High-order Finite Element Methods on Hybrid Meshes Including Pyramids. Application to Wave Equation and Helmholtz Equation.

M. Duruflé

IMB, Bacchus

14th January 2010

M. Duruflé (IMB, Bacchus) High-order Finite Element Methods on Hybrid

A (B) < (B) < (B)</p>

- S. Fauqueux, mixed spectral elements for wave and elastic equations (hexahedra)
- S. Pernet, Discontinuous Galerkin methods for Maxwell's equations (hexahedra)
- G.E. Karniadakis, S. Sherwin, T. Warburton, continuous and discontinuous finite elements on tetrahedra/prisms/pyramids by considering "degenerated" cube
- Bedrosian, Early work on pyramids, nodal basis functions for order 1 and 2
- Nigam, Philips, Recent work on finite element spaces for pyramids, infinite pyramid is the reference element

M. Duruflé (IMB, Bacchus)

High-order Finite Element Methods on Hybrid

A test case : an optical filter

On the right, transmission coefficient versus frequency

- Frequency F = 1.0 is a resonant frequency of the device
- Enlightment of the device by a gaussian beam.
- PML around the computational domain.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A test case : an optical filter

On the right, transmission coefficient versus frequency

Frequency F = 1.0 is a resonant frequency of the device

• Enlightment of the device by a gaussian beam.

• PML around the computational domain.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A test case : an optical filter

On the right, transmission coefficient versus frequency

- Frequency F = 1.0 is a resonant frequency of the device
- Enlightment of the device by a gaussian beam.
- PML around the computational domain.

< 47 ▶

Numerical solution for Q_5 with 10 points by wavelength

< 🗇 🕨

.∃ >

On the right, numerical solution for Q2 with 10 points by wavelength

4 / 28

A >

Norm of the solution on the ouput, according to the frequency

< 17 ▶

Norm of the solution on the ouput, according to the frequency Which order is optimal to reach an error less than 10% ?

Order	2	3	4	5	6	7
Nb dofs	453 000	69 800	52 000	33 200	47 700	42 200

< 47 ▶

$$-\rho \omega^2 \boldsymbol{u} - \operatorname{div}(\mu \nabla \boldsymbol{u}) = \boldsymbol{f} \quad \in \Omega$$

Đ.

イロト イヨト イヨト イヨト

$$-\rho \, \omega^2 \, \boldsymbol{u} \, - \, \mathsf{div}(\mu \, \nabla \boldsymbol{u}) \, = \, \boldsymbol{f} \quad \in \Omega$$

Use of finite element method leads to the following linear system :

$$(-\omega^2 D_h + K_h) U_h = F_h$$

э

$$-\rho \, \omega^2 \, \boldsymbol{u} \, - \, \mathsf{div}(\mu \, \nabla \boldsymbol{u}) \, = \, \boldsymbol{f} \quad \in \Omega$$

Use of finite element method leads to the following linear system :

$$(-\omega^2 D_h + K_h) U_h = F_h$$

Our aim is to develop an efficient iterative solver for an high order of approximation *r*. Therefore, we need a fast matrix-vector product $(-\omega^2 D_h + K_h) U_h$

$$\hat{\varphi}_i = \hat{\varphi}_{i_1}(\hat{x}) \hat{\varphi}_{i_2}(\hat{y})$$

14th January 2010 6 / 28

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The transformation F_i DF_i , J_i jacobian matrix and determinant

$$(D_h)_{i,j} = \int_{\hat{K}} \rho \mathbf{J}_i \hat{\varphi}_i^{GL} \hat{\varphi}_j^{GL} d\hat{x}$$

Use of quadrature formulas $(\omega_m^{\chi}, \xi_m^{\chi})$ on the unit square/cube

- X can be equal to GL (Gauss-Lobatto quadrature, faster)
- X can be equal to G (Gauss quadrature, more accurate)

A (10) A (10)

$$(D_h)_{i,j} = \int_{\hat{K}} \rho \mathbf{J}_i \hat{\varphi}_i^{GL} \hat{\varphi}_j^{GL} d\hat{x}$$

Use of quadrature formulas $(\omega_m^{\chi}, \xi_m^{\chi})$ on the unit square/cube

