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Abstract

In this paper we address the problem of constructing high-order implicit time schemes for
wave equations. We consider two classes of one-step A-stable schemes adapted to linear Ordinary
Differential Equation (ODE). The first class, which is not dissipative is based upon the diagonal
Padé approximant of exponential function. For this class, the obtained schemes have the same
stability function as Gauss Runge-Kutta (Gauss RK) schemes. They have the advantage to involve
the solution of smaller linear systems at each time step compared to Gauss RK. The second class
of schemes are constructed such that they require the inversion of a unique linear system several
times at each time step like the Singly Diagonally Runge-Kutta (SDIRK) schemes. While the first
class of schemes is constructed for an arbitrary order of accuracy, the second class schemes is given
up to order 12. The performance assessment we provide shows a very good level of accuracy for
both classes of schemes, and the great interest of considering high-order time schemes that are
faster. The diagonal Padé schemes seem to be more accurate and more robust.

1 Introduction
The solution of wave propagation problems in electromagnetics, acoustics and elastodynamics has
found important applications in many areas of engineering and science such as geophysics (seismic
imaging), medicine (medical imaging), aerospace (radar), and telecommunication (antenna design,
optical fibers). This wide range of applications has led to the development of many computational
techniques for solving the partial differential equations (PDEs) governing wave propagation prob-
lems.

High-order finite element methods (FEM) have now demonstrated their strong capability for
solving wave equations ([1], [2],...). In particular, they are well suited for considering complex
geometries and heterogeneous media. The implementation of FEM requires to introduce an arti-
ficial boundary which is represented with an Absorbing Boundary Condition (ABC) or a Perfectly
Matched Layers (PML). In practice, ABCs or PMLs are easier to handle when the wave equation
is formulated as a first-order (in space and time) system as we consider herein (as in [1]). Af-
ter space discretization, the obtained ODE can be discretized either with explicit or implicit time
schemes. Explicit time schemes are very popular since they generate algorithms both cheap in
memory and highly scalable. However, for stability purposes the time step is restricted by the
size of the smallest element in the mesh and by the degree of the polynomials used in the FEM.
As a consequence, even few small elements can make the maximal value of the time step (known
as the Courant-Friedrichs-Lewy or CFL condition) so small that the computational cost becomes
prohibitive.

A nice work has been done in [3] to increase the CFL, especially for high-order space approxi-
mations. The idea consists in applying a specific discretization in space in a way that the eigenval-
ues of the discrete matrix are modified leading to a maximal CFL number. Other works propose
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local time-stepping techniques ([4], [5]) in order to have globally explicit schemes and a reduced
computational cost with only few elements having a small time step. Another approach consists
in applying globally implicit time-stepping techniques with unconditionally stability (Dahlquist’s
A-stable property [6]). This approach seems attractive especially for 1-D and 2-D simulations. But
in the context of realistic applications (3-D heterogeneous media), it seems quite difficult to use
a globally implicit time integration for wave equations due to the size of the linear system to be
solved at each time step. This is why more recent investigations ([7], [8], [9]) deal with locally
implicit schemes which provide methodologies involving the solution of linear systems only set on
a small part of the computational domain. To ensure good levels of accuracy, such approach must
involve time-integration schemes, whether explicit or implicit, which show robustness properties.
For wave equations, robustness is characterized by dispersion and dissipation effects. In this
work, we investigate implicit time-stepping techniques with the view of constructing very high-
order unconditionally stable time discretization schemes, with low-dispersion and low-dissipation
errors. By this way, we can dispose of high-order numerical methods that are increasingly relevant
for practical applications involving wave equations. In fact, in the literature such time schemes
seem not to be common beyond fourth-order.

Implicit Runge-Kutta schemes are very popular. They have the main advantage to be one-step
schemes which do not need initialization schemes. Thus, this framework is mainly focused on
the construction of high-order A-stable one-step methods. Linear multi-step schemes have not
been considered because A-stable linear multi-step schemes are at most second-order schemes
(known as the second Dahlquist’s barrier [10]). Nevertheless, we have found some interesting
investigations on multi-derivative multi-step schemes in [11] in which the author propose schemes
up to order 5.

There are two main classes of implicit Runge-Kutta which are A-stable: Gauss Runge-Kutta
schemes ([6]) that can be written at any order and some Singly Diagonally Implicit Runge Kutta
(SDIRK) schemes that have been constructed up to order 5 ([6], [12], [13], [14]). Gauss Runge-
Kutta schemes have the main drawback of requiring the solution of a very large linear system
(the size increasing with the order in time), whereas SDIRK schemes require the solution of a
unique linear system but the extension to higher order is not easy.

In this work, we are concerned with the solution of linear Ordinary Differential Equation
(ODE) of the form

y′(t) = Ay(t) + f(t)

where A is a linear operator. We consider one-step schemes adapted to this class of ODE. We study
schemes based on the diagonal Padé approximant of exponential (see [15]). In [16], these schemes
are detailed for fourth-order. In this work, we have written them for order 2m, m ∈ N∗. It turned
out that these schemes are equivalent to Gauss Runge-Kutta schemes. The main advantage of
Padé schemes lies in the fact that they involve the solution of m successive linear systems of size
N instead of solving a large system of size m×N with Gauss Runge-Kutta algorithm, m being the
number of stages and N being the number of unknowns. In order to have a ”fair” comparison with
SDIRK schemes, we have developed schemes that require the inversion of the same linear system
several times and that can be used only for linear ODEs. We called these schemes Linear-SDIRK.
They are constructed by approximating the exponential with a fraction containing a unique pole
(as initially studied in [17]). By adding extra-stages, we construct Linear-SDIRK up to order 12. It
is possible to construct higher-order by adding more extra-stages. These schemes seem attractive
when the memory is a critical issue (e.g. when a direct solver is used).

This paper is organized as follows. In Section 2, we describe the problem we are solving. In
Sections 3 and 4 we present two classes of schemes that we are interested in: the diagonal Padé
schemes and Linear-SDIRK schemes. We propose an efficient approach to implement them. In
particular, for inhomogeneous ODEs, to address the implementation of the source field, we provide
a method to correctly approximate the right hand side without losing the order of the schemes.
An analysis of dispersion and dissipation is done to compare the developed schemes. Finally,
these schemes are compared in 1-D and 2-D in Section 5 for the wave equation discretized with
high-order finite elements using the C++ code Montjoie [18].
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2 Preliminaries statement
2.1 General setting
We consider the following Ordinary Differential Equation (ODE)Mh

dX(t)

dt
+KhX(t) = F (t) t ∈ (0, T ]

X(0) = X0

(1)

obtained after spatial discretization, where Mh is the mass matrix and Kh is the stiffness matrix.
As usual h denotes the mesh size. F (t) is a source term obtained after discretizing the continuous
source term in space and X0 is the initial condition. In the subsection 5.1, it is detailed how this
ODE is obtained in the case of the solution of wave equations. Let t0 < t1 < · · · < tN−1 < tN ,
N ∈ N be a uniform grid of the time interval [0, T ]:

tn = n∆t

where ∆t is the time step. The analytical solution to (1) after one step is given by

X(tn+1) = e∆tA

(
X(tn) +

∫ ∆t

0

e−uAM−1
h F (n∆t+ u) du

)
, (2)

where A = −M−1
h Kh.

The numerical solution can then be constructed by approximating the exponential, i.e. finding
R such that

e∆tA ≈ R(∆tA).

Herein R is a rational function where both the numerator and denominator are polynomials of
∆tA. The numerical schemes studied in this paper will consist of computing a sequence Xn, which
is an approximation of the analytical solution X(tn), with the following numerical scheme:

Xn+1 = R(∆tA)Xn + φ̃n (3)

where φ̃n is an approximation of the following quantity:

φ̃n ≈ R(∆tA)

∫ ∆t

0

e−uAM−1
h F (n∆t+ u) du

R is called the stability function of the corresponding numerical scheme and its stability region is
defined as

S = {z ∈ C such that |R(z)| ≤ 1}.
In fact, since the analytical solution is stable if and only if

|e∆tz| = |e∆tRe(z)| ≤ 1, ∀z ∈ sp(A),

where sp(A) represents the spectrum of the matrix A, the same condition must be satisfied by R
for the numerical solution to be stable. For this reason the spectrum of A must be included in the
negative half plane (sp(A) ⊂ C−). We then recall the following definition of Dahlquist’s A-stability
condition [6].

Definition A numerical scheme, whose stability region satisfies

S ⊃ C− = {z ∈ C, Re(z) ≤ 0} (4)

is called A-stable.

Let us define the stability function as:

R(z) =
N(z)

D(z)
, ∀z ∈ C−,

where N(z) and D(z) are polynomials of z such that R is irreducible. As shown in [6], the cor-
responding numerical scheme is implicit when the degree of D is greater than one otherwise the
numerical scheme is explicit. Since the A-stable requirement excludes rational functions that tend
towards infinity when z tends to infinity, the degree of D must be greater or equal to the degree of
N . In this work, we limit our-selves to the case where the degrees of D and N are equal and we
will focus on two cases:

3



• D(z) has distinct poles : we will choose the best rational approximation of the exponential
known as the Padé approximation. The obtained schemes will be called Padé schemes. These
schemes are detailed in Section 3, the numerator N and denominator D are given in (17).

• D(z) has only one pole : we will construct the ”best” approximation of the exponential sat-
isfying the A-stable property. The obtained schemes will be called Linear-SDIRK schemes.
These schemes are detailed in Section 4.

