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Introduction

@ Apply techniques of “mass lumping” and “mixed formulation”,
which are efficient in temporal domain

o Application of these techniques to Helmholtz and time-harmonic
Maxwell equations

e Gain in storage and time, by using these techniques in frequential
domain
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Introduction

@ Apply techniques of “mass lumping” and “mixed formulation”,
which are efficient in temporal domain

o Application of these techniques to Helmholtz and time-harmonic
Maxwell equations

e Gain in storage and time, by using these techniques in frequential
domain

@ Choose an efficient preconditioning technique to solve linear
systems issued from these equations

@ Apply the developped algorithms to evaluate accurately radar
cross sections of electromagnetic targets
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0 Resolution of Helmholtz equation
@ Interest to use high order methods
@ Efficient matrix-vector product on hexahedral meshes
@ Efficient iterative solver and preconditioning
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A test case : an optical filter
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A test case : an optical filter
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At right, transmission coefficient according to the frequency

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite E 25th april 2007



A test case : an optical filter
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At right, transmission coefficient according to the frequency

@ Frequency F = 1.0 is a resonant frequency of the device
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A test case : an optical filter

e sy
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At right, transmission coefficient according to the frequency

@ Frequency F = 1.0 is a resonant frequency of the device
@ Enlightment of the device by a gaussian beam.

@ PML around the computational domain.
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Advantage to use high order method
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Numerical solution for Qs with 10 points by wavelength
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Advantage to use high order method
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At right, numerical solution for Q, with 10 points by wavelength
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Advantage to use high order method

6r N ——Q2 ]

1 1.005
F (relative frequency)

Norm of the solution at the ouput, according to the frequency
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Advantage to use high order method

6r N ——Q2 ]
'
g

flul

oE==
0.995 1 1.005
F (relative frequency)

Norm of the solution at the ouput, according to the frequency
Which order is optimal to reach an error less than 10% ?

Order 2 3 4 5 6 7
Nb dofs | 453000 | 69800 | 52000 | 33200 | 47 700 | 42200
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Helmholtz equation

—puw?u —div(uVu) = f €Q

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite E 25th april 2007 7 /50



Helmholtz equation

—puw?u —div(uVu) = f €Q

Use of finite element method leads to the following linear system :

(~w?Dp + Kn) Up = Fp
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Helmholtz equation

—puw?u —div(uVu) = f €Q

Use of finite element method leads to the following linear system :
(—w?Dp + Kn) Up = Fn
Mass matrix D), = / p it Pt dx
Q

Stiffness matrix K, = / 1 Vgp,-GL . ch/GL ax
Q
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Helmholtz equation

—puw?u —div(uVu) = f €Q

Use of finite element method leads to the following linear system :

(—w?Dp + Kn) Up = Fn

Mass matrix D), = / p it Pt dx
Q
Stiffness matrix K, = / 1 Vgp,-GL . ch/GL ax
Q
Our aim is to develop an efficient iterative solver for an high order of
approximation r. We need then a fast matrix-vector product
(fszh ar Kh) Uy
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Use of Gauss-Lobatto points
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¢ o o e e ¢ Gauss-Lobatto points for Qs
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Use of Gauss-Lobatto points
c

¢ o o e e ¢ Gauss-Lobatto points for Qs

!

e e o o o ¢ ontheunitsquareK

Use of these points both for interpolation and numerical quadrature
leads to a diagonal mass matrix D, and a fast matrix-vector product for
Kn Un
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Use of Gauss-Lobatto points
c

¢ o o e e ¢ Gauss-Lobatto points for Qs

!

e e o o o ¢ ontheunitsquareK

Use of these points both for interpolation and numerical quadrature
leads to a diagonal mass matrix D, and a fast matrix-vector product for
Kp Uy,

See the thesis of S. Fauqueux, 2003
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Use of Gauss-Lobatto points
c

¢ o o e e ¢ Gauss-Lobatto points for Qs

!

e e o o o ¢ ontheunitsquareK

Use of these points both for interpolation and numerical quadrature
leads to a diagonal mass matrix D, and a fast matrix-vector product for
Kp Uy,

See the thesis of S. Fauqueux, 2003

These points permit a fast matrix-vector product
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Elementary matrices

(0,1) (1,1) As

F, A

(0,0) 1,0) Ay

The transformation F;
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Elementary matrices

(Dn)ij = /K pdi Pt g7t dx

(Kh)ij = /’A(NJ,-DI—',.—1 DF; 1% g8t - V8t dx
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Elementary matrices

(Dn)ij = / pd; 8 GSL d5

(Kh)ij = / pd; DF' DFF 'V ¢t . Vo Gde
@ Use of quadrature formulas (w,’f, fff) on the unit square

