argument applies, therefore this term is expected to be positive.

4. Numerical simulations and prospects

For the numerical simulations that follow, the hammer shank and head are coupled to one or several vibrating
strings, which are coupled to a soundboard that radiates in the air, as in a real piano. Therefore, in the following,
Fstring is not longer a given force, but comes from the interaction between the hammer head and the string(s), which is
(are) now free to vibrate. At the origin of times, the piano action is at rest, meaning that θ ≈ −17 deg. The strings are
at rest and occupy the horizontal line y = H + d0 (see figure 2(a)) so that, macroscopically, the hammer head - string
contact begins when the angle θ is equal to 0. This choice was motivated by several observations in real pianos, but is
not universally respected in the instrument manufacture. The hammer head - string contact is treated as in [8] which
means that strong hypotheses have been made :
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◦ the contact region on the string is a fixed interval of the string,

◦ the interacting force is a nonlinear function of the distance d between the hammer head and the string, with
hysteresis. This nonlinear function Fstring is defined as (see [8])

Fstring(d) = K Φ(d) + R
d
dt

Φ(d), Φ(d) =
[
(d0 − d)+]p (18)

where p is a positive real number, d0 is the distance between ξ and the top of the hammer head ζ at rest (see
figure 2(a)), and (·)+ stands for the positive part.

In the model described in reference [8], the hammer head was only allowed a vertical motion, whereas in the present
shank model an horizontal motion of the hammer head can occur. However, for the following numerical results, the
distance d has been defined as the vertical distance between the hammer head and the string. This means that only the
vertical position of the hammer head counts in the contact. This is a rough description of the geometry and we will
discuss a possible improved model in section 4.4.

A new feature that we had to model was the let-off mechanism. In real pianos, the jack (see figure 1) pushes the shank
until the jack’s other end touches a fixed obstacle which makes it rock and loose contact with the shank. In a first
approach, we modeled this mechanism as the following : as soon as the distance between the hammer head and the
string (at rest) is smaller than the so-called let-off distance, the jack force is set to zero. In a real piano, the contact
element between the jack and the shank (the roller) is covered with felt, and therefore the contact loss is probably
smoother. In the absence of experimental data concerning this felt and its crushing law, we chose this abrupt solution
but a better model could be implemented in the future.

The modeling of the strings, soundboard and air is beyond the scope of this article, so we refer the reader to [8] for a
description of the mechanical model of the whole piano with stiff and nonlinear vibrating strings, and to [15] and [19]
for a description of the innovative energy preserving numerical schemes used to solve the equations. The coupling
between the numerical scheme (13) and the numerical scheme done on the strings and the rest of the piano is handled
via Lagrange multipliers which are the coupling forces Fstring (one for each string).

The numerical experiments are conducted with the shank’s parameters given in table 4 (taken from [6]) and the head’s
parameters given in table 4. The piano’s parameters can be retrieved in [18].

L (m) E (Pa) A (m2) ρ (kg · m−3) I (m4) G (Pa) κ (-)

0.086 10.18 · 109 32.38 · 10−6 560 83.44 · 10−12 0.64 · 109 0.85

Table 1: Shank parameters

H (m) d0 (m) mH (kg) : for D]1 for C]5

0.04 0.02 10.76 · 10−3 7.90 · 10−3

Table 2: Heads parameters

The jack force Fjack is applied around a point located 0.0155 m from the rotation center of the shank (point (0, 0) in
figure 2(a)). The repartition function δ jack stands for the roller’s width. The time dependency of the jack force is a data
of our simulations that we need to provide. In the literature, no experimental data of grand piano jack-shank forces
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was harder to identify [see Fig. 7(b) ]. The excitation was 
concentrated to a strong impulse in the beginning which set 
the hammer in slow oscillations. These are visible in the 
compression force in the jack as well. As the tail of the jack 
reached contact with the dolly, also in this case approxi- 
mately 5 ms before string contact, the slow oscillation de- 
cayed. During the following interval up to string contact, the 
hammer acceleration was dominated by a faster oscillation, 
also visible as a superimposed component during the entire 
acceleration [of. Fig. 6(b) and (c) ]. The small peak in force 
during the retreat of the jack could be observed also in this 
example. 

