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Abstract

In this paper, we investigate the reliability of two diffusion models, the
SHE and coupled SHE models, by accurate numerical comparisons with a
Boltzmann like equation. These models describe the transport of particles
subject to collisions with the medium. Comparisons are given at three levels
of description: at small times (transient regime), at the diffusion time (diffu-
sion regime) and for long times (stationary regime). The three regimes are
well described by both SHE models. A discussion of the main benefits and
drawbacks of each of the SHE models is given, according to the regime

1 Introduction

With the development of microelectronics in the early 1950’s, the description of the

motion of electrons in semiconductors arose as a crucial problem. Kinetic models

of Boltzmann type, though very accurate, proved to be computationaly expensive.

On the other hand, macroscopic models such as Drift Diffusion become unrealistic

as semiconductor components get miniaturized. Intermediate models have been

recently proposed, such as the Spherical Harmonics Expansion (SHE) model which

appears as a good compromise between physical accuracy and a low computational

cost (see [1]). The SHE model is a diffusion type equation in the position-energy

space for the particles distribution function. It takes the following form

N(E)∂tF (t, x, E)− ∇̃ ·D(E)∇̃F (t, x, E) = 0

where t denotes the time variable, x is the position and E is the (kinetic) energy of the

particle. We note N(E) the density of states, F (t, x, E) is the density of particles at

time t, located at x, evolving with a kinetic energy E . The energy dependent diffusion
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tensor D(E) is a positive tensor and ∇̃ = ∇x + E(∂/∂E), where E is a force field

applied to the particles, is a generalized gradient in the position-energy space. Such a

model can be derived from kinetic models under the assumption of dominant elastic

scattering between the particles and the medium. Nevertheless, inelastic regimes

are quite frequent and a natural problem is to extend the (theoretical) reliability

of SHE models to thermalizations due to inelastic scatterings. The work on such

regimes was initiated by P. Degond in [2] and led to the introduction of coupled

SHE models which can be written as follows

N(E)∂tF (t, x, E)− ∇̃ ·
∫

E ′>0

Dα(E ′, E)∇̃F (t, x, E ′)dE ′ = 0.

In this case, the diffusion tensor Dα is non local. The model is ’coupled’ in the

sense that the current of particles at a given energy depends on the distribution of

particles at any energy, thus coupling different levels of energy. Indeed, introducing

the current of particles J , the coupled SHE model can also be written

N(E)∂tF (t, x, E) + ∇̃ · J(t, x, E) = 0, J(t, x, E) = −
∫

E ′>0

Dα(E ′, E)∇̃F (t, x, E ′)dE ′

where the first equation is nothing but a conservation law while the second one

takes the form of a Fourier law relating the current of particles to the (generalized)

gradient of the density of particles. One can easily see the non local influence of the

gradient of F on the value of the current at a given energy E . The diffusion tensor

depends on a parameter α which controls the coupling between energy levels. For

α = 0, the coupled SHE model degenerates into a classical uncoupled SHE model.

The theoretical derivation of the coupled SHE model can be performed for a limited

range of values for α (0 ≤ α < 1/2 in our case). One of the aims of this work is to

study the influence of this parameter on the reliability of the coupled SHE model.

More generally, we aim at assessing the reliability of both the coupled and the

uncoupled SHE models by comparing them to the kinetic model of Boltzmann type

from which they can be derived. As a first step, we propose monodimensional

simulations in both space and velocity in a force free case. In this case, we do not

expect the SHE models to be computationaly less expensive than the kinetic model

since the number of variables is the same in both models (the 1D velocity variable

is changed for a 1D energy variable in the case of the SHE models). However,

this simple framework enables us to make a rather exhaustive comparison between

the models. The introduction of a self consistent electric field (which represents a
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wide range of semiconductor applications) and computations in higher dimensions

in the phase space are postponed to future work. Up to our knowledge, the only

existing systematic comparison between the SHE model and a kinetic model is made

a stationary case [3] and deals only with the uncoupled SHE model. In the present

work, we propose a general study not only of the SHE model but also of the coupled

SHE model, and the comparisons are performed in small and diffusion times as well

as in stationary regimes.

The paper is organized as follows. In section 2 we introduce the different models:

the kinetic one and the SHE models. Next, section 3 is dedicated to the discretization

of these models. In section 4, the test case is precisely described. This section also

gathers the different numerical results: while section 4.1 is devoted to the study of

the diffusion and stationary regimes, we give the analysis of the theoretically worst

situation for the SHE model, the transient regime, in section 4.2.

2 The microscopic model and the SHE models

In this section, we introduce the microscopic model which will be the basis of the

comparisons. We also present the macroscopic SHE models and their derivation

starting from the kinetic model.

2.1 The kinetic model

We consider a set of particles as described by a distribution function f = f(t, x, v).

The quantity f(t, x, v)dxdv represents the number of particles at time t in an ele-

mentary volume dxdv in the phase space around (x, v). The function f depends on

time t, position x and velocity v, and is defined on (0,∞)×(0, L)×R. Its evolution is

described by a kinetic equation supplemented with initial and boundary conditions.

