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Introduction

Apply techniques of “mass lumping” and “mixed formulation”,
which are efficient in temporal domain

Application of these techniques to Helmholtz and time-harmonic
Maxwell equations
Gain in storage and time, by using these techniques in frequential
domain

Choose an efficient preconditioning technique to solve linear
systems issued from these equations

Apply the developped algorithms to evaluate accurately radar
cross sections of electromagnetic targets
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Outline

1 Resolution of Helmholtz equation
Interest to use high order methods
Efficient matrix-vector product on hexahedral meshes
Efficient iterative solver and preconditioning

2 Time-harmonic Maxwell equations
Spurious modes for Nedelec’s second family
Spurious modes for Discontinuous Galerkin method
Efficient matrix-vector product for Nedelec’s first family
Efficient iterative resolution

3 Time-domain Maxwell equations
Description of DG method
Numerical Results
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A test case : an optical filter

At right, transmission coefficient according to the frequency

Frequency F = 1.0 is a resonant frequency of the device

Enlightment of the device by a gaussian beam.

PML around the computational domain.
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Advantage to use high order method

Numerical solution for Q5 with 10 points by wavelength

Which order is
optimal to reach an error less than 10% ?

Order 2 3 4 5 6 7
Nb dofs 453 000 69 800 52 000 33 200 47 700 42 200
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Helmholtz equation

−ρω2 u − div(µ∇u) = f ∈ Ω

Use of finite element method leads to the following linear system :

(−ω2Dh + Kh) Uh = Fh

Mass matrix Dh =

∫
Ω
ρϕGL

i ϕGL
j dx

Stiffness matrix Kh =

∫
Ω
µ∇ϕGL

i · ∇ϕGL
j dx

Our aim is to develop an efficient iterative solver for an high order of
approximation r . We need then a fast matrix-vector product
(−ω2Dh + Kh) Uh
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Use of Gauss-Lobatto points

Gauss-Lobatto points for Q5

on the unit square K̂

Use of these points both for interpolation and numerical quadrature
leads to a diagonal mass matrix Dh and a fast matrix-vector product for
Kh Uh
See the thesis of S. Fauqueux, 2003
These points permit a fast matrix-vector product
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Elementary matrices

(0,0) (1,0)

(1,1)(0,1)

K̂
Fi Ki

A4

A1

A2

A3

The transformation Fi

(Dh)i,j =

∫
K̂
ρJi ϕ̂

GL
i ϕ̂GL

j dx̂

(Kh)i,j =

∫
K̂
µ Ji DF−1

i DF ∗−1
i ∇̂ ϕ̂GL

i · ∇̂ϕ̂GL
j dx̂

Use of quadrature formulas (ωX
k , ξX

k ) on the unit square

Diagonal matrix
(Ah)k ,k = ρ Ji(ξ

X
k )ωX

k

Bloc-diagonal matrix

(Bh)k ,k = µ Ji DF−1
i DF ∗−1

i (ξX
k )ωX

k
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Fast matrix vector product with any points

Let us introduce the two following matrices, independant of the
geometry :

Ĉ i,j = ϕ̂GL
i (ξX

j ) R̂ i,j = ∇̂ϕ̂X
i (ξX

j )

Thus, we have : Dh = Ĉ AhĈ∗ Kh = ĈR̂ BhR̂∗Ĉ∗

For hexahedral elements (tensorization), we have

Complexity of Ĉ U : 6 (r + 1)4 operations in 3-D
Complexity of R̂ U : 6 (r + 1)4 operations in 3-D
Complexity of Ah U and Bh V : 16 (r + 1)3 operations in 3-D

If we use Gauss-Lobatto points to integrate : Ĉ = I
In this case : “equivalence theorem” of S. Fauqueux
Same storage for Gauss or GL points (Ah and Bh)
MV product two times slower with Gauss integration
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In this case : “equivalence theorem” of S. Fauqueux
Same storage for Gauss or GL points (Ah and Bh)
MV product two times slower with Gauss integration

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite Element Method Applied to Maxwell’s Equations25th april 2007 10 / 50



Fast matrix vector product with any points

Let us introduce the two following matrices, independant of the
geometry :
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Matrix vector-product faster than standard methods ?
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3-D comparison between the classical matrix-vector algorithm and the
fast algorithm (mixed formulation), in 3-D.
At left, time according to the order of approximation, at right storage.
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Iterative methods used
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Evolution of the residual norm for the scattering of a perfectly conductor disc
(Dirichlet condition).

