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Abstract

In this paper, we present rigorous derivations of anelastic limits for
compressible Euler type systems when the Mach (or Froude) number
tends to zero. The first and main part is to prove local existence and
uniqueness of strong solution together with uniform estimates on a time
interval independent of the small parameter. The key new remark is
that the systems under consideration can be written in a form where
ideas from

MS
[MeSc1] can be adapted. The second part of the analysis is

to pass to the limit as the parameter tends to zero. In this context, the
main problem is to study the averaged effect of fast acoustic waves on
the slow incompressible motion. In some cases, the averaged system is
completely decoupled from acoustic waves. The first example studied
in this paper enters this category: it is a shallow-water type system
with topography and the limiting system is the inviscid lake equation
(rigid lid approximation). This is similar to the low Mach limit analysis
for prepared data, following the usual terminology, where the acoustic
wave disappears in a pure pressure term for the limit equation. The
decoupling also occurs in infinite domains where the fast acoustic waves
are rapidly dispersed at infinity and therefore have no time to interact
with the slow motion (see

Sc,MS, Al
[Sc, MeSc1, Al2]).

In other cases, and this should be expected in general for bounded
domains or periodic solutions, this phenomenon does not occur and
the acoustic waves leave a nontrivial averaged term in the limit fluid
equation, which cannot be incorporated in the pressure term. In this
case, the limit system involves a fluid equation, coupled to a nontriv-
ial infinite dimensional system of differential equations which models
the energy exchange between the fluid and some remanent acoustic en-
ergy. This was suspected for the periodic low Mach limit problem for
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nonisentropic Euler equations in
MeSc
[MeSe2] and proved for finite dimen-

sional models. The second example treated in this paper, namely Euler
type system with heterogeneous barotropic pressure law, is an example
where this scenario is rigorously carried out. To the authors’ knowl-
edge, this is the first example in the literature where such a coupling
is mathematically justified.
Keywords: Compressible Euler equations, heterogeneous media, shallow-
water system, rigid-lid approximation, anelastic limit, lake equation,
low mach number, low Froude Number.
AMS subject classification: 35Q30, 35B40, 76D05.

1 Introduction

Anelastic limits starting from diffusive systems have been recently stud-
ied from a Mathematical point of view for instance in

BrGiLi
[BrGiLi],

Ma1
[Ma1]

and
FeMaNoSt
[FeMaNoSt]. These works concern respectively the degenerate vis-

cous shallow-water equations with bathymetry and the compressible Navier-
Stokes equations with high potential and constant viscosities. In all these
papers, the authors consider global weak solutions where the time interval
is fixed and, in the ill-prepared case, they prove that, from an energetical
point of view, acoustic waves do not interact with the mean velocity field.
In this paper, we consider anelastic limits starting from two compressible
Euler-type systems.

I) The first model is the two space dimension shallow-water system with
topography, namely:

model1model1 (1.1)


∂th+ div(hv) = 0,

∂t(hv) + div(hv ⊗ v) + h
∇(h− hb)

ε2
= 0

where v denotes the vertical averaged of the hoziontal velocity field com-
ponent, h the height of water and the bathymetry hb is a given function
depending on the space variables, see for instance

Br
[Br],

BrGiLi
[BrGiLi]. Note the

analysis presented here extends to similar inviscid systems, see for instance
Ma1
[Ma1] for corresponding viscous systems.

II) The second model we have in mind is the Euler equation with heteroge-
neous pressure law

model2model2 (1.2)


∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) +
∇(c(x)ργ)

ε2
= 0
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with c a given function depending on space variables x, ρ the density of the
fluid and v its velocity.

To prove existence and uniqueness of local strong solution on a time
interval which does not depend on the small parameter ε, the main idea
is to rewrite such systems under an appropriate form : in Section 2, we
prove that after a suitable change of unknows, both system enter the general
framework of systems of the following form:

model3model3 (1.3)


a(∂tq + v · ∇q) +

1
ε

divxu = 0,

b(∂tm+ v · ∇m) +
1
ε
∇ψ = 0

with a(t, x) and b(t, x) known and positive, and

constitconstit (1.4) q =
1
ε
Q(t, x, εψ), m = µ(t, x)u, v = V (t, x, u, q),

where Q, µ and V are smooth functions of their arguments with Q(t, x, 0) =
0, ∂θQ > 0 and µ > 0. Note that q is not singular in ε and satisfies

constitbconstitb (1.5) q = Q1(t, x, εψ)ψ, with Q1 > 0.

For such systems, the existence and uniqueness of strong solutions on a
time interval independent of ε can be obtained following the lines of

MS
[MeSc1]:

first, since the singular term is skew symmetric there are easy L2 estimates;
next one commutes the equation with appropriate operators so that the
commutators are controlled. This is explained in Section

sec3
3.

Concerning the asymptotic limit, we show that the two models (
model1
1.1)

and (
model2
1.2) yield different analyses. For system (

model1
1.1) the main contribution

of acoustic waves can be written as a gradient and therefore behaves as a
pressure term. On the contrary, for system (

model2
1.2), the acoustic waves are

strongly coupled to the mean velocity by a term which is not a gradient.
The novelty of this model, compared to usual models studied in the litera-
ture, is that in the pressure law, p = cργ , the heterogeneity of the medium
is modeled through a function c(x) which changes from a point to another.
The strong coupling between the acoustic part and the mean field is well
known in many models. For instance it occurs for ill-prepared data for the
non-isentropic Euler equations, where an additional equation for the entropy
is added to the classical Euler system. For unbounded domains, the decou-
pling between the acoustics and the mean field is due to the fast dispersion

3



of the acoustic waves at infinity (see
MS, Al1
[MeSc1, Al1]). On bounded or periodic

domains, acoustic waves still travel very fast but are trapped and their aver-
aged effect remains present in the limit. The analysis of this averaging seems
to be very difficult in general due to the crossing eigenvalues phenomena,
see for instance

BrDeGr, MeSc
[BrDeGr, MeSe2]. In

BrDeGrLi
[BrDeGrLi] a semi-formal derivation

is given for the nonstationary problem with ill prepared initial data. For
System (

model2
1.2), the fast acoustic waves are governed by a space dependent

wave equation, and this induces a nontrivial coupling in the limit. But, this
fast wave equation is independent of the solution, in sharp contrast with the
nonisentropic Euler’s equation. Using this property, the limit can be car-
ried out rigorously. The nonhomogeneity yields an extra non gradient term
depending on the waves in the mean momentum equation. The description
of the waves dynamics might be of physical and numerical interest.