On the left boundary, an inflow of particles is modeled by a Dirichlet condition fl

for positive velocities. On the right boundary, outgoing particles are reemitted in

the domain according to a specular reflexion on the wall. The initial condition is

assumed to be equal to zero: f(0, x, v) = 0. The model reads
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∂tf + v∂xf = Q(f), x ∈ (0, L), v ∈ R, t ∈ (0,∞),

f(0, x, v) = 0, x ∈ (0, L), v ∈ R,
f(t, 0, v) = fl(v), v > 0, t ∈ (0,∞),

f(t, L, v) = f(t, L,−v), v < 0, t ∈ (0,∞).

(1)

Since we want to investigate the relevance of the SHE model even when inelastic

mechanisms are dominant, we define the collision operator by

Q(f) = (1− β)Q0
el(f) + βQin(f), (2)

where the parameter β lies in [0, 1]. The operator Q0
el is given by

Q0
el(f) = ν

(

[f ](v)− f(v)
)

, (3)

where [f ](v) denotes the average of f on a constant energy surface, which, in this

one-dimension framework, is given by [f ](v) = (f(v) + f(−v))/2, and ν denotes the

constant collision frequency. This operator is elastic in the sense that it does not

change the number of particles on a shell of constant energy (it does not act on f

through the modulus of the velocity). The operator Qin is said to be inelastic and

is written

Qin(f) = ν

(∫

R
f(v′) dv′M(E(v))− f(v)

)

, (4)

where M(E) = C exp(−E/(kT )) denotes the maxwellian distribution of particles of

kinetic energy E and C is a constant such that
∫

RM(E(v))dv = 1. We denote by

E(v) = m∗v2/2 the kinetic energy of particles of mass m∗.

In order to derive the macroscopic SHE models, we introduce the following

rescaled variables:

x′ = εx, t′ = ε2t

where ε is a small parameter. We also introduce λ such that L = λ/ε and τ such

that Tdiff = τ/ε2 is the diffusion time. Then, the rescaled distribution function f ε

is solution to:

∂t′f
ε +

1

ε
v∂x′f

ε =
1

ε2
Q(f ε) x′ ∈ (0, λ), v ∈ R, t′ ∈ (0,∞),

f ε(0, x′, v) = 0, x′ ∈ (0, λ), v ∈ R,
f ε(t′, 0, v) = fl(v), v > 0, t′ ∈ (0,∞),

f ε(t′, λ, v) = f ε(t′, λ,−v), v < 0, t′ ∈ (0,∞).

(5)

In the next section, we detail the macroscopic models obtained by investigating the

behaviour of f ε as ε goes to zero.
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2.2 The standard SHE model

We start from the rescaled equation (5). To obtain the SHE model, the inelastic

collision operator (4) is split as follows:

Qin(f) = ν
(

[f ](v)− f(v)
)

+ ν

(∫

R
f(v′) dv′M(E(v))− [f ](v)

)

= Q0
el(f) +Q0

in(f). (6)

We suppose that β is of order ε2 and introduce β = ε2β̃. Consequently, the collision

operator Q(f) is written

Q(f) = Q0
el(f) + ε2β̃Q0

in(f) ,

and we expect the SHE model to furnish a good approximation of the Boltzmann

equation (1) when β̃ is of order 1. More precisely, we have

Proposition 2.1 The solution f ε of the system of equations (5) is such that we

(formally) have f ε = F + εf1 +O(ε2), with

f 1 = −v
ν
∂xF

and where F = F (t, x, E) is the solution of the following SHE set of equations

(written in kinetic variables)

∂tF −D∂2
xF = νβ

(∫

R
F (E(v′))dv′M(E(v))− F

)

, x ∈ (0, L), t ∈ (0,∞), v ∈ R,

F (0, x, E) = 0, E ∈ (0,∞)

F (t, 0, E(v))− Λ∂xF (t, 0, E(v)) = fl(v), v > 0

∂xF (t, L, E) = 0, E ∈ (0,∞).

The diffusion tensor D is defined by D = |v|2/ν and the extrapolation length

arising in the Robin condition is Λ = |v|
ν

.

In addition, the velocity average of f ε and the density and the energy associated

to the distribution f ε are approximated up to second order by the corresponding

quantities given by F . That is:

[f ε] = F +O(ε2)
∫

R
f ε(t, x, v)dv =

∫

R
F (t, x, E(v))dv +O(ε2)

∫

R
E(v)f ε(t, x, v)dv =

∫

R
E(v)F (t, x, E(v))dv +O(ε2).
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Proof: The formal proof of this proposition is similar, though simpler, to the proof

of proposition 2.2, which is given in section 2.3. �

2.3 The coupled SHE model

The derivation of a model which would take into account the coupling between the

flux and the density at different energy levels is more recent. It first appeared in

[2]. See also [4] for an application to the neutronics, and [5] in the case of electron-

phonon interactions in semiconductor devices. It relies on the combination of two

splittings of the inelastic operator. A first splitting is given in (6) and will be refered

to as the ’local’ splitting because the elastic part Q0
el acts on f only through the

sign of the velocity and not on the kinetic energy. Now we introduce a ’non local’

splitting in the sense that its elastic part Q1
el acts on f through the energy too (it

involves an integration with respect to v):

Qin(f) = νM(E(v))

(∫

R
f(v′) dv′ − 2

∫ ∞

0

f(sign(v)v′)dv′
)

+ν

(

2

∫ ∞

0

f(sign(v)v′)dv′M(E(v))− f(v)

)

= Q1
el(f) +Q1

in(f) , (7)

where sign(v) = ±1 when ±v > 0.

