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A test case : an optical filter

On the right, transmission coefficient versus frequency

Frequency F = 1.0 is a resonant frequency of the device

Enlightment of the device by a gaussian beam.

PML around the computational domain.

M. Duruflé (IMB, Bacchus) High-order Finite Element Methods on Hybrid Meshes Including Pyramids. Application to Wave Equation and Helmholtz Equation.14th January 2010 3 / 28



A test case : an optical filter

On the right, transmission coefficient versus frequency

Frequency F = 1.0 is a resonant frequency of the device

Enlightment of the device by a gaussian beam.

PML around the computational domain.
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Advantage to use high order method

Numerical solution for Q5 with 10 points by wavelength

Which order is
optimal to reach an error less than 10% ?

Order 2 3 4 5 6 7
Nb dofs 453 000 69 800 52 000 33 200 47 700 42 200
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Helmholtz equation

−ρω2 u − div(µ∇u) = f ∈ Ω
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Helmholtz equation

−ρω2 u − div(µ∇u) = f ∈ Ω

Use of finite element method leads to the following linear system :

(−ω2Dh + Kh) Uh = Fh
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Helmholtz equation

−ρω2 u − div(µ∇u) = f ∈ Ω

Use of finite element method leads to the following linear system :

(−ω2Dh + Kh) Uh = Fh

Our aim is to develop an efficient iterative solver for an high order of
approximation r . Therefore, we need a fast matrix-vector product
(−ω2Dh + Kh) Uh

M. Duruflé (IMB, Bacchus) High-order Finite Element Methods on Hybrid Meshes Including Pyramids. Application to Wave Equation and Helmholtz Equation.14th January 2010 5 / 28



Elementary matrices

Gauss-Lobatto points for Q5

on the unit square K̂

Tensorized basis functions :

ϕ̂i = ϕ̂i1(x̂) ϕ̂i2(ŷ)
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Elementary matrices

(0,0) (1,0)

(1,1)(0,1)

K̂
Fi Ki

A4

A1

A2

A3

The transformation Fi
DFi , Ji jacobian matrix and determinant

(Dh)i,j =

∫
K̂
ρJi ϕ̂

GL
i ϕ̂GL

j dx̂

Use of quadrature formulas (ωX
m, ξX

m) on the unit square/cube

X can be equal to GL (Gauss-Lobatto quadrature, faster)

X can be equal to G (Gauss quadrature, more accurate)
(Dh)i,j =

∑
m

ωX
m ρJi ϕ̂

GL
i (ξX

m) ϕ̂GL
j (ξX

m) dx̂
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X can be equal to G (Gauss quadrature, more accurate)
(Dh)i,j =

∑
m

ωX
m ρJi ϕ̂

GL
i (ξX

m) ϕ̂GL
j (ξX

m) dx̂

Matrix-vector product DhU can be split into three steps :

vm =
∑

j

ϕ̂GL
j (ξX

m)uj

wm = ωmρJi(ξm)vm

yi =
∑

m

ϕ̂GL
i (ξX

m)wm
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Elementary matrices

(Dh)i,j =

∫
K̂
ρJi ϕ̂

GL
i ϕ̂GL

j dx̂

Use of quadrature formulas (ωX
m, ξX

m) on the unit square/cube

X can be equal to GL (Gauss-Lobatto quadrature, faster)

X can be equal to G (Gauss quadrature, more accurate)
(Dh)i,j =

∑
m

ωX
m ρJi ϕ̂

GL
i (ξX

m) ϕ̂GL
j (ξX

m) dx̂

Underlying factorization

Ĉ i,j = ϕ̂GL
i (ξX

j )

(Ah)m = ωmρJi(ξm)

Dh = ĈAhĈ∗

⇒ only storage of ωmρJi(ξm)
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Elementary matrices

(Dh)i,j =

∫
K̂
ρJi ϕ̂

GL
i ϕ̂GL

j dx̂

Use of quadrature formulas (ωX
m, ξX

m) on the unit square/cube

X can be equal to GL (Gauss-Lobatto quadrature, faster)