The paper is organized as follows : in Section 2, we state the main
results. In Section 3, we prove the uniform estimates on (u, ψ) which imply
existence and uniqueness of strong solutions on a fixed interval of time for the
general system. The last section is devoted to the asymptotic analysis when
ε go to zero and the rigorous proof of convergence of solutions to solutions
of asymptotic models. This section is splitted in four parts: the first one
concerns the general problem, the second part (Theorem

theoconv
2.3) provides a

framework where we get an asymptotic decoupling between fast and slow
scales. Note that System (

model1
1.1) satisfies the asumptions of this part. The

third part concerns dispersion of acoustic waves on Rd which may lead to
strong convergence (Theorem

acous
2.4) and in the last part we consider averaged

acoustics on the torus leading to a limit system involving a fluid equations
coupled to a nontrivial infinite dimensional system of differential equations
which models the energy exchange between the fluid and some remanent
acoustic energy (Theorem

Theoo
2.6). System (

model2
1.2) satisfies the assumptions of

this part and thus it provides an example where this scenario is rigorously
carried out. At the end of the paper, we give the coupled limit system
corresponding to the heterogenous isentropic Euler system. To the authors’
knowledge, this is the first example in the literature where such a coupling
is mathematically justified.
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2 Main results.

2.1 Reduction to System (
model3
1.3)

a) The shallow-water equations. Consider the system (
model1
1.1). Using the

mass equation, denoting

ψ = (h− hb)/ε, q =
1
ε

ln(1 + εψ/hb),

the system (
model1
1.1) may reads

model11model11 (2.1)


hb(∂tq + v · ∇q) +

div(hbv)
ε

= 0,

∂tv + v · ∇v +
∇ψ
ε

= 0.

This system is of the form (
model3
1.3) with

a = hb, b = 1, V = m = u/hb, u = hbv.

b) The heterogeneous Isentropic Euler equations. Consider the sys-
tem (

model2
1.2). Using the mass equation (2.3)1 and denoting

ψ =
γ

(γ − 1)
(c1/γρ)γ−1 − 1

ε
, q =

1
ε(γ − 1)

ln(1 + ε(γ − 1)ψ/γ),

the system (
model2
1.2) reads

model21model21 (2.2)


c−1/γ(∂tq + v · ∇q) +

div(c−1/γv)
ε

= 0,

c−1/γ(∂tv + v · ∇v) +
∇ψ
ε

= 0,

This system is of the form (
model3
1.3) with

a = c−1/γ , b = c−1/γ , V = m = c1/γu, u = c−1/γv.

2.2 Uniform existence and uniqueness of smooth solution

Our first theorem concerns the existence of local strong solution on a time
intervall which does not depend on the small parameter. For such purpose
we consider the general form (

model3
1.3). We work on the domain Dd which is

either the entire space Rd, or a torus Td, or a mixed of these two types
Td′ × Rd−d′ .
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mainth Theorem 2.1. There are ε0 > 0 and T0 > 0 which depend only on the
Hs(Dd) norm of the initial data, s > d

2 + 1, such that for all ε ≤ ε0 the
Cauchy problem for (

model3
1.3) has a unique solution (u, ψ) ∈ C0([0, T ];Hs(Dd)).

In particular, this gives the existence and uniqueness of local strong
solution on a time intervall which does not depend on the small parameter
ε for Systems (

model1
1.1) and (

model2
1.2).

2.3 Asymptotic limits

In a second part, we look at the asymptotic procedure, letting ε go to zero,
in the ill-prepared case for (

model3
1.3) under some assumptions on a, b, µ, V

and Q. We consider different domains, Ω and we investigate three different
frameworks.

a) In the first case, assumptions on b and V provide a framework where
we get an asymptotic decoupling between fast and slow scales. Note that
System (

model1
1.1) satisfies the asumptions of this part and that this result applies

on any domain Ω.

b) Next we work on Ω = Rd with specific decreasing assumptions at infinity
for the coefficients (similar to the one given in

MS
[MeSc1]) which provide dis-

persion of acoustic waves on Rd. This lead to strong convergence and the
decoupling observed in case a) occurs in this case too, but for a different
reason.

c) In the last part, we consider averaged acoustics on the torus Ω = Td.
Under some assumptions on a, b, µ, V and Q, we mathematically justify
a limit system involving a fluid equations coupled to a nontrivial infinite
dimensional system of differential equations which models the energy ex-
change between the fluid and some remanent acoustic energy. System (

model2
1.2)

satisfies the assumptions of this theorem and thus it provides an example
where this scenario is rigorously carried out.

We first prove a result under the following

ass4.1 Assumption 2.2. Suppose that b is constant and the function V has the
special form

V (t, x, u, q) = dµu,

where d is a constant.
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theoconv Theorem 2.3. Under Assumption
ass4.1
2.2 and assuming (

initconv
4.1), the family of

solutions uε (given by Theorem 2.1) converge weakly (in the sense of distri-
butions) to the unique solution of

limeq1limeq1 (2.3) ∂t(µu) + dµu · ∇(µu) +∇π = 0, div u = 0,

with initial data (
liminitdata
4.11). Moreover, ũε converges strongly to u in C0([0, T ];Hs′

loc(Dd))
where ũε is defined by (

decomp
4.7).