Following [2], we consider the convex combination Qin = (1 − α) (Q0
el +Q0

in) +

α (Q1
el +Q1

in) of the two splittings (6) and (7). Introducing this combination in (2),

we find

Q = (1− αβ)Q0
el + αβQ1

el + β((1− α)Q0
in + αQ1

in) .

Based on the work [2], the following proposition holds

Proposition 2.2 If αβ < 1/2, then the solution f ε of equations (5) is such that we

(formally) have f ε = F + εf1 +O(ε2), with

f 1 =

∫

χ(w, v)∂xF (t, x, E(w)) dw

and where F = F (t, x, E) is the solution of the following coupled SHE system of
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equations (written in kinetic variables):

∂tF + ∂xJ = νβ

(∫

R
F (E(w))dwM(E(v))− F (E(v))

)

(8)

J(E(v)) = −Dαβ(v)∂xF (E(v))−
∫

R
∆αβ(v, w)∂xF (E(w)) dw , (9)

F (0, x, E(v)) = 0

F (t, 0, E(v)) +

∫

χ(v, w)∂xF (t, 0, E(w))dw = fl(v), v > 0 (10)
∫

χ(v, w)∂xF (t, L, E(w))dw = 0 (11)

with x ∈ (0, L), t ∈ (0,∞), and:

Dαβ(v) =
|v|2

ν(1− αβ)
, ∆αβ(v, w) =

αβ

ν(1− αβ)
M(E(v))|v||w|.

At last, χ(w, v) = χ(w, v) + θ(w, v), where

χ(w, v) = − 1

ν(1− αβ)

v

2
δ(E(w)−E(v)), θ(w, v) = − αβ

ν(1− αβ)
M(E(v))sign(v)|w|.

(12)

Proof: This proof is only formal. The convergence of f ε to F has been rigorously

established in [2] in an unbounded domain, without boundary conditions. A formal

approximation result is proven in [6] for the uncoupled SHE model with boundary

conditions. The rigorous proof of this approximation problem remains an open

question.

As a preliminary, we underline that, if αβ < 1/2, then the null space N(Qα
el) of

the operator Qα
el = (1− αβ)Q0

el + αβQ1
el is the set of functions depending on v only

through the energy E(v). In addition, the equation

Qα
el(f) = g (13)

of unknown f can be solved if g belongs to the range of Qα
el in L2(Rv;M−1dv). It is

straightforward to prove that, in our case, this condition reads:

[g] =
1

2
(g(v) + g(−v)) = 0. (14)

Moreover, under condition (14), the solution f of equation (13) is unique in the class

of functions h such that [h] = 0.
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We consider the following formal Hilbert expansion of f ε in powers of ε: f ε =

f 0 +εf1 +ε2f 2 +ε3f 3 +rε. Inserting this expansion in equation (5) we get, as ε→ 0,

Qα
el(f

0) = 0, which implies that f 0(t, x, v) is a function of the energy only, denoted

by F = F (t, x, E(v)). Now, if we consider terms of order ε in the expansion, we get

the following relation between F and f 1

Qα
el(f

1) = v ∂xF.

Note that, by oddness, v∂xF satisfies the solvability condition (14). It can be proved

that a solution of this equation is

f 1(t, x, v) =

∫

χ(w, v)∂xF (t, x, E(w))dw

where χ is given by (12). Then the current J = [vf1] takes the expected form (9).

Considering second order terms in (5) yields

∂tf
0 + v∂xf

1 = Qα
el(f

2) + β̃Qα
in(f 0).

Straightforward computations (that are detailed in [2]) show that the solvability

condition for this equation of unknown f 2 corresponds to equation (8). Note that,

in our case, f 2 can be chosen identically equal to zero.

We now turn our attention to the derivation of the boundary conditions. Our

aim is to prove that the conditions (10), (11) are necessary to get an accurate

enough approximation of the kinetic equation by the SHE model. For this sake, the

remainder rε in the Hilbert expansion has to be estimated. We first establish an

equation solved by rε.

Considering order ε3 terms in (5), we get Qα
el(f

3) = ∂tf
1 − β̃Qα

in(f 1) (since

f 2 = 0). The solvability condition (14) for this equation is satisfied according to the

explicit form obtained for f 1 and to conservation properties of the collision operator.

Consequently, f 3 exists.