@ X can be equal to GL (Gauss-Lobatto quadrature)
@ X can be equal to G (Gauss quadrature)
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Elementary matrices

(Dn)ij = /K pdi Pt g7t dx

(Kh)ij = /K udi DF Y DFF 1 7 g8 - Vgt dx

@ Use of quadrature formulas (w,’f, §,)(() on the unit square

@ Diagonal matrix
(An)ik = pJi(&R) wir

@ Bloc-diagonal matrix

(B)kk = pdi DF7' DFF 1 (65) wi
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Fast matrix vector product with any points

Let us introduce the two following matrices, independant of the
geometry : A A
Cij = ¢f (&) Rij = VK
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Fast matrix vector product with any points

Let us introduce the two following matrices, independant of the
geometry :

Cij = oPHE) Ry = VeX(Eh
Thus, we have: D, = CA,C* K, = CRB,R*C*
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Fast matrix vector product with any points

Let us introduce the two following matrices, independant of the
geometry :

Cij = o7HE) Ry = Vel (g
Thus, we have : D, = (A)Ahé* Ky, = CR BhlA?* C*
ris the order of approximation
If C and R are stored as full matrices
@ Complexity of C U : 2(r + 1) operations in 3-D
@ Complexity of R U : 6 (r + 1) operations in 3-D
Complexity of standard matrix vector product : 2 (r 4 1)® operations in
3-D
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Fast matrix vector product with any points

Let us introduce the two following matrices, independant of the
geometry :

Cij = ¢ Rigs = Ve (Er)
Thus, we have: D, = CA,C* K, = CRB,R*C*
For hexahedral elements (tensorization), we have
@ Complexity of C U : 6 (r + 1)* operations in 3-D
@ Complexity of RU : 6 (r + 1)* operations in 3-D
@ Complexity of A, U and B, V : 16 (r 4 1)2 operations in 3-D

@ If we use Gauss-Lobatto points to integrate : C =1
In this case : “equivalence theorem” of S. Fauqueux

@ Same storage for Gauss or GL points (A, and Bj,)
@ MV product two times slower with Gauss integration
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Matrix vector-product faster than standard methods ?

- v - Standard formulation . - v - Standard formulation
—o— Mixed formulation L Jo0kl=— Mixed formulation

5 6
Order

5 6
Order r

3-D comparison between the classical matrix-vector algorithm and the
fast algorithm (mixed formulation), in 3-D.
At left, time according to the order of approximation, at right storage.
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Matrix vector-product faster than standard methods ?

- v - Standard formulation . - v - Standard formulation
—o— Mixed formulation L Jo0kl=— Mixed formulation

5 6
Order

5 6
Order r

3-D comparison between the classical matrix-vector algorithm and the
fast algorithm (mixed formulation), in 3-D.

At left, time according to the order of approximation, at right storage.
Gain in time for r > 4, gain in storage for r > 2.
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Matrix vector-product faster than standard methods ?

900 350

—+— Tetrahedral elements —— Tetrahedral elements
800 | - © - Mixed hexahedral 00} = © -Mixed hexahedral
700
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» 500 £ 200
E £
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63 50% <
@ i T --e---e--0--0---0G--©0---
1 2 3 4 5 6 7 8 &) 10 1 2 3 5 7 8 9 10
Order of approximation Order of approximation

Comparison between hexahedral and tetrahedral elements, for time
computation (at left) and storage (at right)
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lterative methods used

——coca
—— QMR
BICGCR ||
BICGSTAB
——— GMRES

o 2000 4000 6000 8000 10000

Evolution of the residual norm for the scattering of a perfectly conductor disc
(Dirichlet condition).

@ GMRES, BICGSTAB and QMR for complex unsymmetric matrices

@ COCG, BICGCR for complex symmetric matrices
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lterative methods used

o — BICGSTAB

12
x 10*

Evolution of the residual norm for the scattering of a dielectric disc
(p = 4).
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lterative methods used

—— COCG
10 —— GMRES |+
——QMR
——— BICGCR
o -~ BICGSTAB

@ We choose to use BICGCR for all future experiments

@ Need of preconditioning techniques to have less iterations
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Preconditioning used

@ Incomplete factorization with threshold on the damped Helmholtz
equation :

—k%(a + if)Ju — Au =0

e see Y. Saad, lterative methods for sparse linear systems
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Preconditioning used

@ Incomplete factorization with threshold on the damped Helmholtz
equation :

—K%(0 + if)Ju — Au =0

e see Y. Saad, lterative methods for sparse linear systems
o We use a @ subdivided mesh to compute matrix

At left, initial mesh Qs, at right, subdivided mesh @y
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Preconditioning used