Interestingly, the details of the hammer acceleration 
during the interval between jack-dolly contact and ham- 
mer-string contact was found to depend on touch and the 
regulation of the let-off distance (see Fig. 8). During this 
interval, the rapid hammer oscillations seem to be important 
for the hammer motion. A possible influence of touch on the 
string excitation via these hammer vibrations is discussed in 
the following section. 

C. Hammer modes 

I. Swells and ripples 
Several of the previous figures indicate that some ham- 

mer modes are strongly excited during the acceleration be- 
fore string contact (eft Figs. 6 and 8). A comparison of the 
hammer motions during a staccato touch for the same note 
(C4) on two different instruments showed that both ham- 
mers exhibited a slow oscillation at about 40-50 Hz 

FIG. 7. Registrations of acceleration at the hammer head and compression 
force in the jack (rnezzoforte, C4 ). The force was measured by means of a 
piezofoil in the jack. The position of the aeeelerometer is marked with a 
triangle. Also shown are the contact signals jack dolly and jack roller. (a) 
Legato touch and (b) staccato touch. 
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The compression force in the jack, as measured by an 
inserted piece of piezofoil, increased continuously up to the 
point of contact jack-dolly, about 5 ms before string contact. 
This point could consequently be characterized as a "turn- 
ing-off' point for the effective force transmission from key to 
hammer, although the jack normally remains in mechanical 
contact with the roller up to about I ms before string con- 
tact) Immediately as the jack had reached contact with the 
dolly, the force increased during a short interval, after which 
it suddenly dropped. This small peak probably corresponded 
to the moment at which the edge of the jack slipped past the 
roller. Apparently, the peak does not serve as a "final kick" 
to the hammer as the acceleration decreased continuously 
during this interval? 
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This point could consequently be characterized as a "turn- 
ing-off' point for the effective force transmission from key to 
hammer, although the jack normally remains in mechanical 
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tact) Immediately as the jack had reached contact with the 
dolly, the force increased during a short interval, after which 
it suddenly dropped. This small peak probably corresponded 
to the moment at which the edge of the jack slipped past the 
roller. Apparently, the peak does not serve as a "final kick" 
to the hammer as the acceleration decreased continuously 
during this interval? 

In a staccato touch, a definite turning-off point in force 

Z 

10 ms/DIV 

- ' vqx. 

i X-STRING 
I CONTACT • 
I 
I 
I 

JACK- DOLLY 

I I I I I I I I I 

FIG. 8. Three examples of the acceleration at the hammer head obtained by 
slightly different versions of staccato-type touch { mezzoforte, Ca }.'•ø In the 
example at the top, the let-off was adjusted to a long condition (about 4 
ram). • The dashed lines indicate the moment of contact between jack and 
escapement dolly. 

2388 J. Acoust. Soc. Am., Vol. 90, No. 5, November 1991 A. Askonfelt and E. V. Jansson: From touch to string vibrations 2380 

Downloaded 05 Apr 2011 to 192.93.2.32. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp

(b) Staccato touch

Figure 3: “Registration of acceleration at the hammer head and compression force in the jack (mezzo forte, C4). The force was measured by means
of a piezofoil in the jack. The position of the accelerometer is marked with a triangle. Also shown are the contacts signals jack dolly and jack roller.
(a) Legato touch and (b) Staccato touch.” Figure taken from [3].

and hammer - string interaction forces are exploitable, partly because they seem difficult to achieve with precision
and/or because of unjustified assumptions in the experimental setup (see [5]). However, two examples of jack-shank
forces can be found in [3] as reproduced in figure 3. From this figure, we have isolated two kinds of piano touches,
trying to mimic the so-identified legato and staccato touches. The staccato touch will be associated with a strong and
short pulse as a jack force, returning to zero before any let-off mechanism. The legato touch will be associated with an
increasing jack force which only stops because of the presence of a let-off mechanism. Both touches will be modeled
with the following formula for Fjack, only changing the parameters tjack and Ajack.

Fjack(t) =


Ajack cos2

(
π

2

(
2 t

tjack
− 1

))
, if 0 ≤ t ≤ tjack

0, otherwise
(19)

Once again, this is only a rough modeling of a very complex situation, which could be improved in the future.