The second case deserves a particular interest because it induces the factorization of a unique lin-
ear system, whereas the first case implies to compute the solution to several linear systems. The
stability function for Padé schemes is the same as the stability function for Gauss-Runge-Kutta
schemes (see [6]). Gauss-Runge-Kutta schemes handle non-linear ODEs, whereas Padé schemes
can be seen as a simplification of Gauss-Runge-Kutta schemes in the case of a linear ODE. The sec-
ond case (Linear-SDIRK schemes) is well-known for non-linear ODEs as Singly Diagonal Runge-
Kutta schemes (SDIRK). That is why we call them ”Linear-SDIRK” since the constructed schemes
will only apply to linear ODE.

Introducing C = ∆tA, we define R(C) = [D(C)−1]N(C) as an approximation of eC of order p
(eC = R(C) + O(∆tp+1)) and we assume that D(C)−1 is well defined. The analytical solution (2)
can then be written as

D(C)X(tn+1) = N(C)X(tn) + φ, (5)

where

φ = N(C)

∫ ∆t

0

e−uAM−1
h F (n∆t+ u) du+O(∆tp+1). (6)

For homogeneous ODEs (F (t) = 0), it follows from (6) that φ = O(∆tp+1). Then, the numerical
solution (3) satisfies

D(C)Xn+1 = N(C)Xn (7)

For inhomogeneous ODEs, i.e. F (t) 6= 0, we need to compute the quantity φ. However the
integral in the expression (6) of φ is tedious to compute. We will rather compute the following
equivalent quantity obtained from (5):

φ = D(C)X(tn+1)−N(C)X(tn) (8)

Finally, we propose the following numerical scheme:

D(C)Xn+1 = N(C)Xn + φn (9)

where φn is an approximation of φ (up to a term in O(∆tp+1)). By using a Taylor expansion of

X(tn) and X(tn+1) around the time tn +
∆t

2
and using derivatives of the equation (1), we are able

to compute φn in the following form:

φn =

m∑
r=1

Ar−1∆tr
nw−1∑
i=0

ωri F (tn + ∆t ci) (10)

where m is the degree of the polynomial N or D and nw is a number that depends on the scheme.
This procedure will be detailed in subsections 3.2.2 and 4.6 for the two types of studied schemes.

2.2 Numerical dissipation and dispersion

For time dependent problems, especially acoustic problems, a consistent, stable
and convergent high order scheme does not guarantee a good quality numerical
wave solution.

Christopher K. W. Tam and Jay Webb [19]

A numerical scheme is dispersive if the numerical solution and exact solution have different
phase speed while it is dissipative if they have difference in amplitude.

Following the analysis in [14] we present the explicit expression for the amplitude (dissipa-
tion) and phase (dispersion) errors of the numerical scheme knowing its stability function R. To
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illustrate the dissipation and dispersion effects we will consider the following linear test equation

y′ = iλy, y(t0) = y0 and λ ∈ R. (11)

At each step of discretization, the numerical solution then reads

yn+1 = R(iz)yn, (12)

where z = λ∆t. The exact solution to the test equation (11) is given by

yn+1 = eizyn (13)

The dispersion and dissipation errors can be measured by considering the ratio between the exact
amplification factor (Re = eiz) and numerical amplification factor (R(iz)).

Therefore, we define the dissipation and dispersion error, after each step, as follows:

Definition The leading dissipation error of a numerical scheme applied to (11) is measured by
the function

ψ(z) = |R(iz)| − 1, (14)

and the leading dispersion error of a numerical scheme applied to (11) is measured by the function

Φ(z) := arg

[
eiz

R(iz)

]
= z − arg[R(iz)]. (15)

It is clear that a non-dissipative and non-dispersive scheme should ensure |R(iz)| = 1 and Φ(z) = 0.

Remark In the previous definition, the function Φ is called the homogeneous dispersion. The
dispersion error introduced by the homogeneous dispersion is linear in time and causes the nu-
merical solution to become out of phase with respect to the exact solution. We refer to [14] for more
details. In particular, [14] provides the definition of the error due to the inhomogeneous disper-
sion. It is constant in time and negligible regarding the error due to the homogeneous dispersion.

3 Padé Schemes for ODEs

The motivation of this section is to obtain a numerical solution for the ODE (1) using a Padé
approximation of the exponential. Introduced by Henri Padé, Padé approximation is known to be
an accurate approximation of a function by a rational function. For the exponential function, the
general form of this approximation [20] is:

Rr,s(z) =
Nr,s(z)

Dr,s(z)
(16)

where

Nr,s(z) =

s∑
i=0

s! (r + s− i)!
(r + s)! i! (s− i)! (z)

i and Dr,s(z) =

r∑
i=0

r! (r + s− i)!
(r + s)! i! (r − i)! (−z)

i. (17)

By definition Rr,s(z) is an approximation of order (r + s) of ez.
In [15] and [23], Ehle showed that the cases r = s, r = s+ 1 and r = s+ 2 are A-stable.
In the following, we will mainly focus our study on the case r = s which corresponds to approx-

imation that are commonly called diagonal Padé approximation to the exponential function. For
convenience we now set r = s = m, m ∈ N and we note:

Rm(z) = Rm,m(z) =
Nm,m(z)

Dm,m(z)
=

Nm,m(z)

Nm,m(−z) .
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3.1 Numerical stability, dissipation and dispersion
From the Theorem 353A in [20] and the fact that |Nm(ib)| = |Nm(−ib)|, ∀b ∈ R, we have the
following result:

Proposition 3.1 The stability function of numerical schemes obtained using the diagonal Padé
approximation satisfies: ∀z ∈ C−

|Rm(z)| ≤ 1, ∀m ∈ N. (18)

Furthermore, if z = ib, b ∈ R,
|Rm(z)| = 1, ∀m ∈ N. (19)

As a consequence,

• the diagonal Padé schemes are always A-stable,

• the diagonal Padé schemes when applied to the test equation (11) are not dissipative.

In addition, all the zeros of Nm are located in the negative half plane (see [15] and [21]). Since
Dm(z) = Nm(−z) by definition of Rm, Dm has all its zeros in the positive half plane. Furthermore,
Dm has at most one real root which does exist when m is odd only, the other roots are complex
conjugate. We have observed this result numerically and it can be deduced from the paper [22]
in which the authors showed that all the poles of Rm converge to a curved right-side section of
Szegö’s curve.

Then, the only thing we have to worry about is the dispersion. The dispersion error can be
represented quite faithfully by its Taylor expansion:

z − arg(R(iz))

z
=



z2

12
− z4

80
+O(z6), for m = 1

z4

720
− z6

12, 096
+O(z8), for m = 2

z6

100, 800
− z8

2, 592, 000
+O(z10), for m = 3

z8

25, 401, 600
− z10

869, 299, 200
+O(z12), for m = 4

In Figure 1, we present the relative dispersion error of diagonal Padé schemes from order 2 to
10. In the x-coordinate, we have chosen to represent

z

m
, because m represents the computational

complexity of the scheme. Indeed, m = 1 corresponds to the Crank-Nicolson scheme, where only
one real linear system must be solved. m = 2 is a fourth-order scheme where only one complex
linear system must be solved roughly assuming that the solution of a complex systems costs two
solutions of a real system. m = 3 is a sixth-order scheme where one complex and one real linear
system must be solved. The advantage is that we can compare fairly the different orders, we see
clearly that the dispersion error is much smaller with higher order schemes.

3.2 Efficient implementation

3.2.1 Homogeneous case

In the homogeneous case, we consider (7) which is equivalent to

Dm(C)(Xn+1 −Xn) = (Nm −Dm)(C)Xn.

Since Dm(C) = Nm(−C), the polynomial Nm − Dm contains non zero coefficients only for odd
degree. It is then easy to compute the right hand side (Nm−Dm)(C)Xn using Horner’s algorithm.
We note G = (Nm −Dm)(C)Xn Now we have to solve the real linear system

Dm(C)(Xn+1 −Xn) = G, (20)

for each time step.
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Figure 1: Dispersion of diagonal Padé schemes of order 2, 4, 6, 8 and 10 when applied to the test equation (11).
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To perform this, we propose to factorize the polynomial Dm. Letting λk be zeroes of Dm and
Ym = Xn+1 −Xn, we find [

m∏
k=1

(
I − C

λk

)]
Ym = G. (21)

Then we can solve successively the linear systems(
I − C

λk

)
Yk = Yk−1 k = 1, . . . ,m (22)

Y0 = G. (23)

The final result Ym is the desired solution. The next iterate Xn+1 is then obtained as:

Xn+1 = Xn + Ym

Another way is to use a decomposition of 1/Dm as a sum of fractions with denominators of degree
one which will lead to many independent linear systems that is convenient for parallelization [24].

Using the algebraic properties of Dm, we can optimize the computation algorithm. Indeed,
when the degree m of the polynomial Dm is even, all its roots are complex conjugate. We write Dm

as a product of second degree polynomial factors. Each second degree polynomial is the product of
first degree polynomials obtained using complex conjugate roots of Dm:

m/2∏
k=1

(
I − C

λk

)(
I − C

λk

)
Ym = G. (24)

When the degree m is odd, there is only one real root of Dm, other roots being complex conjugates.
The real root λ is treated at the first step, as follows:(

I − C

λ

)
Y0 = G,

(m−1)/2∏
k=1

(
I − C

λk

)(
I − C

λk

)
Ym = Y0.