@ Incomplete factorization with threshold on the damped Helmholiz
equation :

—k%(a + if)Ju — Au =0

o see Y. Saad, lterative methods for sparse linear systems

@ Multigrid method on the damped Helmholtz equation

e see Y. A. Erlangga and al, Report of Delft University Technology,
2004
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Preconditioning used

@ Incomplete factorization with threshold on the damped Helmholtz
equation :

—k(a +if)Ju — Au =0

o see Y. Saad, lterative methods for sparse linear systems

@ Multigrid method on the damped Helmholtz equation

e see Y. A. Erlangga and al, Report of Delft University Technology,
2004

@ Without damping, both preconditioners does not lead to
convergence.

@ A good choice of parameteris « = 1, 7 = 0.5
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Scattering by a dielectric sphere

@ Dielectric sphere of radius2 andwithp = 4 w =27

@ First order absorbing boundary condition on a sphere of radius 3
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Scattering by a dielectric sphere

Number of dofs to reach less than 5 % L2 error

Finite element structured Q2  struct Qs struct Qe n.s. Q; n.s. Ps
Number of dofs 220 000 85000 78 000 243000 180000
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Scattering by a dielectric sphere

Finite element

structured Qq

non-structured Q4

non-structured Py

No preconditioning
ILUT(0.01)
Multigrid

708s
91s
185s

5795s
534s
729s

1597s
363s
695s
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Scattering by a dielectric sphere

Finite element

structured Qq

non-structured Q4

non-structured Py

No preconditioning
ILUT(0.01)
Multigrid

34 Mo
137 Mo
50 Mo

99 Mo
420 Mo
143 Mo

136 Mo
507 Mo
327 Mo
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Scattering by a cobra cavity

@ Cobra cavity of length 20, and depth 4

@ First order absorbing boundary condition on the yellow face
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Scattering by a cobra cavity

Number of dofs to reach less than 5 % L2 error

Order struct Qs struct Qe structQs n.s. Qg n.s. Qe n.s. P,
Nb dofs | 330 000 185000 95 600 567,000 466000 360 000
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Scattering by a cobra cavity

Finite element structured Qs non-structured Qs non-structured Py
No preconditioning 9860s NC NC
ILUT(0.01) 1021 s 13766s 8036s
Two-grid 1082s 6821 s 14016s
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Scattering by a cobra cavity

Finite element

structured Qg

non-structured Qg

non-structured Py

No preconditioning 9860s NC NC
ILUT(0.01) 1021 s 13766 8036s
Two-grid 1082s 6821 s 14016

Finite element

structured Qg

non-structured Qg

non-structured Py

No preconditioning 32 Mo 162 Mo 251 Mo
ILUT(0.01) 150 Mo 1250 Mo 1400 Mo
Two-grid 60 Mo 283 Mo 710 Mo
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Scattering by a plane

3
e 2
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e
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i e
s YAV AAVES S
Bl LI~
a . 10
=

@ Real part of the diffracted for an oblique incident plane wave
@ Q4, 7.2 million of dofs

@ 650 iterations and 7 hours with multigrid preconditioning
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e Time-harmonic Maxwell equations
@ Spurious modes for Nedelec’s second family
@ Spurious modes for Discontinuous Galerkin method
@ Efficient matrix-vector product for Nedelec'’s first family
@ Efficient iterative resolution
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Nedelec’s second family on hexahedrals

Time-harmonic Maxwell’s equations :
S 1 -
2
—w e E(x) 4+ curl( ——curl(E(x))) = 0
(x) (u(x) (E(x)))
Space of approximation
Vi, = {U € H(curl,Q)suchas DF Gio F; € (@)%}
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Nedelec’s second family on hexahedrals

Time-harmonic Maxwell’s equations :

“u?e E(x) + ocurl( ——curl(E(x))) = 0

1(X)

I | I

| |
__ A A __

v v
L SO, SO SO N N

__ A A _

| v v |
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Nedelec’s second family on hexahedrals

Time-harmonic Maxwell’s equations :

—w? = E(x) + curl( Lcurl(é(x))) =0

1(X)

I | I

| |
__ A A __

v v
L SO, SO SO N N

__ A A _

| v v |

@ Mass lumping and factorization of stiffness matrix

@ Low-storage and fast matrix-vector product
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The unwanted oscillations

Dipole source on a cubic cavity. Left, mesh used for the simulations .
Right, numerical solution with Qg finite edge elements with
mass-lumping.
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Eigenmodes with the second family

Mesh used for the simulations (Q3)
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Eigenmodes with the second family

N
L1IC
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Eigenmodes with the second family

N
B iC
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Two types of penalization