- X can be equal to GL (Gauss-Lobatto quadrature, faster)
- X can be equal to G (Gauss quadrature, more accurate) $(D_h)_{i,j} = \sum_m \omega_m^X \rho J_i \hat{\varphi}_i^{GL}(\xi_m^X) \hat{\varphi}_j^{GL}(\xi_m^X) d\hat{x}$

Matrix-vector product $D_h U$ can be split into three steps :

$$V_m = \sum_{j} \hat{\varphi}_j^{GL}(\xi_m^X) u_j$$
$$W_m = \omega_m \rho J_i(\xi_m) V_m$$
$$y_i = \sum_{m} \hat{\varphi}_i^{GL}(\xi_m^X) W_m$$

M. Duruflé (IMB, Bacchus)

High-order Finite Element Methods on Hybrid

$$(D_h)_{i,j} = \int_{\hat{K}} \rho \mathbf{J}_i \hat{\varphi}_i^{GL} \hat{\varphi}_j^{GL} d\hat{x}$$

Use of quadrature formulas $(\omega_m^{\chi}, \xi_m^{\chi})$ on the unit square/cube

- X can be equal to GL (Gauss-Lobatto quadrature, faster)
- X can be equal to G (Gauss quadrature, more accurate) $(D_h)_{i,j} = \sum_m \omega_m^X \rho J_i \hat{\varphi}_i^{GL}(\xi_m^X) \hat{\varphi}_j^{GL}(\xi_m^X) d\hat{x}$

Underlying factorization

$$\hat{C}_{i,j} = \hat{\varphi}_i^{GL}(\xi_j^X)$$
$$(A_h)_m = \omega_m \rho J_i(\xi_m)$$
$$D_h = \hat{C} A_h \hat{C}^*$$

 \Rightarrow only storage of $\omega_m \rho J_i(\xi_m)$

$$(D_h)_{i,j} = \int_{\hat{K}} \rho \mathbf{J}_i \hat{\varphi}_i^{GL} \hat{\varphi}_j^{GL} d\hat{x}$$

Use of quadrature formulas $(\omega_m^{\chi}, \xi_m^{\chi})$ on the unit square/cube

- X can be equal to GL (Gauss-Lobatto quadrature, faster)
- X can be equal to G (Gauss quadrature, more accurate)

Product $Y = \hat{C}U$ is split into three steps :

$$\begin{aligned} \mathbf{v}_{i_{1},j_{2},j_{3}} &= \sum_{j_{1}} \hat{\varphi}_{j_{1}}^{GL}(\xi_{i_{1}}^{X}) \mathbf{u}_{j_{1},j_{2},j_{3}} \\ \mathbf{w}_{i_{1},i_{2},j_{3}} &= \sum_{j_{2}} \hat{\varphi}_{j_{2}}^{GL}(\xi_{i_{2}}^{X}) \mathbf{v}_{i_{1},j_{2},j_{3}} \\ \mathbf{y}_{i_{1},i_{2},i_{3}} &= \sum_{j_{2}} \hat{\varphi}_{j_{3}}^{GL}(\xi_{i_{3}}^{X}) \mathbf{w}_{i_{1},i_{2},j_{3}} \\ \end{aligned}$$

High-order Finite Element Methods on Hybrid

Fast matrix vector product with any points

$$(K_h)_{i,j} = \int_{\hat{K}} J_i DF_i^{-1} \mu DF_i^{*-1}(\xi_m) \hat{\nabla} \hat{\varphi}_j^{GL} \cdot \hat{\nabla} \hat{\varphi}_i^{GL} d\hat{x}$$

・ロト ・四ト ・ヨト ・ヨト

Đ.

Fast matrix vector product with any points

$$(K_h)_{i,j} = \int_{\hat{K}} J_i DF_i^{-1} \mu DF_i^{*-1}(\xi_m) \hat{\nabla} \hat{\varphi}_j^{GL} \cdot \hat{\nabla} \hat{\varphi}_i^{GL} d\hat{x}$$

Matrix-vector product $K_h U$ can be split into three steps

$$\mathbf{v}_m = \sum_j \hat{\nabla} \hat{\varphi}_j^{GL}(\xi_m^X) \mathbf{u}_j$$

$$egin{aligned} \mathbf{w}_m &= \omega_m \mathbf{J}_i \, \mathbf{D} \mathbf{F}_i^{-1} \mu \mathbf{D} \mathbf{F}_i^{*-1} \mathbf{v}_m \ \mathbf{y}_i &= \sum_{q} \hat{
abla} \hat{arphi}_i^{GL}(\xi_m^X) \mathbf{w}_m \end{aligned}$$