(25)
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We solve the second degree equation using the following algorithm proposed in [16]: Let λk be a

complex root of Dm, ak = − 1

λk
and ak = − 1

λk
. Then we take

P2(C) = (I + akC) (I + akC) = I + 2Re(ak)C + akākC
2.

A partial fraction decomposition of the polynomial P−1
2 (x) =

1

(1 + akx)(1 + akx)
allows to write

P−1
2 (C) = bk(I + akC)−1 + bk(I + akC)−1, (26)

with bk =
ak

ak − ak
. To compute Yk = P−1

2 (C)Yk−1, we can compute

(I + akC)u = Yk−1,

(I + ākC) v = Yk−1,

Yk = bku+ b̄kv.

When the iterates Xn are real vectors, we have v = (I + akC)−1Yk−1 = u. As a result, it suffices to
solve only one system, giving the following algorithm:

(I + akC)u = Yk−1,

Yk = bku+ bku = 2Re(bku).
(27)

The case where iterates Xn are complex can be addressed by solving system (24) or (25) twice,
for the real part and imaginary part of G.

3.2.2 Computation of the right hand side (RHS) φ

In the inhomogeneous case (F (t) 6= 0), we need to compute the coefficients ωri involved in (10).

This is done by using the Taylor expansion around tn +
∆t

2
of φ at order p = 2m. This expansion is

completed with the expression (8) that we recall here:

φ = D(C)X(tn+1)−N(C)X(tn) (28)

We introduce the following notations

ρmi =
m! (2m− i)!

(2m)! i! (m− i)! =

(
m

i

)
(2m− i)!

(2m)!
and Ck =

1

k! 2k−1
. (29)

Then, we have:

Nm(z) =

m∑
i=0

ρmi z
i and Dm(z) = Nm(−z). (30)

We perform the Taylor expansion of X(tn+1) = X(tn + ∆t) and X(tn) around tn +
∆t

2
at order

2m. For simplicity we note X(k) = X(k)

(
tn +

∆t

2

)
the k-th derivative of X(t) with respect to t at

tn +
∆t

2
. Recalling that C = ∆tA, we replace N(C) = Nm(∆tA) and D(C) = Dm(∆tA) by their

expression in (28). After performing the Taylor expansion it gives

φ =

m∑
i=2p, p∈N

ρmi (∆tA)i
2m∑

k=2q+1, q∈N
Ck∆tkX(k)

−
m∑

i=2p+1, p∈N
ρmi (∆tA)i

2m∑
k=2q, q∈N

Ck∆tkX(k) +O(∆t2m+1).

(31)

To evaluate X(k) we differentiate (k − 1)-times the following relation

dX(t)

dt
−AX(t) = F (t),
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to obtain:

X(k) =

k∑
j=1

Ak−jF (j−1) +AkX(0), (32)

where F (j) is the j-th derivative of the function F at point tn +
∆t

2
and F (0) = F (tn +

∆t

2
). Using

formula (32) in expression (31) gives:

φ =

m∑
i=2p, p∈N

ρmi (∆tA)i
2m∑

k=2q+1, q∈N
Ck∆tk

k∑
j=1

Ak−jF (j−1)

−
m∑

i=2p+1, p∈N
ρmi (∆tA)i

2m∑
k=2q+2, q∈N

Ck∆tk
k∑
j=1

Ak−jF (j−1) + Sm +O(∆t2m+1),

(33)

where Sm is given by

Sm =

m∑
i=2p, p∈N

ρmi

2m∑
k=2q+1, q∈N

Ck(∆t A)k+iX(0) −
m∑

i=2p+1, p∈N
ρmi

2m∑
k=2q, q∈N

Ck(∆t A)k+iX(0). (34)

Numerically we have observed that Sm = O(∆t2m+1), ∀m ∈ N. If Sm 6= O(∆t2m+1), it would
mean that the numerical scheme (7) (with F = 0) would be of order lower than 2m which is in
contradiction with the properties of Padé approximant of the exponential. Actually, this property
can be proved giving by this way a demonstration of the order of the scheme.

Proposition 3.2 For all m ∈ N,

Sm =

2m−1∑
r=2p+1, p∈N

ζmr (∆tA)rX(0) +O(∆t2m+1), (35)

with

ζmr =

min(m,r)∑
i=0

(−1)iρmi Cr−i (36)

Proof Let r be an integer defined by r = k + i. The result comes by developing the sum (34) and
sorting by powers of ∆tA. �

Theorem 3.3 Let ζmr be defined in (36). Then we have

ζmr = 0, r = 2p− 1, 1 ≤ p ≤ m, (37)

which implies that
Sm = O(∆t2m+1). (38)

The proof of the Theorem involves the following lemma:

Lemma 3.4 Let Υm,r be the polynomial defined by

Υm,r(x) =
(−1)r

(2m)! 2r−1
xm(x+ 2)m. (39)

Then
d2m−rΥm,r

dx
(−1) = ζmr , r = 2p− 1, 1 ≤ p ≤ m. (40)

Proof We use Newton’s binomial formula to develop (39) which yields

Υm,r(x) =
(−1)r

(2m)! 2r−1

m∑
i=0

(
m

i

)
2ix2m−i.
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Then we differentiate this expression (2m− r)-times. It gives

d2m−rΥm,r

dx2m−r (x) =
(−1)r

(2m)! 2r−1

min(m,r)∑
i=0

(
m

i

)
(2m− i)!
(r − i)! 2ixr−i,

which we evaluate at x = −1 to have

d2m−rΥm,r

dx2m−r (−1) =
(−1)r

(2m)! 2r−1

min(m,r)∑
i=0

(
m

i

)
(2m− i)!
(r − i)! 2i(−1)r−i

=
(−1)2r

(2m)! 2r−1

min(m,r)∑
i=0

(
m

i

)
(2m− i)!
(r − i)! 2i(−1)−i

=

min(m,r)∑
i=0

(−1)i
(
m

i

)
(2m− i)!

(2m)!
× 1

(r − i)! 2r−i−1
= ζmr .�

Proof Theorem 3.3 comes from the fact that all odd derivatives of Υm,r(x) equal zero at x = −1.
In fact, we note that

Υm,r(x) = Υm,r(−x+ 2× (−1)),

which means Υm,r(x) has an axis of symmetry at x = −1. Therefore the odd derivatives of Υm,r

are equal to 0 at x = −1. Since r is odd, we obtain that
d2m−rΥm,r

dx2m−r (−1) is equal to zero which gives
ζmr = 0 for r = 2p− 1. �

Applying Theorem 3.3 to (33) implies the following result.

Corollary 3.5 The simplified expression of φ defined in (33) is given by

φ =

m∑
i=2p, p∈N

ρmi (∆tA)i
2m∑

k=2q+1, q∈N
Ck∆tk

k∑
j=1

Ak−jF (j−1)

−
m∑

i=2p+1, p∈N
ρmi (∆tA)i

2m∑
k=2q+2, q∈N

Ck∆tk
k∑
j=1

Ak−jF (j−1) +O(∆t2m+1).

(41)

To achieve the order of accuracy p = 2m we can take k from 0 to 2m−1− i only which finally gives

φ =

m∑
i=2p, p∈N

ρmi

2m−1−i∑
k=2q+1, q∈N

Ck∆tk+i
k∑
j=1

Ai+k−jF (j−1)

−
m∑

i=2p+1, p∈N
ρmi

2m−1−i∑
k=2q+2, q∈N

Ck∆tk+i
k∑
j=1

Ai+k−jF (j−1) +O(∆t2m+1).

(42)

We change indexes in the sum by introducing r = i + k − j + 1. We then obtain the following
expression:

φ =

2m−1∑
r=1

∆trAr−1
2m−r+1∑

j=1,j−r=2q,q∈Z
∆tj−1F (j−1)

min(m,r−1)∑
i=2p,p∈N

ρmi Cr+j−i−1 −
min(m,r−1)∑
i=2p+1,p∈N

ρmi Cr+j−i−1

+O(∆t2m+1).

(43)

In the sum in j, j has the same parity as r. It means, that if r is even, j will be equal to 2, 4, 6, ...
If r is odd, j will be equal to 1, 3, 5, ... Let us introduce

αrj =


min(m,r−1)∑

i=0

(−1)iρmi Cr+j−i, if j − r ≡ 0[2],

0 otherwise.

(44)
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When r ≥ m+ 1, we have
αrj = ζmr+j = 0.

This induces that the sum in r can be reduced to a sum from 1 to m. Finally, φ is written as:

φ =

m∑
r=1

∆trAr−1
2m−r+1∑
j=1

αrj−1∆tj−1F (j−1) +O(∆t2m+1). (45)

To illustrate (45), we provide then the expression of φ for two particular values of m:

Fourth-order diagonal Padé scheme The source vector φ for the fourth-order diagonal
Padé scheme (m = 2) reads

φ = ∆t

(
F +

∆t2

24
F (2)

)
−A∆t3

12
F (1) +O(∆t5). (46)

Sixth-order diagonal Padé scheme For m = 3, it is given as

φ = ∆t

(
F +

∆t2

24
F (2) +

∆t4

1920
F (4)

)
−A∆t2

(
∆t

12
F (1) +

∆t3

480
F (3)

)
+A2∆t3

(
1

60
F +

∆t2

480
F (2)

)
+O(∆t7).