GMRES, BICGSTAB and QMR for complex unsymmetric matrices

COCG, BICGCR for complex symmetric matrices
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We choose to use BICGCR for all future experiments

Need of preconditioning techniques to have less iterations
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Preconditioning used

Incomplete factorization with threshold on the damped Helmholtz
equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems
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Preconditioning used

Incomplete factorization with threshold on the damped Helmholtz
equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems
We use a Q1 subdivided mesh to compute matrix

At left, initial mesh Q3, at right, subdivided mesh Q1
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Preconditioning used

Incomplete factorization with threshold on the damped Helmholtz
equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems

Multigrid method on the damped Helmholtz equation
see Y. A. Erlangga and al, Report of Delft University Technology,
2004
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Preconditioning used

Incomplete factorization with threshold on the damped Helmholtz
equation :

−k2(α + iβ)u − ∆u = 0

see Y. Saad, Iterative methods for sparse linear systems

Multigrid method on the damped Helmholtz equation
see Y. A. Erlangga and al, Report of Delft University Technology,
2004

Without damping, both preconditioners does not lead to
convergence.

A good choice of parameter is α = 1, β = 0.5
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Scattering by a dielectric sphere

Dielectric sphere of radius 2 and with ρ = 4 ω = 2π

First order absorbing boundary condition on a sphere of radius 3
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Scattering by a dielectric sphere

Number of dofs to reach less than 5 % L2 error

Finite element structured Q2 struct Q4 struct Q6 n.s. Q4 n.s. P4
Number of dofs 220 000 85 000 78 000 243 000 180 000
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Scattering by a dielectric sphere

Finite element structured Q4 non-structured Q4 non-structured P4
No preconditioning 708 s 5 795 s 1 597 s
ILUT(0.01) 91 s 534 s 363 s
Multigrid 185 s 729 s 695 s
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Scattering by a dielectric sphere

Finite element structured Q4 non-structured Q4 non-structured P4
No preconditioning 34 Mo 99 Mo 136 Mo
ILUT(0.01) 137 Mo 420 Mo 507 Mo
Multigrid 50 Mo 143 Mo 327 Mo
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Scattering by a cobra cavity

Cobra cavity of length 20, and depth 4

First order absorbing boundary condition on the yellow face

Finite element structured Q8 non-structured Q6 non-structured P4
No preconditioning 9 860 s NC NC
ILUT(0.01) 1 021 s 13 766 s 8 036 s
Two-grid 1 082 s 6 821 s 14 016 s

Finite element structured Q8 non-structured Q6 non-structured P4
No preconditioning 32 Mo 162 Mo 251 Mo
ILUT(0.01) 150 Mo 1 250 Mo 1 400 Mo
Two-grid 60 Mo 283 Mo 710 Mo
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Scattering by a cobra cavity

Number of dofs to reach less than 5 % L2 error
Order struct Q4 struct Q6 struct Q8 n.s. Q4 n.s. Q6 n.s. P4
Nb dofs 330 000 185 000 95 600 567,000 466 000 360 000

Finite element structured Q8 non-structured Q6 non-structured P4
No preconditioning 9 860 s NC NC
ILUT(0.01) 1 021 s 13 766 s 8 036 s
Two-grid 1 082 s 6 821 s 14 016 s

Finite element structured Q8 non-structured Q6 non-structured P4
No preconditioning 32 Mo 162 Mo 251 Mo
ILUT(0.01) 150 Mo 1 250 Mo 1 400 Mo
Two-grid 60 Mo 283 Mo 710 Mo
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Scattering by a plane