Remark. This theorem applies for system (
model1
1.1) and provides the lake equa-

tion (
lake
4.16) at the limit.

Next, we split the analysis in two parts:
i) Dispersion of acoustics waves on Rd. Introduce the notation F for func-
tions f on [0, T ]×Rd which have a limit f(t) as x tends to infinity and such
that

coeffatintfcoeffatintf (2.4) |f(t, x)− f(t)| ≤ C|x|−1−δ , |∇xf(t, x)| ≤ C|x|−2−δ

for some constant C and some δ > 0. Let us define Q
1
(t, x) = Q1(t, x, 0) =

∂θQ(t, x, 0).

acous Theorem 2.4. Suppose that the coefficients a, b, µ and Q
1

belong to the
class F . Then, the family (ψε, uε) converges strongly to (0, u) in L2([0, T ];Hs′

loc(Rd))
and the limit equation for u is

(2.5) b(∂t(µu) + v · ∇(µu)) +∇π = 0, div u = 0

with v = V (t, x, u, 0).

Remark. This theorem applies for both systems (
model1
1.1) and (

model2
1.2) provided

that the coefficients hb or c(x) respectively belong to the class F .

ii) Averaged acoustics on the torus. We make the following assumption.

ass4.4 Assumption 2.5. The reference domain in a torus Td, the coefficients a,
b, µ do not depend on time and are smooth functions of x ∈ Td, as well
as the function Q(x, θ). We further assume that V = d(t, x)u is a linear
function of u.

Theoo Theorem 2.6. Under the Assumption
ass4.4
2.5, the limit u satisfies the equation

(
limequ
4.37) with initial data (

liminitdata
4.11). The additional term I is given by (

defcall
4.36) and

the αj’s satisfy the equations (
alphaj
4.38) with the initial conditions (

alphajinit
4.39).

Remark. This theorem applies for system (
model2
1.2) and the limit system is given

by (
model23
4.40), (

defPhi
4.41), (

ell
4.42), (

233
4.43) and (

model24
4.44). Note the strong coupling between

mean velocity and acoutic waves.
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3 Proof of Theorem
mainth

2.1.
sec3

The system being symmetric hyperbolic, solutions are known to exist and
to be unique on a small interval of time depending on ε. The solutions are
continued to a fixed interval, using suitable a-priori estimates for the smooth
solutions. Following

MS
[MeSc1], we are looking for estimates of

defKdefK (3.1) K := sup
t∈[0,T ]

∥∥(u, ψ)(t)
∥∥
Hs , s >

d

2
+ 1.

Recall the following nonlinear estimates:

Lemma 3.1 (Nonlinear estimates). i) for s > d
2 , 0 ≤ kj and k :=

k1 + . . .+ kp ≤ s:

nl1nl1 (3.2)
∥∥u1 . . . up

∥∥
s−k ≤ C

∥∥u1 . . . up
∥∥
s−k1 . . .

∥∥up . . . up∥∥s−kp

ii) for s > 1 + d
2 , 1 ≤ kj ≤ s and k := k1 + . . .+ kp ≤ s:

nl2nl2 (3.3)
∥∥u1 . . . up

∥∥
s−k+p−1

≤ C
∥∥u1 . . . up

∥∥
s−k1 . . .

∥∥up . . . up∥∥s−kp
.

Proof. i) well known. For ii) apply (
nl1
3.2) with s − 1 > d

2 and kj − 1 ≥ 0 in
place of kj . Note that k ≥ p, so that s− k + p− 1 ≤ s− 1.

The first step is to show that the constant K controls various other
derivatives of the unknows which will be present in the analysis of commu-
tator estimates.

Lemma 3.2. Smooth solutions of (
model3
1.3) satisfy the following estimates

eq1.10eq1.10 (3.4) K̃ := sup
t∈[0,T ]

s∑
k=0

∥∥(ε∂t)k(u, ψ)(t)
∥∥
Hs−k ≤ C(K),

and for s ≤ k:

eq1.11eq1.11 (3.5) sup
t∈[0,T ]

∥∥(ε∂t)k(q,m, v)(t)
∥∥
Hs−k ≤ C(K̃).

Here and below, C(K) denotes a constant independent of ε, depending
only K, the coefficients a, b,Q,mv, the dimension d and the index s
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Proof. From the equation

ε∂t(u, ψ) = Φε(t, x, u, ψ)∇(u, ψ) + Ψε(t, x, u, ψ)

with Φε and Ψε uniformly bounded with respect to ε ≥ 0. By induction on
k, the nonlinear estimates imply∥∥(ε∂t)k(u, ψ)(t)

∥∥
Hs−k ≤ C(K).

Next, because Q(t, x, 0) = 0, q = Q̃(t, x, εψ)ψ, so the estimate (
eq1.11
3.5) for

k = 0 follows. For k ≥ 1, (ε∂t)kq is the sum of terms

eq1.12eq1.12 (3.6) εl+p−1(∂lt∂
p
θQ)(t, x, εψ)(ε∂tψ)k1 . . . (ε∂tψ)kp

where
l + p ≥ 1, kj ≥ 1, l + k1 + . . .+ kp = k.

Thus (
eq1.11
3.5) follows from (

eq1.10
3.4) and (

nl2
3.3).

Moreover,

eq1.13eq1.13 (3.7) (ε∂t)kq = ∂θQ(t, x, εψ)(ε∂t)kψ + rr

where rk is a sum of terms (
eq1.12
3.6) with l + p ≥ 2. In this case, there is (at

least) an extra factor ε in front of the derivatives and the kj ≤ s− 1 for all
j. Thus one can apply another full derivative to rk and

eq1.14eq1.14 (3.8)
∥∥∂t,xrk∥∥Hs−k ≤ C(K).