(47)

In the current expression of φ, we need to approximate different derivatives of the function F .
Our purpose is now to provide accurate formulas to compute F (j), j ≥ 1.

3.2.3 Numerical approximation of the RHS φ

We consider the following approximation:

2m−r∑
i=0

αri∆t
iF (i) ≈

nw−1∑
i=0

ωri F (tn + ∆t ci) , (48)

where ci are given points chosen in [0, 1] and ωri represent the weights. We choose Gauss-Legendre
points for ci and wri have to be computed for each r.

Since we have

F (tn + ∆t ci) ≈
2m−1∑
j=0

(
ci −

1

2

)j
j!

∆tjF (j),

(48) can be written as follows

2m−r∑
i=0

αri∆t
iF (i) ≈

2m−1∑
j=0

nw−1∑
i=0

ωri

(
ci −

1

2

)j
j!︸ ︷︷ ︸

=αr
j

∆tjF (j). (49)

We identify ∆tiF (i) in (49) and deduce

nw−1∑
j=0

ωrj

(
cj −

1

2

)i
i!

= bi =

{
αri , if i ≤ 2m− r,
0 otherwise.

(50)

We define the Vandermonde matrix VDM ∈Mnw
(R) such that

VDMi,j =

(
cj −

1

2

)i
i!

, 0 ≤ i, j ≤ nw − 1.
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Knowing ci we evaluate ωri by solving the linear system

VDM ωr = b, (51)

At a first glance, nw = 2m− 1 should be needed to approximate correctly φ. It turns out that when
we choose nw = m Gauss-Legendre points, the obtained approximation φn has the correct order.
As a result, we have

nw = m.

Finally we replace ci and ωri in (48) to approximate φ in (45). φn is therefore given by

φn =

m∑
r=1

Ar−1∆tr
m−1∑
i=0

ωri F (tn + ∆t ci) .

Remark We have observed that Padé schemes with this approximation of φn based on Gauss-
Legendre points are strictly equivalent to Gauss-Runge-Kutta schemes. Padé schemes can be seen
as a different algorithm to compute Xn+1 from Xn. The advantage of this algorithm is that only
systems of size N have to be solved (complex and/or real) where N is the number of degrees of
freedom (i.e. the size of the vector Xn), whereas Gauss-Runge-Kutta method requires the solution
of a system of size m×N .

Remark If Gauss-Runge-Kutta schemes are considered for linear ODEs, the intermediary un-
knowns k1, k2, · · · km can be eliminated formally to obtain a polynomial system to solve for yn+1 −
yn. By performing this elimination, we obtain the Padé schemes. However, we think that it is
easier to implement the computation of coefficients ωri with our procedure (through the solution of
a Vandermonde matrix).

Remark The presence of the source does not imply any additional matrix-vector product with
the matrix C = ∆tA. Indeed, the computation of φn is mixed with the computation of G = (Nm −
Dm)(C)Xn such that only the evaluations of F represent an additional cost of the inhomogeneous
case.

4 Linear-SDIRK methods s+ l-stages of (s+ 1)th order

To be A-Stable, and possibly useful for stiff systems, a Runge-Kutta formula must
be implicit.

R. Alexander 1977 [12]

Historically, the first Runge-Kutta schemes developed were explicit and only of second order.
The need of high order schemes and the apparition of stiff problems led to the developments of
implicit Runge-Kutta schemes using first the Gauss quadrature formula to have order of 2s when
a scheme of s stages is used. But this kind of scheme requires the solution of a large linear system
of size s × N (s being the number of stages and N being the number of unknowns) at each time
step which make this approach quite inefficient.

There is a significant computational advantage in diagonally implicit formulae,
whose coefficient matrix is lower triangular with all diagonal element equal.

R. Alexander 1977 [12]

To reduce the computational burden, the idea is to construct implicit Runge-Kutta scheme in
which we will have to solve the same linear system of size N with different right hand sides at
each time step. This kind of method is called a Singly Diagonally Implicit Runge-Kutta (SDIRK)
method ([6], [12], [13], [20]).

In this section we will consider a rational polynomial function R(z) which approximates the
exponential function and minimizes the error. In order to have the same linear system to solve,
the denominator of R(z) is given by

D(z) = (1− γz)s+l,

12



where γ is a real positive number and s+ l is the number of stages. In this section, we propose to
find the numerator N(z) with the best constant γ satisfying the following requirements

• The method (3) is A-stable,

• The method (3) is of order s+ 1.

We denote Rls(z) the obtained stability function. By construction, we will have:

ez −Rls(z) = η zs+2 +O(zs+3).

The stability function Rls will be found by minimizing the coefficient |η| under the constraints
described above. The resulting schemes are called Linear-SDIRK schemes.

Remark The rational polynomial function Rls(z) constructed by this approach will coincide with
the stability function of Singly Diagonal Runge-Kutta (SDIRK) schemes for low orders (2, 3 and
4). However, this is no longer the case for higher order schemes. Indeed, from the stability func-
tion and by imposing the so-called order conditions [20], one can try to reconstruct Runge-Kutta
coefficients. For higher orders, there are too many order conditions (because of non-linear order
conditions) to be satisfied, such that we are not able to find Runge-Kutta coefficients. This means
that the developed schemes in this section work only for linear ODEs and that is why we called
them Linear-SDIRK schemes.

The stability function of the (s+ 1)th-order Linear-SDIRK schemes is given by

Rls(z) = 1 + z +
z

2!
+ · · ·+ zs

s!
+

zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αs+lz
2s+l+1

(1− γz)s+l .

In this form, Rls has the correct order by construction. It is then sufficient to satisfy the A-stability
condition. In the following subsections, we describe the obtained schemes for l = 0, l = 1, l = 2 and
l = 3. In practice (to implement the numerical scheme), we use the following expression of Rls:

Rls(z) =
N l
s(z)

(1− γz)s+l ,

where the expression of N l
s is given in equations (55), (57), (58) and (59) for respectively l = 0,

l = 1, l = 2 and l = 3. In the following, we use Dl
s as

Dl
s(z) = (1− γz)s+l.

4.1 Linear-SDIRK methods s-stages of order s+ 1

In this section we choose l = 0 and we present the constructions of Linear-SDIRK scheme of order
s+ 1 with a minimal number of stages s, s ∈ N.

Order 2 The Linear-SDIRK of order 2 is found for s = 1. Its stability function R0
1(z) is sought

as

R0
1(z) = 1 + z +

z2

2
+

α0z
3

(1− γz) .

Obviously, the associated scheme is of order 2. We have

R0
1(z) =

1 + (1− γ)z +
(

1
2 − γ

)
z2 +

(
α0 − γ

2

)
z3

(1− γz) .

In order to have a A-stable scheme, we need to satisfy at least γ = 1
2 and α0 = γ

2 . As a result,
we obtain

R0
1(z) =

1 + z
2

1− z
2

,

which is the stability function of the Crank-Nicolson scheme.
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Order 3 To construct a third order Linear-SDIRK scheme with s = 2 and l = 0, we must find
α1, α2 and γ such that:

R0
2(z) = 1 + z +

z2

2!
+
z3

3!
+
α1z

4 + α2z
5

(1− γz)2
.

As detailed for s = 1, we reduce to the least common denominator to find conditions on α1, α2 and
γ for the third order approximation. We get

α2 +
γ2

6
= 0 and α1 −

γ

3
+
γ2

2
= 0, (52)

1

6
− γ + γ2 = 0. (53)

We compute γ as a solution to (53), α1 and α2 are deduced from relations in (52). The obtained
stability function is then given by

R0
2(z) =

1 + (1− 2γ)z +
(

1
2 − 2γ + γ2

)
z2

(1− γz)2
.

The two possible choices for γ are 1
2− 1

2
√

3
and 1

2 + 1
2
√

3
(roots of (53)). The one that leads to A-stable

scheme is γ = 1
2 + 1

2
√

3
. In fact with this choice of γ the modulus of the asymptote of R0

2(z) when z

tends to +∞ satisfies ∣∣∣∣ 1
2 − 2γ + γ2

γ2

∣∣∣∣ < 1,

which is a necessary condition to have an A-stable scheme. The other root does not satisfy this
condition. The associated method has the same stability function as the SDIRK of order 3 obtained
by Crouzeix (see [12]).

Order 4 To construct a fourth order Linear-SDIRK scheme with s = 3 and l = 0, we must find
α1, α2, α3 and γ such that:

R0
3(z) = 1 + z +

z2

2!
+
z3

3!
+
z4

4!
+
α1z

5 + α2z
6 + α3z

7

(1− γz)3
.

As previously, we obtain α1, α2, α3 from γ. The parameter γ is solution to

γ3 − 3

2
γ2 +

γ

2
− 1

24
= 0,

which is necessary for the A-stability condition. Only one root of this equation leads to an A-stable
scheme. It is

γ =
1√
3

cos(
π

18
) +

1

2
.

We note the polynomial

P (z) = (1− γz)3

(
1 + z +

z2

2!
+
z3

3!
+
z4

4!

)
= a0(γ) + a1(γ)z + · · ·+ a7(γ)z7.

The numerator N0
3 (z) is then obtained by truncating this polynomial (since the coefficients α1, α2

and α3 are set to cancel the higher order terms):

N0
3 (z) = a0(γ) + a1(γ)z + a2(γ)z2 + a3(γ)z3.

The stability function of the Linear-SDIRK of order 4 with s = 3 and l = 0 is then

R0
3(z) =

N0
3 (z)

(1− γz)3
.