X can be equal to G (Gauss quadrature, more accurate)

(Dh)i,j =
∑

m

ωX
m ρJi ϕ̂

GL
i (ξX

m) ϕ̂GL
j (ξX

m) dx̂

Product Y = ĈU is split into three steps :

vi1,j2,j3 =
∑

j1

ϕ̂GL
j1 (ξX

i1 )uj1,j2,j3

wi1,i2,j3 =
∑

j2

ϕ̂GL
j2 (ξX

i2 )vi1,j2,j3

yi1,i2,i3 =
∑

j3

ϕ̂GL
j3 (ξX

i3 )wi1,i2,j3
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Fast matrix vector product with any points

(Kh)i,j =

∫
K̂

Ji DF−1
i µDF ∗−1

i (ξm) ∇̂ϕ̂GL
j · ∇̂ϕ̂GL

i dx̂
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Fast matrix vector product with any points

(Kh)i,j =

∫
K̂

Ji DF−1
i µDF ∗−1

i (ξm) ∇̂ϕ̂GL
j · ∇̂ϕ̂GL

i dx̂

Matrix-vector product KhU can be split into three steps

vm =
∑

j

∇̂ϕ̂GL
j (ξX

m)uj

wm = ωmJi DF−1
i µDF ∗−1

i vm

yi =
∑

q

∇̂ϕ̂GL
i (ξX

m)wm
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Fast matrix vector product with any points

(Kh)i,j =

∫
K̂

Ji DF−1
i µDF ∗−1

i (ξm) ∇̂ϕ̂GL
j · ∇̂ϕ̂GL

i dx̂

Underlying factorization

Ŝi,j = ∇̂ϕ̂GL
i (ξX

j )

(Bh)m = ωmJi DF−1
i µDF ∗−1

i

Kh = ŜBhŜ∗

⇒ only storage of Ji DF−1
i µDF ∗−1

i
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Fast matrix vector product with any points

By using the matrices
Ĉ i,j = ϕ̂GL

i (ξX
j )

Ŝi,j = ∇̂ϕ̂GL
i (ξX

j )

R̂ i,j = ∇̂ϕ̂X
i (ξX

j )

we have Ŝ = R̂Ĉ
final matrix : Ĉ(−ω2Ah + R̂BhR̂∗)Ĉ∗
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Fast matrix vector product with any points

r is the order of approximation
For hexahedral elements (tensorization), complexity in O(r4)
For tetrahedral elements (no tensorization), complexity in O(r6)

If we use Gauss-Lobatto points to integrate : Ĉ = I
Same storage for Gauss or GL points
Matrix-vector product slower with Gauss integration
Loss of one order for GL points in 3-D
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Matrix vector product faster than with tetrahedral ?
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Iterative methods used
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QMR
BICGCR
BICGSTAB
GMRES

Evolution of the residual norm for the scattering of a perfectly conductor disc
(Dirichlet condition).

GMRES, BICGSTAB and QMR for complex unsymmetric matrices

COCG, BICGCR for complex symmetric matrices

0 2 4 6 8 10 12
x 104

10−6

10−4

10−2

100

102
COCG
GMRES
QMR
BICGCR
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We choose to use BICGCR (faster) or COCG (less storage)

Need of preconditioning techniques to have less iterations

M. Duruflé (IMB, Bacchus) High-order Finite Element Methods on Hybrid Meshes Including Pyramids. Application to Wave Equation and Helmholtz Equation.14th January 2010 10 / 28



Iterative methods used

0 2 4 6 8 10 12
x 104

10−6

10−4

10−2

100

102
COCG
GMRES
QMR
BICGCR
BICGSTAB

Evolution of the residual norm for the scattering of a dielectric disc
(ρ = 4).