There estimates for m and v are similar and easier .

Lemma 3.3. Let (uk, ψk) = (ε∂t)k(u, ψ). Then for k ≤ s:

commcomm (3.9)


a(∂tqk + v · ∇qk) +

1
ε

divxuk = fk,

b(∂tmk + v · ∇mk) +
1
ε
∇ψk = gk

with

qkqk (3.10) qk = ∂θQ(t, x, εψ)ψk, mk = µuk,

estcomestcom (3.11) sup
t∈[0,T ]

∥∥(fk, gk)(t)
∥∥
L2 ≤ C(K̃).
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Proof. By (
eq1.13
3.7)

(ε∂t)k∂tq = ∂tqk + ∂trk.

Thus fk is equal to a∂trk plus a sum of commutators terms

εl−1∂lta (ε∂t)k−l+1q, εl∂lt(av) (ε∂t)k−l∂xq

with l ≥ 1 and the estimate (
estcom
3.11) follows. The proof of the estimate for gk

is similar.

This leads to consider the linearized system

lineqlineq (3.12)


a(∂t(ρψ̇) + v · ∇(ρψ̇)) +

1
ε

divxu̇ = ḟ ,

b(∂t(µu̇) + v · ∇(µu̇)) +
1
ε
∇ψ̇k = ġ

with ρ = ∂θQ(t, x, εψ).

Lemma 3.4. There are C0 and C = C(K) such that the solution of (
lineq
3.12)

satisfies for t ≤ 1:

estL2estL2 (3.13)

∥∥(u̇, ψ̇)(t)
∥∥
L2 ≤ C0(1 + tC(K))

∥∥(u̇, ψ̇)(0)
∥∥
L2

+ C(K)
∫ t

0

∥∥(ḟ , ġ)(t′)
∥∥
L2dt

′.

Proof. The energy is

E(t) =
1
2

∥∥√aρψ̇(t)
∥∥2

L2 +
1
2

∥∥√bµv̇(t)
∥∥2

L2 .

Then

d

dt
E(t) ≤ Re

(
ḟ , ψ̇

)
L2 + Re

(
ġ, u̇
)
L2

+O(‖ρ∂ta− a∂tρ‖L∞ + ‖ρ∂x(av)− av∂xρ‖L∞)‖ψ̇‖2L2

+O(‖µ∂tb− b∂tµ‖L∞ + ‖µ∂x(bv)− bv∂xµ‖L∞)‖u̇‖2L2 .

Thus
d

dt
E(t) ≤ Re

(
ḟ , ψ̇

)
L2 + Re

(
ġ, u̇
)
L2 + C(K)E(t)

and

E
1
2 (t) ≤ E

1
2 (0) + C(K)

∫ t

0

∥∥(ḟ , ġ)(t′)
∥∥
L2dt

′.
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Note that∥∥εψ(t)
∥∥
L∞
≤
∥∥εψ(0)

∥∥
L∞

+ t
∥∥ε∂tψ∥∥L∞ ≤ ∥∥εψ(0)

∥∥
L∞

+ tCK̃.

Therefore,

estrhoestrho (3.14)
∥∥ρ(t)

∥∥
L∞
≤ C0 + tC(K)

and ∥∥(u̇, ψ̇)(t)
∥∥
L2 ≤ C0(1 + tC(K))E

1
2 (t)

where C0 depends only on the L∞ norm of the initial data for u and ψ. The
lemma follows.

corestdt Corollary 3.5. There is C0 which depends only on the Hs norm of the ini-
tial data for u and ψ and there is C(K) such that the (uk, ψk) = (ε∂t)k(u, ψ)
for k ≤ s, satisfy

estepsdtkestepsdtk (3.15)
∥∥(uk, ψk)(t)

∥∥
L2 ≤ C0 + tC(K).

Proof. For k ≥ 1, apply the lemma to (
comm
3.9). When k = 0, there is a

slightly different equation for (u, ψ): writing q = Q̃(t, x, εψ)ψ and consider-
ing Q̃(t, x, εψ) as a known coefficient, yields an equation which is again of
the form (

lineq
3.12) for (u, ψ).

Next, we estimate the vorticity.

Lemma 3.6. Let ω := curl (bµu). Then h := (∂t + v∇)ω satisfies for
l ≤ s− 1:

(3.16) sup
0≤t≤T

∥∥(ε∂t)lh(t)
∥∥
Hs−1−l ≤ C(K).

Proof.
h = curl

(
(∂tb)µu+ v[∇, b]µu

)
+ [− curl , v∇]bµu.

Corollary 3.7. There is C0 which depends only on the Hs norm of the
initial data for u and ψ and there is C(K) such that ω := curl (bµu) satisfies

estvortestvort (3.17)
∥∥(ε∂t)lω(t)

∥∥
Hs−1−l ≤ C0 + tC(K).

where C0 depends only on the Hs norm of the initial data.
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Lemma 3.8 (Elliptic estimates).

estdivcurlestdivcurl (3.18)
∥∥u∥∥

Hk ≤ Ck
(∥∥div u

∥∥
Hk−1 +

∥∥ curl (bµu)
∥∥
Hk−1 +

∥∥u∥∥
Hk−1

)
.

Lemma 3.9. For 0 ≤ l ≤ k ≤ s,

estrec1estrec1 (3.19)
∥∥(us−k, ψs−k)(t)

∥∥
Hl ≤ C0 + (t+ ε)C(K) +C1

∥∥(us−k, ψs−k)(t)
∥∥
Hl−1

where C0 depends only on the Hs norm of the initial data and C1 is inde-
pendent of (u, ψ).

Proof. The equation yields

div u = −aε∂tq − εav∇q, ∇ψ = −bε∂tm− εbv∇m.

