
Chapter 1
Optimized High Order Explicit
Runge-Kutta-Nyström Schemes

Marc Duruflé and Mamadou N’diaye

Abstract Runge-Kutta-Nyström (RKN) schemes have been developed to solve a
non-linear ordinary differential equation (ODE) of the type y′′ = f (t,y). In [4],
the stability condition (the Courant-Friedrichs-Lewy or CFL) associated with these
schemes have been studied for order 3, 4 and 5. In this paper, we extend this study
for higher orders and we propose a new algorithm to compute numerically the CFL.
By using this algorithm, we compute optimal coefficients for RKN schemes of or-
ders 6, 7, 8 and 10 which maximize the CFL. Herein, the obtained schemes are used
to solve non-linear Maxwell’s equations in 1-D.

1.1 Introduction

We consider the following ordinary differential equation (ODE) y′′(t) = f (t,y(t)), ∀t > 0,
y(0) = y0,
y′(0) = y′0.

The unknown y is vectorial, its size is equal to the number of the degrees of freedom
of the system. The functional f is known and describes the dynamics of the system.
This kind of ODE appears naturally in mechanical systems when the damping terms
are neglected, and also in non-linear wave equation. In order to solve this ODE,
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high-order Runge-Kutta-Nyström (RKN) schemes have been proposed (see [1]).
They are attractive because they are explicit, one-step methods and can be applied
to a non-linear operator f . A RKN scheme computes a discrete sequence yn and
y′n, which are an approximations of y and y′ at time tn = n∆ t. The time step ∆ t is
assumed to be constant in this paper. A step of the RKN scheme is performed as
follows: 

ki = f
(
tn + ci ∆ t, yn + ci ∆ t y′n +∆ t2

∑ j āi, j k j
)
,

yn+1 = yn +∆ t y′n +∆ t2
∑ j b̄ j k j,

y′n+1 = y′n +∆ t ∑ j b j k j,

ki are intermediate vectors used to compute yn+1 and y′n+1. The coefficients āi, j,ci,bi, b̄i
must satisfy the so-called order conditions such that the scheme is of order r (see
[1] for a detailed description of order conditions). When it is not mentioned, the
subscripts i and j vary between 0 and s− 1 where s is the number of stages of the
scheme. In this paper, only explicit schemes will be studied, the matrix Ā (associated
with coefficients āi, j) is lower triangular, that is to say:

āi, j = 0, if j ≥ i.

The coefficients āi, j,ci,bi, b̄i can be obtained from the coefficients of a classical
Runge-Kutta scheme of order r. But this procedure leads to RKN schemes that are
less efficient (see [1]). In this paper, we are concerned to find optimal coefficients
āi, j,ci,bi, b̄i that maximize the CFL number subject to the order conditions. Such
an optimization has been done for RKN schemes of order 3, 4 and 5 in [4] and
[5]. In this work, we achieved to find the best coefficients for order 6, 7, 8 and 10.
We propose a new algorithm to compute numerically the CFL number (stability
condition) with respect to the coefficients āi, j,ci,bi, b̄i.

The remainder of this paper is organized as follows: First, we recall the stability
condition as initially proposed in [4]. Next, we describe the numerical algorithm
we used to compute the CFL number. Then, we propose the optimal coefficients
obtained for the different schemes. Finally, we present some numerical results to
show the practical interest of these schemes.

1.2 Stability condition

The stability analysis is conducted for a linear functional f , which is then replaced
by a matrix A:

f (t,y) = Ay.

By replacing A by its symbol Â (which will be equal to an eigenvalue of A), a step
of RKN scheme can be written as:[

yn+1
wn+1

]
= D(∆ t2Â)

[
yn
wn

]
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where D(∆ t2Â) is a 2x2 matrix depending on coefficients āi, j,bi,ci, b̄i. Let us note:

z = ∆ t2Â.

The vector wn is equal to:

wn =
y′n

∆ t Â
.