We choose to use BICGCR (faster) or COCG (less storage)

Need of preconditioning techniques to have less iterations
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Preconditioning used

Incomplete factorization with threshold on the damped Helmholtz
equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems
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Preconditioning used

Incomplete factorization with threshold on the damped Helmholtz
equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems
We use a Q1 subdivided mesh to compute matrix

On the left, initial mesh Q3, on the right, subdivided mesh Q1
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Preconditioning used

Incomplete factorization with threshold on the damped Helmholtz
equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems

Multigrid method on the damped Helmholtz equation
see Y. A. Erlangga and al, (Phd at Delft)
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Preconditioning used

Incomplete factorization with threshold on the damped Helmholtz
equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems

Multigrid method on the damped Helmholtz equation
see Y. A. Erlangga and al, (Phd at Delft)

Without damping, both preconditioners do not lead to
convergence.

A good choice of parameter is α = 1, β = 0.5
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Scattering by a cobra cavity

Cobra cavity of length 20, and depth 4

First order absorbing boundary condition on the yellow face

Finite element structured Q8 non-structured Q6 non-structured P4
No preconditioning 9 860 s NC NC
ILUT(0.01) 1 021 s 13 766 s 8 036 s
Two-grid 1 082 s 6 821 s 14 016 s

Finite element structured Q8 non-structured Q6 non-structured P4
No preconditioning 32 Mo 162 Mo 251 Mo
ILUT(0.01) 150 Mo 1 250 Mo 1 400 Mo
Two-grid 60 Mo 283 Mo 710 Mo
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Scattering by a cobra cavity

Number of dofs to reach less than 5 % L2 error
Order struct Q4 struct Q6 struct Q8 n.s. Q4 n.s. Q6 n.s. P4
Nb dofs 330 000 185 000 95 600 567,000 466 000 360 000

Finite element structured Q8 non-structured Q6 non-structured P4
No preconditioning 9 860 s NC NC
ILUT(0.01) 1 021 s 13 766 s 8 036 s
Two-grid 1 082 s 6 821 s 14 016 s

Finite element structured Q8 non-structured Q6 non-structured P4
No preconditioning 32 Mo 162 Mo 251 Mo
ILUT(0.01) 150 Mo 1 250 Mo 1 400 Mo
Two-grid 60 Mo 283 Mo 710 Mo
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Scattering by a plane

Real part of the diffracted for an oblique incident plane wave

Q4, 7.2 million of dofs (2 Go memory)

280 iterations and 2 hours with multigrid preconditioning

More than 20 000 iterations without preconditioning
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Time-harmonic elastic equation

Displacement components ux and uz

Q7, 4.3 million of dofs (with PML layers)

170 iterations and 50mn with multigrid preconditioning

More than 20 000 iterations without preconditioning
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Why do we choose Qr for hexahedra ?

Pr optimal finite element space for tetrahedra

Is Qr the right choice for hexahedra ? Why not choosing Pr (with
DG method for instance) ?

If transformation Fi is affine (i.e. paralleloid ), Pr is the optimal
finite element space

If transformation Fi is trilinear (general hexahedron ), Qr is the
optimal finite element space
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Condition of optimality

We define the finite element space with real element Ki :

Vh = {u ∈ H1(Ω) such that u|Ki ∈ V r
F}

V r
F : finite element space for the real element

We define the finite element space with reference element K̂ :

Vh = {u ∈ H1(Ω) such that u|Ki ◦ Fi ∈ V̂ r}
V̂ r : finite element space for the reference element
Condition of optimality :

V r
F ⊃ Pr

For hexahedra, we can prove :

V r
F ⊃ Pr ⇔ V̂ r ⊃ Qr
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Idea of the reason of optimality of Qr

We consider a monomial of Pr :

xmynzp, m + n + p ≤ r

and we write its expression on reference element with transformation
Fi :

x = a1 + a2x̂ + a3ŷ + a4ẑ + a5x̂ ẑ + a6ŷ ẑ + a7x̂ ŷ + a8x̂ ŷ ẑ

y = b1 + b2x̂ + b3ŷ + b4ẑ + b5x̂ ẑ + b6ŷ ẑ + b7x̂ ŷ + b8x̂ ŷ ẑ

z = c1 + c2x̂ + c3ŷ + c4ẑ + c5x̂z + c6ŷ ẑ + c7x̂ ŷ + c8x̂ ŷ ẑ

By expanding xmynzp, the higher-degree term is equal to :

am
8 bn

8cp
8 x̂m+n+pŷm+n+pẑm+n+p

Hence we have obtained for m + n + p = r the higher-degree term of
Qr .
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Influence of quadrature