The purpose of the following numerical simulations is first to numerically demonstrate the preservation of a discrete
energy (see 4.1), and more interestingly, to illustrate the versatility of our simulation tool. The nonlinear system that
we modeled and solved in this article depends on several physical parameters which are very interesting to explore.
We will first investigate the effect of the pianistic touch via the jack force (see 4.2), and of the let-off distance (see 4.3).
During these investigations, we will discuss the possible presence of a “longitudinal touch precursor” (see 4.4) in the
piano sound.

4.1. Numerical algorithm and energy preservation

The nonlinear system (13) is solved with a modified Newton-Raphson method. The jacobian matrix is manually
implemented and is only recomputed if the Newton iteration procedure does not lead to a satisfying solution. In order
to decrease memory storage and the number of equations to solve, the degrees of freedom corresponding to the ham-
mer and the shank as well as the corresponding equations are removed from the computation when the coupling force
between the hammer head and the strings returns to zero for a long time.

In this paragraph, we only consider the hammer shank, head and piano strings. When the damping terms (included
in the string, and in the hammer - string interaction) are set to zero, the global discrete energy of the { string, shank,
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head } system is conserved as shown in figure 4. This figure was obtained for note C]5 (the hammer strikes 3 strings,
see [18] for more details on the parameters) which is the 53rd key of a regular keyboard, using a constant jack force
until let-off. The let-off distance was 3 mm for this simulation.

Figure 4: Relative error on the energy versus time after let-off. Double precision (ε = 2 · 10−16) and multiple precision (ε = 10−60) are compared.

When arithmetic with multiple precision is used for the numerical computations with a precision equal to 10−60, the
energy seems to be very well conserved, confirming that the employed numerical method is conservative and stable.
However, it can be observed some loss of accuracy, since the relative error on the energy is around 10−54. In double
precision (the precision being equal to 2 · 10−16), the relative error is approximately equal to 10−8. We think that an
adimensionalization procedure should reduce this loss of accuracy.

4.2. Influence of pianistic touch
Our simulation tool enables us to study the influence of various parameters on the whole mechanical system. One

of the most interesting parameters is the way the pianist strikes the key, also called “pianistic touch”. As said earlier,
the jack force is a data to our model, but it is only an intermediate force in the whole piano mechanism. Very few
experimental recordings of this force are available and trustworthy (see [5]), so we chose to use formula (19) to repre-
sent the jack force. Moreover, we recall that the let-off mechanism is abruptly represented by the fact that this force is
set to zero when the distance between the hammer head and the string becomes smaller than the let-off distance. The
following results are obtained with note D]1 which only has one string (see [18] for more details on the parameters).

In the following, we will compare two simulations coming from the jack forces obtained with the parameters S and L
listed in table 3. These two simulations have very different jack forces but the hammer head hits the string at about the
same velocity (around 3.4 m/s), so that only the pianistic touch differs. They will schematically stand for staccato and
legato touches, this classification will come from the comparison with the experimental measurements of figure 3.

Figure 5 shows different quantities obtained by simulation of note D]1, using parameters S (left) and L (right) of
table 3. In the upper frame S is displayed a global view of the string (length 1.965 m) and the hammer (shank and
head). In the six frames (a) to (f) are displayed the shank and head deformations at different instants, in regular scale
(black) and magnified scale (blue). In frames J and F are respectively displayed the jack force and the hammer - string
interaction force with respect to time. The magnified shank deformation is clearly visible before the hammer - string
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Parameters set tjack (s) Ajack (N) let-off distance (m)

S 0.007 70 0.0015

L 0.100 30 0.0015

L+ 0.100 30 0.0030

L- 0.100 30 0

Table 3: Parameters of jack forces for different simulations

contact (see frame (a) of figure 5(a)) but also during hammer - string contact (frames (c), (d) and (e) of figure 5(a) and
5(b)). The maximum time in frames J and F is different (25 ms for figure 5(a) and 45 ms for figure 5(b)) because the
hammer does not reach the string at the same moment for both jack forces. The jack force obtained with parameters
S of table 3 is very short and strong, while the jack force obtained with parameters L is progressively increasing. As
a result, the jack force S is like a flick for the hammer shank, which is let free to move very soon (when the jack force
returns to zero). On the contrary, the jack force L is still increasing when the shank reaches the let-off point, and
therefore is suddenly set to zero because of this let-off mechanism. Comparing to figure 3 leads us to classify the jack
force S as a staccato touch, and the jack force L as a legato touch.