/
Q

—w/QE~<p+/Hrot — i Y /[E e - n|
0

face

—w/H go+/rot(E) o—is ez /[Hxn] o x 7]

e face’'™

Approximation space for H

Wy, = {idel?Q)sothat DF o F; € (@)%}
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Two types of penalization

/ 90
Q

fw/E~<p+/H~rot(<p)fia >
Q Q
0

[ (E-nllg-n
e face”’’
—w/QH~gp+/Qrot(E)-<p—i6 > /e[Hxn]~[<p><n]

.
e face

Approximation space for H

Wy, = {idel?Q)sothat DF o F; € (@)%}

@ Equivalence with second-order formulation (o« = § = 0)
@ Dissipative terms of penalization

@ Penalization in o does not need of a mixed formulation
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Effects of penalization

0.1 0.1
ofe 8 @ 88 FgFeq of= s @ 5 s3aqH
-0.1 + -0.1
% + - s
+. T +
0.2 ++ﬁ$ﬂ+ R . —0.2 #*1*
= = +
z TTER T g, 2 T
S 03 e ¥ 203 ¥
& fa % R < Iy
g ++ £ o,
= + = e
~0.4 ~0.4 ML
+ * -
o P
& ¥
-0.5 -0.5 e
4]
-0.6 + Numerical eigenvalue: -0.6 o Analytical eigenvalues Y
o Analytical eigenvalues + Numerical eigenvalue;
-0.7 -0.7
0 1 2 3 4 5 0 1 2 3 4 5
real(m)

real(m)

@ Case of the cubic cavity meshed with slip tetrahedrals
@ Atlefta = 0.1, atright« = 0.5
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Effects of penalization

' d

o

1
05,
o
5 .
1
1 0 1
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o
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1
1 o 1
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Four modes of the Fichera corner

i
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Effects of penalization

0.1 0.1
0 o @ © oEn @ @og
C e 0 a ® B vEn @ @ge
-0.1
= =~ 01
3 <)
5 -02 5, = g
E E
-0.2
-0.3
-0.4 U
o Analytical eigenvalues
- Numerical eigenvalues|
=0 -0.4
0 1 2 3 4 0 1 2 3 4
real(w) real(w)

@ Case of the Fichera corner
@ Atlefta = 0.5, atrighté = 0.5

@ Both penalizations efficient for regular domains

@ Delta-penalization more robust for singular domains
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Discontinuous Galerkin method
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Discontinuous Galerkin method

—w/ cE - 3 —/ HV x@ — {(H}gxi = 0
K; K;

—w/ pH —/Vxéw —1/ [Elx7y = 0
K; K; 2 Jok;

@ Unknowns in L? = Gauss points instead of GL points
@ Mass lumping and fast matrix vector product

@ Thesis of S. Pernet, in time-domain
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Eigenmodes in DG method (3-D)
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Eigenmodes in DG method (3-D)

e R

NN O

@ Constant number of spurious for regular meshes

@ Increasing number of spurious modes, otherwise
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Penalization terms, eigenvalues

To the first equation in E, we add :
—iw / [E x n]- ¢ xndx
oK;

We take o« = 0.5
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Penalization terms, eigenvalues

30} /]

0 100 200 300 400 500 600 700
Number eigenvalue

@ Eigenvalues, if no penalization isused &« = 0
@ Blue points are numeric eigenvalues, red lines analytic
eigenvalues.
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Penalization terms, eigenvalues

O = = =] =] =] B s & &8 s
fﬁ %‘&
-+ -+
—0.5¢ L i
= ks
[«>]
< + +
g —1r + 1
E +F e -
+
. e o . ++
-1.5 N " vy i
+ Numerical eigenvalues| - a3
=] Analytical eigenvalues +  +
_obL : . : y
(0] 1 2 3 4 5
real(w)

Eigenvalues if penalization is used & = 0.5

Blue points are numeric eigenvalues, red squares analytic eigenvalues
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Penalization terms, eigenvalues

O = k=3 k=3 == k=23 B & &8 &£ =5
-
e
IonagP a2 + |
-0.5 g,
= =
(=]
< + -
IS —1 + 4
k= = L+
+
+ e ﬂg . ++
-1.5 . " P 1
- - e, Fer
+ Numerical eigenvalues| ++ s
o Analytical eigenvalues +  +
_obl ‘ s ‘ s s
(0] 1 2 3 4 5
real(w)

@ Penalization terms reject ALL spurious modes in complex plane

@ Persistance of some spurious mode near 0
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Effects of penalization

At left, numerical solution with o« = 0, at right with o« = 0.5
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Effects of penalization

At left, numerical solution with o« = 0, at right with o« = 0.5
@ Fine solution on split meshes