Fast matrix vector product with any points

$$(K_h)_{i,j} = \int_{\hat{K}} J_i DF_i^{-1} \mu DF_i^{*-1}(\xi_m) \hat{\nabla} \hat{\varphi}_j^{GL} \cdot \hat{\nabla} \hat{\varphi}_i^{GL} d\hat{x}$$

Underlying factorization

$$\hat{S}_{i,j} = \hat{\nabla} \hat{\varphi}_i^{GL}(\xi_j^X)$$
$$(B_h)_m = \omega_m J_i DF_i^{-1} \mu DF_i^{*-1}$$
$$K_h = \hat{S} B_h \hat{S}^*$$

 \Rightarrow only storage of $J_i DF_i^{-1} \mu DF_i^{*-1}$

By using the matrices

$$egin{array}{lll} \hat{m{C}}_{i,j} &= \hat{arphi}_i^{GL}(\xi_j^X) \ \hat{m{S}}_{i,j} &= \hat{
abla} \hat{m{\phi}}_i^{GL}(\xi_j^X) \ \hat{m{R}}_{i,j} &= \hat{
abla} \hat{arphi}_i^X(\xi_j^X) \end{array}$$

we have $\hat{S} = \hat{R}\hat{C}$ final matrix : $\hat{C}(-\omega^2 A_h + \hat{R}B_h\hat{R}^*)\hat{C}^*$

r is the order of approximation

For hexahedral elements (tensorization), complexity in $O(r^4)$ For tetrahedral elements (no tensorization), complexity in $O(r^6)$

- If we use Gauss-Lobatto points to integrate : $\hat{C} = I$
- Same storage for Gauss or GL points
- Matrix-vector product slower with Gauss integration
- Loss of one order for GL points in 3-D

Matrix vector product faster than with tetrahedral ?

Comparison between hexahedral and tetrahedral elements, for computational time (left plot) and storage (right plot)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Iterative methods used

Evolution of the residual norm for the scattering of a perfectly conductor disc (Dirichlet condition).

- GMRES, BICGSTAB and QMR for complex unsymmetric matrices
- COCG, BICGCR for complex symmetric matrices

Iterative methods used

Evolution of the residual norm for the scattering of a dielectric disc ($\rho = 4$).

A (10) > A (10) > A (10)

Iterative methods used

• We choose to use BICGCR (faster) or COCG (less storage)

Need of preconditioning techniques to have less iterations

M. Duruflé (IMB, Bacchus)

High-order Finite Element Methods on Hybrid

14th January 2010

10/28

$$-k^2(\alpha + i\beta)\boldsymbol{u} - \Delta\boldsymbol{u} = 0$$

• see Y. Saad, Iterative methods for sparse linear systems

$$-k^2(\alpha + i\beta)\boldsymbol{u} - \Delta\boldsymbol{u} = 0$$

- see Y. Saad, Iterative methods for sparse linear systems
- We use a Q₁ subdivided mesh to compute matrix

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

On the left, initial mesh Q_3 , on the right, subdivided mesh Q_1

$$-k^2(\alpha + i\beta)\boldsymbol{u} - \Delta\boldsymbol{u} = 0$$

• see Y. Saad, Iterative methods for sparse linear systems

- Multigrid method on the damped Helmholtz equation
 - see Y. A. Erlangga and al, (Phd at Delft)

$$-k^2(\alpha + i\beta)\mathbf{u} - \Delta \mathbf{u} = 0$$

- see Y. Saad, Iterative methods for sparse linear systems
- Multigrid method on the damped Helmholtz equation
 - see Y. A. Erlangga and al, (Phd at Delft)
- Without damping, both preconditioners **do not lead** to convergence.
- A good choice of parameter is $\alpha = 1, \ \beta = 0.5$

- Cobra cavity of length 20, and depth 4
- First order absorbing boundary condition on the yellow face

< (17) > <

Number of dofs to reach less than 5 % L² error

Order	struct Q ₄	struct Q6	struct Q8	n.s. Q 4	n.s. Q 6	n.s. P 4
Nb dofs	330 000	185 000	95 600	567,000	466 000	360 000