This work was initially motivated by discrepancies between our experimental measurements and our simulated re-
sults. In the following, we will try to assess to what extent our new hammer shank - head model can diminish these
dissimilarities, and evaluate the impact of the pianistic touch on the sound, if any.

Whereas it is very difficult to measure a jack force, it is rather easy to measure the shank acceleration. Putting a small
accelerometer at the end of the shank enabled us to measure it on a Steinway D grand piano (see [8] for more details
and figure 6(b) for a photography of the experimental setup). For note D]1 struck ff (very strong attack), we obtained
the experimental signal plotted in figure 6(b). In article [8], we noticed some “additional small oscillations” in the
hammer acceleration which did not appear on the simulated hammer acceleration. At the time, no hammer shank was
included in our piano model, the hammer was only represented by a hammer head given an initial velocity towards
the strings, without accounting for gravity. We therefore made the hypothesis that these oscillations were due to the
vibrations of the hammer shank. In figure 6(a), we have plotted the hammer head acceleration in the direction uθ, so
that it can be directly compared to the experimental signal. The acceleration obtained with a legato touch is in blue
and the acceleration obtained with a staccato touch is in red. As a reference, we have put on the same graph, in black,
the hammer head acceleration obtained using the old model described in [8], without any shank nor gravity, setting the
initial hammer velocity close to the hammer head - string contact velocity of the other two simulations : v0 = 3.41 m/s.
A first remark is that both legato and staccato accelerations exhibit oscillations that the acceleration obtained with
no shank does not. The acceleration simulated with the legato touch shows very fast oscillations which appear after
let-off, because of the discontinuity created by this mechanism. These oscillations are very similar to the ones of the
experimental signal, showing that accounting for the shank in the hammer - string interaction can explain the
presence of strong oscillations in the hammer head acceleration. However, the simulated acceleration is clearly
oscillating too much with the legato touch, most likely because our model of let-off is too abrupt compared to what
happens in a real piano mechanism. A better model should account for the un-crushing of the roller felt (element of
contact between the jack and the hammer shank), which is expected to make the jack force smoother during let-off.
A second remark is that different pianistic touches will lead to very different hammer head acceleration signals. An
interesting question is to know whether this difference is noticeable as well in the hammer head - string interaction
force, since this is the only transmitted quantity to the rest of the piano structure, and ultimately, the sound.

In figure 7 are displayed the hammer head - string interaction forces for legato and staccato touches (in blue and red)
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Figure 5: Visualization of shank vibrations and hammer crushing after pianistic attack for staccato (left) and legato (right) touches. Frame S shows
the whole string and the hammer at the same scale. The black rectangle is zoomed in at several times in frames (a) to (f). (a) : during jack force
increase. (b) : at let-off distance. (c) : at hammer head - string contact. (d) : during the first decrease of the interaction force. (e) : at a second
maximum of the interaction force. (f) : after hammer - string contact. Shank vibrations are magnified 30 times (in blue) and hammer crushing is
magnified 7 times (in blue). Frames J and F respectively show the jack force and the interaction force with respect to time. The red vertical dashed
lines correspond to the instants of frames (a) to (f).

and with no shank (in black) with respect to time (figure 7(a)) and with respect to frequency (figure 7(b)). The three
forces clearly differ in the time domain, but more spectacularly in the frequency domain, especially around 600 Hz
where the staccato force exhibits a drop in its spectrum of 10 dB compared to the spectrum of the force obtained with
no shank, and the legato force exhibits a drop even more dramatic of about 25 dB. The precise physical reason for this
drop is still to understand.