@ Negligible overcost in computational time
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Effects of penalization

0.5
of 0o® O OED O GO
% - Numerical eigenvalues
_.-0.5F LAY O Analytical eigenvalues
© -
£ .
E 3
<
-1.5F
) ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5

real(w)

Eigenvalues for the Fichera corner, on split tetrahedral mesh.
4

@ Good approximation of singular eigenvalues

@ No need to add penalization terms in 2-D
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Nedelec’s first family on hexahedra

Space of approximation

Vh = {[je H(Curl,Q) so that DFltﬁO/:/ € Qr71’r’r X Qr7r717r X Qf,l’,f71}
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Nedelec’s first family on hexahedra

Space of approximation
Vi, = {U€ H(url,Q) sothat DF/ Go F; € Qr—1,r X Qrr1r X Qrrr1}
Basis functions

8lix(%9,2) = PR IEHP) e e 1<i<r 1<jk<r+1

&2 k(% 9:2) GPHR) PE(D) veH(2)ey 1<i<r 1<jk<r+1

Gi(%.9,2) = P R) PP UP(R)e; 1<i<r 1<jk<r+1
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Nedelec’s first family on hexahedra

Space of approximation
Vi = {l € H(curl,Q) sothat DF/ o F; € Q—1rr X Qrr1r %X Qrrr1}
Basis functions

Pliu%.9.2) = PR IFP) P2 e 1<i<r 1<jk<r+1

&2 k(% 9:2) PR PR PH(2) ey 1<i<r 1<jk<r+1

Sri%.9.2) = S IPHG) I e 1<i<r 1<jk<r+1

¥&, ¥ CL lagragian functions linked respectively with Gauss points and
Gauss-Lobatto points.

See. G. Cohen, P. Monk, Gauss points mass lumping
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Elementary matrices

Mass matrix :
(Mg = [ SDF "D ¢y g

Stiffness matrix :

1 A
(Kn)ij = / 7 DF} ;=" DF;V x ;- V x ¢x dX
K Yi
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Elementary matrices

Mass matrix :
(Mg = [ SDF "D ¢y g

Stiffness matrix :

(Kn)ij = / — DF/ i7" DF;V x ¢ -V x ¢ dX

@ Use of Gauss-Lobatto quadrature (wgt, ¢2h)
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Elementary matrices

Mass matrix :
(Mg = [ SDF "D ¢y g

Stiffness matrix :

(Kn)ij = / — DF/ i7" DF;V x ¢ -V x ¢ dX

@ Use of Gauss-Lobatto quadrature (wk , § D)
@ Block-diagonal matrix
(An)kk = {Ji DF; ¢ DF,-H] (&8N wit

@ Block-diagonal matrix

1
(B = | 5 DFfu" DF | (g4t
1
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Cij = 4 Rij = Vx gt
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Cij = 4 Rij = Vx gt

Then, we have : M,

I
®)
>
=5
<

£

I
o
myl
oy}

=5
myl
>
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Cij = 4 Rij = Vx gt
Then, we have: M, = CAhC* Ky = CR BhIA?*C*
@ Complexity of C U : 6 (r + 1)* operations in 3-D
@ Complexity of RU:12 (r +1)* operations in 3-D

@ Complexity of A, U+ B, U : 30 (r + 1) operations
Complexity of standard matrix vector product 18r2 (r 4 1)3
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Cij = 4 Rij = Vx gt
Then, we have: M, = CAhC* Ky = CR BhIA?*C*
@ Complexity of C U : 6 (r + 1)* operations in 3-D
@ Complexity of RU:12 (r +1)* operations in 3-D

@ Complexity of A, U+ B, U : 30 (r + 1) operations
Complexity of standard matrix vector product 18r2 (r 4 1)3

@ Matrix-vector product 67% slower by using exact integration
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Spurlous free method

~

s

,
’i

@ Approximate integration leads to a spurious-free method
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Spurlous free method

ol
% 2

@ Approximate integration leads to a spurious-free method
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Convergence of the method

Scattering by a perfectly conductor sphere E x n = 0

2
o
- »
| ——
s v_
2 -1 o 1 i
2 >
1 . ' —
0 1 4 0 | |
. »
~ »
1 E N ! T
R
. — F
£ o ® = o 2

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite E 25th april 2007 31/50



Convergence of the method

Convergence of Nedelec’s first family on regular meshes

log ! 0(error)
L
o

2+

S — Q1
—2.5F o /// // - Q2
> 470 s —= Q3
-3 N —~— Q4
© - - Q5

=332 -1.2 —1 —0.6

Iogm(h/r)

@ Optimal convergence O(h") in H(curl,©2) norm
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Convergence of the method

Convergence on tetrahedral meshes split in hexahedra

——Q1
_05 -e-Q2

e v~ Q3|

Iog1 0(c-:‘rror)
]
)

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
Iogm(Number dof)

@ Loss of one order, convergence O(h"~") in H(curl,Q) norm
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Is the matrix-vector product fast ?