The RKN scheme is equal to:
∆ t2ki = zyn + ci z2 wn + z∑ j āi, j ∆ t2k j,

yn+1 = yn + zwn +∑i b̄i ∆ t2ki,

wn+1 = wn +
1
z ∑i bi ∆ t2ki.

From these relations, it can be remarked that the entries of the 2x2 matrix D(z) are
polynomials in z. The amplification factor G(z) is defined as:

G(z) = Spectral radius of D(z).

The stability condition is computed numerically by searching the first z such that

G(z)> 1.

The square root of this first z is defined as the CFL number:

CFL number = min
z≤0
{
√
−z such that G(z)> 1}.

1.3 Numerical method to compute the CFL

The eigenvalues of the 2×2 matrix D(z) are directly computed as:

λ (D(z)) =
trace(D(z))±

√
trace(D(z))2−4det(D(z))

2
.

The amplification factor G(z) is the maximal modulus of these two eigenvalues.
From the computation of this amplification factor, the method used to compute the
CFL is detailed in Algorithm 1. The computation of local maxima zm and of the final
z such that G(z) = 1+ ε is performed by using a bisection method. The first float
z0 is chosen small (we have chosen z0 = −10−5), this first verification is needed
because it happens that the amplification factor is decreasing at the origin, ie:

G′(0)< 0.
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Algorithm 1 Algorithm used to compute the CFL number of RKN schemes
if G(z0)> 1+ ε then

return 0
end if
z = z0
while G(z)<= 1+ ε do

Adapt ∆zk such that any intersection of roots is not missed
if G(z)> max(G(z−∆zk),G(z+∆zk−1)) then

Compute the local maximum zm in the interval [z−∆zk,z+∆zk−1]
if G(zm)> 1 then

z = zm
Terminate the main while loop

end if
end if
z = z−∆zk

end while
Compute z such that G(z) = 1+ ε in the interval [z−∆z,z] by bisection method
Return z

Hence for very small negative values of z, this amplification factor will be greater
than one, leading to an unstable scheme. In this case, the time scheme will be
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Fig. 1.1 Amplification factor G(z) versus
√
−z for a 6-th order RKN scheme, with the two free

parameters equal to 0.0816464646464646 and 0.968757575757576.

unconditionally unstable.
The step ∆zk is chosen in an interval (we have selected 10−5 ≤ ∆zk ≤ 1) such

that the intersection of the two complex conjugate eigenvalues is not missed. This
intersection occurs when the two eigenvalues get close to the real axis or when
they already lie in the real axis. In Figure 1.1, the amplification factor is displayed
for a 6th order RKN method. In this case, the CFL is equal to 2.858 because of
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Fig. 1.2 Trajectory of the two eigenvalues of D(z) for
√
−z ∈ [0,4] for a 6-th order RKN scheme,

with the two free parameters equal to 0.0816464646464646 and 0.968757575757576.

the presence of a local maxima above 1. It has been observed that usually the first
local maximum (if present) occurs around

√
−z ≈ π , the second maximum would

occur around 2π , etc. In Figure 1.2, we have displayed the trajectory of the two
eigenvalues of D(z) for

√
−z ∈ [0,4]. These two eigenvalues start from the point

(1,0) they describe an approximate circle to reach a point close to (−1,0). Then
they move away from each other in the real axis, one reaches the local maximum,
and the two eigenvalues get back until reaching another intersection in the real axis.
Finally, they are describing a kind of hyperbole in the complex plane. With a variable
∆zk, we are able to compute the CFL with a reasonable number of evaluations of
the amplification factor. Finally, ε is taken equal to 2 ·10−13 for a double precision
computation.

1.4 Optimization with a minimal number of stages

In this section, coefficients of RKN schemes are optimized to maximize the CFL
number. We consider here only schemes with a minimal number of stages (s).

1.4.1 Order 2 (s = 1)

For example, to obtain a second-order scheme, it is sufficient to satisfy

∑
i

bi = 1, ∑
i

bici =
1
2
, ∑

i
b̄i =

1
2
.
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Therefore, a one-stage scheme can be obtained:

Ā = (0) , c =

(
1
2

)
, b = (1) , b̄ =

(
1
2

)
,

this scheme can be written as:
k0 = f

(
tn +

∆ t
2
, yn +

∆ t
2

y′n

)
,

yn+1 = yn +∆ t y′n +
∆ t2

2
k0,

y′n+1 = y′n +∆ t k0.