This scheme has the same stability function as the SDIRK scheme of order 4 obtained by Crouzeix
(see [12]).
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General case Now we present a general method to construct a s-stages Linear-SDIRK scheme
of order s+ 1. Let R0

s be the stability function. We search for R0
s of the form:

R0
s(z) = 1 + z +

z

2!
+ · · ·+ zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αsz
2s+1

(1− γz)s .

We note the polynomial P that appears while reducing to the common denominator:

P (z) = (1− γz)s
(

1 + z +
z2

2!
+ · · ·+ zs+1

(s+ 1)!

)
= a0(γ) + a1(γ)z + · · ·+ a2s+1(γ)z2s+1.

The constants αi are chosen to balance higher-order terms of P , i.e.

αi = −as+1+i(γ), i = 1 . . . s.

A necessary condition to obtain A-stable property is that the term in zs+1 vanishes, that is to say

as+1(γ) =

s∑
i=0

(−γ)i
(
s
i

)
(s+ 1− i)! = 0. (54)

Finally, the numerator of R0
s(z) is given by

N0
s (z) = a0(γ) + a1(γ)z + a2(γ)z2 + · · ·+ as(γ)zs. (55)

We have

R0
s(z) =

N0
s (z)

(1− γz)s .

To ensure the A-stability condition we choose γ as follows: for each γ root of (54), we compute the
asymptote of R0

s(z) when z tends to infinity. If the asymptote is lower or equal to 1, we look for the
roots of the following polynomial equation:

|N(i
√
z)|2 = |D(i

√
z)|2. (56)

In fact, since γ > 0, R0
s is holomorphic in the negative half plane (C−) and based on the maximum

principle, R0
s will reach its maximal value on the imaginary axis or when |z| tends to infinity. If

the polynomial equation (56) has no real roots except zero, then the scheme is A-stable, otherwise
the scheme is not A-stable. We present in Table 1, the A-stable schemes we have obtained.

Table 1: Minimal stage Linear-SDIRK of order s+1 and associated value of γ.

s value of γ comment
1 0.5 -
2 0.788675134594813 -
3 1.068579021301629 -
4 x No A-stable schemes
5 0.473268391258295 -
r ≥ 6 x No A-stable schemes

As presented in Table 1, 6 is the maximal order that we can achieve. In fact, for s ≥ 6, there
is no root γ that leads to a A-stable scheme. Without extra stage (l = 0), we have retrieved
the Linear-SDIRK schemes presented by Burrage [17]. To get higher order schemes, we need to
increase the number of stages. This will be addressed in the next subsections.

4.2 Linear-SDIRK methods (s+ 1)-stages of order s+ 1

Here we add one extra stage which corresponds to l = 1. The stability function is then equal to

R1
s(z) = 1 + z +

z

2!
+ · · ·+ zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αs+1z
2s+2

(1− γz)s+1
.
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In this case, γ is a free parameter. We note P the polynomial that is involved while reducing to
the common denominator:

P (z) = (1− γz)s+1

(
1 + z +

z2

2!
+ · · ·+ zs+1

(s+ 1)!

)
= a0(γ) + a1(γ)z + · · ·+ a2s+2(γ)z2s+2.

The constants αi are chosen to balance higher-order terms of P , i.e.

αi = −as+1+i(γ), i = 1 . . . s+ 1.

Finally, the numerator of R1
s(z) is given by

N1
s (z) = a0(γ) + a1(γ)z + a2(γ)z2 + · · ·+ as+1(γ)zs+1 (57)

and we thus have

R1
s(z) =

N1
s (z)

(1− γz)s+1
.

The optimization is done by minimizing |η| = |α1 −
1

(s+ 2)!
| under the A-stability constraint.

Since γ is the only free parameter, this constraint imposes that γ belongs to an interval or a set of

Table 2: Linear-SDIRK of order s+1 with one additional stage

s interval for γ γopt
1 [14 ,∞[ leads to third order
2 [13 , 1.06866] leads to fourth order
3 [0.39434, 1.28057] 0.394337567297407
4 [0.24651, 0.3618]∪ [0.42079, 0.47326] leads to sixth order
5 [0.28407, 0.5409] 0.284064638011799
6 x No A-stable schemes
7 [0.21705, 0.26471] 0.217049743094304
r ≥ 8 x No A-stable schemes

intervals. The admissible intervals for γ, for which the schemes are A-stable, are represented in
Table 2. The optimal value of γ that minimizes the error term |α1| is also provided for each s. We
have obtained the same admissible intervals as Burrage (see [17]).

We see here that we are able to obtain an A-stable scheme of order eight contrary to the previ-
ous section. We have also found a fifth-order A-stable scheme which after optimization leads to a
sixth order scheme.

Remark The optimization has been performed manually, by finding first the stable region and
then zooming in to find the optimal value of γ. The values of γ we found are rather small. As a
result, the matrix (I − γ∆tA) will be well-conditioned.

4.3 Linear-SDIRK methods (s+ 2)-stages of order s+ 1

To obtain higher order Linear-SDIRK scheme we increase the number of stages. Here we take
l = 2 (instead of l = 1 in the previous subsection), and it leads to Linear-SDIRK schemes with two
additional stages:

R2
s(z) = 1 + z +

z

2!
+ · · ·+ zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αs+2z
2s+3

(1− γz)s+2
.

In this case we have two free parameters γ and α1. We let P be the polynomial that appears while
reducing to the common denominator:

P (z) = (1− γz)s+2

(
1 + z +

z2

2!
+ · · ·+ zs+1

(s+ 1)!

)
= a0(γ) + a1(γ)z + · · ·+ a2s+3(γ)z2s+3.
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The constants αi are chosen to cancel out higher-order terms of P , i.e.

αi = −as+1+i(γ), i = 2 . . . s+ 2.

Finally, the numerator of R2
s(z) is given by

N2
s (z) = a0(γ) + a1(γ)z + a2(γ)z2 + · · ·+ as+1(γ)zs+1 + (as+2(γ) + α1)zs+2. (58)

We have

R2
s(z) =

N2
s (z)

(1− γz)s+2
.

The optimization is done by minimizing |η| = |α1 −
1

(s+ 2)!
| under the A-stability constraint.

Since we have two parameters, this constraint will impose that γ and α1 belong to 2-D regions.

Table 3: Linear-SDIRK of order s+1 with two additional stages

s γopt α1opt comment
1 ≤ s ≤ 4 - - No uniqueness
5 0.204071 1.9839430662 · 10−4 -
6 - - leads to eighth order
7 0.16689 2.9259251764 · 10−6 -
8 x x No A-stable schemes
9 0.141940 2.2982637210 · 10−8 -
r ≥ 10 x x No A-stable schemes

The optimal values of γ and α1 are presented in Table 3. We see here that we are able to obtain an
A-stable tenth-order scheme (versus 8 in the previous subsection). For 1 ≤ s ≤ 4, we did not find
a unique optimal choice for the two free parameters.

4.4 Linear-SDIRK methods (s+ 3)-stages of order s+ 1

Following the results obtained in previous subsections, we increase again the number of additional
stages up to l = 3. The stability function is then written as follows:

R3
s(z) = 1 + z +

z

2!
+ · · ·+ zs+1

(s+ 1)!
+
α1z

s+2 + · · ·+ αs+3z
2s+4

(1− γz)s+3
.

We have three free parameters γ, α1 and α2. Like in previous subsections, we note P the
polynomial that appears while reducing to the common denominator:

P (z) = (1− γz)s+3

(
1 + z +

z2

2!
+ · · ·+ zs+1

(s+ 1)!

)
= a0(γ) + a1(γ)z + · · ·+ a2s+4(γ)z2s+4.

The constants αi, i = 3 . . . s+ 3 are chosen to compensate higher-order terms of P , i.e.

αi = −as+1+i(γ), i = 3 . . . s+ 3.

Finally, the numerator of R3
s(z) is given by

N3
s (z) = a0(γ) +a1(γ)z+a2(γ)z2 + · · ·+as+1(γ)zs+1 + (as+2(γ) +α1)zs+2 + (as+3(γ) +α2)zs+3. (59)

The stability function reads:

R3
s(z) =

N3
s (z)

(1− γz)s+3
.

The optimization is done by minimizing |η| = |α1 −
1

(s+ 2)!
| under the A-stability constraint. The

optimal values of γ, α1 and α2 are presented in Table 4. We see here that we are able to obtain an
A-stable twelve order scheme (versus 10 in the previous section). For 1 ≤ s ≤ 6, we did not find a
unique optimal choice for the three free parameters.
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Table 4: Linear-SDIRK of order s+1 with three additional stages

s γopt α1opt α2opt

1 ≤ s ≤ 6 - - No uniqueness
7 0.136339 2.767416226 · 10−06 −3.464398093 · 10−06

8 - - -
9 0.151706 2.459114959 · 10−08 −4.3140917546 · 10−08

10 x x x
11 0.132572 1.644515143 · 10−10 −2.89891484131 · 10−10

r ≥ 12 x x x

Remark There are no A-stable schemes of order 5, 7, 9 and 11 for l equal respectively to 0, 1, 2
and 3. As far as we know, there won’t be any A-stable schemes of order 13, 15, . . . for l respectively
equal to 4, 5, . . . . It can be conjectured that the maximal order for an A-stable Linear-SDIRK
scheme is 2l + 6.