Then, thanks to Bramble-Hilbert lemma, it is easy to get :

||u − uh||1 ≤ Chr ||u||r+1

However, in our case, integrals are not evaluated exactly, we have to
consider Strang Lemma :

||u − uh||1 ≤ C inf
vh∈Vh

{ ||u − vh||1 + sup
wh∈Vh

|a(vh,wh)− ah(vh,wh)|
||wh||1

}

Here we choose vh = Πr u with the projector on real space, so that

vh ∈ Pr ⇒ v̂h ∈ Qr

∇vh ∈ Pr−1 ⇒ ∇̂vh ∈ Qr−1
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Quadrature error

Thus, we are able to prove that :

(D − Dh)(vh,wh) = (D − Dh)(vh − πr−1vh,wh − π0wh)

for Gauss rules, since Ji ∈ Q2 (so Ji πr−1vh wh ∈ Q2r+1)

⇔ |(D − Dh)(vh,wh)| ≤ Chr+1||vh||r ||wh||1
for Gauss-Lobatto rules

(D − Dh)(vh,wh) = (D − Dh)(vh − πr−3vh,wh − π0wh)

⇔ |(D − Dh)(vh,wh)| ≤ Chr−1||vh||r−2||wh||1
Therefore, we have a loss of order for Gauss-Lobatto rules
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Quadrature error

For stiffness term, we have :

(K − Kh)(vh,wh) = (D − Dh)(∇vh − πr∇vh,∇wh)

for Gauss rules, since JiDF ∗−1
i ∇̂ŵh ∈ Qr+1

⇔ |(K − Kh)(vh,wh)| ≤ Chr+1||vh||r+1||wh||1
for Gauss-Lobatto rules

(K − Kh)(vh,wh) = (D − Dh)(∇vh − πr−2∇vh,∇wh)

⇔ |(D − Dh)(vh,wh)| ≤ Chr−1||vh||r−1||wh||1
Therefore, we have a loss of order for Gauss-Lobatto rules
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Quadrature error

Illustration of this effect for a cube meshed with split tetrahedra
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Why pyramids ?

Automatic generation of high-quality hexahedral meshes is difficult

“Solution of split tetrahedra” is not interesting

Some mesh tools are able to produce meshes with a high ratio of
hexahedra and some remaining pyramids/tets/prisms.

Pyramids elements not as well known as other elements.
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Two main approaches
K̂

Ŝ1 = (−1,−1, 0)

Ŝ2 = (1,−1, 0)

Ŝ5 = (0, 0, 1)

Ŝ4 = (−1, 1, 0)

Ŝ3 = (1, 1, 0)

F

ẑ

x̂

ŷ

K

S5

S1

S2

S3

S4

Simplest expression of Fi (Bedrosian) :

Fi(x̂ , ŷ , ẑ) = A + Bx̂ + Cŷ + Dẑ +
x̂ ŷ

4(1− ẑ)
(S1 + S3 − S2 − S4)
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Two main approaches

Use of rational fractions to define Fi

Early work of Bedrosian with explicit first and second order basis
functions
Work of Sherwin, Karniadakis, Warburton : h-p Basis functions
obtained by considering a degenerated cube (coincidence with
Bedrosian functions for r = 1)
Recent work of Nigam, Phillips with a reference infinite pyramid (but
same basis functions as Bedrosian for r = 1)

Use of piecewise polynomial to define Fi (polynomial on each
sub-tetrahedron)

Work of Wieners, with first and second order basis functions
Work of Knabner and Summ, with an analysis of this transformation
Work of Bluck and Walker, with a proposition of high order basis
functions
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Optimal finite element space