Applying (ε∂t)l to these equation, and using (
eq1.13
3.7), we see that

inveq2inveq2 (3.20) div ul = −aρψl+1 − εfl, ∇ψl = −bµul+1 − εgl

where ρ = ∂θQ(t, x, εψ) and

esterresterr (3.21)
∥∥(ε∂t)j(fl, gl)(t)

∥∥
Hs−l−j−1 ≤ C(K).

Moreover, applying (ε∂t)l to curl (bµu) yields

epsdtcurlepsdtcurl (3.22) curl
(
bµul

)
− (ε∂t)lω = εhl

where hl satisfies estimates similar to (
esterr
3.21).

We prove (
estrec1
3.19) by induction on k. For k = 0, this is (

estepsdtk
3.15). Assume

that it is proven at the order k − 1. When l = 0, the desired estimate is
implied by (

estepsdtk
3.15). Thus, suppose that 1 ≤ l ≤ k ≤ s.

Then, from (
inveq2
3.20) and the induction hypothesis we find that∥∥div us−k

∥∥
Hl−1 +

∥∥∇ψs−k∥∥Hl−1 ≤ C0 + (t+ ε)C(K)

With (
epsdtcurl
3.22) and (

estdivcurl
3.18), we deduce that∥∥(us−k, ψs−k)(t)
∥∥
Hl ≤ C0 + (t+ ε)C(K) +

∥∥(us−k, ψs−k)(t)
∥∥
Hl−1

that is (
estrec1
3.19)

Corollary 3.10. There is C0 which depends only on the Hs norm of initial
data and C(K) such that

(3.23)
∥∥(u(t), ψ(t)

∥∥
Hs ≤ C0 + (t+ εC(K)).
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Corollary 3.11. There are C0, ε0 > 0 and T0 > 0 which depend only on
the Hs norm of the initial data, such that for ε ≤ ε0 and t ≤ T0:

(3.24)
∥∥(u(t), ψ(t)

∥∥
Hs ≤ 2C0

Proof. Take T0 ≤ 1
2C(2C0) and ε0 ≤ 1

2C(2C0) .

Together with the local existence theorem for symmetric hyperbolic sys-
tems, this uniform bound implies Theorem

mainth
2.1.

4 Asymptotics

4.1 The general problem

Assume that (uε, ψε) is a family of solutions of (
model3
1.3) on [0, T ]×Ds, which sat-

isfy the uniform estimates (
defK
3.1) (

eq1.10
3.4) and (

eq1.11
3.5) with a fixed K: in particular

(ε∂t)k(uε, ψε) and (ε∂t)k(qε,mε, vε) are uniformly bounded in C0([0, T ];Hs−k).
We further assume that the initial data converge strongly in Hs:

initconvinitconv (4.1) (uε|t=0, ψ
ε
|t=0)→ (u0, ψ0) in Hs.

In particular, up to the extraction of a subsequence, we can assume the
following weak convergences in the sense of distribution for instance, as ε
tends to 0:

weakconvweakconv (4.2) (uε, ψε, qε,mε, vε) ⇀ (u, ψ, q,m, v).

Moreover, the constitutive definition of Q and m show that

(4.3) q = Q1(t, x, 0)ψ, m = µu.

Multiplying the first equation by ε and passing to the weak limit shows that

incompincomp (4.4) div u = 0, ∇ψ = 0.

Consider the curl of the second equation equation of (
model3
1.3). It reads

curlcurl (4.5) curl (b(∂t + vε · ∇)mε) = 0.

The first information we get from it is that ∂t curl (bµuε) = curl (b∂tmε) +
curl

(
(∂tb)mε

)
is bounded in C0([0, T ];Hs−1). Therefore, the vorticity ωε =

curl (bµuε) converges strongly

convvortconvvort (4.6) ωε → ω = curl (bµu) in C0([0, T ], Hs′
loc)

13



for all s′ < s.
To pass to the weak limit in the equation (

curl
4.5), we split uε into its

incompressible and acoustic components, namely we write

decompdecomp (4.7) uε = ũε +
1

b(t, x)µ(t, x)
∇Gε

with

decomp2decomp2 (4.8) Gε = (∆b µ)−1divuε, ∆b µ = div(
1
bµ
∇).

Here, ∆b µ and (∆b µ)−1 are seen as acting in the space Ḣ±1 or in the space
of functions with zero mean on the torus. In particular,

div ũε = 0, curl (bµ)ũε = ωε.

Since div uε ⇀ 0, ũε converges weakly to u and the following weak conver-
gence holds

convGconvG (4.9) ∇Gε ⇀ 0.

In addition, the uniform estimate (
convvort
4.6) implies that the convergence of ũε is

strong ang

convtildeuconvtildeu (4.10) ũε → u in C0([0, T ];Hs′
loc(Ω)).

In particular, the initial data for u is

liminitdataliminitdata (4.11) u|t=0 = ũ0,

where u0 = ũ0 + 1
bµ∇G0 as in (

decomp
4.7).

We subsitute the splitting (
decomp
4.7) in the equation (

curl
4.5). The first term to

consider is

b∂tm
ε = b∂t

(
µũε +

1
b
∇Gε

)
= b∂t(µũε) +∇∂tGε −

∂tb

b
∇Gε

thus
curl

(
b∂tm

ε
)
⇀ curl

(
b∂t(µu)

)
.

The next term to consider is

(4.12)
Iε := bvε · ∇mε

= bV
(
t, x, ũε +

1
bµ
∇Gε, 1

ε
Q(t, x, εψ)

)
· ∇
(
µũε +

1
b
∇Gε

)
14



Hence, passing to the limit in the sense of distributions in the equation (
curl
4.5)

yields

lim1lim1 (4.13) curl ∂t(bµu) + curl I = 0

where I is the weak limit of Iε := vε · ∇mε, or

model6model6 (4.14) b∂t(µu) +∇π + I = 0,

for some pressure term ∇π which is in accordance with the divergence free
condition div u = 0.