Remark Except the third order scheme obtained for l = 0, a scheme of odd order p leads to a
scheme of order p + 1 after optimization. That is why only even orders are represented in Tables
3 and 4.

4.5 Numerical stability, dissipation and dispersion
By construction, all the Linear-SDIRK schemes presented in this paper are A-stable. Further-
more, the second order Linear-SDIRK has the same stability function as the second order diagonal
Padé scheme. Both are not dissipative when applied to the test equation (11) and have the same
dispersion error. In Figures 2, 3, 4 and 5, we present the relative dispersion error (on the left)
and the relative dissipation error (on the right) of diagonal Padé schemes compared to the Linear-
SDIRK schemes. In the x-axis, we have chosen to represent z

m . m represents the computational
complexity of the scheme (see subsection 3.2 for diagonal Padé schemes). For the Linear-SDIRK
schemes of order s + 1, m = s + l is the number of linear systems to be solved to compute the
numerical solution after one step.

Figure 2: Dispersion and dissipation curves of diagonal Padé schemes of order 4 compared with that of the Linear-SDIRK,
when applied to the test equation (11). LS2 − l and LS3 − l represents the s = 2 and s = 3 plus l additional stages
Linear-SDIRK of order 3 and 4.
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Remark In the Figures 2, 3, and 4, the diagonal Padé schemes, which are not dissipative, are
less dispersive than any Linear-SDIRK schemes of the same order. Among the Linear-SDIRK
schemes with the same order, the less dispersive and the less dissipative scheme corresponds to
the one with maximal additional stages.
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Figure 3: Dispersion and dissipation curves of diagonal Padé schemes of order 6 compared with that of the Linear-SDIRK,
when applied to the test equation (11). LS5− l represents the s = 5 plus l additional stages Linear-SDIRK of order 6.
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Figure 4: Dispersion and dissipation curves of diagonal Padé schemes of order 8 compared with that of the Linear-SDIRK,
when applied to the test equation (11). LS7− l represents the s = 7 plus l additional stages Linear-SDIRK of order 8.
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4.6 Handling a right hand side term
The stability function of Linear-SDIRK schemes of order s ≥ 2 can be written in the form

Rls(z) =
N l
s(z)

Dl
s(z)

.

with N l
s(z) and Dl

s(z) defined in the previous subsections. Like in Padé schemes we introduce

φ = Dl
s(C)X(tn+1)−N l

s(C)X(tn) +O(∆ts+2).

Polynomials Dl
s and N l

s are represented as follows:

Dl
s(z) =

s+l∑
i=0

Diz
i, N l

s(z) =

s+l∑
i=0

Niz
i.

We perform the Taylor expansion of X(tn+1) = X(tn + ∆t) and X(tn) around tn +
∆t

2
at order

s+ 1. For simplicity we note X(k) = X(k)

(
tn +

∆t

2

)
the k-th derivative of X(t) with respect to t at
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Figure 5: Dispersion and dissipation curves of diagonal Padé schemes of order 10 compared with that of the Linear-SDIRK,
when applied to the test equation (11). LS9− l represents the s = 9 plus l additional stages Linear-SDIRK of order 10.
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tn +
∆t

2
. We obtain:

φ =

s+l∑
i=0

s+1∑
k=0

(
∆t

2

)k
Ci

k!

(
Di − (−1)kNi

)
X(k) +O(∆ts+2).

Then, we use the relation

X(k)
n =

k∑
j=1

Ak−jF (j−1) +AkXn,

to obtain the following expression

φ =

[
s+l∑
i=0

s+1∑
k=0

Ci+k

2k k!

(
Di − (−1)kNi

)]
X(0)

+∆t

s+l∑
i=0

s+1∑
k=0

k∑
j=1

Ci+k−j

2k k!

(
Di − (−1)kNi

)
∆tj−1F j−1

+O(∆ts+2).

The first term is in O(∆ts+2) because the homogeneous scheme is of order s + 1. Regarding the
second term, we introduce r = i+ k − j + 1 to find

φ = ∆t

s+1∑
r=1

(∆tA)r−1
s+2−r∑
j=1

αr,lj−1∆tj−1F (j−1) +O(∆ts+2)

where

αr,lj−1 =

min(r−1,s+l)∑
i=0

1

2r+j−i−1(r + j − i− 1)!

(
Di − (−1)r+j−i−1Ni

)
. (60)

We can notice that
αs+1,0

0 = 0

because γ solves Equation (54). It means that the sum over r can be reduced to r ∈ [1, s] when
l = 0. Finally we end up with the approximation

s+1∑
i=0

αr,li ∆tiF (i) ≈
nw−1∑
i=0

ωr,li F (tn + ∆t ci) .

We have chosen a sum from 0 to s+ 1 instead of s+ 1− r because the obtained schemes are more
accurate with this choice. It can be noted that the coefficients (αr,li )i>s+1−r can be chosen freely,
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they do not affect the order of accuracy. In the same way, the points ci can be chosen freely. We
have made the choice to take the nominal values for (αr,li )i>s+1−r (as defined by equation (60)) and
to take s + l + 1 Gauss-Legendre points for ci in the interval [0, 1] (nw = s + 1). The weights ωr,li
are found by solving a Vandermonde system as detailed in the Paragraph 3.2.3. φn is therefore
computed by using the formula

φn =

s+l∑
r=1

Ar−1∆tr
s∑
i=0

ωr,li F (tn + ∆t ci) .

4.7 Stable algorithm

For Linear-SDIRK schemes with s + l ≥ 8, we have observed an instability because of the very
large eigenvalues of the matrix C due to a local refinement for instance. For s+l = 7, the scheme is
stable but polluted by round-off errors such that it can be less efficient than fourth-order Linear-
SDIRK schemes. Indeed, this instability occurs because of round-off errors, it does not occur
when we are using quadruple precision arithmetic for example. This instability is due to Hörner’s
algorithm. We have detailed in the Algorithms 1 and 2 the stable algorithms in the case where
N l
s has real and complex conjugate roots. These roots are grouped together such that only second-

degree polynomials of A are involved.

When no source is present, a stable algorithm consists in factorizing the stability function
Rls(z) as follows

Rls(z) =

 nr∏
k=1

1− z

λk
1− γz

 (
nc∏
k=1

(1− bkz + akz
2)

(1− γz)2

)
,

and of using this factorization to get a stable algorithm in Algorithm 1 when there is no source
term.

Algorithm 1 Stable algorithm without source term
y = Xn

for k = 1, . . . , nc do
b = y − bk∆tAy + ak(∆tA)2y
Solve (I − γ∆tA)2y = b

end for
for k = 1, . . . , nr do
b = y − ∆tA

λk
y

Solve (I − γ∆tA)y = b
end for
Xn+1 = y

When the source term is added, we rewrite φn in the following form:

φn = ∆t

s+l∑
r=1

Qr−1(∆tA)

s∑
i=0

ω̃r,li F (tn + ∆t ci) , (61)
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where the polynomials Qr−1 are based on the factorization of the numerator N l
s(z)

Q0(z) =

(
1− z

λnr

)(
1− z

λnr−1

)
· · ·
(

1− z

λn1

)(
1− bnc

z + anc
z2
)
· · ·
(
1− b2z + a2z

2
)
z,

Q1(z) =

(
1− z

λnr

)(
1− z

λnr−1

)
· · ·
(

1− z

λn1

)(
1− bncz + ancz

2
)
· · ·
(
1− b2z + a2z

2
)
,

Q2(z) =

(
1− z

λnr

)(
1− z

λnr−1

)
· · ·
(

1− z

λn1

)(
1− bnc

z + anc
z2
)
· · ·
(
1− b3z + a3z

2
)

(1− γz)2z,

Q3(z) =

(
1− z

λnr

)(
1− z

λnr−1

)
· · ·
(

1− z

λn1

)(
1− bncz + ancz

2
)
· · ·
(
1− b3z + a3z

2
)

(1− γz)2,

· · ·

Qs+l−2(z) =

(
1− z

λnr

)
(1− γz)s+l−1,

Qs+l−1(z) = (1− γz)s+l.

Let us introduce:

Gr =

s∑
i=0

ω̃r,li F (tn + ∆t ci) .

A stable algorithm taking into account the presence of the source term is given in Algorithm 2.