Same approach than for hexahedra : We consider a monomial of Pr :

xm, m ≤ r

(a + bx̂ + cŷ + dẑ + α(
x̂ ŷ

1− ẑ
))m

∑
k

Ck
m (a + bx̂ + cŷ)k (dẑ)kαm−k (

x̂ ŷ
1− ẑ

)m−k

After some calculations, you can show that the optimal finite element
space is

V̂ r = Pr ⊕
r−1∑
k=0

(
x̂ ŷ

1− ẑ
)r−k Pk (x̂ , ŷ)
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Numerical comparison between different methods

We perform a dispersion analysis on the following hybrid mesh :
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Numerical comparison between different methods
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Numerical comparison between different methods

We obtained same finite element space as Demkowicz/Zaglmayr

We obtained a smaller finite element space than Nigam/Phillips

We proposed modifications of basis functions of
Sherwin/Karniadakis/Warburton so that they span the optimal
finite element space

Alternative approach using piecewise polynomial (by splitting
pyramid in two or four tets) is not consistent for non-affine
pyramids
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Influence of quadrature

Then, thanks to Bramble-Hilbert lemma, it is easy to get :

||u − uh||1 ≤ Chr ||u||r+1

However, in our case, integrals are not evaluated exactly, we have to
consider Strang Lemma :

||u − uh||1 ≤ C inf
vh∈Vh

{ ||u − vh||1 + sup
wh∈Vh

a(vh,wh)− ah(vh,wh)|
||wh||1

}

Here we choose vh = Πr u with the projector on real space, so that

vh ∈ Pr ⇒ v̂h ∈ V̂ r

∇vh ∈ Pr−1 ⇒ ∇̂vh ∈ V̂ r−1

M. Duruflé (IMB, Bacchus) High-order Finite Element Methods on Hybrid Meshes Including Pyramids. Application to Wave Equation and Helmholtz Equation.14th January 2010 24 / 28



Quadrature error

By expressing integrals on the cube, we are able to prove that :

(D − Dh)(vh,wh) = (D − Dh)(vh − πr vh,wh − π0wh)

for Gauss-Jacobi rules (because of (1− ẑ)2 weight), since Ji ∈ Q1 (so
Ji πr vh wh ∈ Q2r+1)

⇔ |(D − Dh)(vh,wh)| ≤ Chr+2||vh||r+1||wh||1
We could use Gauss-Jacobi-Lobatto rules for mass term without loss
of accuracy
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Quadrature error

For stiffness term, we have :

(K − Kh)(vh,wh) = (D − Dh)(∇vh − πr∇vh,∇wh)

for Gauss rules, since JiDF ∗−1
i ∇̂ŵh ∈ Qr+1

⇔ |(K − Kh)(vh,wh)| ≤ Chr+1||vh||r+1||wh||1
we can’t use Gauss-Jacobi-Lobatto rules without loss of an order
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Numerical results for Helmholtz equation

Comparison of three kind of meshes :
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Numerical results for Helmholtz equation

For the scattering of a sphere :
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Numerical results for Helmholtz equation

For order 4 for tets, and order 5 for hex/hybrid, less than 2 % error :

Mesh type Tetra Hexa Split Tetra Hybrid

number of dofs 339 000 315 000 520 000 266 000

multigrid prec. 119 iter (587s) 130 iter (152s) 93 iter (266s) 128 iter (161s)
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Numerical results for wave equation

Use of Discontinuous Galerkin formulation for solving wave equation :

∂2u
∂t2 −∆u = 0
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Numerical results for wave equation

Efficiency of different kind of meshes for the piano-shaped cavity with a
third order approximation on a fine mesh :

Mesh type Tetra Split Tetra Hybrid

Obtained accuracy 5.7% 9.4 % 6.3%

Number of dofs 16.9 millions 49.3 millions 14.9 millions

Time step (freq = 14) ∆t = 0.0004 ∆t = 0.0002 ∆t = 0.0005

Computational time 4.3 days 12.3 days 1.2 day

Computational time obtained by summing computational time for each
processor without cost of communications.

M. Duruflé (IMB, Bacchus) High-order Finite Element Methods on Hybrid Meshes Including Pyramids. Application to Wave Equation and Helmholtz Equation.14th January 2010 28 / 28