Simulations of the global piano model described in [8] coupled with our new hammer model make it possible to
compare the sound pressure signals obtained for these pianistic touches, and with no shank. Results are displayed in
figure 8, where the first subfigure is obtained for a legato touch, the second one with a staccato touch and the last
one with no shank. As expected, the observations made on the spectrum of the interaction forces are clearly visible
in the sound pressure spectrum. The partials 14 to 19 are present at very different levels from one touch to the other.
For instance, partial 16 is below −40 dB for the legato touch (let-off distance of 1.5 mm), but reaches almost −20
db in the staccato touch, and is above −20 dB when no shank is simulated. These discrepancies are audible in the
isolated sounds for a trained ear, and the authors believe that they certainly induce a sound “color” when present in a
musical phrase. Moreover, the touch seems to influence the levels of the longitudinal harmonics (these harmonics are
responsible for the “bell” like color of bass piano sounds, and come from the propagation of waves in the elongation
direction of the string): for this string, the fundamental frequency of the longitudinal wave is equal to 550 Hz. Its
second harmonic, around 1100 Hz, and indicated by 2 fL in the figures, is clearly visible, audible, and at different
levels from one pianistic touch to the other (−26.3 dB for the legato touch and −18.8 dB for the staccato touch). To
sum up, it is clear from these numerical experiments where all parameters, touch excepted, are rigorously the same,
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Figure 6: Comparison between simulated (left) and experimental (right) acceleration of the hammer head. The time scale has been shifted so that
time 0 corresponds to the contact instant between the hammer head and the string.
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(b) Power spectrum of the interaction forces

Figure 7: Temporal and spectral profiles of hammer head - string interaction forces obtained with different pianistic touches. The time scale has
been shifted so that time 0 corresponds to the contact instant between the hammer head and the string.

that the pianistic touch can remarkably influence the piano sound color. Notice that these spectral discrepancies
only come from the differences in hammer shank vibrations. Indeed, they cannot come from other suggested causes
in the literature as a shock excitation on the structure, nor from a changing impact point, nor a “longitudinal rubbing
motion” on the string, since neither of these features are modeled in our study. The shock excitation on the structure
measured in [1, 2] is clearly associated to real staccato touches and its effects add up to the spectral change that we
highlighted here thanks to our simulation tool.

4.3. Influence of the let-off distance
Another very interesting parameter to explore with our simulation tool is the let-off distance. This distance is a note
by note setting done by the piano technician. We recall that in our model, as soon as the distance between the hammer
head and the string (at rest) is smaller than the let-off distance, the jack force is set to zero. This is a crude modeling
of reality but allows us to draw qualitative conclusions. Since the let-off distance is not relevant when using a staccato
touch (because the force is already zero when the hammer head reaches the let-off point), the following tests have been
made with three different let-off distances using a legato touch (simulations L, L+ and L- of table 3). Very extreme
let-off distances have been tested : 3.0 mm, 1.5 mm as in the previous paragraph, and 0.0 mm, meaning that the jack
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Figure 8: Spectral profiles between 0 and 1400 Hz of the sound pressure at point x = 0.850, y = 1.459, z = 0.380, in a cartesian coordinate system
in which the soundboard is in the plane z = 0.200. Y-scales are in decibel (logarithmic) and normalized. Black dashed lines indicate the −20 dB
and −40 dB levels in all the figures, for easy comparison.

force is set to zero at the exact contact time between the hammer head and the string. Interaction forces are displayed
in figure 9 with respect to time (figure 9(a)) and with respect to frequency (figure 9(b)). There is a clear influence
of the let-off distance on the interaction force, hence on the resulted sound. The difference on the force is rather
spectacular in the [500 − 1000] Hz region of the spectrum, with discrepancies up to 20 dB in very audible zones. The
influence of the let-off distance on the resulted piano sound can be observed in figure 8, where the first subfigure is
obtained for simulation L and the third one for simulation L+. The partials 14 to 19 are present at very different levels
(see for instance partial 16 : 20 dB different), which has a great influence on the timbre.

4.4. Pianistic touch longitudinal precursor
In real piano mechanisms, the hammer head can have a planar motion (as opposed to a vertical motion only, in the
model of article [8]). Of course the main contribution of the hammer on the string is a vertical impulse, but there might
exist a horizontal impulse coming from a rubbing motion of the hammer head on the string, as suggested in [3]. In
our model, we have not considered this interaction, the system behaves as if the string was very slippery : the hammer
head is free to have any horizontal motion, with no influence on the string. However, we can quantify this motion in
order to estimate its extent on the resulted sound. To do so, two quantities are computed :

vθ =
dξ
dt
· uθ and vr =

dξ
dt
· ur

17



0 2 4 6 8 10
−20

−10

0

10

20

30

40

time ( ms )