Real part of the diffracted for an oblique incident plane wave

Q4, 7.2 million of dofs

650 iterations and 7 hours with multigrid preconditioning

More than 50 000 iterations without preconditioning ...
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Outline

1 Resolution of Helmholtz equation
Interest to use high order methods
Efficient matrix-vector product on hexahedral meshes
Efficient iterative solver and preconditioning

2 Time-harmonic Maxwell equations
Spurious modes for Nedelec’s second family
Spurious modes for Discontinuous Galerkin method
Efficient matrix-vector product for Nedelec’s first family
Efficient iterative resolution

3 Time-domain Maxwell equations
Description of DG method
Numerical Results

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite Element Method Applied to Maxwell’s Equations25th april 2007 17 / 50



Nedelec’s second family on hexahedrals

Time-harmonic Maxwell’s equations :

−ω2 ε ~E(x) + curl(
1

µ(x)
curl(~E(x))) = 0

Space of approximation

Vh = {~u ∈ H(curl,Ω) such as DF ∗i ~u ◦ Fi ∈ (Qr )3 }

Mass lumping and factorization of stiffness matrix

Low-storage and fast matrix-vector product
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The unwanted oscillations

Dipole source on a cubic cavity. Left, mesh used for the simulations .
Right, numerical solution with Q3 finite edge elements with
mass-lumping.
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Eigenmodes with the second family

Mesh used for the simulations (Q3)
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Eigenmodes with the second family

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite Element Method Applied to Maxwell’s Equations25th april 2007 20 / 50



Two types of penalization

Mixed formulation of Maxwell equations

−ω
∫

Ω

E · ϕ +

∫
Ω

H · rot(ϕ) − iα
∑

e face

∫
Γe

[E · n][ϕ · n] =

∫
Ω

f · ϕ

−ω
∫

Ω

H · ϕ +

∫
Ω

rot(E) · ϕ− iδ
∑

e face

∫
Γe

[H × n] · [ϕ× n] = 0

Approximation space for H

Wh = {~u ∈ L2(Ω) so that DF ∗i ~u ◦ Fi ∈ (Qr )3 }

Equivalence with second-order formulation (α = δ = 0)

Dissipative terms of penalization

Penalization in α does not need of a mixed formulation
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Effects of penalization
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Case of the cubic cavity meshed with slip tetrahedrals

At left α = 0.1, at right α = 0.5
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Case of the Fichera corner

At left α = 0.5, at right δ = 0.5

Both penalizations efficient for regular domains

Delta-penalization more robust for singular domains
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Effects of penalization

Four modes of the Fichera corner
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Discontinuous Galerkin method

−ω
∫

Ki

ε~E · ~ϕ −
∫

Ki

H∇× ~ϕ −
∫
∂Ki

{H} ~ϕ× ~ν = 0

−ω
∫

Ki

µH ψ −
∫

Ki

∇× ~E ψ − 1
2

∫
∂Ki

[~E]× ~ν ψ = 0

Let us notice that
{H} = 1

2(Hi + Hj)

[ ~E] = (~Ei − ~Ej)
(1)

Unknowns in L2 ⇒ Gauss points instead of GL points

Mass lumping and fast matrix vector product

Thesis of S. Pernet, in time-domain
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Eigenmodes in DG method (3-D)

Constant number of spurious for regular meshes

Increasing number of spurious modes, otherwise
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Penalization terms, eigenvalues

To the first equation in E , we add :

−iω α
∫
∂Ki

[E× n] ·ϕ× n dx

We take α = 0.5
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Numerical eigenvalues
Analytical eigenvalues

Penalization terms reject ALL spurious modes in complex plane

Persistance of some spurious mode near 0
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Penalization terms, eigenvalues
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Effects of penalization

At left, numerical solution with α = 0, at right with α = 0.5
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Eigenvalues for the Fichera corner, on split tetrahedral mesh.
4