This scheme require only one evaluation of f (i.e. a matrix-vector product if f is
linear) at each time step, which is equivalent to the cost of the classical second-order
scheme (recalled below). When f is linear (replaced by a matrix A), the stability
condition of this RKN scheme is:

∆ t ≤ 2√
||A||2

.

This is exactly the same CFL as the classical second-order scheme:

yn+1−2yn− yn−1

∆ t2 = f (tn,yn).

Therefore, the second-order Runge-Kutta-Nyström (RKN) scheme is optimal.

1.4.2 Orders 3, 4 and 5

For orders 3, 4, 5, we have found the same optimal coefficients for RKN schemes
as in [4]. These coefficients are recalled below.

Order 3 (s = 2): A third-order RKN scheme with 2 stages is given as:

c0 = α, c1 =
2−3α

3−6α
, b0 =

c1

2
− 1

3
c0(c1− c0)

, b1 = 1−b0,

b̄0 =

c1

2
− 1

6
c1− c0

, b̄1 =
1
2
− b̄0, ā1,0 =

1
6b1

,

α is a free parameter, a maximal CFL of 2.498 is obtained for α = 3−
√

3
6 .
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Order 4 (s = 3): A fourth-order RKN scheme with 3 stages is given as:

c0 = α, c1 =
1
2
, c2 = 1−α,

b0 =
1

6(1−2α)2 , b1 = 1−2b0, b2 = b0,

b̄0 = b0(1− c0), b̄1 = b1(1− c1), b̄2 = b2(1− c2),

ā1,0 =
(1−4α)(1−2α)

8(6α(α−1)+1)
, ā2,0 = 2α(1−2α), ā2,1 =

(1−2α)(1−4α)

2
,

α is a free parameter a maximal CFL of 3.939 is obtained for

α =
1

4
(
1+ cos(π

9 )
) .

Order 5 (s = 4): A family of RKN schemes of order 5 with two parameters is
given in [6]. A maximal CFL of 2.908 is obtained for

α =
4

11+
√

16
√

10−39
, β =

165α2−195α +50−
√

5(45α4 +90α3−105α2 +36α−4)
225α2−240α +60

.

The ci are given as

c0 = 0, c1 = α, c3 = β , c2 =
12−15(α +β )+20αβ

15−20(α +β )+30αβ
.

From order 6 to 10, the optimal coefficients for RKN schemes are new. They
have been computed numerically, only, in the following subsections.

1.4.3 Order 6 (s = 5)

A family with one parameter is given in [6]. Using Algorithm 1, we have obtained
a maximal CFL of 3.089 for

α ≈ 0.22918326

The ci are given as

c0 = 0, c1 = α, c2 =
1
2
, c3 = 1−α, c4 = 1.

Another family with two parameters can also be constructed. The maximal CFL is
also equal to 3.089 for this family.
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1.4.4 Order 7 (s = 7)

A family of RKN schemes of order 7 with four free parameters is given in [6].
After optimization, we have obtained a maximal CFL of 7.0875 with the following
parameters:

α0 = 0.110451398065702, α1 = 0.173816271367107

α2 = 0.459433163929695, α3 = 0.652002232653235

The coefficients ci are given by

c0 = 0, c1 = α0, c2 = α1, c3 = α2, c4 = α3, c5 =
− 1

7 +
σ c

1
6 −

σ c
2

5 +
σ c

3
4 −

σ c
4

3

− 1
6 +

σ c
1

5 −
σ c

2
4 +

σ c
3

3 −
σ c

4
2

, c6 = 1.