F
o

rc
e 

( 
N

 )

 

 
let−off = 0 mm
let−off = 1.5 mm
let−off = 3 mm

(a) Hammer string interaction forces

0 500 1000 1500 2000 2500 3000
−35

−30

−25

−20

−15

−10

−5

0

5

Frequency ( Hz )

P
o

w
er

 S
p

ec
tr

u
m

 

 
let−off = 0 mm
let−off = 1.5 mm
let−off = 3 mm

(b) Power spectrum of the interaction forces

Figure 9: Interaction forces obtained with different let off distances (legato touch). The time scale has been shifted so that time 0 corresponds to
the contact instant between the hammer head and the string.

When the hammer and the string are in contact, the macroscopic angle θ is very small, thus vθ and vr can be interpreted
as vertical and horizontal velocities. The vertical and horizontal velocities for legato and staccato touches are respec-
tively displayed in figure 10(a) and 10(b) with respect to time. A first remark is that the horizontal velocity during
contact (from 0 to 8 ms) is not small at all and oscillated between −1.5 and 1 m/s, which corroborates the hypothesis
of a possible rubbing motion of the hammer head on the string. Another remark is that this horizontal velocity is quite
different from one touch to the other, which leads us to believe that accounting for this rubbing motion could help
us explain the influence of the pianistic touch in the piano sound.
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(b) Horizontal velocity

Figure 10: Velocity of the hammer head for Legato and Staccato touches. The time scale has been shifted so that time 0 corresponds to the contact
instant between the hammer head and the string.

A first approach in order to model this rubbing motion would be to implement a continuity displacement relation in
the horizontal direction between the hammer head and the string, as if they were not allowed to slip horizontally. The
equations would have to respect an energy identity in order to be included in our model. Of course if such an interac-
tion occurred, the hammer head would probably move less than what we can see in figure 10(b) where the horizontal
motion is totally free. In such a model, the string would therefore be given an impulse in its elongation direction,
making a “longitudinal” wave propagate in the string. The string model that we considered in [8] already accounted
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for the presence of longitudinal waves (see figure 11(a)) because of their importance, via a nonlinear coupling with
the transversal waves, in the generation of specific partials in the spectrum (so called “phantom partials”) and in the
presence of a nonlinear precursor in the time domain. This new model of rubbing would be a new way of generating
longitudinal waves in the piano string that should significantly enrich the piano model and allow us to highlight the
presence of a new precursor coming from the pianistic touch, and confirm the experimental intuition of [3]. Fur-
thermore, this “pianistic touch longitudinal precursor” would certainly present a greater amplitude compared to the
nonlinear precursor, which is only a second order phenomenon (see [19]) and would add up the one coming from the
shock on the structure.

When the shank is modeled as a flexible beam, the hammer head - string contact point is not necessarily the top of the
hammer head, because a rotation of the hammer head can occur, due to the bending of the hammer shank. Another
improvement of the model related to the presence of a horizontal motion of the hammer head, would therefore be to
compute the interaction force of equation (18) :

◦ with the real distance d between the hammer head and the string (no longer projected on the vertical axis),

◦ with coefficients p, K, and R that depend on the impact zone of the hammer head.

The first point is rather straightforward once noticed that the hammer head can rotate. The second point is less
obvious and comes from the fact that piano technicians clearly divide the hammer head’s felt into several zones that
are provided with different cares during the “needling” operation. It consists in penetrating needles in the hammer
felt (see figure 11(b)) in order to change its mechanical properties. In piano maintenance textbooks, three zones are
identified, where the needling must be different (see figure 11(c)). Consequently, the coefficients of the hammer head
- string interaction could be modeled as a function of the contact point on the hammer head’s surface. Unfortunately,
to the best of our knowledge, this kind of experimental data is not available in the literature and would be very difficult
to calibrate manually.

's(x)

u(x)

v(x) x

us(x)

vs(x)

(a) Variables considered in the string model.
Transversal displacement us (m), longitudinal dis-
placement vs (m), shear angle ϕs (rad).

(b) Hammer voicing with a needle
voicing tool. From piesikpiano.com.

2

3

1
2

3

(c) Hammer head needling
zones. Zone 1 : weak - light
needling for piano dynamics.
Zone 2 : medium - deep
needling for mezzo-forte dy-
namics. Zone 3 : heavy - deep
needling for forte dynamics.
From [20].