Good approximation of singular eigenvalues

No need to add penalization terms in 2-D
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Effects of penalization

At left, numerical solution with α = 0, at right with α = 0.5
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Nedelec’s first family on hexahedra

Space of approximation

Vh = {~u ∈ H(curl,Ω) so that DF t
i ~u ◦ Fi ∈ Qr−1,r ,r × Qr ,r−1,r × Qr ,r ,r−1 }

Basis functions

~̂ϕ1
i,j,k (x̂ , ŷ , ẑ) = ψ̂G

i (x̂) ψ̂GL
j (ŷ) ψ̂GL

k (ẑ) ~ex 1 ≤ i ≤ r 1 ≤ j , k ≤ r + 1

~̂ϕ2
j,i,k (x̂ , ŷ , ẑ) = ψ̂GL

j (x̂) ψ̂G
i (ŷ) ψ̂GL

k (ẑ) ~ey 1 ≤ i ≤ r 1 ≤ j , k ≤ r + 1

~̂ϕ3
k,j,i (x̂ , ŷ , ẑ) = ψ̂GL

k (x̂) ψ̂GL
j (ŷ) ψ̂G

i (x̂) ~ez 1 ≤ i ≤ r 1 ≤ j , k ≤ r + 1

ψG
i , ψ

GL
i lagragian functions linked respectively with Gauss points and

Gauss-Lobatto points.
See. G. Cohen, P. Monk, Gauss points mass lumping
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Elementary matrices
Mass matrix :

(Mh)i,j =

∫
K̂

Ji DF−1
i εDF ∗−1

i ϕ̂i · ϕ̂k dx̂

Stiffness matrix :

(Kh)i,j =

∫
K̂

1
Ji

DF t
i µ

−1 DFi ∇̂ × ϕ̂i · ∇̂ × ϕ̂k dx̂

Use of Gauss-Lobatto quadrature (ωGL
k , ξGL

k )

Block-diagonal matrix

(Ah)k,k =
[
Ji DF−1

i εDF ∗−1
i

]
(ξGL

k )ωGL
k

Block-diagonal matrix

(Bh)k,k =
[ 1

Ji
DF t

i µ
−1 DFi

]
(ξGL

k )ωGL
k
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Ĉ i,j = ϕ̂i(ξ
GL
j ) R̂ i,j = ∇̂ × ϕ̂GL

i (ξGL
j )

Then, we have : Mh = Ĉ AhĈ∗ Kh = ĈR̂ BhR̂∗Ĉ∗

Complexity of Ĉ U : 6 (r + 1)4 operations in 3-D

Complexity of R̂ U : 12 (r + 1)4 operations in 3-D

Complexity of Ah U + Bh U : 30 (r + 1)3 operations
Complexity of standard matrix vector product 18r3 (r + 1)3

Matrix-vector product 67% slower by using exact integration
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Spurious free method

Approximate integration leads to a spurious-free method
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Convergence of the method

Scattering by a perfectly conductor sphere E × n = 0

Convergence on tetrahedral meshes split in hexahedra

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
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Convergence of the method
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Is the matrix-vector product fast ?

Comparison between standard formulation and discrete factorization

Order 1 2 3 4 5
Time, standard formulation 55s 127s 224s 380s 631
Time, discrete factorization 244s 128s 106s 97s 96s
Storage, standard formulation 18 Mo 50 Mo 105 Mo 187 Mo 308 Mo
Storage, discrete factorization 23 Mo 9.9 Mo 6.9 Mo 5.7 Mo 5.0 Mo

Comparison between tetrahedral and hexahedral elements
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At left, time computation for a thousand iterations of COCG
At right, storage for mesh and matrices
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Comparison DG method vs first family

Both methods are spectrally correct

Both methods have a fast MV product

DG needs more dof, because DG Q3 is less accurate than
Family1 Q4

DG needs more storage for direct solvers (about 4 times than first
family)