Conditions on V and Q are necessary to compute the limit I.

4.2 Asymptotic decoupling between fast and slow scales

The limit of curl Iε is easily computed under the following assumption (
ass4.1
2.2).

Proof of Theorem
theoconv
2.3. Due to the form of V , the expression of Iε simplifies

to
Iε = bdµuε · ∇(µuε) = d

(
bµũε +∇Gε

)
· ∇
(
µũε +

1
b
∇Gε

)
.

There is no difficulty in passing to the weak limit in quadratic terms in-
volving at least one strongly convergent factor, namely those with ũε. The
remaining term which involves two weakly convergent factors is

d(∇Gε) · ∇(
1
b
∇Gε) =

d

2b
∇|∇Gε|2.

It is an exact gradient, so that

curl (Iε) ⇀ curl
(
bdµu · ∇(µu)

)
.

and Theorem
theoconv
2.3 follows.

Shallow-water equations. Note that the model (
model1
1.1) satisfies this assumption,

since then
V =

u

hb
, µ =

1
hb

b = 1.

Thus analysis above applies to (
model1
1.1), and the limit system reads

model12model12 (4.15)

 ∂t(
u

hb
) + (

u

hb
) · ∇(

u

hb
) +∇p = 0,

divu = 0,

Recalling that v = u/hb, we get exactly the lake equation, namely

lakelake (4.16) ∂tv + v · ∇v +∇p = 0, div(hbv) = 0.

This proves the convergence to the inviscid lake equations.
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4.3 Dispersion of acoustic waves on Rd

The solutions of (
model3
1.3) satisfy

modelfastwavesmodelfastwaves (4.17)

{
εa∂tQ1

ψε + div uε = εf ε

εb∂t(µuε) +∇ψε = εgε.

with Q
1
(t, x) = Q1(t, x, 0) = ∂θQ(t, x, 0). From the estimates for (uε, ψε),

we know that f ε and gε are bounded in C0([0, T ];Hs−1). This systems
governs the evolution on small scales of time or order ε.

In this paragraph, we consider solutions on Rd. We sketch the analy-
sis of

MS
[MeSc1] which proves that the family uε converges strongly to u in

L2([0, T ];Hs′
loc(Rd)) for s′ < s.

Sketch of proof of Theorem 2.4. The system (
modelfastwaves
4.17) can be written

(4.18) εE1∂tE2U
ε + L(∂x)U ε = εF ε

with
(4.19)

U =
(
ψ
u

)
, E1

(
a 0
0 b

)
, E2 =

(
Q

1
0

0 µ

)
L(∂x) =

(
0 div x

∇x 0

)
.

Following P. Gérard (
Ger
[Gér]), see also the introduction in

Bu
[Bu], one in-

troduces the microlocal defect measures of subsequences of uε. They are
measures M, on Rt × Rτ valued in the space L of trace class operators on
L2(Rd). They can be written

M(dt, dτ) = M(t, τ)α(dt, dτ) ,

where α is a scalar nonnegative Radon measure and M is an integrable func-
tion with respect to α with values in L. The usual feature of defect measures
is that they are supported in the characteristic variety of the equation. In
our case, this means that for α-almost all (t, τ), M(t, τ) is valued in H1(Rd)
and

suppMsuppM (4.20)
(
iE1(t)τE2(t) + L(∂x)

)
M(t, τ) = 0,

where E1(t) and E2(t) are seen as multiplication operators on L2(Rd).
When τ 6= 0, the kernel of iτE1E2 + L(∂x) is non trivial if and only if

τ2 is a positive eigenvalue of
1
aQ

1

div
( 1
bµ
∇x
)
. When the coefficients belong
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to the class F this never occurs (see
RS,Hor
[RS, Hö] and

MS
[MeSc1]), implying that

M(t, τ) = 0 for α-almost all t and τ 6= 0. Thus, M is supported in τ = 0 so
(
suppM
4.20) implies that

L(∂x)M(t, τ) = 0 or (I −Π(Dx))M(t, τ) = 0 , α a.e

where Π(Dx) is the orthogonal projector on kerL(∂x):

Π(Dx)
(
ψ
u

)
=
(

0
u−∇(∆−1 div u)

)
.

As a corollary, the microlocal defect measure of (I−Π(Dx))uε vanishes and,
together with the uniform bounds in Hs, this implies that (I − Π(Dx))U ε

converges strongly in L2
loc([0, T ]×Rd). Together with the strong convergence

of ũε, this implies the local strong convergence of uε and ψε. Since the limit
ψ(t, · ) ∈ Hs(Rd) and ∇ψ = 0, the limit ψ is equal to 0. For further details,
we refer the reader to

MS
[MeSc1].

4.4 Averaged acoustics on the torus

For the heterogeneous isentropic Euler equations (
model2
1.2), the coefficients of the

fast acoustic operator depend only on x, not on time. In this case, the fast
evolution is easily analyzed using a spectral decomposition. We first present
the averaging method in the extended framework of Assumption (

ass4.4
2.5). We

then prove Theorem
Theoo
2.6.

Under Assumption (
ass4.4
2.5), the fast dynamics (

modelfastwaves
4.17) reads:

model8model8 (4.21) εE(x)∂tU ε + L(∂x)U ε = εF ε

with

(4.22) E =
(
aQ

1
0

0 bµ

)
, L(∂x) =

(
0 div x

∇x 0

)
and

formFformF (4.23) F ε = F2(t, x, U ε,∇U ε) + εF̃ ε.

with F2 quadratic in U ε,∇U ε:

F2F2 (4.24) F2 =
(

(Q
1
)−1∂2

θQ(x, 0)ψ div u− ad u · ∇(Q
1
ψ)

−bd u · ∇(µu)

)
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The problem reduces to study interaction of resonant time oscillations
linked to the spectral properties of the operator L̃(x, ∂x) := E−1(x)L(∂x).
This operator is self adjoint with respect to the scalar product

modscprodmodscprod (4.25)
〈
U, V

〉
:=
∫

Td

E(x)U(x) · V (x)dx.