Comparison between standard formulation and discrete factorization

Order 1 2 3 4 5
Time, standard formulation 55s 127s 224s 380s 631
Time, discrete factorization 244s 128s 106s 97s 96s

Storage, standard formulation | 18Mo 50Mo  105Mo 187Mo 308 Mo
Storage, discrete factorization | 23Mo 9.9Mo 6.9Mo 5.7Mo 5.0Mo
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Is the matrix-vector product fast ?

Comparison between tetrahedral and hexahedral elements

250
450
400 / 200 ,
/ /
350 > & K
2 300 /! z
= . —+—Hexahedral elements| <
o ’ —e- =
E 250 o © -~ Tetrahedral elements §
[ . 5
200 o ! =
o’
150t/ -
100+
50, 0
1 3 4 5 6 7 8 1 3 4 5 7 8
Order of approximation Order of approximation

At left, time computation for a thousand iterations of COCG
At right, storage for mesh and matrices
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Comparison DG method vs first family

@ Both methods are spectrally correct

@ Both methods have a fast MV product
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Comparison DG method vs first family

@ Both methods are spectrally correct

@ Both methods have a fast MV product

@ DG needs more dof, because DG Qj is less accurate than
Family1 Qg

@ DG needs more storage for direct solvers (about 4 times than first
family)
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Comparison DG method vs first family

@ Both methods are spectrally correct

@ Both methods have a fast MV product

@ DG needs more dof, because DG Qj is less accurate than
Family1 Qg

@ DG needs more storage for direct solvers (about 4 times than first
family)

@ DG can deal easily non-conforming meshes

@ DDM methods are faster with DG
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Preconditioning used

@ Incomplete factorization with threshold on the damped Maxwell
equation :

:
—KP(a + i )5E—V><(/—V><E) =0
vA

o ILUT threshold > 0.05 in order to have a low storage

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite E 25th april 2007 34 /50



Preconditioning used

@ Incomplete factorization with threshold on the damped Maxwell
equation :

’
—K%(o + i )5E—V><(/—V><E) =0
b

o ILUT threshold > 0.05 in order to have a low storage
o Use of a @ subdivided mesh to compute matrix
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Preconditioning used

@ Incomplete factorization with threshold on the damped Maxwell
equation :

—K%(o + i )5E—V><(lV><E) =0

@ Multigrid method on the damped Maxwell equation
o Use of the Q; mesh to do the multigrid iteration

@ Without damping, both preconditioners does not lead to
convergence.

@ A good choice of parameteris « = 0.7, 7 = 0.35
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Transparent condition

Silver-Muller condition is a first-order ABC :

Exn+nxHxn=20

@ Use of a transparent condition based on integral representation formulas

EP(x) = / ik (G(X,9) + g V¥4 G(x,)) (nx H)(y) dy + / (nxE)(y)xV, G(x, y) dy

new boundary condition E x n+nx Hxn = EP" xn4+nx H® xn
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Transparent condition

Silver-Muller condition is a first-order ABC :

Exn+nxHxn=20

@ Needs of a virtual boundary I -

@ GMRES iterations to solve linear system
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Transparent condition

Silver-Muller condition is a first-order ABC :

Exn+nxHxn=20

@ Needs of a virtual boundary I -

@ GMRES iterations to solve linear system

@ C. Hazard, M. Lenoir, On the solution of time-harmonic scattering
problems for Maxwell’s equations
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Radar cross section

Computation of far field of the electromagnetic objects by the formula

k2

o(u) = e

/ glku-OM [u x(MxH) + (uou — I)E x n)] dm
pu
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Radar cross section

Computation of far field of the electromagnetic objects by the formula

k2

o(u) = e

/ glku-OM [u x(MxH) + (uou — I)E x n)] dm
pu

@ Bistatic RCS : the vector of observation u varies

@ Monostatic RCS : the wave vector k varies and u = k
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Scattering by a dielectric sphere

T
it

4 L e - now

@ Sphere of radius 2 withe = 3.5, = 1

@ Outside boundary on a sphere of radius 3.
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Scattering by a dielectric sphere