DG can deal easily non-conforming meshes

DDM methods are faster with DG
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Preconditioning used

Incomplete factorization with threshold on the damped Maxwell
equation :

−k2(α + iβ)εE − ∇× (
1
µ
∇× E) = 0

ILUT threshold ≥ 0.05 in order to have a low storage

Incomplete factorization with threshold on the damped Maxwell
equation :

−k2(α + iβ)εE − ∇× (
1
µ
∇× E) = 0

Multigrid method on the damped Maxwell equation
Use of the Q1 mesh to do the multigrid iteration

Without damping, both preconditioners does not lead to
convergence.

A good choice of parameter is α = 0.7, β = 0.35
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Transparent condition
Silver-Muller condition is a first-order ABC :

E × n + n × H × n = 0

Use of a transparent condition based on integral representation formulas
:

Epot(x) =

∫
Γ

ik (G(x , y)+
1
k2 ∇y∇y G(x , y)) (n×H)(y) dy +

∫
Γ

(n×E)(y)×∇y G(x , y) dy

new boundary condition E × n + n × H × n = Epot × n + n × Hpot × n

Needs of a virtual boundary Γ

Σ

Incident Plane Wave

Γ

Ω

µ = µ0
ε = ε0

GMRES iterations to solve linear system

C. Hazard, M. Lenoir, On the solution of time-harmonic scattering
problems for Maxwell’s equations
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Radar cross section

Computation of far field of the electromagnetic objects by the formula

σ(u) =
k2

4π

∫
Σ

eiku·OM
[

u× (n× H) + (u ⊗ u − I)(E× n)
]

dM

Bistatic RCS : the vector of observation u varies

Monostatic RCS : the wave vector k varies and u = k
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Scattering by a dielectric sphere

Sphere of radius 2 with ε = 3.5 µ = 1

Outside boundary on a sphere of radius 3.

How many dofs/time to reach an error less than 0.5 dB

−350 −300 −250 −200 −150 −100 −50 0
−5

0

5

10

15

20

25

30

35

40

θ (in degrees)

Rc
s (

dB
 m

2 )

Analytical RCS
Numerical RCS

Finite Element Q2 Q4 Q6 Q8
Nb dofs 940 000 88 000 230 000 88 000
No preconditioning 19 486 s 894 s 4 401 s 1 484 s
ILUT(0.05) - 189 s 1 035 s 307 s
Two-grid 4 4344 s 488 s 1 095 s 952 s
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Scattering by a cobra cavity

Cobra cavity of length 10, and depth 2

Outside boundary at a distance of 1

How many dofs/time to reach an error less than 0.5 dB
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θ

Rc
s (

dB
 m

2 )

Finite Element Q4 Q6
Nb dofs 412 000 187 000
No preconditioning 14 039 s 12 096 s
ILUT(0.05) 2 247 s 846 s
Two-grid 9 294 s 10 500 s
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Outline

1 Resolution of Helmholtz equation
Interest to use high order methods
Efficient matrix-vector product on hexahedral meshes
Efficient iterative solver and preconditioning

2 Time-harmonic Maxwell equations
Spurious modes for Nedelec’s second family
Spurious modes for Discontinuous Galerkin method
Efficient matrix-vector product for Nedelec’s first family
Efficient iterative resolution

3 Time-domain Maxwell equations
Description of DG method
Numerical Results
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Discontinuous Galerkin Method

Let Ω =

Ne⋃
i=1

Ki . Find ~E(., t) ∈ [L2(Ω)]3, ~H(., t) ∈ [L2(Ω)]3 s.t.