Finite element	structured Q8	non-structured Q ₆	non-structured P ₄
No preconditioning	9860 s	NC	NC
ILUT(0.01)	1021 s	13766 s	8036s
Two-grid	1082 s	6821 s	14016s

M. Duruflé (IMB, Bacchus)

High-order Finite Element Methods on Hybrid

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Э

Finite element	structured Q8	non-structured Q ₆	non-structured P ₄
No preconditioning	9860 s	NC	NC
ILUT(0.01)	1021 s	13766 s	8036s
Two-grid	1082 s	6821 s	14016s

Finite element	structured Q8	non-structured Q ₆	non-structured P ₄
No preconditioning	32 Mo	162 Mo	251 Mo
ILUT(0.01)	150 Mo	1 250 Mo	1 400 Mo
Two-grid	60 Mo	283 Mo	710 Mo

Э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Scattering by a plane

- Real part of the diffracted for an oblique incident plane wave
- Q4, 7.2 million of dofs (2 Go memory)
- 280 iterations and 2 hours with multigrid preconditioning
- More than 20 000 iterations without preconditioning

Time-harmonic elastic equation

- Displacement components u_x and u_z
- Q7, 4.3 million of dofs (with PML layers)
- 170 iterations and 50mn with multigrid preconditioning
- More than 20 000 iterations without preconditioning

- *P_r* optimal finite element space for tetrahedra
- Is Q_r the right choice for hexahedra ? Why not choosing P_r (with DG method for instance) ?
- If transformation *F_i* is affine (i.e. paralleloid), *P_r* is the optimal finite element space
- If transformation *F_i* is trilinear (general hexahedron), *Q_r* is the optimal finite element space

- *P_r* optimal finite element space for tetrahedra
- Is Q_r the right choice for hexahedra ? Why not choosing P_r (with DG method for instance) ?
- If transformation *F_i* is affine (i.e. paralleloid), *P_r* is the optimal finite element space
- If transformation *F_i* is trilinear (general hexahedron), *Q_r* is the optimal finite element space

We define the finite element space with real element K_i :

 $V_h = \{ u \in H^1(\Omega) \text{ such that } u |_{K_i} \in V_F^r \}$

 V_F^r : finite element space for the real element We define the finite element space with reference element \hat{K} :

$$V_h = \{ u \in H^1(\Omega) \text{ such that } u|_{K_i} \circ F_i \in \hat{V}^r \}$$

 \hat{V}^r : finite element space for the reference element Condition of optimality :

$$V_F^r \supset P_r$$

For hexahedra, we can prove :

$$V_F^r \supset P_r \Leftrightarrow \hat{V}^r \supset Q_r$$

Idea of the reason of optimality of Q_r

We consider a monomial of P_r :

$$x^m y^n z^p, \qquad m+n+p \leq r$$

and we write its expression on reference element with transformation F_i :

$$x = a_1 + a_2 \hat{x} + a_3 \hat{y} + a_4 \hat{z} + a_5 \hat{x} \hat{z} + a_6 \hat{y} \hat{z} + a_7 \hat{x} \hat{y} + a_8 \hat{x} \hat{y} \hat{z}$$

 $y = b_1 + b_2 \hat{x} + b_3 \hat{y} + b_4 \hat{z} + b_5 \hat{x} \hat{z} + b_6 \hat{y} \hat{z} + b_7 \hat{x} \hat{y} + b_8 \hat{x} \hat{y} \hat{z}$

 $Z = C_1 + C_2 \hat{x} + C_3 \hat{y} + C_4 \hat{z} + C_5 \hat{x} \hat{z} + C_6 \hat{y} \hat{z} + C_7 \hat{x} \hat{y} + C_8 \hat{x} \hat{y} \hat{z}$

By expanding $x^m y^n z^p$, the higher-degree term is equal to :

 $a_8^m b_8^n c_8^p \hat{x}^{m+n+p} \hat{y}^{m+n+p} \hat{z}^{m+n+p}$

Hence we have obtained for m + n + p = r the higher-degree term of Q_r .