Algorithm 2 Stable algorithm with source term
y = Xn

for k = 1, . . . , nc do
b = (∆tA) (ak∆tAy +G2k−1 + bky) +G2k

Solve (I − γ∆tA)2y = b
end for
for k = 1, . . . , nr do
b = y − ∆tA

λk
y +G2nc+k

Solve (I − γ∆tA)y = b
end for
Xn+1 = y

5 Numerical results for 1D and 2D wave equations
We are interested in solving the acoustic wave equation formulated as a first order system. The
scalar field u and vectorial field v depend on the space x and the time t and are solutions to the
following boundary value problem:

ρ ∂tu− div v = 0, ∀(x, t) ∈ Ω× R+

µ−1∂tv −∇u = 0, ∀(x, t) ∈ Ω× R+

u(x, 0) = ∂tu(x, 0) = 0, ∀x ∈ Ω (null initial conditions)

u = fD, x ∈ ΓD (Dirichlet condition)

µ∂nu = fN , x ∈ ΓN (Neumann condition)

µ∂nu+
√
ρµ ∂tu = fA, x ∈ ΓA (Absorbing condition)

(62)

where Ω is the computational domain. ΓD, ΓN and ΓA are the boundaries associated respectively
with Dirichlet, Neumann and absorbing boundary condition. n is the outgoing normal to the
considered boundary, ρ and µ are physical indexes, which are piecewise constant. fD, fN and fA
are given source functions.
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5.1 Finite element discretization
5.1.1 Finite element spaces and semi-discrete problem

The computational domain Ω is meshed with regular intervals in 1-D and quadrilaterals in 2-D.
Each element is denoted by Ki:

Ω =
⋃
Ki

The equation (62) is solved with mixed spectral elements (see [1]) with the following finite element
spaces

u(t) ∈ Uh =
{
u ∈ H1(Ω) such that u|Ki

◦ Fi ∈ Qr
}
,

v(t) ∈ Vh =
{
v ∈ (L2(Ω))d such that v|Ki

◦ Fi ∈ (Qr)d
}
,

where d is the dimension, r is the order of approximation, and Qr is the space of polynomials of
degree lower or equal to r in each space variable. In 2-D, Fi is the map from the unit square K̂ to
the elementKi (see figure 6). Gauss-Lobatto points are used both for interpolation and quadrature

(0,0) (1,0)

(1,1)(0,1)

K̂
Fi Ki

A4

A1

A2

A3

Figure 6: Transformation Fi for a quadrilateral.

formulas (see [1]), leading to a diagonal mass matrix. Let us denote by ϕi the basis functions for
u and ψi the basis functions for v. The obtained semi-discrete system reads:

Dh
dU

dt
+ ShU +RhV = Fu(t)

Bh
dV

dt
−RThU = Fv(t)

(63)

where h is the mesh size and T denotes the transpose matrix. We have the following finite element
matrices:

(Dh)i,j =

∫
Ω

ϕiϕj dx,

(Sh)i,j =

∫
ΓA

√
ρµϕiϕj dx,

(Rh)i,j =

∫
Ω

∇ϕi · ψj dx,

(Bh)i,j =

∫
Ω

ψi · ψj dx.

The matrices Dh, Bh and Sh are diagonal. The source term is given by:

FU (t) =

∫
ΓN

fNϕdx+

∫
ΓA

fAϕdx.

The source term Fv comes from the inhomogeneous Dirichlet condition (if fD 6= 0). Degrees of
freedom associated with Dirichlet condition are not included in the vector U(t), the associated
values fD(xi) provide a source vector Fv. The evolution system (63) falls in the class of ODEs (1)
presented in the general setting.
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5.1.2 Solution of linear systems

When using an implicit time-scheme, we need to solve systems of the form:{
β DhU + ShU +RhV = F1

β BhV −RThU = F2

(64)

where β is a coefficient depending on the time scheme used. The unknown V is eliminated such
as to obtain a symmetric linear system to solve for U :(

β Dh + Sh + β−1 RhB
−1
h RTh

)
U = F1 + β−1RhB

−1
h F2. (65)

The stiffness matrix Kh is given by
Kh = RhB

−1
h RTh ,

with entries
(Kh)i,j =

∫
Ω

µ∇ϕi · ∇ϕj dx.

The system (65) is the same kind of linear system that appears when using θ-schemes for the
second-order formulation of the wave equation. This system is symmetric positive definite if β
is real positive. Moreover, the internal degrees of freedom are removed (process known as static
condensation) to reduce the size of the final linear system. This final linear system is solved by
using a tridiagonal solver in 1-D and MUMPS (see [25]) in 2-D.

5.1.3 PML layers (2-D)

In order to truncate the 2-D domain, instead of absorbing boundary conditions, we can use Per-
fectly Matched Layers (PML). In this paragraph, the efficient implementation of PML is detailed
in order to obtain a reduced linear system to solve. More precisely, we consider the following split
formulation 

ρ ∂tu1 + σx ρ u1 − ∂xvx = 0

ρ ∂tu2 + σy ρ u2 − ∂yvy = 0

µ−1∂tv + σµ−1v −∇(u1 + u2) = 0

+ homogeneous Dirichlet condition on PML boundaries

where u = u1+u2 is the physical solution, u1, u2, v are intermediary unknowns. σx, σy are damping
functions, non-null inside the PML, with a parabolic profile (see [26]):

σx =
3 log 1000

2a3
(x− x0)2 σ vmax and σy =

3 log 1000

2a3
(y − y0)2 σ vmax,

where σ is a damping coefficient chosen a priori, vmax is the maximal wave velocity, x0, y0 are
equal to xmin, ymin, xmax, or ymax depending on the layer you are looking at. In order to have
directly the physical field u as unknown, we write the problem with the two unknowns:

u = u1 + u2 and u∗ = u1 − u2.

As a result, u, u∗, v are solutions to the following system

ρ ∂tu + ρ

(
σx + σy

2

)
u + ρ

(
σx − σy

2

)
u∗ − div v = 0

ρ ∂tu
∗ + ρ

(
σx + σy

2

)
u∗ + ρ

(
σx − σy

2

)
u − (∂xvx − ∂yvy) = 0

µ−1∂tv + µ−1σ v −∇u = 0

The unknown u∗ is discretized only inside the PML and is equal to 0 on the external boundary
and the interface between PML and physical domain. The finite element space for u∗ is the same
as u (except that it is reduced to PML region). We usually take σ = 2, in order to have a reflection
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coefficient around 10−6. The linear system to be solved in time is given by (we write here the
equations without detailing the associated discrete formulation):

ρ β u + ρ

(
σx + σy

2

)
u + ρ

(
σx − σy

2

)
u∗ − div v = f, (66a)

ρ β u∗ + ρ

(
σx + σy

2

)
u∗ + ρ

(
σx − σy

2

)
u − (∂xvx − ∂yvy) = f∗, (66b)

µ−1β v + µ−1σ v −∇u = fv, (66c)

u1 and u2 can be reconstructed:

ρ βu1 + ρ σx ρ u1 − ∂xvx =
f + f∗

2

ρ βu2 + ρ σy u2 − ∂yvy =
f − f∗

2

µ−1βv + σµ−1v −∇(u1 + u2) = fv

The first equation is multiplied by β + σy, the second one by β + σx and the two equations are
combined to obtain:

ρ (β + σx) (β + σy)u− div
((

β + σy 0
0 β + σx

)
v

)
= (β + σy)

f + f∗

2
+ (β + σx)

f − f∗
2

.

Finally v is eliminated and we obtain a single equation in u:

ρ (β + σx) (β + σy)u− div

[(
µ
β+σy

β+σx
0

0 µβ+σx

β+σy

)
∇u
]

=

[
β +

σx + σy
2

]
f +

σy − σx
2

f∗.

As a result a symmetric positive definite system needs to be solved for U :

(D̃h + K̃h)U = Fh,

where
(D̃h)i,j =

∫
Ω

ρ (β + σx) (β + σy)ϕiϕj dx,

(K̃h)i,j =

∫
Ω

(
µ
β+σy

β+σx
0

0 µβ+σx

β+σy

)
∇ϕi · ∇ϕj dx.

As a result, the presence of PML does not increase a lot the computational burden by performing
this procedure, since the linear system to be solved does not involve the intermediary unknowns
u∗ or v. The intermediary unknowns u∗ and v are reconstructed thanks to equations (66b) and
(66c)

5.2 Convergence curves and numerical results in 1-D
The wave equation (62) is solved in 1-D in a homogeneous medium ρ = µ = 1 in the computational
domain Ω = [0, 500]. An inhomogeneous Dirichlet condition is set on the left extremity

u(x = 0, t) = e−iωt exp

(
−1

2

(
t− T
τ

)2
)
,

where
ω = 2π, τ =

20

2
√

2 log 2
, T = 100,

and a homogeneous Neumann condition is set on the right extremity. In space, mixed spectral
elements of order 16 are used. The computational domain Ω is subdivided into 500 regular sub-
intervals. As a result, we have 16 points per wavelength, which is rather high, but with this
choice, the space discretization error is about 10−12. We choose [0, 1000] for the time interval. For

25



this case, we can compare the numerical results with the following analytical solution (before
reflection)

uexact(x, t) = eiω(x−t) exp

(
−1

2

(
t− T − x

τ

)2
)
.

After the first reflection, the solution u will be conjugated.

In Figure 7, we present the relative L2 error between the exact solution and the numerical
solution (obtained with diagonal Padé schemes and Linear-SDIRK schemes of order 4, 6 and 8) at

t = 200. In the x−coordinate we have chosen to represent
∆t

m
where ∆t is the time step and m is

the number of linear systems we need to solve at each time step for each scheme (see Section 3
for Padé schemes and 4 for the Linear-SDIRK schemes). The advantage of this choice is that for a

given
∆t

m
, the complexity of the different time schemes is the same.

The obtained convergence curves (Figure 7) show that the diagonal Padé schemes are more
efficient than the Linear-SDIRK of the same order. These curves confirm the results we have
obtained for the dispersion and dissipation curves as shown in Figures 2, 3 and 4. For the Linear-
SDIRK of the same order, we can also see that the best ones are the LS3− 1, LS5− 2 and LS7− 3,
which was also noticeable in the dispersion and dissipation curves.