∂

∂t

∫
Ki

ε ~EKi · ~ϕKi dx −
∫

Ki

∇∧ ~HKi · ~ϕKi dx

+

∫
Ki

σ~EKi · ~ϕKi dx +

∫
Ki

~J · ~ϕKi dx =∫
∂Ki

α[~nKi ∧ (~E ∧ ~nKi )]Ki
∂Ki
· ~ϕKi dσ +

∫
∂Ki

β[~H ∧ ~nKi ]
Ki
∂Ki
· ~ϕKi dσ,

∀~ϕKi ∈ H(curl ,Ki)

M. Durufle, G Cohen (INRIA, project POEMS)Numerical Integration and High Order Finite Element Method Applied to Maxwell’s Equations25th april 2007 40 / 50



Discontinuous Galerkin Methods for Time-Domain

∂

∂t

∫
Ki

µ ~HKi · ~ψKi dx +

∫
Ki

∇∧ ~EKi · ~ψKi dx =∫
∂Ki

γ[~E ∧ ~nKi ]
Ki
∂Ki
· ~ψKi dσ +

∫
∂Ki

δ[~nKi ∧ (~H ∧ ~nKi )]Ki
∂Ki
· ~ψKi dσ,

∀~ψKi ∈ H(curl ,Ki)

+ metallic boundary condition on Γb = ∂Ω and initial conditions,

where ~EKi = ~E |Ki
, ~HKi = ~H |Ki

, ~ϕKi = ~ϕ|Ki
, ~ψKi = ~ϕ|Ki

and α, β, γ, δ real
constant parameters.
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Discrete Energy

EKi (t) =
∑

Ki⊂Ω

{∫
Ki

(ε~EKi ) · ~EKi dx +

∫
Ki

(µ~HKi ) · ~HKi dx
}

1 −β = γ = 1
2 , α ≥ 0 and δ ≥ 0 =⇒

∂E
∂t

(t) =
∑

Γ∈Fi , Γ=Ki∩Kj

{−α‖[~nKi ∧ (~E ∧ ~nKi )−δ‖[~nKi ∧ (~H ∧ ~nKi )]‖2Γ}∑
Γ∈Γb, Γ⊂Ki

{−α‖~nKi ∧ (~EKi ∧ ~nKi )‖2Γ − δ‖~nKi ∧ (~HKi ∧ ~nKi )‖2Γ}

=⇒ Decreasing energy: Dissipative scheme.

2 −β = γ = 1
2 , α = 0 et δ = 0 =⇒ ∂

∂t
E(t) = 0

=⇒ Energy conservation: Conservative scheme.
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Discrete Formulation (Gauss Points)

Bε
En+1 − En

∆t
+ Rh Hn+1/2 + Bσ

En+1 + En

2

+ αDh En + β Sh Hn+1/2 + Jn = 0,

Bµ
Hn+1/2 − Hn−1/2

∆t
+ Rh En + γ S∗h En + δD∗h Hn−1/2 = 0,
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Main Features of this Approximation

Bε, Bσ, Bµ: 3× 3 block-diagonal symmetric mass matrices,
Rh: very sparse matrix which needs no storage,
Sh, S∗h: jump block-diagonal symmetric matrices which need no
storage,
Dh, Dh

∗: jump block-diagonal symmetric matrices which must be
stored.

−→ The dissipative terms induce a (reasonable) additonal storage.
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Another Feature of Numerical Dissipation: PML
Stabilization
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Numerical Examples

Dielectric spherical torus

Figure: Configuration of the experiment
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Numerical Examples

Dielectric spherical torus

Figure: Ey component of the electric field at a point of the domain after
propagation across 10λ (left) and 120λ (right).
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Numerical Examples

Dielectric spherical torus

CPU time: FETD (Q3) : 300 s, FDTD (20pts/λ) : 1100 s.

Storage FDTD (20pts/λ)/FETD (Q3) = 10.
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Numerical Examples

Airplane

Frequency: 0.75 Ghz (30λ).

Mesh: 78 000 elements, 30 000 000 DOF (Q4).

Storage: 1.2 Go.

CPU time (30λ): 30 h on a monoprocessor Linux system, 2Go
Ram, 3.2 GHz.
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Numerical Examples

Airplane

Figure: The surfacic mesh (before splitting)

Figure: Snapshots of the currents on the plane with (right) and without (left)
dissipation
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