If we come back to the rescaled variables (t′, x′, v) (but dropping the primes for

the sake of clarity), we see that rε(t, x, v) is solution of

∂tr
ε +

1

ε
v∂xr

ε =
1

ε2
Qα
el(r

ε) + β̃Qα
in(rε) + ε2Sε(t, x, v) , (15)

where the source term Sε(t, x, v) is bounded with respect to ε.
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In order to prove that we get a second order approximation of f ε, we need to

investigate the boundary values of rε. Along the boundary x = 0 and for v > 0, we

have f ε(t, 0, v) = fl(v). It implies for rε

rε(t, 0, v) = fl(v)− F (t, 0, E(v))− ε
∫

χ(w, v)∂xF (t, 0, E(w))dw − ε3f 3(t, 0, v)

Note that this equation is still written in rescaled variables. To get a second order

approximation, F must be chosen such that

F (t, 0, E(v)) + ε

∫

χ(w, v)∂xF (t, 0, E(w)dw = fl(v)

which, in macroscopic variables, is exactly the Robin condition (10). Note that

taking a Dirichlet condition would lead to a first order approximation only.

On the other hand, along the boundary x = L, and for v < 0, we have f ε(t, λ, v)−
f ε(t, λ,−v) = 0. It implies for rε (still in rescaled variables):

rε(t, λ, v)− rε(t, λ,−v) = −2ε

∫

χ(w, v)∂xF (t, λ, E(w))dw +O(ε3)

= O(ε3)

if we assume (11).

Therefore, the approximation is globally of second order with respect to ε as

soon as the boundary conditions are chosen to be (10) and (11). Indeed, rε is, up

to second order terms, the solution of a linear kinetic equation with homogeneous

boundary conditions and an initial condition equal to zero.

It should be noted that no boundary layer corrector is needed in this case (con-

trary to SHE or Drift Difusion models in several dimensions). �

3 Numerical methods

In this section, we present the numerical methods used in our computations. From

now on we consider a bounded velocity domain (−Vmax, Vmax). The numerical value

of Vmax is to be precised in section 4.
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3.1 The discretized Boltzmann equation

We deal with equation (1), where the collision operator is defined by (2), (3) and

(4). Then, the kinetic equation takes the following form:

∂tf + v∂xf = ν

[

(1− β)
f(−v)− f(v)

2
+ β

(∫

R
f(v′)dv′M(E(v))− f(v)

)]

. (1)

Let xi = i∆x, vj = (j−jmax)∆v and tn = n∆t denote the mesh respectively on [0, L],

[−Vmax, Vmax], and [0, Tmax], with i ∈ [[0, imax]], j ∈ [[0, 2jmax]] and n ∈ [[0, nmax]].

The solution of equation (1) is assumed to be approximated at each point of the

grid by fni,j ≈ f(tn, xi, vj). Note that f(tn, xi,−vj) is approximated by fni,2jmax−j. The

sequence fni,j is constructed by a second order scheme in space and time. The second

order approximation in time is obtained thanks to the classical Strang splitting.

1. Solve
{

∂tg1 + ∂xg1 = 0

g1|t=0 = fni,j
(2)

and set f
n+1/3
i,j = g1

(

∆t
2
, xi, vj

)

(or a second order approximation of g1

(

∆t
2

)

).

2. Solve
{

∂tg2 = Q(g2)

g2|t=0 = f
n+1/3
i,j

(3)

and set f
n+2/3
i,j = g2(∆t, xi, vj) (or a second order approximation of g2(∆t)).

3. Solve
{

∂tg3 + ∂xg3 = 0

g3|t=0 = f
n+2/3
i,j

and set fn+1
i,j = g3

(

∆t
2
, xi, vj

)

(or a second order approximation of g3

(

∆t
2

)

).

We now describe the numerical solving of each step.

First and third steps: the transport equation.

We use the semi-lagrangian method that we briefly describe hereafter (see [7]

for a detailed presentation). We remark that equation (2) can be solved thanks to

a characteristic method. Precisely, if we assume that the solution is known on any

mesh point (xi, vj) at time tn−1, then at the next time step tn it satisfies

f(tn, xi, vj) = f(tn−1, X(tn−1, tn, xi, vj), vj),
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where X(t, s, x, v) denotes the solution at time t of the ordinary differential equation

associated to the characteristic curve that represents the trajectory of a particle of

velocity v located in x at time s (when no collision occur). Namely, X(tn−1, tn, xi, vj)

= xi − vj∆t. The only problem is that the ending point X(tn−1, tn, xi, vj) of the

characteristic curve is generally not a mesh point. Therefore, we have to approximate

the value of f(tn−1, X(tn−1, tn, xi, vj), vj) by interpolation. In order to keep a second

order approximation, we use a third order Lagrange interpolation (a second order

interpolation would be sufficient but we follow [8] and use an interpolation of odd

order for the scheme to be centered).

Second step: the collision equation.

The approximate solution f
n+1/3
i,j of the free transport equation (2) is known at

time tn and for all i, j. We obtain the approximated solution f
n+2/3
i,j by solving the

ordinary differential equation (3) by the mid-point formula

fn+2/3 = fn+1/3 + ∆tQ

(

fn+1/3 +
∆t

2
Q
(

fn+1/3
)

)

.

3.2 The SHE models

As long as there is no force field, the SHE model is nothing but a diffusion equation

with respect to the position variable, with a source term mixing the energy levels.