M. Duruflé (IMB, Bacchus)

Then, thanks to Bramble-Hilbert lemma, it is easy to get :

 $||u - u_h||_1 \le Ch^r ||u||_{r+1}$

However, in our case, integrals are not evaluated exactly, we have to consider Strang Lemma :

$$||u - u_h||_1 \leq C \inf_{v_h \in V_h} \{ ||u - v_h||_1 + \sup_{w_h \in V_h} \frac{|a(v_h, w_h) - a_h(v_h, w_h)|}{||w_h||_1} \}$$

Here we choose $v_h = \prod_r u$ with the projector on real space, so that

$$v_h \in P_r \Rightarrow \hat{v}_h \in Q_r$$

 $\nabla v_h \in P_{r-1} \Rightarrow \widehat{\nabla v_h} \in Q_{r-1}$

Thus, we are able to prove that :

$$(D - D_h)(v_h, w_h) = (D - D_h)(v_h - \pi_{r-1}v_h, w_h - \pi_0w_h)$$

for Gauss rules, since $J_i \in Q_2$ (so $J_i \pi_{r-1} v_h w_h \in Q_{2r+1}$)

$$\Leftrightarrow |(D-D_h)(v_h,w_h)| \leq Ch^{r+1}||v_h||_r||w_h||_1$$

for Gauss-Lobatto rules

 $(D - D_h)(v_h, w_h) = (D - D_h)(v_h - \pi_{r-3}v_h, w_h - \pi_0w_h)$ $\Leftrightarrow |(D - D_h)(v_h, w_h)| \le Ch^{r-1}||v_h||_{r-2}||w_h||_1$

Therefore, we have a loss of order for Gauss-Lobatto rules

э.

For stiffness term, we have :

$$(K - K_h)(v_h, w_h) = (D - D_h)(\nabla v_h - \pi_r \nabla v_h, \nabla w_h)$$

for Gauss rules, since $J_i DF_i^{*-1} \hat{\nabla} \hat{wh} \in Q_{r+1}$

$$\Leftrightarrow |(K - K_h)(v_h, w_h)| \leq C h^{r+1} ||v_h||_{r+1} ||w_h||_1$$

for Gauss-Lobatto rules

$$(K - K_h)(v_h, w_h) = (D - D_h)(\nabla v_h - \pi_{r-2} \nabla v_h, \nabla w_h)$$
$$\Leftrightarrow |(D - D_h)(v_h, w_h)| \le C h^{r-1} ||v_h||_{r-1} ||w_h||_1$$

Therefore, we have a loss of order for Gauss-Lobatto rules

19/28

Quadrature error

Illustration of this effect for a cube meshed with split tetrahedra

M. Duruflé (IMB, Bacchus)

14th January 2010

- Automatic generation of high-quality hexahedral meshes is difficult
- "Solution of split tetrahedra" is not interesting
- Some mesh tools are able to produce meshes with a high ratio of hexahedra and some remaining pyramids/tets/prisms.
- Pyramids elements not as well known as other elements.

Two main approaches

Simplest expression of F_i (Bedrosian) :

$$F_i(\hat{x}, \hat{y}, \hat{z}) = A + B\hat{x} + C\hat{y} + D\hat{z} + \frac{\hat{x}\hat{y}}{4(1-\hat{z})}(S_1 + S_3 - S_2 - S_4)$$

Э

- Use of rational fractions to define *F_i*
 - Early work of Bedrosian with explicit first and second order basis functions
 - Work of Sherwin, Karniadakis, Warburton : h-p Basis functions obtained by considering a degenerated cube (coincidence with Bedrosian functions for r = 1)
 - Recent work of Nigam, Phillips with a reference infinite pyramid (but same basis functions as Bedrosian for r = 1)
- Use of piecewise polynomial to define *F_i* (polynomial on each sub-tetrahedron)
 - Work of Wieners, with first and second order basis functions
 - Work of Knabner and Summ, with an analysis of this transformation

ヘロト ヘ部ト ヘヨト ヘヨト

21/28

 Work of Bluck and Walker, with a proposition of high order basis functions Same approach than for hexahedra : We consider a monomial of P_r :

$$x^{m}, \qquad m \leq r$$

$$(a+b\hat{x}+c\hat{y}+d\hat{z}+\alpha(\frac{\hat{x}\hat{y}}{1-\hat{z}}))^{m}$$

$$\sum_{k} C_{m}^{k}(a+b\hat{x}+c\hat{y})^{k}(d\hat{z})^{k}\alpha^{m-k}(\frac{\hat{x}\hat{y}}{1-\hat{z}})^{m-k}$$