How many dofs/time to reach an error less than 0.5 dB

Analytical RCS
35 Numerical RCS
30
. 251
NGEJ 20+
% 18]
= 10
s
ol
_5350 —300 -250 -200 -150 -100 -50 o
6 (in degrees)
Finite Element Q; Q, Qs Qs
Nb dofs 940000 88000 230000 88000
No preconditioning | 19486 s 894s  4401s 1484s
ILUT(0.05) = 189s 1035s 307 s
Two-grid 44344s 488 s 1095s 952 s
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Scattering by a cobra cavity

7'-2 o 2 4 6 & 050 051 15
3 RTULLLE
1.5
: SR 7
OO0 "“’ oF N O‘Sf)"‘l ’
iazey %0 .uuuul
a 3

& 2 ] B

@ Cobra cavity of length 10, and depth 2

@ Outside boundary at a distance of 1
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How many dofs/time to reach an error less than 0.5 dB

60
50 | \\\
40t c‘/\\ “‘ “f\
== i //“v‘ “‘m ”
3 30 M “\/s iy
g v\ v,
= 20+ \V; V“vw ‘”“ "
10l /‘H\W\‘UWUM
—250 —400 -350 —-300 9—250 —200 -150 —-100
Finite Element Q, Qg
Nb dofs 412000 187000
No preconditioning | 14039 s 12096s
ILUT(0.05) 2247s 846s
Two-grid 9294 s 10500s
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e Time-domain Maxwell equations
@ Description of DG method
@ Numerical Results
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Discontinuous Galerkin Method

Ne
Let Q = | JK;. Find E(, ) € [L2(Q)]°, H(.,1) € [L2(Q)]® s.t.
i=1
aat EK SDK ax / V/\HK (pK ax

+/UEK,'(,5K,-dX+ j'SBK,-dXZ
Ki Ki

/ ol A (E A ) - o do+ [ BIH A Bl - i do,

i i

Y@k € H(curl, K;)
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Discontinuous Galerkin Methods for Time-Domain

J /IHK ¢KdX+ V/\EK.-’(EK.dX:
at K, U i

/aK V[E‘ A Ty - Uk, do +/ 8lFik, A (H A ik i - P, dor,

i

Vi, € H(curl, K;)
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Discontinuous Galerkin Methods for Time-Domain

J /IHK ¢KdX+ V/\EK.-’(EK.dX:
at K, U i

/aK V[E‘ A Ty - Uk, do +/ 8lFik, A (H A ik i - P, dor,

Vi, € H(curl, K;)

+ metallic boundary condition on ', = 92 and initial conditions,
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Discontinuous Galerkin Methods for Time-Domain

a//IHK ¢KdX+ V/\EK.-’(EK.dX:
at K, U i

/aK YIE A i)y -k, do +/ 8lFik, A (H A ik i - P, dor,
Vi, € H(curl, K;)

+ metallic boundary condition on ', = 92 and initial conditions,

where EK; = E|K,'7 HK,- = H\KN (ﬁKi = 95|K,'7 wK,- = SB\K, and «, (3, ) real
constant parameters.
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Discrete Energy

€)= {/m((EK’)'EK’dXJr/

KicQ

1

(//I:I)Ki) 0 F/KI.dX}
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Discrete Energy

E(t) =Y {/Ki(<E_K,-)'Ede+/ (1Hi) - HK,-dX}

KicQ a

Q@ pf=7=%a>0andi>0=
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Discrete Energy

E(t) =) {/Ki(<E_K,-)'Ede+/ (11Fkg) - HK,-dX}

KicQ i

Q@ pf=7=%a>0andi>0=

o0& o . o -
50 = Y- {=alllfk A (E Afik)=ll[7ik A (H A kTR
reF, r=KnK;
> {=allfik, A (Ex A Fig)IF = 817k, A (Hig A )[R}
I'el'b,FCK/
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Discrete Energy

E(t) =) {/Ki(<E_K,-)'Ede+/ (11Fkg) - HK,-dX}

KicQ i

Q@ pf=7=%a>0andi>0=

o0& o . o -
50 = Y- {=alllfk A (E Afik)=ll[7ik A (H A kTR
reF, r=KnK;
> {=allfik, A (Ex A Fig)IF = 817k, A (Hig A )[R}
I'el'b,FCK/

= Decreasing energy: Dissipative scheme.
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Discrete Energy

E(t) =) {/’(i((’;—m)'édeﬂL/ (11Fkg) - HK,-dX}

KicQ
Q@ pf=7=%a>0andi>0=
o0& = = = S
5= Y {alllfik A (E A fi) =6k A (H A BikTIEY
ref;, r=KnkK;
> {=allfik, A (Ex A Fig)IF = 817k, A (Hig A )[R}
I'el'b,FCK/

= Decreasing energy: Dissipative scheme.