Figure 7: Relative L2 error between numerical solution and exact solution for t = 200 versus the time step. Comparison
of diagonal Padé and Linear-SDIRK of order 4, 6 and 8. LSs− l represent the s plus l additional stages Linear-SDIRK of
order s+1. The space discretization error is about 10−12.
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To evaluate the efficiency of the schemes regarding the computational times, we have chosen
the best Linear-SDIRK schemes of order 4, 6 and 8. We aimed to one percent (1%) of relative L2
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error which is computed at t = 1000 between the numerical solution and the analytical solution.
We present the computational times needed for the Linear-SDIRK schemes and the diagonal Padé
in Table 5 to reach this error. The results we obtained confirm that the diagonal Padé schemes are
more efficient than the Linear-SDIRK schemes in 1-D.

Table 5: Computational time after imposing 1% of relative errors (1-D case)

Pade4 LS3−0 LS3−1 Pade6 LS5−0 LS5−1 LS5−2

Number of
time steps

33333 110000 25960 8360 18835 11540 7355

Computational
time

1mn36 5mn23 1mn48s 37s 1mn31 1mn09 53s

Pade8 LS7−1 LS7−2 LS7−3 Pade10 LS9−2 LS9−3

Number of
time steps

3875 5830 4600 3700 2326 3106 2845

Computational
time

24s 46s 43s 38s 17s 34s 34s

5.3 Numerical results in 2D
5.3.1 Results with an absorbing boundary condition

In this paragraph, we consider the scattering of a resonant cavity. The computational domain Ω
is meshed with quadrilaterals (see Figure 8). The external boundary is a circle of radius 1.5. The

Figure 8: Mesh used for the resonant cavity. At right, detail of the mesh close to the entry of the cavity.

internal boundary is a circle of radius 1, the cavity is a circle of radius 0.5. The circular cavity is
linked with the exterior domain by a rectangle of thickness sin

(
π

180

)
. We have chosen the following

physical parameters

ρ =

{
0.8 if

√
x2 + y2 ≤ 1.25

1.0 otherwise
, µ =

{
1.2 if

√
x2 + y2 ≤ 1.25

1.0 otherwise
.

A homogeneous Neumann boundary condition is set on all the boundaries except at the exter-
nal circle. On this circle of radius 1.5, an inhomogeneous absorbing boundary condition is set
(corresponding to the scattering by a plane wave):

µ∂nu+
√
ρµ ∂tu = µ∂nu

inc +
√
ρµ ∂tu

inc, on ΓA,
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where the incident field is given by

uinc = h(t− 1.5− x),

where
h(t) = sin(ωt)e−b(t−T )2 with ω = 16π, b = 4, T =

√
log(106).

The solution is computed with real numbers (contrary to 1-D results), for a time interval [0, 10].
The solution is displayed in Figure 9 for t = 2 and t = 10. The mesh is locally refined close to the
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Figure 9: Solution obtained for the scattering of a resonant cavity for t = 2 and t = 10.

points where the solution possesses a singularity (see Figure 8) with five levels of refinement and
a ratio 4. We are using Q10 finite elements (as detailed previously) such that the error due to the
space discretization is below 10−6. The reference solution is computed on this mesh with ∆t = 0.01
and eighth-order Padé scheme. By modifying only the time step ∆t (the mesh is always the mesh
of Figure 8), we aimed at reaching a relative L2 error (compared to the reference solution) below
0.1% for the final time t = 10. In Table 6, the number of time iterations and the computational
time needed to reach this error are given.

Table 6: Computational time after imposing 0.1% of L2 relative error for the scattering of a resonant cavity.

Pade4 LS3−0 LS3−1 Pade6 LS5−0 LS5−1 LS5−2

Number of
time steps

2370 7745 1955 623 1393 856 823

Computational
time

5mn25 21mn17 7mn27 2mn16 6mn27 4mn49 5mn26

Pade8 LS7−1 LS7−2 LS7−3 Pade10 LS9−2 LS9−3

Number of
time steps

297 449 370 911 181 478 481

Computational
time

1mn33 3mn23 3mn13 8mn40 1mn19 5mn05 5mn37

Padé schemes are clearly more efficient for this case. We have observed that LS7 − 1 is more
efficient than LS7 − 3. This is due to the fact that the source term is not treated in an optimal
fashion. We think that by choosing appropriately the coefficients αr,li and the points ci (free param-
eters introduced in the Section 4.6), it might be possible to recover a good behavior. To confirm this
observation, we have set a homogeneous absorbing boundary condition and the following initial
condition (instead of 0):

u = exp

(
−7

(x2 + y2)

0.152

)
.
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For the initial condition we find that LS7 − 3 is more efficient than LS7 − 1 as expected. The
comparison results of Linear-SDIRK schemes and Padé schemes are represented in Table 7. We
see that Linear-SDIRK schemes perform well, but they are less efficient than Padé schemes.

Table 7: Computational time after imposing 0.1% of L2 relative error with an initial condition.

Pade4 LS3−1 Pade6 LS5−0 LS5−1 LS5−2

Number of
time steps

2500 2059 738 1642 1007 679

Computational
time

5mn31 7mn30 2mn37 7mn38 5mn41 4mn28

Pade8 LS7−1 LS7−2 LS7−3 Pade10 LS9−2 LS9−3

Number of
time steps

381 560 442 365 248 316 298

Computational
time

1mn53 4mn18 3mn49 3mn29 1mn36s 3mn10 3mn17

5.3.2 Results with PML

In this paragraph, we show some results when the mesh includes PML layers. The physical
domain is the rectangle [−2.8, 2.8]× [−3.5, 3.5] which is supplemented by PML layers of thickness
0.3 (for x > 2.8, x < −2.8 and y < −3.5). An array of circular inclusions (disks of diameter 0.04,
represented in green in the Figure 10) is considered. Two consecutive inclusions are separated by

Figure 10: Mesh used for the array of inclusions. At right, detail of the mesh close to an inclusion (in green).

a distance of 0.5. We take the following physical parameters:

ρ =

{
4.0 if inside an inclusion
1.0 otherwise , µ =

{
0.8 if inside an inclusion
1.0 otherwise .

On the top boundary, an inhomogeneous Neumann condition is set

∂nu =

√
α

π
e−αx

2

sin(ωt) e−b(t−T )2 , for y = 3.5,

where

α =
log(106)

1.82
, ω = 10π, b = 2, T =

√
2 log(106).

The solution for t = 3 and t = 16 is plotted in the Figure 11. We are using Q10 finite elements (as
detailed previously) on the mesh of the Figure 10 such that the error due to the space discretization
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Figure 11: Solution obtained for the scattering of circular inclusions for t = 3 and t = 16.

is below 10−6. The reference solution is computed on this mesh with ∆t = 0.01 and the eighth-order
Padé scheme. We aimed at reaching a relative L2 error (compared to this reference solution) below
1% for the final time t = 10. In the Table 8, the number of time iterations and the computational
time needed to reach this error are given.

Table 8: Computational time after imposing 1% of relative L2 error for the scattering of inclusions

Pade4 LS3−1 Pade6 LS5−0 LS5−1 LS5−2

Number of
time steps

1410 1215 438 968 594 524

Computational
time

16mn32 28mn51 10mn47 30mn53 20mn30 20mn57

Pade8 LS7−1 LS7−2 LS7−3 Pade10 LS9−2 LS9−3

Number of
time steps

226 336 280 447 145 295 251

Computational
time

7mn18 15mn20 14mn38 25mn24 4mn59 15mn21 14mn34

The tenth-order Padé scheme is the most efficient for this case. We observe also that LS7 − 3
is not efficient. When we look at the numerical error, we have observed that it involves high-
frequency modes whereas the numerical error for Padé schemes involves the ”usual” modes.

6 Conclusion
In this paper, we have investigated two different classes of one-step schemes satisfying the A-
stability property which are Padé schemes and Linear-SDIRK schemes. For both types of schemes,
we have provided a description of the construction at any order and more importantly how to
handle the source term. For Linear-SDIRK schemes, we have computed the coefficients γ and
αi until order 12. An implementation in Python of these schemes is proposed in the provided
files quadrature.py and linear scheme.py. These files can be downloaded at https://www.math.
u-bordeaux.fr/˜durufle/codes.php. The implementation includes stable algorithms that
are robust with respect to round-off errors. This property is important for high-order schemes
when the linear discrete operator has large eigenvalues (which is usually the case when implicit
methods are used). Dispersion and dissipation analyses show that Padé schemes are more efficient
than Linear-SDIRK schemes. Moreover, they are more robust when the system includes a source
term. Concerning Linear-SDIRK, extra-stages are usually beneficial. For a homogeneous linear
differential equation (without source term), LS3 − 1, LS5 − 2, LS7 − 3 and LS9 − 2 are more
efficient. We think that for higher orders (such as tenth order schemes), the optimization should
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take into account the set of coefficients αi and not only α1 to recover the advantage of extra-
stages. Numerical experiments show that LS3− 0 is much less accurate than LS3− 1, it explains
why several works have proposed low dispersive third and fourth order DIRK schemes (e.g. [13],
[14], [27]). For the inhomogeneous case (with a source term), it turns out that LS3 − 1, LS 5 − 1,
LS 7− 2 and LS 9− 2 are more efficient than other Linear-SDIRK schemes.

We think that Linear-SDIRK schemes may be improved in the inhomogeneous case by choos-
ing appropriate interpolation points ci or coefficients αr,li . Another prospect is to perform the
optimization of Linear-SDIRK schemes with another objective than minimizing |η|. We can think
about finding the best approximation of the exponential on a given interval of the imaginary axis,
or minimizing the dispersion error for example. Our next objective is to construct locally implicit
schemes by using the implicit schemes developed here.
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