We can write it as follows:

∂tF (t, x, E)−D(E)∂2
xxF (t, x, E) + νβF (t, x, E) = νβρ(t, x)M(E), (4)

where ρ(t, x) =
∫

F (t, x, E) dE
2
√
E is the density associated to F . In order to avoid

numerical difficulties due to the stiff jacobian 1/
√
E , we prefer to compute the density

by using the following equivalent expression

ρ(t, x) =

∫

R
F (t, x, E(v))dv.

In the left-hand side of (4), the variable v is nothing but a parameter. We shall

therefore discretize (4) on [0, L]× [0, Vmax] using a classical Cranck-Nicolson scheme.

The gain term of the collision operator is kept explicit. Using the same space grid as

for the Boltzmann equation and the velocity grid vj = j∆v, j ∈ [[0, jmax]], equation
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(4) is then discretized by

F n+1
i,j − F n

i,j

∆t
−D(E(vj))

(

1

2
δ2
xF

n+1
i,j +

1

2
δ2
xF

n
i,j

)

+νβ

(

1

2
F n+1
i,j +

1

2
F n
i,j

)

= νβρniM(E(vj)) ,

with ρni =

jmax−1
∑

j=0

(

F n
i,j + F n

i,j+1

)

∆v, and δ2
xFi,j =

Fi+1,j − 2Fi,j + Fi−1,j

∆x2
. The bound-

ary conditions are also discretized in a semi-implicit way.

Note that, due to the explicit gain term, the Cranck-Nicolson scheme is a first

order scheme in time, but a second order scheme in space and is unconditionnally

stable.

We shall discretize the coupled SHE model in the same way, keeping explicit the

coupling terms coming from the current equation. We get:

F n+1
i,j − F n

i,j

∆t
−Dαβ(vj)

(

1

2
δ2
xF

n+1
i,j +

1

2
δ2
xF

n
i,j

)

+νβ

(

1

2
F n+1
i,j +

1

2
F n
i,j

)

= νβρniM(vj) + Φn
i,j ,

(5)

with

Φn
i,j =

M−1
∑

k=0

(

∆αβ(vj, vk)δ
2
xF

n
i,k + ∆α(vj, vk+1)δ2

xF
n
i,k+1

)

∆v .

4 Numerical results

We consider the evolution of an inflow of electrons in an interval (0, L). The electron

mass is taken equal to m∗ = 9.010 × 10−31kg and we assume that the surrounding

medium is at a fixed temperature Θ = 300K. The Boltzmann constant is kB =

1.38054 × 10−23 J.K−1 and we suppose that the collision frequency is ν = 1012s−1.

The typical microscopic time is given by τ = ν−1 and the typical microscopic length

is λ = Vthτ , where the thermal velocity of the cloud of electrons can be computed

according to the formula Vth =
√

kBΘ/m∗. We have τ = 10−12s and λ = 10−7m.

The length of the domain is L = Vth/(νε), the velocity domain is (−Vmax, Vmax),
with Vmax = 3

√
2Vth = 287 806ms−1. At last, the diffusion time is defined as

Tdiff = 1/(νε2).
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At the beginning (t = 0), no particle is present in the interval (0, L). On

the left boundary (x = 0) particles are injected according to a narrow normal-

ized Maxwellian distribution centered on the velocity Vmax/2 and of temperature

m∗(Vmax/50)2/kB = 18Θ/(502). This Maxwellian is normalized on (−Vmax, Vmax)
and we note C the normalization constant. On the right boundary, particles undergo

a specular reflection. The initial and boundary conditions read

fI(x, v) = 0 ∀x ∈ (0, L), ∀ v ∈ (−Vmax, Vmax),

f(t, 0, v) = fl(v) = C exp

(

−m
∗(Vmax/2− v)2

2kBΘ

)

,∀ v ∈ (0, Vmax)∀ t > 0,

f(t, L, v) = f(t, L,−v) ∀ v ∈ (−Vmax, 0) ∀ t > 0.

The simulations were performed with 2 × 50 steps in velocity (or 50 steps in

energy for the SHE models), 100 steps in space, and a time step of 2×10−16s. Due

to the left boundary condition, a small time step has to be taken in the kinetic

model for reasons of precision of the lagrangian method (we postpone the analysis

of this phenomenon to future work). Nevertheless, a study of convergence has been

performed and the space, velocity and time steps used in the simulations presented

in this paper were taken optimals. Namely, dividing the space and velocity steps

by 2 leads to no meaningful difference, and the same is observed if we divide the

optimal time step by 10.

First, we present a qualitative comparison between the coupled SHE model and

the kinetic model. A 3D representation of the distribution function depending on

space and velocity is presented at different times. Note that the distribution function

is not directly given by the SHE models (since the solutions of the SHE models are

even with respect to the velocity). In this comparison, the approximated distribution

function is obtained by adding the distribution F described by the SHE model and

the first order corrector f 1 (see propositions 2.1 and 2.2).

The aim is to show how the diffusion model is able to give some information on

the global behaviour of the cloud of particles. The comparison is given for ε = 0.1,

β = 0.3, α = 0.166, that is for a situation near the diffusion regime, but with rather

inelastic collisions (we recall that the SHE models are derived theoretically for values

of β close to ε2).