The fast evolution is governed by the group E(t) := e−tL(x,∂x) and the solu-
tion of (

model8
4.21) is

solfastsolfast (4.26) U ε(t) = E(
t

ε
)U(0) +

∫ t

0
E(
t− s
ε

)E−1F ε(s)ds.

The filtering method (see e.g.
Sc1
[Sc1]) consists in studying the limit of

V ε(t) := E(− t
ε

)U ε = U(0) +
∫ t

0
E(−s

ε
)E−1F ε(s)ds.

Equivalently, V ε solves

inteqVinteqV (4.27) ∂tV
ε = E(− t

ε
)E−1F ε.

The group E(t) is unitary in L2 for the scalar product (
modscprod
4.25) but it is also

bounded in Hs(Td), as a consequence of Theorem
mainth
2.1 applied to the linear

equation (
model8
4.21). In particular, this implies that V ε and ∂tV

ε are bounded
in C0([0, T ];Hs) and C0([0, T ];Hs−1) respectively. As a consequence

convV Lemma 4.1. Extracting further a subsequence if necessary, V ε converges
strongly to a limit V in C0([0, T ];Hs′(Td)). In particular,

asympprofasympprof (4.28) U ε(t) ∼ E(
t

ε
)V (t) in C0([0, T ];Hs′(Td)).

Next, we analyze the evolution group E(t) using the spectral decompo-
sition of L̃(x, ∂x). Its kernel is

(4.29) K = ker L̃ =
{
U =

(
ψ
u

)
: ∇ψ = 0, div u = 0

}
.

The orthogonal projector ΠK on K is

Pi0Pi0 (4.30) ΠK

(
ψ
u

)
=
(

ψ0

u0 = u− 1
bµ∇G

)
,
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where ψ0 is the average of ψ for the measure aQ
1
dx andG solves div

(
1
bµ∇G

)
=

div u as in (
decomp2
4.8).

The non zero eigenvalues of L̃(x, ∂x) are ±i√κj where the κj are the
positive eigenvalues of the acoustic wave operator

(4.31) W (aQ
1
, bµ)(·) = − 1

aQ
1

div
( 1
bµ
∇·
)

Note that W (aQ
1
, bµ) is self-adjoint in L2(Td, aQ

1
dx). The eigenvectors of

L̃ for the eigenvalue ±i√κj are

defPhijdefPhij (4.32) Φ±j =
1√
2

 ψj

± 1
ibµ
√
κj
∇ψj


where ψj is an eigenvector of W associated to the eigenvalue κj . From now
on, we fix an orthonormal basis in L2(Td, aQ

1
dx) made of eigenfunctions

(ψ0, ψ1 . . . , ψj . . .) associated to the eigenvalues κ0 = 0 < κ1 ≤ κ2 ≤ . . .
of W . Note that κ0 is simple and that ψ0 is a constant. For an integer
j ∈ Z\{0} we set λj = √κj when j > 0 and λj = −√κ−j when j < 0.
Moreover, Φj denotes the function defined in (

defPhij
4.32). The {Φj} form an

orthonormal basis of K⊥, the orthogonal of K for the scalar product (
modscprod
4.25).

Classical properties of the elliptic operator W on the torus imply that

κj ≈ j2/d

and that v belongs to Hs(Td) if and only if

v =
∑

αjψj with
∑

j2s/d|αj |2 < +∞.

Accordingly we expand V ε using the spectral decomposition of L̃:

(4.33) V ε(t) = ΠKV
ε(t) +

∑
j 6=0

αεj(t)Φj , αj(t) =
〈
V ε(t),Φj

〉
.

and the series converges in C0([0, T ];Hs). Therefore ΠKU
ε = ΠKV

ε and :

U ε(t) = ΠKU
ε(t) +

∑
j 6=0

e−itλj/εαεj(t)Φj .

The strong convergence V ε → V implies the following.
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Lemma 4.2. ΠKU
ε converges strongly to ΠKV in C0([0, T ];Hs′(Td)) and

the αεj converge strongly to αj := 〈V,Φj〉 in C0([0, T ]).
Thus,

asympprofbasympprofb (4.34) U ε(t) ∼ U(t) +
∑
j 6=0

e−itλj/εαj(t)Φj in C0([0, T ];Hs′(Td)).

and in particular U ε converges weakly to U = ΠKU = ΠKV .

The equation (
inteqV
4.27) implies that

neweqneweq (4.35)

{
∂tΠKU

ε(t) = ΠKE
−1F ε(t)

∂tα
ε
j(t) = eitλj/ε

〈
E−1F ε(t),Φj

〉
.

The limiting equations are obtained by taking the weak limits if the right
hand sides. To compute them, we substitute the asymptotic form (

asympprofb
4.34) of

U ε in (
formF
4.23):

Lemma 4.3. One has F ε ∼ F ε2 in C0([0, T ];Hs′−1(Td)) with

F ε2 = F2(U,∇U) +
∑
j 6=0

αje
−tλj/εF̃2(U,∇U ; Φj ,∇Φj)

+
∑

j 6=0,k 6=0

αkαje
−t(λj+λk)/εF̃2(Φk,∇Φk; Φj ,∇Φj),

where F̃2 is the bilinear form associated to the quadratic term F2.

Therefore, the stationary phase Theorem implies the following.