1.4.5 Order 8 (s = 8)

A family of RKN schemes of order 8 with four free parameters is given in [6]. A
maximal CFL of 7.8525 is obtained with the following parameters

α0 = 0.135294127286225, α1 = 0.24015308384744

α2 = 0.453046953126355, α3 = 0.695039606659698

The coefficients ci are given by

c0 = 0, c1 =
α0
2 , c2 = α0, c3 = α1, c4 = α2, c5 = α3

c6 =
− 1

8 +
σ c

1
7 −

σ c
2

6 +
σ c

3
5 −

σ c
4

4 +
σ c

5
3

− 1
7 +

σ c
1

6 −
σ c

2
5 +

σ c
3

4 −
σ c

4
3 +

σ c
5

2

, c7 = 1.

1.4.6 Order 10 (s = 11)

In [7], the author present a family of RKN schemes of order 10 with four free pa-
rameters (b0,b2,b3,r5). r5 is an additional free parameter that we have recognized
during the construction of the family, it is defined as

r5 =
s−1

∑
i=0

bic3
i

i−1

∑
j=0

āi j c5
j .

Following the work in [7] we denote the Gauss-Lobatto nodes γ1,γ2,γ3,γ4:
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γ1 =

1
2

1−

√
7+2

√
7

21

 , γ4 = 1− γ1,

γ2 =
1
2

1−

√
7−2

√
7

21

 , γ3 = 1− γ2.

Among the 24 permutations choice possible for (c3,c4,c5,c6), the CFL is maximal
for the following permutation

(c3,c4,c5,c6) = (γ4,γ3,γ1,γ2) .

The other ci are given by

c0 = 0, c2 =
c4 (3c4−5c3)

5c4−10c3
, c1 =

c2

2
, c7 = c3, c8 = c2, c9 = 0, c10 = 1.

For this permutation, we have obtained a maximal CFL of 4.7527 with the following
parameter

r5 = 0.0021632268153138

The CFL is maximal for this permutation only, it is strictly lower for other permu-
tations. For other parameters, we can choose the values proposed by Hairer in [7]:

b0 = 0, b2 =−0.1, b3 = 0,

since the CFL does not depend on these three parameters.

1.5 Efficiency and numerical results

1.5.1 Efficiency

Let s be the number of stages of the RKN scheme. The efficiency is given as:

Efficiency =
CFL number

2s
.

An optimal scheme is a scheme such that the efficiency is maximal. Since s is con-
stant, the efficiency is maximal for a maximal CFL number. In Table 1.1, we have
written the efficiency of the different RKN schemes. We observe that the orders 7

Table 1.1 Efficiency of optimized Runge-Kutta-Nyström schemes of different orders

Order 2 3 4 5 6 7 8 10
Efficiency 100 % 62.5 % 65.7 % 36.4 % 30.9 % 50.6 % 49.1 % 21.6 %
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and 8 are attractive since they have a correct efficiency (about 50 %). It is important
to have optimal schemes when the ODE to be solved is stiff, i.e. when the obtained
accuracy is satisfactory when the maximal time step is chosen. However, for low
orders (such as 2, 3), the accuracy is usually poor such that the time step must be
chosen much smaller than the maximal time step to obtain a good solution.

1.5.2 Numerical results

Using the higher order-finite element code Montjoie, we applied the RKN schemes
to solve the non-linear Maxwell’s equations in 1-D, namely:

ε∞

c2
∂ 2E
∂ t2 +

1
c2

∂ 2

∂ t2

(
∑
k

Pk

)
− ∂ 2E

∂ z2 +
ρ

c2
∂ 2

∂ t2

(
|E|2E

)
= 0

1
ω2

k

∂ 2Pk

∂ t2 +Pk = νk E

E(z, t = 0) =
∂E
∂ t

(z, t = 0) = 0

E(z = 0, t) = Given impulsion

Here the electric field is searched as a complex field:

E = Ex + iEy,

where Ex and Ey are x and y-components of the electric field. Pk is the polarization,
ε∞,c,ρ,νk,ωk are physical constants. We take the constants corresponding to silica:

ε∞ = 1, c = 299792458, ν0 = 0.6961663, ν1 = 0.4079426, ν2 = 0.8974794

ω0 =
2πc

0.0684043 ·10−6 , ω1 =
2πc

0.1162414 ·10−6 , ω2 =
2πc

9.896161 ·10−6 , γ = 10−33.