At the beginning of the simulation (T = 0.001Tdiff , see Fig. 1) almost no particle

is in the domain. The inflow of particles on nonnegative velocities can be seen at

its very beginning and appears as a rough peak on the kinetic simulation.
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At this time, the approximation by the SHE model is qualitatively bad: a neg-

ative peak appears for negative velocities. Moreover, as any diffusion model, the

SHE model involves propagation phenomena with infinite velocity. This is well seen

on Fig. 1: the peak for positive velocities is not as thin as for the kinetic model in

the position direction. Even in a very short time period, the number of particles

is not null in the domain (while it is null for the kinetic model). Nevertheless, as

the following figures show, this drawback has no major influence on the qualitative

behaviour for longer times.

The two following figures show the evolution of the incoming particles: due to

elastic collisions, the distribution is somewhat symmetrized in velocity (a small peak

appears for negative velocities) while inelastic collisions tend to relax the distribution

function of particles towards a Maxwellian (see Fig. 2). Nevertheless, the distri-

bution function cannot relax completely to a Maxwellian because of the incoming

boundary condition on the left. The propagation of the incoming particles through-

out the domain is well seen and Fig. 2 shows the reflection on the right boundary.

The time at which the inflow hits the right boundary and undergoes the specular

reflexion is 0.05Tdiff in the kinetic case and this bounce is well seen on the SHE

simulation at about the same time: Fig. 2 shows a rough increase in the number

of particles leaving the right boundary with a negative velocity. The bounce is par-

ticularly clear for v = Vmax/2, the velocity corresponding to the incoming particles

(the peak on positive velocities). It is an important point that the coupled SHE

model is able to show this bounce at the same time as the kinetic model does. Note

that we are still in a transient regime, where the diffusion model was not expected

to be relevant. Figure 3 shows the propagation of these reflected particles towards

the left boundary. Since there is no boundary condition on the left for particles

with a negative velocity, these particles go out of the domain without affecting the

distribution function. At this step, the evolution of the cloud of particles becomes

quite simple: the centered hump keeps on growing towards an equilibrium which is

approximately reached for T = 5Tdiff . Figure 4 shows the distribution function at

10Tdiff , i.e. in the stationary regime. Again, the kinetic and coupled SHE models

coincide as far as the qualitative behaviour is concerned. A more precise analysis is

given in the following section.
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4.1 The diffusion and stationary regimes

From a theoretical point of view, diffusion models are supposed to behave correctly

not only in stationary regimes but also in diffusion regimes, that is for large scales in

space and for such long times that the scattering phenomena have been numerous

enough for the distribution function to be close to an equilibrium of the kinetic

collision operator. In our case, this means that there is reasonable hope for the

SHE models to be reliable for times near Tdiff . In the case of SHE models, it has

already been observed that they indeed give results very close to those obtained

thanks to kinetic models of Boltzmann type in stationary regimes, at least in the

case of applications to plasma physics (see [3]).

In all the figures to follow in this section, regarding the density, the energy or the

distribution function, the kinetic model is pictured by a continuous line, the SHE

model by a dotted line and the coupled SHE model by a dashed line.

First, we present a comparison in the most suitable situation: at Tdiff , for ε =

0.1, we take β = 0.01 = ε2. In this case, the SHE models are expected to give

their best. Indeed, as can be seen in Fig. 5, the macroscopic density and energy

computed by means of the kinetic model are well approached by both SHE models.

But, not only macroscopic quantities are well described by these models. The

distribution function of particles, as given by the kinetic model, can be approximated

by using the first order correction term in the Hilbert expansion as seen in the proof

of proposition 2.2. Figure 6 shows that this approximation is very accurate. This

figure presents a section of the distribution function at a fixed position (x = L/2)

for any value of the velocity. Note that the peaks are approached very accurately

by both models. The distribution function is not even with respect to the velocity

because of the dissymmetry of the left boundary condition: the peak for negative

velocities is smaller than the other one. Nevertheless, even though the solutions of

the SHE systems of equations are even with respect to the velocity, considering the

first order corrector allows to recover the shape of the distribution.

Computations can be carried on until the steady state is reached, which, in our

case, is the case at approximately T = 5Tdiff . Here again, in Fig. 7 we present the

density and the energy. The density is still very well approached while the energy is

less strictly approached than at the diffusion time. Nevertheless, the relative error

is very small. Note that the SHE model better approaches the kinetic model than

the coupled SHE model.
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In Ref. [3], it has been shown that the SHE model is surprisingly good in

inelastic regimes, at least in steady states simulations. Our aim now is to analyse the

behaviour of the SHE and coupled SHE models in inelastic regimes at the diffusion

time as well as in steady states. Many questions arise: can the coupled SHE model

describe inelastic regimes better than the SHE model ? We recall that the coupled

SHE model involves a parameter α which can take any value in an a priori limited

interval. In our case, α can be chosen so that αβ ∈ (0, 1/2). Is the coupled SHE

model better than the SHE model for any admissible value of α or only for some

values ? Though limited, since restricted to a 1D simulation in a force free case, our

study gives a first rough answer to these questions.