After some calculations, you can show that the optimal finite element space is

$$\hat{V}^{r} = P_{r} \oplus \sum_{k=0}^{r-1} (\frac{\hat{x}\hat{y}}{1-\hat{z}})^{r-k} P_{k}(\hat{x},\hat{y})$$

14th January 2010

22/28

Numerical comparison between different methods

We perform a dispersion analysis on the following hybrid mesh :

M. Duruflé (IMB, Bacchus)

High-order Finite Element Methods on Hybrid

14th January 2010 23 / 28

Numerical comparison between different methods

14th January 2010

- We obtained same finite element space as Demkowicz/ZagImayr
- We obtained a smaller finite element space than Nigam/Phillips
- We proposed modifications of basis functions of Sherwin/Karniadakis/Warburton so that they span the optimal finite element space
- Alternative approach using piecewise polynomial (by splitting pyramid in two or four tets) is not consistent for non-affine pyramids

Then, thanks to Bramble-Hilbert lemma, it is easy to get :

 $||u - u_h||_1 \le Ch^r ||u||_{r+1}$

However, in our case, integrals are not evaluated exactly, we have to consider Strang Lemma :

$$||u - u_h||_1 \leq C \inf_{v_h \in V_h} \{ ||u - v_h||_1 + \sup_{w_h \in V_h} \frac{a(v_h, w_h) - a_h(v_h, w_h)|}{||w_h||_1} \}$$

Here we choose $v_h = \prod_r u$ with the projector on real space, so that

$$v_h \in P_r \Rightarrow \hat{v}_h \in \hat{V}^r$$
$$\nabla v_h \in P_{r-1} \Rightarrow \widehat{\nabla v_h} \in \hat{V}^{r-1}$$

By expressing integrals on the cube, we are able to prove that :

$$(D-D_h)(v_h,w_h) = (D-D_h)(v_h - \pi_r v_h,w_h - \pi_0 w_h)$$

for Gauss-Jacobi rules (because of $(1 - \hat{z})^2$ weight), since $J_i \in Q_1$ (so $J_i \pi_r v_h w_h \in Q_{2r+1}$)

$$\Leftrightarrow |(D-D_h)(v_h,w_h)| \leq C h^{r+2} ||v_h||_{r+1} ||w_h||_1$$

We could use Gauss-Jacobi-Lobatto rules for mass term without loss of accuracy

For stiffness term, we have :

$$(K - K_h)(v_h, w_h) = (D - D_h)(\nabla v_h - \pi_r \nabla v_h, \nabla w_h)$$

for Gauss rules, since $J_i DF_i^{*-1} \hat{\nabla} \hat{wh} \in Q_{r+1}$

$$\Leftrightarrow |(K - K_h)(v_h, w_h)| \leq Ch^{r+1} ||v_h||_{r+1} ||w_h||_1$$

we can't use Gauss-Jacobi-Lobatto rules without loss of an order

Numerical results for Helmholtz equation

Comparison of three kind of meshes :

Numerical results for Helmholtz equation

For the scattering of a sphere :

M. Duruflé (IMB, Bacchus)

High-order Finite Element Methods on Hybrid

-∃ > >

For order 4 for tets, and order 5 for hex/hybrid, less than 2 % error :

Mesh type	Tetra	Hexa	Split Tetra	Hybrid
number of dofs	339 000	315 000	520 000	266 000
multigrid prec.	119 iter (587s)	130 iter (152s)	93 iter (266s)	128 iter (161s)

Numerical results for wave equation

Use of Discontinuous Galerkin formulation for solving wave equation :

$$\frac{\partial^2 u}{\partial t^2} - \Delta u = 0$$

M. Duruflé (IMB, Bacchus)

High-order Finite Element Methods on Hybrid

Efficiency of different kind of meshes for the piano-shaped cavity with a third order approximation on a fine mesh :

Mesh type	Tetra	Split Tetra	Hybrid
Obtained accuracy	5.7%	9.4 %	6.3%
Number of dofs	16.9 millions	49.3 millions	14.9 millions
Time step (freq = 14)	$\Delta t = 0.0004$	$\Delta t = 0.0002$	$\Delta t = 0.0005$
Computational time	4.3 days	12.3 days	1.2 day

Computational time obtained by summing computational time for each processor without cost of communications.

- E > - E >