The impulsion is centered at λ0 = 1.053µm with a Gaussian envelope and a circular
polarization:

Given impulsion = E0 e
−1

2

(
t−Tmax

τ

)2

eiωLt

where

ωL =
2πc

1.053 ·10−6 , Tmax = 6 ·10−14, τ =
2

2
√

2log2
·10−14, E0 = 109.
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The computational domain is the 1-D interval Ω = [0,1.5 ·10−4], a Neumann bound-
ary condition is set on the right extremity. 1-D finite elements are used to discretize
these equations:

E ∈Vh =
{

u ∈ H1(Ω) such that u|[zi,zi+1] ∈Q10
}

where (zi)0≤i≤250 are a regular subdivision of the computational domain Ω . The
mesh contains 250 elements (i.e. 2501 degrees of freedom), the numerical error
due to the space discretization is around 10−6 (the domain contains more than 200
wavelengths). After space discretization, the system can be written in the form

y′′ = f (t,y)

by using the displacement as unknown

D = ε∞E +

(
∑
k

Pk

)
+ρ|E|2E.

The electric field E is recovered from D by solving the non-linear equation writ-
ten above for each degree of freedom. This equation is solved with a Newton’s
method, two or three iterations are sufficient to get machine precision accuracy.
Gauss-Lobatto points are used both for interpolation (for the discretization of Vh)
and quadrature, leading to a diagonal mass matrix. As a result the computation of
f (t,y) is explicit, it does not involve any solution of a linear system. The electric
field is propagated from t = 0 until t = 5 ·10−11, in Figure 1.3, the solution is plot-
ted at two different times. The solution at the final time t = 5 · 10−11 is compared
with a reference solution computed with a small time step (with tenth order RKN
scheme). We try to reach an error of 0.01 % for each scheme in order to compare
the efficiency. In Table 1.2, the computational time needed to obtain this accuracy
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Fig. 1.3 Electric field Ex for t = 10−12 and t = 5 ·10−11
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Table 1.2 Computational time needed to reach an accuracy of 0.01% for different orders of RKN
schemes.
Order 2 3 4 5 6 7 8 10
Time 14 164s 730s 144s 60.9s 70.8s 43.2s 44.8s 103s
Error 1.0 ·10−4 1.0 ·10−4 1.0 ·10−4 1.5 ·10−6 7.3 ·10−7 6.5 ·10−7 1.1 ·10−7 2.0 ·10−10

∆ t 9.1 ·10−20 2.9 ·10−18 2.0 ·10−17 6.2 ·10−17 6.6 ·10−17 1.5 ·10−16 1.7 ·10−16 1.0 ·10−16

is given for each optimized RKN scheme. The simulations are performed in parallel
on 20 cores on an Intel-Xeon (2 Dodeca-core Haswell E5-2680, 2.5 Ghz). From or-
der 5, we are using the maximal time step allowed (because of the restrictive CFL),
that’s why the error is below 0.01 % for these orders. For orders 2, 3 and 4, the
time step required to obtain an error of 0.01% is much smaller than the maximal
time step, that’s why they are less efficient. In this case, we observe that low order
schemes (2, 3, 4) are limited by the accuracy whereas high-order schemes are lim-
ited by the CFL. We see that RKN schemes of order 7 or 8 are the most efficient for
this problem while order 10 is not very efficient because of its small CFL.

1.6 Conclusion

In this work we have proposed an algorithm to compute the CFL number of a RKN
scheme. By using this algorithm, we have computed optimal coefficients for RKN
schemes of order 6, 7, 8 and 10 that maximize the CFL number. The numerical
results we presented show the practical interest of these schemes, in paticular order
7 and 8. In fact, we have observed that lower order schemes are limited by the
accuracy while the scheme of order 10 is less efficient due to its small CFL. We
think that the efficiency can be further increased by adding more stages ([2], [3]).
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