First, we give an example of a situation where both models approach well the

kinetic model, though in inelastic regimes, and where the coupled SHE model is

even better than the SHE model. This simulation is done at T = Tdiff , for different

values of β, say, β = 0.1, β = 0.5 and β = 1. Note that the case β = 1 is the

worst possible and corresponds to fully inelastic collisions. We chose α such that

the product αβ remains approximately constant and equal to 0.05. Figures 8, 9 and

10 show the energy and the density for these values. One can see that, for the energy,

both SHE models coincide on the left boundary and are not exactly superimposed

to the energy curve given by the kinetic model. In the domain and near the right

boundary, the approximation gets better and better for the coupled SHE model

while the SHE model remains reliable. Such an analysis can be made for the density

aswell. In both cases, the coupled SHE model is more accurate than the SHE model

far from the left boundary (they are equivalently accurate at the left boundary).

Also, it gets better as the inelasticity grows (as β → 1) as the comparison of Fig.

8, 9 and 10 reveals it. However, it is remarkable that the SHE model is very good

in any case. Even in the case of a fully inelastic scattering (β = 1), the distribution

function at x = L/2 is still very well described by the SHE models as can be seen

on Fig. 11. On the central hump, the three curves are superimposed. Since there

is no elastic scattering, the distribution function is not symmetrized and only one

peak appears. In spite of this high dissymmetry, the diffusion models give a good

approximation of the peak.

To give a more precise answer to the question of the reliability of the coupled

SHE model compared to that of the SHE model, a systematic study of the influence

of the couple (α, β) on the relative error between the coupled SHE model and the
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kinetic model has been performed at T = Tdiff . Figure 12 presents the relative error

(for the density and the energy) in L1 norm for values of β ranging from 0.01 to 1.

It consists in various curves corresponding to the relative error for each value of β,

the abscissa being the product αβ (taken between 0 and 0.01 when possible). The

value αβ = 0 corresponds to the uncoupled SHE model.

These graphs show that for any degree of inelasticity for the collisions, i.e. for

any value of β, the coupled SHE model can become closer to the kinetic model

than the SHE model for a convenient value of α. Moreover, the choice of α is not

arbitrary since it follows approximately a law of the type αβ = 0.045 as can be read

on Fig. 12: the relative errors always reach a minimum for a value of αβ near 0.045.

For β = 0.01, the constraint α < 1 forbids αβ to reach the value 0.045 so that the

relative error reaches its optimum for α ≈ 1. The coupled SHE model is then better

than the SHE model for any value of α. Nevertheless, it has to be noted that the

relative error for the SHE model is very small in this case (less than 0.25 %).

A next step is to consider the time evolution of this behaviour. In fact, as it is

the case at T = Tdiff for β = 0.01, the approximation of the kinetic model by the

SHE model is so precise that the coupled SHE model cannot give better results, even

though it remains very accurate. In Fig. 13, 14 and 15, we present the comparisons

between the SHE models and the kinetic model at T = 5Tdiff for ε = 0.1 and

β = 0.1, β = 0.5 and β = 1. For the coupled SHE model, we consider the optimal

value of α as obtained for T = Tdiff , namely, we keep αβ close to 0.045.

Now, the density aswell as the energy are better approached by the SHE model

than by the coupled SHE model, wherever in the domain and for the three regimes

(β = 0.1, 0.5, 1). Consequently, the optimal value of the product αβ, for which the

coupled SHE model gave the best approximation, does not remain optimal for any

time. In particular, the steady state is not described the best by the coupled SHE

model for this value. Figure 16 gives a precise meaning to this remark. Indeed,

it represents the time evolution of the relative error (in L1 norm) for the density

and for the energy between the coupled SHE model and the kinetic model. The

comparison is made for ε = 0.1, β = 0.3 and we chose α such that αβ = 0.05

(the optimal value for T = Tdiff ). Let us first consider the relative error for the

density. The relative error is very high at the beginning for both models (which

is not surprising since these models are theoretically relevant for diffusion regimes

and not for short times), though higher for the coupled SHE model than for the
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SHE model. The error decreases and reaches a minimum for both models (around

T = 0.3Tdiff for the SHE model, near Tdiff for the coupled SHE model). Then

the evolution is different since the error for the coupled SHE model grows until

T = 5Tdiff while the error for the SHE model first grows until T ≈ 0.7Tdiff and

then decreases again. Note that, from T = 0.2Tdiff to T = 5Tdiff , the SHE model

keeps very accurate since the relative error remains smaller than 1 %. The relative

error for the coupled SHE model remains less than 2 % for T ∈ (0.3Tdiff , 5Tdiff )

and, at T = Tdiff , it is twice as accurate as the SHE model. For the energy, the

evolution is qualitatively the same, but the error is smaller for both models.