Figure 11: String model variables and theory of hammer voicing.
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5. Conclusions

In this paper, novel energy-preserving numerical schemes were provided for a Timoshenko beam in non-forced
unknown rotation. Numerical simulations were carried out for the application case of a vibrating piano hammer shank
coupled to a hammer head, coupled to a whole piano. To our knowledge, this work provides the first numerical
simulation of such a complete system. Thanks to this simulation tool, we were able to highlight the effect of different
pianistic touches, modeled with several input forces to the system (Jack forces). These numerical results show that the
pianistic touch clearly influences the spectrum of the piano sound of equally loud isolated notes. These differences
do not come from a possible shock excitation on the structure, nor from a changing impact point, nor a “longitudinal
rubbing motion” on the string, since neither of these features are modeled in our study. Possible extensions of this
work would be to refine the let-off model in order to make it smoother, and to consider the effect of hammer head’s
movements on the string: a possible transmission to the strings of the horizontal motion of the hammer head, a
potential change of the impact point on the string, or even a change in the hammer stiffness coefficients if the contact
point on the hammer’s head surface were to vary.
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Appendix A. Derivation of the model : virtual work principle

In this appendix we explain all terms involved in the virtual work identity.

Appendix A.1. Acceleration
The virtual work coming from acceleration has two contributions : from the shank and from the head.

The calculus is completed from the expression of the second-derivative of r:

r̈ =
[
−τ ϕ̈ cosϕ + τ ϕ̇2 sinϕ − (s − τ sinϕ) θ̇2 + 2(ẇ − τ ϕ̇ sinϕ) θ̇ + (w + τ cosϕ) θ̈

]
ur

+
[
2 τ ϕ̇ cosϕ θ̇ − (s − τ sinϕ) θ̈ + ẅ − τ ϕ̈ sinϕ − τ ϕ̇2 cosϕ − (w + τ cosϕ) θ̇2

]
uθ

and the virtual displacement δr:

δr =
[
−z δϕ cosϕ + (w + z cosϕ) δθ

]
ur +

[
−(x − z sinϕ) δθ + (δw − z δϕ sinϕ)

]
uθ

The values of ϕ are assumed to be very small (Timoshenko hypotheses), the following substitutions are performed :

cosϕ ≈ 1, sinϕ ≈ ϕ

Therefore, the second-derivative of r is approximated as:

r̈ =
[
−τ ϕ̈ − s θ̇2 + 2 ẇ θ̇ + (w + τ) θ̈

]
ur +

[
2 τ ϕ̇ θ̇ − s θ̈ + ẅ − τ ϕ̇2 − (w + τ) θ̇2

]
uθ

and the virtual displacement:
δr =

[
−τ δϕ + (w + τ) δθ

]
ur + [−s δθ + δw] uθ

The integral of 1 on the section of the beam is equal to A the area of this section, the integral of τ equal to 0 (due to
symmetry) and the integral of τ2 is equal to I the bending moment of inertia of the beam. For instance, in the case of
a circle cross-section, we have

A = πR2 and I =
πR4

4
, where R is the radius.
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The virtual work due to the beam acceleration is then equal to:

Pacc(r) =

∫∫∫
ρ r̈ · δr ≈

∫
ρA

(
−s θ̈ + ẅ − w θ̇2

)
δw +

∫
ρI (ϕ̈ − θ̈) δϕ

+

∫
ρA

(
w2 θ̈ + 2 w ẇ θ̇ + s2 θ̈ − s ẅ

)
δθ +

∫
ρI

(
θ̈ − ϕ̈

)
δθ

and the virtual work due to the head acceleration is

Pacc(ξ) = mH ξ̈ · δξ

Appendix A.2. Exterior forces on the shank

The gravity field applies at each point of the beam:

Fgrav,shank = −ρ g t(0, 1, 0) = −ρ g sin θ ur + ρ g cos θ uθ

So the virtual work of gravity on the beam reads:

Pgrav,shank =

∫∫∫
Fgrav,shank · δr =

∫
−ρAg sin θ [wδθ] +

∫
ρAg cos θ [δw − sδθ]

The jack force is located at point x = xjack and oriented along −uθ:

Fjack = −Fjack δjack(s) uθ ⇒ Pjack =

∫
−Fjack δjack(s) (δw − sδθ)

The coupling force with the head is located on the center of gravity of the head and acts on the last point of the shank.
It has to be written in terms of shank’s unknowns:

Pcoupl,shank = Fcoupl · δξ

= [(w(L) − H) δθ] Fcoupl · ur + [−Lδθ + (δw(L))] Fcoupl · uθ
= δθ

[
(w(L) − H)

(
Fcoupl · ur

)
− L

(
Fcoupl · uθ

)]
+ δw(L)

(
Fcoupl · uθ

)
Appendix A.3. Exterior forces on the head

Gravity applies to the head’s mass:
Pgrav,shank = −mH g uy · δξ

Furthermore, the opposite of the coupling force acts back on the head:

Pcoupl,shank = −Fcoupl · δξ

We take into account the force applied by the string:

Pstring = Fstring uy · δξ

Fstring is considered as a given force amplitude.

Appendix A.4. Interior forces

The interior forces of the beam come from the elastic deformation. Under the hypothesis of a linear Hooke’s law,
and following the literature (see [11]), we write:

Pint =

∫
AGκ (∂sw − ϕ) ∂s (δw) −

∫
AGκ (∂sw − ϕ) δϕ +

∫
EI∂sϕ ∂s (δϕ)
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Appendix B. Proof of consistency of system (12) with the inertial terms

We see that equation (12b) is not the natural consistent approximation of the continuous terms, but comes from
the variational integration technique. Consistency is not obvious and can be shown as follows. We perform a Taylor
expansion on the exact solution in order to evaluate the truncation error:

θn+1 − θn

∆t
=

1
∆t

[
�
��θ(tn) + ∆tθ̇(tn) +

∆t2

2
θ̈(tn) +

∆t3

6
...
θ (tn) −���θ(tn) + O(∆t4)

]
= θ̇(tn) +

∆t
2
θ̈(tn) +

∆t2

6
...
θ (tn) + O(∆t3)

(
wn+1 + wn

2

)2

=

[
w(tn) +

∆t
2

ẇ(tn) +
∆t2

4
ẅ(tn) + O(∆t3)

]2

= w2(tn) + ∆t ẇ(tn)w(tn) +
∆t2

4

(
ẇ2(tn) + 2w(tn)ẅ(tn)

)
+ O(∆t3)

⇒

(
θn+1 − θn

∆t

) (
wn + wn−1

2

)2

= w2(tn)θ̇(tn) + ∆t
[
1
2
θ̈(tn)w2(tn) + ẇ(tn) w(tn) θ̇(tn)

]
+ ∆t2

[
1
6

...
θ (tn)w2(tn) +

1
2
θ̈(tn)ẇ(tn) w(tn) +

1
4
θ̇(tn)

(
ẇ2(tn) + 2w(tn)ẅ(tn)

)]
+ O(∆t3)

In the same way,
θn − θn−1

∆t
= θ̇(tn) −

∆t
2
θ̈(tn) +

∆t2

6
...
θ (tn) + O(∆t3)

(
wn + wn−1

2

)2

= w2(tn) − ∆t ẇ(tn)w(tn) +
∆t2

4

(
ẇ2(tn) + 2w(tn)ẅ(tn)

)
+ O(∆t3)

⇒

(
θn − θn−1

∆t

) (
wn + wn−1

2

)2

= w2(tn)θ̇(tn) − ∆t
[
1
2
θ̈(tn)w2(tn) + ẇ(tn) w(tn) θ̇(tn)

]
+ ∆t2

[
1
6

...
θ (tn)w2(tn) +

1
2
θ̈(tn)ẇ(tn) w(tn) +

1
4
θ̇(tn)

(
ẇ2(tn) + 2w(tn)ẅ(tn)

)]
+ O(∆t3)

Finally, we obtain the consistency of (12b):

1
∆t

θn+1 − θn

∆t

(
wn+1 + wn

2

)2

−
θn − θn−1

∆t

(
wn + wn−1

2

)2 = w2(tn)θ̈(tn) + 2ẇ(tn) w(tn) θ̇(tn) + O(∆t2)

Consistency of the discretisation (12a) is straightforward.
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