Lemma 4.4. In the sense of distributions, one has the following weak con-
vergence :

ΠK(E−1F ε) ⇀ ΠK
(
E−1(F2(U,∇U) + I

)
where

defcalldefcall (4.36) I =
∑

λk+λj=0

αkαjF̃2(Φk,∇Φk; Φj ,∇Φj).

Moreover,

eisλl/ε
〈
E−1F ε(s),Φl

〉
⇀

∑
λj=λl

αj
〈
E−1

(
F2(U,∇U ; Φj ,∇Φj)

)
,Φl

〉
+

∑
λj+λk=λl

αkαj
〈
E−1F2(Φk,∇Φk; Φj ,∇Φj),Φl

〉
.
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With this lemma, we can pass to the limit in the equations (
neweq
4.35). In

particular, we get that

∂tU = ΠK
(
E−1(F2(U,∇U) + I

)
.

Tracing back the definition, this gives the condition div u = 0 implies that
∂tψ = 0 and the limit ψ is not present in the other equations. The equation
for u is

limequlimequ (4.37) bµ∂tu+ bd u · ∇(µu) + I +∇π = 0.

The initial condition for u is still given by (
liminitdata
4.11). Summing up, we have

proved Theorem
Theoo
2.6 with

alphajalphaj (4.38)

∂tαj =
∑
λj=λl

αj
〈
E−1

(
F2(U,∇U ; Φj ,∇Φj)

)
,Φl

〉
+

∑
λj+λk=λl

αkαj
〈
E−1F2(Φk,∇Φk; Φj ,∇Φj),Φl

〉
.

with the initial conditions

alphajinitalphajinit (4.39) αj(0) = 〈U0,Φj〉.

Remark 4.5. Generically, that means for general coefficients or for general
tori, one expects that the eigenvalues of the wave equations κj are simple
and that there are no resonances ±

√
κj ±

√
κk ±

√
κl = 0, in which case the

formulas above become simpler.

Heterogeneous isentropic Euler equations. The analysis above applies to
(
model2
1.2). Recall, see Section 2, that for this model

a = c−1/γ , b = c−1/γ , µ = c1/γ , V = du = c1/γu

and that
Q

1
(t, x) = 1/γ, ∂2

θQ(x, 0) = −(γ − 1)/γ2.

Using Theorem
Theoo
2.6, the limit system (

limequ
4.37) reads

model23model23 (4.40)

{
∂tu+ u · ∇(c1/γu) + I +∇π = 0
divu = 0
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where I is given by (
defcall
4.36). From (

F2
4.24), F2 reads

F2 =

−γ − 1
γ

ψ div u− 1
γ
u · ∇ψ

−u · ∇(c1/γu)


Thus, using that Φj denotes the function defined by

defPhidefPhi (4.41) Φj =
1√
2

 ψj
1
iλj
∇ψj


where ψj is an eigenvector of W namely

ellell (4.42) W (ψj) = − γc1/γ∆ψj = λ2
jψj

associated to the eigenvalue λ2
j . We get from (

defcall
4.36)

233233 (4.43) I =
∑

j,`,λk+λj=0

αkαj
2|λk|2

(
∇ψk · ∇(c1/γ∇ψj) +∇ψj · ∇(c1/γ∇ψk)

)
The coefficients αj are calculated using (

alphaj
4.38). The first term in right-hand

side of (
alphaj
4.38) is given by∑

λj=λl

αj
〈
E−1

(
F2(U,∇U ; Φj ,∇Φj)

)
,Φl

〉

= −
∑
λj=λ`

αj

∫
Td

( 1√
2iλj
∇ψj ·∇(c1/γu)+u·∇(c1/γ

1√
2iλj
∇ψj)

)
·( 1√

2iλ`
∇ψ`)

=
∑
λj=λ`

αj
2|λj |2

∫
Td

(
∇ψj · ∇(c1/γu) + u · ∇(c1/γ∇ψj)

)
· ∇ψ`

The second term in the right-hand side of (
alphaj
4.38) is given by∑

λj+λk=λl

αkαj
〈
E−1F2(Φk,∇Φk; Φj ,∇Φj),Φl

〉

= −
∑

λj+λk=λ`

αjαk

∫
Td

( 1√
2iλj
∇ψj · ∇(c1/γ

1√
2iλk

∇ψk)

+
1√

2iλk
∇ψk ·∇(c1/γ

1√
2iλj
∇ψj)

)
· 1√

2iλ`
∇ψ`
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−
∑

λj+λk=λ`

αjαk

∫
Td

γ − 1
γ

(
ψjdiv(

1√
2iλk

∇ψk)+ψkdiv(
1√
2iλj
∇ψj))ψ`

−
∑

λj+λk=λ`

αjαk
1
γ

∫
Td

( 1√
2iλj
∇ψj · ∇ψk +

1√
2iλk

∇ψk · ∇ψj
)
ψ`

Therefore, we conclude that the coefficients αj are given by the following
system of ODE’s

model24model24 (4.44) ∂tαj =
∑
λj=λ`

αj
2|λj |2

∫
Td

(u · ∇(c1/γ∇ψj) +∇ψj · ∇∇(c1/γu)) · ∇ψ`

−
∑

λj+λk=λ`

iαjαk

2
√

2
1

λ`λkλj

∫
Td

(
(∇ψj ·∇(c1/γ∇ψk))·∇ψ`+(∇ψk·∇(c1/γ∇ψj))·∇ψ`

)
.

−
∑

λj+λk=λ`

( i(γ − 1)√
2γ2

∫
Td

c−1/γαjαkλ`ψjψkψ`−
i√
2γ

∫
Td

αjαk
λ`
λjλk

∇ψj ·∇ψk ψ`
)
.

The first two terms in the right-hand side of (
model24
4.44) correspond to the part

of F2 in the momentum equation. The last two terms correspond to part of
F2 in the mass equation.
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