4.2 The transient regime

In this section simulations for times lower than Tdiff are given. We present compar-

isons for an intermediate small time, T = 0.05Tdiff . The parameter α in the coupled

SHE model is chosen such that αβ corresponds to the optimal value at Tdiff . In

fact, the simulations show that there is no such an optimal value for small enough

times (see the discussion in section 4.1). We present a simulation for β = 0.3, a

moderately inelastic regime. For this value of β, Fig. 17 presents the energy and

density curves. The coincidence of the SHE models with the kinetic equation is

obviously not as good as at T = Tdiff , but the macroscopic models remain very

close to the kinetic model. Moreover, the coupled SHE model is less accurate than

the SHE model in this case as could be expected according to Fig. 16 which shows

that, for small times, the relative error between the coupled SHE model and the

kinetic model is higher (for the density as well as for the energy) than the relative

error between the SHE and kinetic models.

5 Conclusion

In this paper, the results of numerical simulations for the SHE and the coupled SHE

models have been presented. The simulations were carried out in an unstationary,

force free case.

The presented results mainly concern macroscopic quantities such as the density

and the energy. Meanwhile, we also established that we can recover much informa-

tion on the distribution function through the SHE models.
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To the questions raised by the differences between the SHE and coupled SHE

models, the answers given in this paper must be considered as partial and temporary

for many reasons among which the fact that the test case considered is very simple

and cannot claim to give more than preliminary indications for future investigations.

In particular, for the time being, no unstationary simulation taking a force field

into account has been performed and we can hardly imagine what differences the

extension to multidimensional cases may induce.

Nevertheless, the following facts are of some interest. First, our simulations show

that both the coupled and the uncoupled SHE models seem to be highly reliable

for scatterings going to quasi-elastic to fully inelastic. On the other hand, the

reliability is important not only for times greater than the diffusion time, but also

in the transient regime, even for rather small times (of the order of 0.05Tdiff ), which

is quite surprising for a diffusion model.

In some cases, in particular at the diffusion time and for smaller times, the

coupled SHE model gives a better approximation of the kinetic model than the

classical SHE model. Moreover, the influence of the value of the coupling parameter

α follows a simple rule, at least at the diffusion time.

The results presented in this paper are encouraging: the coupled and uncoupled

SHE models proved to be very relevant to describe transport phenomena not only at

a diffusion scale. Nevertheless, many questions remain open. In particular, future

work will be dedicated to the extension to non zero force fields.
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Figure 1: Distribution function at T = 0.001Tdiff for the Kinetic (top) and the

Coupled SHE (bottom) models
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Figure 2: Distribution function at T = 0.05Tdiff for the Kinetic (top) and the

Coupled SHE (bottom) models
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Figure 3: Distribution function at T = Tdiff for the Kinetic (top) and the Coupled

SHE (bottom) models
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Figure 4: Distribution function at T = 10Tdiff for the Kinetic (top) and the Coupled

SHE (bottom) models
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Figure 5: Density (top) and energy (bottom) at T = Tdiff , for ε = 0.1, β = 0.01,

α = 0.5: comparison between the kinetic, SHE and coupled SHE models.
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Figure 6: Distribution function at T = Tdiff , x = L/2, for ε = 0.1, β = 0.01,

α = 0.5: comparison between the kinetic, SHE and coupled SHE models.
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Figure 7: Density (top) and energy (bottom) at T = 5Tdiff , for ε = 0.1, β = 0.01,

α = 0.5: comparison between the kinetic, SHE and coupled SHE models.
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Figure 8: Density (top) and energy (bottom) at T = Tdiff , for ε = 0.1, β = 0.1,

α = 0.4: comparison between the kinetic, SHE and coupled SHE models.
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Figure 9: Density (top) and energy (bottom) at T = Tdiff , for ε = 0.1, β = 0.5,

α = 0.1: comparison between the kinetic, SHE and coupled SHE models.
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Figure 10: Density (top) and energy (bottom) at T = Tdiff , for ε = 0.1, β = 1,

α = 0.05: comparison between the kinetic, SHE and coupled SHE models.
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Figure 11: Distribution function at T = Tdiff , x = L/2, for ε = 0.1, β = 1, α = 0.05:

comparison between the kinetic, SHE and coupled SHE models.
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Figure 12: Relative errors in L1 norm for the density (top) and the energy (bottom)

at T = Tdiff , for ε = 0.1: comparison between the kinetic, SHE (αβ = 0) and

coupled SHE (αβ 6= 0) models.
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Figure 13: Density (top) and energy (bottom) at T = 5Tdiff , for ε = 0.1, β = 0.1,

α = 0.4: comparison between the kinetic, SHE and coupled SHE models.
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Figure 14: Density (top) and energy (bottom) at T = 5Tdiff , for ε = 0.1, β = 0.5,

α = 0.1: comparison between the kinetic, SHE and coupled SHE models.
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Figure 15: Density (top) and energy (bottom) at T = 5Tdiff , for ε = 0.1, β = 1,

α = 0.05: comparison between the kinetic, SHE and coupled SHE models.
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Figure 16: Time evolution of the relative error in L1 norm for the density (top)

and the energy (bottom) for ε = 0.1, β = 0.3, α = 0.166: comparison between the

kinetic and the SHE models.
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Figure 17: Density (top) and energy (bottom) at T = 0.05Tdiff , for ε = 0.1, β = 0.3,

α = 0.166: comparison between the kinetic, SHE and coupled SHE models.
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