Q@ p=7=}a=0eti=0= %5(1‘):0
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Discrete Energy

E(t) =) {/’(i((’;—m)'édeﬂL/ (11Fkg) - HK,-dX}

KicQ i

Q@ pf=7=%a>0andi>0=

o0& o . o -
50 = Y- {=alllfk A (E Afik)=ll[7ik A (H A kTR
reF, r=KnK;
> {=allfik, A (Ex A Fig)IF = 817k, A (Hig A )[R}
I'el'b,FCK/

= Decreasing energy: Dissipative scheme.

Q@ p=7=}a=0eti=0= %5(1‘):0

— Energy conservation: Conservative scheme.
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Discrete Formulation (Gauss Points)

En+1 _En

+ Ry, Hn+1/2 + B, M
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Discrete Formulation (Gauss Points)

En+1 _EP En+1 + En
B.——MMM —_
: At 2

+aD,E" + 8 S,HM1/2 L gn = 0,

+ R, HM1/2 L B
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Discrete Formulation (Gauss Points)

En+1 _EP En+1 + En
B.——MMM —_
: At 2

+aD,E" + 8 S,HM1/2 L gn = 0,

+ R, HM1/2 L B

Hn+1/2 _ Hn-1/2
. At

+ RyE" + v S,E" + 6 Dy H™1/2 = 0,

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite E 25th april 2007



Main Features of this Approximation

@ 5., B,, B,: 3 x 3 block-diagonal symmetric mass matrices,
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Main Features of this Approximation

@ 5., B,, B,: 3 x 3 block-diagonal symmetric mass matrices,
@ H): very sparse matrix which needs no storage,
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Main Features of this Approximation

@ 5., B,, B,: 3 x 3 block-diagonal symmetric mass matrices,
@ H): very sparse matrix which needs no storage,

@ 5, 5,: jump block-diagonal symmetric matrices which need no
storage,
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Main Features of this Approximation

@ 5., B,, B,: 3 x 3 block-diagonal symmetric mass matrices,

@ H): very sparse matrix which needs no storage,

@ 5, 5,: jump block-diagonal symmetric matrices which need no
storage,

@ Dy, Dy*: jump block-diagonal symmetric matrices which must be
stored.
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Main Features of this Approximation

@ 5., B,, B,: 3 x 3 block-diagonal symmetric mass matrices,

@ H): very sparse matrix which needs no storage,

@ 5, 5,: jump block-diagonal symmetric matrices which need no
storage,

@ Dy, Dy*: jump block-diagonal symmetric matrices which must be
stored.

— The dissipative terms induce a (reasonable) additonal storage.
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Another Feature of Numerical Dissipation: PML

Stabilization

5 :
—— No penalization, o = 0
— Penalization, o = 0.1

50 100 150 200
Time (in seconds)

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite E 25th april 2007 45 /50



Numerical Examples

Dielectric spherical torus

A(-0.76,0.,0.)
[ ]

Figure: Configuration of the experiment
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Numerical Examples

Dielectric spherical torus

point : (~0.76,0,0) point (-0.76,0,0)

200 . - 100 -

100

Ey(V/im)
Ey(vim)

-100

—— DG Q3

\ FDTD : Lambaa/10 -50 DG Q5
_200 —— FDTD : Lamboa/20 FDTD : Lambaa/10

FDTD : Lambda20

300 -100 -
0

1e-08 2¢-08 3e-08 4e-08 50-08 2e-07 22e-07 2.4e-07 2.6e-07 28e-07 3e-07
1(s) 1(s)

Figure: E, component of the electric field at a point of the domain after
propagation across 10\ (left) and 120\ (right).
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Numerical Examples

Dielectric spherical torus

@ CPU time: FETD (Qs) : 300 s, FDTD (20pts/\) : 1100 s.
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Numerical Examples

Dielectric spherical torus

@ CPU time: FETD (Qs) : 300 s, FDTD (20pts/\) : 1100 s.

@ Storage FDTD (20pts/A)/FETD (Q3) = 10.
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Numerical Examples

Airplane
@ Frequency: 0.75 Ghz (30)).
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Airplane
@ Frequency: 0.75 Ghz (30)).

@ Mesh: 78 000 elements, 30 000 000 DOF (Qy).

@ Storage: 1.2 Go.
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Numerical Examples

Airplane
@ Frequency: 0.75 Ghz (30)).

@ Mesh: 78 000 elements, 30 000 000 DOF (Qy).
@ Storage: 1.2 Go.

@ CPU time (30)\): 30 h on a monoprocessor Linux system, 2Go
Ram, 3.2 GHz.
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Numerical Examples

Airplane
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Numerical Examples

Airplane

Figure: Snapshots of the currents on the plane with (right) and without (left)
dissipation
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